イロト (局) (日) (日) (日) (日)

The ordinal u_2 and a thin Δ_3^1 equivalence relation

Fabiana Castiblanco

Westfälische Wilhelms-Universität Münster

Institut für mathematische Logik und Grundlagenforschung

4th Münster conference on inner model theory July 27th, 2017

<ロ> (四) (四) (三) (三) (三) (三)

Consequences of large cardinals and forcing

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Consequences of large cardinals and forcing

If there exists a non-trivial elementary embedding $j : V \to M$, where M is an inner model, observe that $j \upharpoonright_{L} : L \to L$ is also non-trivial and elementary.

Consequences of large cardinals and forcing

If there exists a non-trivial elementary embedding $j : V \to M$, where M is an inner model, observe that $j \upharpoonright_L : L \to L$ is also non-trivial and elementary.

Definition We say that $0^{\#}$ exists if there exists a non-trivial elementary $j: L \to L$

Consequences of large cardinals and forcing

If there exists a non-trivial elementary embedding $j : V \to M$, where M is an inner model, observe that $j \upharpoonright_L : L \to L$ is also non-trivial and elementary.

Definition

We say that $0^{\#}$ exists if there exists a non-trivial elementary $j: L \rightarrow L$

More generally, if x is a set of ordinals we say that $x^{\#}$ exists iff there is a non-trivial elementary embedding $j : L[x] \to L[x]$ that does no move ordinals up to sup(x).

Consequences of large cardinals and forcing

If there exists a non-trivial elementary embedding $j : V \to M$, where M is an inner model, observe that $j \upharpoonright_L : L \to L$ is also non-trivial and elementary.

Definition

We say that $0^{\#}$ exists if there exists a non-trivial elementary $j: L \to L$

More generally, if x is a set of ordinals we say that $x^{\#}$ exists iff there is a non-trivial elementary embedding $j : L[x] \to L[x]$ that does no move ordinals up to sup(x).

Theorem (folklore)

The property "For every set of ordinals x, $x^{\#}$ exists" is preserved by any forcing.

Sharps for reals and forcing

Question: Does any forcing notion preserve sharps for reals?

Sharps for reals and forcing

Question: Does any forcing notion preserve sharps for reals?

Theorem (R. David)

It is consistent that every real has a sharp and there is a Σ_3^1 -c.c. forcing notion such that in the generic extension holds V = L[x] for some real x.

Sharps for reals and forcing

Question: Does any forcing notion preserve sharps for reals?

Theorem (R. David)

It is consistent that every real has a sharp and there is a Σ_3^1 -c.c. forcing notion such that in the generic extension holds V = L[x] for some real x.

However, if we impose some conditions over the forcing notion some positive results hold:

Sharps for reals and forcing

Question: Does any forcing notion preserve sharps for reals?

Theorem (R. David)

It is consistent that every real has a sharp and there is a Σ_3^1 -c.c. forcing notion such that in the generic extension holds V = L[x] for some real x.

However, if we impose some conditions over the forcing notion some positive results hold:

Theorem (Schlicht)

Suppose that \mathbb{P} is a provably Σ_2^1 -definable c.c.c. forcing notion. Then, \mathbb{P} preserves the property "every real has a sharp".

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Question: Does any provably Σ_2^1 proper forcing notion preserve sharps for reals?

Question: Does any provably Σ_2^1 proper forcing notion preserve sharps for reals?

We consider tree forcing notions such as Sacks (\mathbb{M}), Silver (\mathbb{V}), Mathias (\mathbb{M}), Laver (\mathbb{L}) and Miller forcing (\mathbb{ML}).

Our results

Question: Does any provably Σ_2^1 proper forcing notion preserve sharps for reals?

We consider tree forcing notions such as Sacks (\mathbb{M}), Silver (\mathbb{V}), Mathias (\mathbb{M}), Laver (\mathbb{L}) and Miller forcing ($\mathbb{M}\mathbb{L}$). In each of this forcing notions, the conditions are perfect subtrees of $^{<\omega}2$ or $^{<\omega}\omega$ ordered by inclusion.

All these forcings satisfy Axiom A and therefore, are proper.

Our results

Question: Does any provably Σ_2^1 proper forcing notion preserve sharps for reals?

We consider tree forcing notions such as Sacks (\mathbb{M}), Silver (\mathbb{V}), Mathias (\mathbb{M}), Laver (\mathbb{L}) and Miller forcing (\mathbb{ML}). In each of this forcing notions, the conditions are perfect subtrees of ${}^{<\omega}2$ or ${}^{<\omega}\omega$ ordered by inclusion.

All these forcings satisfy Axiom A and therefore, are proper.

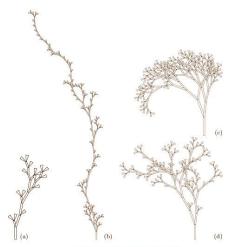
Theorem (C.-Schlicht)

Suppose $\mathbb{P} \in \{\mathbb{S}, \mathbb{M}, \mathbb{V}, \mathbb{L}, \mathbb{ML}\}$ and let $n \in \omega$. Then \mathbb{P} preserves the property

" $M_n^{\#}(x)$ exists for every real x".

Therefore, projective determinacy is preserved by $\mathbb{P}.$

Arboreal forcing notions



"Organic" illustrations of binary trees.

Arboreal forcing notions

Definition

A partial order \mathbb{P} is arboreal if its conditions are perfect trees on ω or 2 ordered by inclusion. A partial order \mathbb{P} is strongly arboreal if it is arboreal and for all $T \in \mathbb{P}$, if $t \in T$, $T_t = \{s \in T : \text{either } s \subseteq t \text{ or } t \subseteq s\} \in \mathbb{P}$.

Arboreal forcing notions

Definition

A partial order \mathbb{P} is arboreal if its conditions are perfect trees on ω or 2 ordered by inclusion. A partial order \mathbb{P} is strongly arboreal if it is arboreal and for all $T \in \mathbb{P}$, if $t \in T$, $T_t = \{s \in T : \text{either } s \subseteq t \text{ or } t \subseteq s\} \in \mathbb{P}$.

If \mathbb{P} is strongly arboreal, we can code generic objects by reals in the standard way: if *G* is \mathbb{P} -generic over *V*, then $x_G = \bigcup \{ \text{Stem}(T) : T \in G \} = \bigcap \{ [T] : T \in G \}$ is a real and $G = \{ T \in \mathbb{P} : x_G \in [T] \}$

Proper forcing and names for reals

Proposition

Let $\mathbb{P} \subseteq \mathbb{R}$ be a proper forcing notion, G a \mathbb{P} -generic filter over V. If $x \in V[G] \cap \mathbb{R}$, then there exists a name $\sigma \in H(\omega_1)$ such that $\sigma^G = x$.

Proper forcing and names for reals

Proposition

Let $\mathbb{P} \subseteq \mathbb{R}$ be a proper forcing notion, *G* a \mathbb{P} -generic filter over *V*. If $x \in V[G] \cap \mathbb{R}$, then there exists a name $\sigma \in H(\omega_1)$ such that $\sigma^G = x$.

Proof.

Suppose $\tau = \{ \langle \langle n, m \rangle, p \rangle : n, m \in \omega, p \in A_n, A_n \text{ is an antichain} \}$ is a \mathbb{P} -name for x. This means that $p \Vdash_{\mathbb{P}} \dot{x}(n) = m$.

Proper forcing and names for reals

Proposition

Let $\mathbb{P} \subseteq \mathbb{R}$ be a proper forcing notion, G a \mathbb{P} -generic filter over V. If $x \in V[G] \cap \mathbb{R}$, then there exists a name $\sigma \in H(\omega_1)$ such that $\sigma^G = x$.

Proof.

Suppose $\tau = \{ \langle \langle n, m \rangle, p \rangle : n, m \in \omega, p \in A_n, A_n \text{ is an antichain} \}$ is a \mathbb{P} -name for x. This means that $p \Vdash_{\mathbb{P}} \dot{x}(n) = m$.

If *G* is \mathbb{P} -generic over *V* then $X = \{\langle \langle n, m \rangle, p \rangle \in \tau : p \in G \cap A_n\} \subset \tau$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Proper forcing and names for reals

Proposition

Let $\mathbb{P} \subseteq \mathbb{R}$ be a proper forcing notion, G a \mathbb{P} -generic filter over V. If $x \in V[G] \cap \mathbb{R}$, then there exists a name $\sigma \in H(\omega_1)$ such that $\sigma^G = x$.

Proof.

Suppose $\tau = \{ \langle \langle n, m \rangle, p \rangle : n, m \in \omega, p \in A_n, A_n \text{ is an antichain} \}$ is a \mathbb{P} -name for x. This means that $p \Vdash_{\mathbb{P}} \dot{x}(n) = m$.

If *G* is \mathbb{P} -generic over *V* then $X = \{\langle \langle n, m \rangle, p \rangle \in \tau : p \in G \cap A_n\} \subset \tau$. Note that *X* is countable in *V*[*G*], so, by properness of \mathbb{P} there exists a countable set $Y \in V$ such that $X \subset Y$.

Proper forcing and names for reals

Proposition

Let $\mathbb{P} \subseteq \mathbb{R}$ be a proper forcing notion, G a \mathbb{P} -generic filter over V. If $x \in V[G] \cap \mathbb{R}$, then there exists a name $\sigma \in H(\omega_1)$ such that $\sigma^G = x$.

Proof.

Suppose $\tau = \{ \langle \langle n, m \rangle, p \rangle : n, m \in \omega, p \in A_n, A_n \text{ is an antichain} \}$ is a \mathbb{P} -name for x. This means that $p \Vdash_{\mathbb{P}} \dot{x}(n) = m$.

If *G* is \mathbb{P} -generic over *V* then $X = \{\langle \langle n, m \rangle, p \rangle \in \tau : p \in G \cap A_n\} \subset \tau$. Note that *X* is countable in *V*[*G*], so, by properness of \mathbb{P} there exists a countable set $Y \in V$ such that $X \subset Y$.

Take $\sigma = \tau \cap Y$. Then σ is countable and $\sigma^{G} = \tau^{G}$.

Sacks forcing

 $\mathbb{S} = \{T : T \text{ is a perfect tree on } 2\}$

For $S, T \in \mathbb{S}$ we stipulate $S \leq T$ if and only if $S \subseteq T$.

Sacks forcing

 $\mathbb{S} = \{T : T \text{ is a perfect tree on } 2\}$

For $S, T \in \mathbb{S}$ we stipulate $S \leq T$ if and only if $S \subseteq T$.

Definition

Suppose that $S \in \mathbb{S}$. We define:

 $\mathbb{A}_{\mathbb{S},S} = \{t \subseteq S : t \text{ is a finite subtree of } S \text{ isomorphic to some } ^n 2 \}$

ordered by end-extension, i.e. $t \leq s$ if and only if $t \supseteq s$ and $t \upharpoonright_{|s|} = s$. Given $S \in \mathbb{S}$, let π_S : Split(S) $\rightarrow^{<\omega}$ 2 be the natural order isomorphism.

Sacks forcing

 $\mathbb{S} = \{T : T \text{ is a perfect tree on } 2\}$

For $S, T \in \mathbb{S}$ we stipulate $S \leq T$ if and only if $S \subseteq T$.

Definition

Suppose that $S \in \mathbb{S}$. We define:

 $\mathbb{A}_{\mathbb{S},S} = \{t \subseteq S : t \text{ is a finite subtree of } S \text{ isomorphic to some } ^n 2 \}$

ordered by end-extension, i.e. $t \leq s$ if and only if $t \supseteq s$ and $t \upharpoonright_{|s|} = s$.

Given $S \in \mathbb{S}$, let π_S : Split(S) $\rightarrow^{<\omega}$ 2 be the natural order isomorphism.

Lemma

Suppose that *G* is $\mathbb{A}_{S,S}$ -generic over *V*. Then:

- $T_G = \bigcup G$ is a perfect subtree of *S*.
- For every $x \in [T_G]$, $\pi_S(x) := \bigcup_{n < \omega} \pi_S(x \upharpoonright_n)$ is Cohen-generic over *V*.

Lemma

Suppose that $\forall x \in \mathbb{R}(x^{\#} \text{ exists})$ and let $\sigma \in H(\omega_1)$. Let \dot{x} a name for the S-generic real. For every $S \in S$, there is some $T \leq S$ such that

 $T \Vdash_{\mathbb{S}} \dot{x}$ is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Lemma

Suppose that $\forall x \in \mathbb{R}(x^{\#} \text{ exists})$ and let $\sigma \in H(\omega_1)$. Let \dot{x} a name for the S-generic real. For every $S \in S$, there is some $T \leq S$ such that

 $T \Vdash_{\mathbb{S}} \dot{x}$ is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

Proof

Since $(\sigma, S)^{\#}$ exists, we have that $|\wp(\mathbb{A}_{\mathbb{S},S})^{L[\sigma,S]}| < \omega_1$ so there is a $\mathbb{A}_{\mathbb{S},S}$ -generic T in V over $L[\sigma, S]$. By the lemma above, every branch in T is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S and $T \leq S$.

Lemma

Suppose that $\forall x \in \mathbb{R}(x^{\#} \text{ exists})$ and let $\sigma \in H(\omega_1)$. Let \dot{x} a name for the S-generic real. For every $S \in S$, there is some $T \leq S$ such that

 $T \Vdash_{\mathbb{S}} \dot{x}$ is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

Proof

Since $(\sigma, S)^{\#}$ exists, we have that $|\wp(\mathbb{A}_{\mathbb{S},S})^{L[\sigma,S]}| < \omega_1$ so there is a $\mathbb{A}_{\mathbb{S},S}$ -generic T in V over $L[\sigma, S]$. By the lemma above, every branch in T is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S and $T \leq S$. Then, if G is \mathbb{S} -generic over V, we have

 $V[G] \models$ every branch in T is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

Lemma

Suppose that $\forall x \in \mathbb{R}(x^{\#} \text{ exists})$ and let $\sigma \in H(\omega_1)$. Let \dot{x} a name for the S-generic real. For every $S \in S$, there is some $T \leq S$ such that

 $T \Vdash_{\mathbb{S}} \dot{x}$ is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

Proof

Since $(\sigma, S)^{\#}$ exists, we have that $|\wp(\mathbb{A}_{\mathbb{S},S})^{L[\sigma,S]}| < \omega_1$ so there is a $\mathbb{A}_{\mathbb{S},S}$ -generic T in V over $L[\sigma, S]$. By the lemma above, every branch in T is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S and $T \leq S$. Then, if G is \mathbb{S} -generic over V, we have

 $V[G] \models$ every branch in T is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

In particular, as \dot{x} is a Sacks real, if $T \in G$ we have

 $V[G] \models \dot{x}$ is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S

i.e., $T \Vdash \dot{x}$ is \mathbb{C} -generic over $L[\sigma, S]$ modulo π_S .

Lemma

Suppose that *V* is closed under sharps for reals. Suppose that $r \in \mathbb{R}$. Then, for every S-generic real *x* over *V*, there exists some real $y \in V$ such that *x* is equivalent to a \mathbb{C} -generic over L[r, y].

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Lemma

Suppose that *V* is closed under sharps for reals. Suppose that $r \in \mathbb{R}$. Then, for every S-generic real *x* over *V*, there exists some real $y \in V$ such that *x* is equivalent to a C-generic over L[r, y].

Proof.

Suppose \dot{x} is a S-name for x. As $(r, S)^{\#}$ exists, by the previous lemma applied to the model L[r, S], the set

 $D = \{T \in \mathbb{S} : \text{for some } S \in \mathbb{S}, T \leq S, T \Vdash_{\mathbb{S}} \dot{x} \text{ is } \mathbb{C}\text{-generic over } L[r, S] \}$

is dense in \mathbb{S} .

Lemma

Suppose that *V* is closed under sharps for reals. Suppose that $r \in \mathbb{R}$. Then, for every S-generic real *x* over *V*, there exists some real $y \in V$ such that *x* is equivalent to a \mathbb{C} -generic over L[r, y].

Proof.

Suppose \dot{x} is a S-name for x. As $(r, S)^{\#}$ exists, by the previous lemma applied to the model L[r, S], the set

 $D = \{T \in \mathbb{S} : \text{for some } S \in \mathbb{S}, \ T \leq S, \ T \Vdash_{\mathbb{S}} \dot{x} \text{ is } \mathbb{C}\text{-generic over } L[r, S]\}$

is dense in S. If G is S-generic over V containing $T \in D$, we can pick $S \ge T$ with

 $T \Vdash_{\mathbb{S}} \dot{x}$ is \mathbb{C} -generic over L[r, S] modulo π_S

Lemma

Suppose that *V* is closed under sharps for reals. Suppose that $r \in \mathbb{R}$. Then, for every S-generic real *x* over *V*, there exists some real $y \in V$ such that *x* is equivalent to a C-generic over L[r, y].

Proof.

Suppose \dot{x} is a S-name for x. As $(r, S)^{\#}$ exists, by the previous lemma applied to the model L[r, S], the set

 $D = \{T \in \mathbb{S} : \text{for some } S \in \mathbb{S}, \ T \leq S, \ T \Vdash_{\mathbb{S}} \dot{x} \text{ is } \mathbb{C}\text{-generic over } L[r, S] \}$

is dense in S. If G is S-generic over V containing $T \in D$, we can pick $S \ge T$ with

 $T \Vdash_{\mathbb{S}} \dot{x}$ is \mathbb{C} -generic over L[r, S] modulo π_S

Therefore, $V[G] \models x$ is \mathbb{C} -generic over L[r, S] modulo π_S .

(日)

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{exists})$. Suppose that x is S-generic over V. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{ exists})$. Suppose that *x* is S-generic over *V*. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Proof.

Let $y \in \mathbb{R} \cap V[x]$ and let $\sigma \in H(\omega_1)$ a S-name such that $\sigma^x = y$.

(日)

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{exists})$. Suppose that *x* is S-generic over *V*. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Proof.

Let $y \in \mathbb{R} \cap V[x]$ and let $\sigma \in H(\omega_1)$ a S-name such that $\sigma^x = y$.

By lemma above, there exists $z \in V \cap \mathbb{R}$ such that x is \mathbb{C} -generic over $L[\sigma, z]$ modulo π_z .

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{ exists})$. Suppose that *x* is S-generic over *V*. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Proof.

Let $y \in \mathbb{R} \cap V[x]$ and let $\sigma \in H(\omega_1)$ a S-name such that $\sigma^x = y$.

By lemma above, there exists $z \in V \cap \mathbb{R}$ such that x is \mathbb{C} -generic over $L[\sigma, z]$ modulo π_z . Code the pair $(\sigma, z) \in V$ by some real r. Then, we have in V a nontrivial elementary embedding $j : L[r] \to L[r]$.

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{ exists})$. Suppose that *x* is S-generic over *V*. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Proof.

Let $y \in \mathbb{R} \cap V[x]$ and let $\sigma \in H(\omega_1)$ a S-name such that $\sigma^x = y$.

By lemma above, there exists $z \in V \cap \mathbb{R}$ such that x is \mathbb{C} -generic over $L[\sigma, z]$ modulo π_z . Code the pair $(\sigma, z) \in V$ by some real r. Then, we have in V a nontrivial elementary embedding $j : L[r] \to L[r]$.

Lift this embedding to the Cohen extension:

 $j': L[r][x] \to L[r][x]$ $\tau^x \to (j(\tau))^x$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{ exists})$. Suppose that *x* is S-generic over *V*. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Proof.

Let $y \in \mathbb{R} \cap V[x]$ and let $\sigma \in H(\omega_1)$ a S-name such that $\sigma^x = y$.

By lemma above, there exists $z \in V \cap \mathbb{R}$ such that x is \mathbb{C} -generic over $L[\sigma, z]$ modulo π_z . Code the pair $(\sigma, z) \in V$ by some real r. Then, we have in V a nontrivial elementary embedding $j : L[r] \to L[r]$.

Lift this embedding to the Cohen extension:

 $j': L[r][x] \to L[r][x]$ $\tau^x \to (j(\tau))^x$

Note that j' is elementary and non-trivial.

Theorem (C.-Schlicht.)

Suppose that $\forall y \in \mathbb{R}(y^{\#} \text{ exists})$. Suppose that *x* is S-generic over *V*. Then

 $V[x] \models \forall y \in \mathbb{R}(y^{\#} \text{ exists})$

Proof.

Let $y \in \mathbb{R} \cap V[x]$ and let $\sigma \in H(\omega_1)$ a \mathbb{S} -name such that $\sigma^x = y$.

By lemma above, there exists $z \in V \cap \mathbb{R}$ such that x is \mathbb{C} -generic over $L[\sigma, z]$ modulo π_z . Code the pair $(\sigma, z) \in V$ by some real r. Then, we have in V a nontrivial elementary embedding $j : L[r] \to L[r]$.

Lift this embedding to the Cohen extension:

 $j': L[r][x] \to L[r][x]$ $au^x \to (j(au))^x$

Note that j' is elementary and non-trivial. Then $\overline{j} := j' \upharpoonright_{L[y]}$ witnesses the existence of $y^{\#}$ in V[x].

Pretty much the same ideas that we used before work by considering Silver, Mathias, Laver and Miller forcing. Basically, if for every $x \in {}^{\omega}\omega, x^{\#}$ exists and $r \in {}^{\omega}\omega$ then we can prove:

Other forcings

Pretty much the same ideas that we used before work by considering Silver, Mathias, Laver and Miller forcing. Basically, if for every $x \in {}^{\omega}\omega, x^{\#}$ exists and $r \in {}^{\omega}\omega$ then we can prove:

If x is a Silver real over V, there is some real $y \in V$ such that x is equivalent via some isomorphism to a \mathbb{C} -generic over L[r, y].

Other forcings

Pretty much the same ideas that we used before work by considering Silver, Mathias, Laver and Miller forcing. Basically, if for every $x \in {}^{\omega}\omega, x^{\#}$ exists and $r \in {}^{\omega}\omega$ then we can prove:

- If x is a Silver real over V, there is some real $y \in V$ such that x is equivalent via some isomorphism to a \mathbb{C} -generic over L[r, y].
- If x is a Sacks, Silver, Mathias, Laver or Miller real over V, there is some real $y \in V$ such that x is equivalent via some isomorphism to a \mathbb{M} -generic over L[r, y].

Other forcings

Pretty much the same ideas that we used before work by considering Silver, Mathias, Laver and Miller forcing. Basically, if for every $x \in {}^{\omega}\omega, x^{\#}$ exists and $r \in {}^{\omega}\omega$ then we can prove:

- If x is a Silver real over V, there is some real $y \in V$ such that x is equivalent via some isomorphism to a \mathbb{C} -generic over L[r, y].
- If x is a Sacks, Silver, Mathias, Laver or Miller real over V, there is some real $y \in V$ such that x is equivalent via some isomorphism to a \mathbb{M} -generic over L[r, y].

These allow us to show that all the aforementioned forcing notions preserve sharps for reals.

Thin equivalence relations: An example

Definition

We say an equivalence relation $E \subset \mathbb{R} \times \mathbb{R}$ is thin if there is no a perfect set $P \subset \mathbb{R}$ of pairwise *E*-inequivalent reals.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

Thin equivalence relations: An example

Definition

We say an equivalence relation $E \subset \mathbb{R} \times \mathbb{R}$ is thin if there is no a perfect set $P \subset \mathbb{R}$ of pairwise *E*-inequivalent reals.

Assume that every real has a sharp. Define

$$xEy \iff (\omega_1^{+L[x]} = \omega_1^{+L[y]})$$

Thin equivalence relations: An example

Definition

We say an equivalence relation $E \subset \mathbb{R} \times \mathbb{R}$ is thin if there is no a perfect set $P \subset \mathbb{R}$ of pairwise *E*-inequivalent reals.

Assume that every real has a sharp. Define

$$xEy \iff (\omega_1^{+l[x]} = \omega_1^{+l[y]})$$

Notice that *xEy* iff

$$\exists z(x, y \leq_T z \text{ and } z^{\#} \models \kappa^{+L[x]} = \kappa^{+L[y]})$$

where κ is the critical point of the top measure of $z^{\#}$.

Thin equivalence relations: An example

Definition

We say an equivalence relation $E \subset \mathbb{R} \times \mathbb{R}$ is thin if there is no a perfect set $P \subset \mathbb{R}$ of pairwise *E*-inequivalent reals.

Assume that every real has a sharp. Define

$$xEy \iff (\omega_1^{+l[x]} = \omega_1^{+l[y]})$$

Notice that *xEy* iff

$$\exists z(x, y \leq_T z \text{ and } z^{\#} \models \kappa^{+\iota[x]} = \kappa^{+\iota[y]})$$

where κ is the critical point of the top measure of $z^{\#}$.

Therefore, under the presence of sharps for reals, *E* is a Δ_3^1 equivalence relation.

(ロ) (型) (主) (主) (三) の(で)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Claim: E is thin.

Suppose that there is a perfect set $P \subset {}^{\omega}\omega$ such that $[P]^2 \subset \mathbb{R}^2 \smallsetminus E$. Since E is Δ_3^1 , the formula

$$\forall x, y \in P(x \neq y \implies (x, y) \in \mathbb{R}^2 \setminus E)$$

is Π_3^1 .

Claim: E is thin.

Suppose that there is a perfect set $P \subset {}^{\omega}\omega$ such that $[P]^2 \subset \mathbb{R}^2 \smallsetminus E$. Since *E* is Δ_3^1 , the formula

$$\forall x, y \in P(x \neq y \implies (x, y) \in \mathbb{R}^2 \setminus E)$$

is Π_3^1 .

As V is closed under sharps for reals we have Σ_3^1 absoluteness for any provably Σ_2^1 c.c.c. forcing notion. Then if c is Cohen generic over V it follows that

$$V[c] \models [P]^2 \subset \mathbb{R}^2 \smallsetminus E$$

Claim: E is thin.

Suppose that there is a perfect set $P \subset {}^{\omega}\omega$ such that $[P]^2 \subset \mathbb{R}^2 \setminus E$. Since *E* is Δ_3^1 , the formula

$$\forall x, y \in P(x \neq y \implies (x, y) \in \mathbb{R}^2 \setminus E)$$

is Π_3^1 .

As V is closed under sharps for reals we have Σ_3^1 absoluteness for any provably Σ_2^1 c.c.c. forcing notion. Then if c is Cohen generic over V it follows that

$$V[c] \models [P]^2 \subset \mathbb{R}^2 \smallsetminus E$$

Notice that *P* induces a Δ_3^1 well-ordering of the reals by taking

$$x \prec y$$
 iff $\omega_1^{+l[\varphi(x)]} < \omega_1^{+l[\varphi(y)]}$

where $\varphi : {}^{\omega}\omega \to P$ is a recursive bijection with parameters in the ground model.

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回> < < </p>

Therefore, there exists $a \in {}^{\omega}\omega \cap V$ and a $\Delta_3^1(a)$ formula $\phi(x, y)$ such that

 $V[c] \models \{(u, v) : \phi(u, v, a)\}$ is a well-ordering of \mathbb{R} (*)

(日)

Therefore, there exists $a \in {}^{\omega}\omega \cap V$ and a $\Delta_3^1(a)$ formula $\phi(x, y)$ such that

 $V[c] \models \{(u, v) : \phi(u, v, a)\}$ is a well-ordering of \mathbb{R} (*)

Let $f: {}^{\omega}\omega \to \alpha, \alpha \in \text{OR}$ be an order-isomorphism witnessing (*).

(日)

Therefore, there exists $a \in {}^{\omega}\omega \cap V$ and a $\Delta_3^1(a)$ formula $\phi(x, y)$ such that

 $V[c] \models \{(u, v) : \phi(u, v, a)\}$ is a well-ordering of \mathbb{R} (*)

Let $f : {}^{\omega}\omega \to \alpha, \alpha \in \text{OR}$ be an order-isomorphism witnessing (*). Note that f is definable from the real $a \in V$.

Therefore, there exists $a \in {}^{\omega}\omega \cap V$ and a $\Delta_3^1(a)$ formula $\phi(x, y)$ such that

 $V[c] \models \{(u, v) : \phi(u, v, a)\}$ is a well-ordering of \mathbb{R} (*)

Let $f : {}^{\omega}\omega \to \alpha, \alpha \in OR$ be an order-isomorphism witnessing (*). Note that f is definable from the real $a \in V$. Thus, c is the only solution to the formula

 $\psi(x,a):\exists x(f(x)=\gamma)$

for some $\gamma < \alpha$.

Therefore, there exists $a \in {}^{\omega}\omega \cap V$ and a $\Delta_3^1(a)$ formula $\phi(x, y)$ such that

 $V[c] \models \{(u, v) : \phi(u, v, a)\}$ is a well-ordering of \mathbb{R} (*)

Let $f : {}^{\omega}\omega \to \alpha, \alpha \in \text{OR}$ be an order-isomorphism witnessing (*). Note that f is definable from the real $a \in V$.

Thus, c is the only solution to the formula

$$\psi(x,a):\exists x(f(x)=\gamma)$$

for some $\gamma < \alpha$.

This means that the Cohen generic real c is definable with a formula using parameters from the ground model which is impossible.

Therefore, there exists $a \in {}^{\omega}\omega \cap V$ and a $\Delta_3^1(a)$ formula $\phi(x, y)$ such that

 $V[c] \models \{(u, v) : \phi(u, v, a)\}$ is a well-ordering of \mathbb{R} (*)

Let $f : {}^{\omega}\omega \to \alpha, \alpha \in \text{OR}$ be an order-isomorphism witnessing (*). Note that f is definable from the real $a \in V$.

Thus, *c* is the only solution to the formula

$$\psi(x,a):\exists x(f(x)=\gamma)$$

for some $\gamma < \alpha$.

This means that the Cohen generic real c is definable with a formula using parameters from the ground model which is impossible. Thus, E is thin.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Question:

Let $\mathcal{T} = \{\mathbb{S}, \mathbb{V}, \mathbb{M}, \mathbb{L}, \mathbb{ML}\}$. Under the existence of sharps for reals, does any of the tree forcings in \mathcal{T} add new equivalence classes to *E*?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Question:

Let $\mathcal{T} = \{\mathbb{S}, \mathbb{V}, \mathbb{M}, \mathbb{L}, \mathbb{ML}\}$. Under the existence of sharps for reals, does any of the tree forcings in \mathcal{T} add new equivalence classes to *E*?

Lemma (C.-Schindler)

Let *E* be the equivalence relation defined by $xEy \iff \omega_1^{+\ell[x]} = \omega_1^{+\ell[y]}$ and let \mathbb{P} be a forcing notion in \mathcal{T} . Then, for every $x \in V^{\mathbb{P}}$ there exists $x' \in V$ such that xEx'.

Question:

Let $\mathcal{T} = \{\mathbb{S}, \mathbb{V}, \mathbb{M}, \mathbb{L}, \mathbb{ML}\}$. Under the existence of sharps for reals, does any of the tree forcings in \mathcal{T} add new equivalence classes to *E*?

Lemma (C.-Schindler)

Let *E* be the equivalence relation defined by $xEy \iff \omega_1^{+l[x]} = \omega_1^{+l[y]}$ and let \mathbb{P} be a forcing notion in \mathcal{T} . Then, for every $x \in V^{\mathbb{P}}$ there exists $x' \in V$ such that xEx'.

Proof

Let $x \in V^{\mathbb{P}}$. Then, there exists some $z \in {}^{\omega}\omega \cap V$ such that $x \in L[z][g]$ where g is \mathbb{Q} generic over $L[z], \mathbb{Q}$ being either Cohen or Mathias forcing.

By properness, notice that $\omega_1^{+l[x]} \le \omega_1^{+l[z,g]} = \omega_1^{+l[z]}$.

Question:

Let $\mathcal{T} = \{\mathbb{S}, \mathbb{V}, \mathbb{M}, \mathbb{L}, \mathbb{ML}\}$. Under the existence of sharps for reals, does any of the tree forcings in \mathcal{T} add new equivalence classes to *E*?

Lemma (C.-Schindler)

Let *E* be the equivalence relation defined by $xEy \iff \omega_1^{+\ell[x]} = \omega_1^{+\ell[y]}$ and let \mathbb{P} be a forcing notion in \mathcal{T} . Then, for every $x \in V^{\mathbb{P}}$ there exists $x' \in V$ such that xEx'.

Proof

Let $x \in V^{\mathbb{P}}$. Then, there exists some $z \in {}^{\omega}\omega \cap V$ such that $x \in L[z][g]$ where g is \mathbb{Q} generic over L[z], \mathbb{Q} being either Cohen or Mathias forcing.

By properness, notice that $\omega_1^{+l[x]} \le \omega_1^{+l[z,g]} = \omega_1^{+l[z]}$.

Suppose that $z^{\#} = (J_{\alpha}(z), \in, U)$ and let $M = M_{\omega_1}$ be the ω_1 -th iterate of $z^{\#}$ by U. Let $j : z^{\#} \to M$ be the induced elementary embedding. Observe that if $\kappa = \operatorname{crit}(U) = \operatorname{crit}(j)$ then $j(\kappa) = \omega_1^V$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

We can lift $j : z^{\#} \to M$ to the extension by \mathbb{Q} and obtain an elementary embedding $j' : z^{\#}[g] \to M[g]$.

イロト (得) (ヨ) (ヨ) (ヨ) () ()

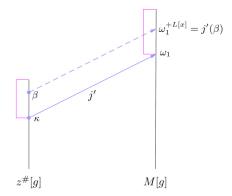
We can lift $j : z^{\#} \to M$ to the extension by \mathbb{Q} and obtain an elementary embedding $j' : z^{\#}[g] \to M[g]$.

As $z^{\#}[g]$ can compute x, in $z^{\#}[g]$ if $\beta = \kappa^{+\iota[x]}$ we have $j'(\beta) = \omega_1^{+\iota[x]}$. Thus $V^{\mathbb{P}} \models \kappa^{+\iota[x]} = \beta$. Say $\gamma = j'(\beta)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

We can lift $j : z^{\#} \to M$ to the extension by \mathbb{Q} and obtain an elementary embedding $j' : z^{\#}[g] \to M[g]$.

As $z^{\#}[g]$ can compute x, in $z^{\#}[g]$ if $\beta = \kappa^{+\iota[x]}$ we have $j'(\beta) = \omega_1^{+\iota[x]}$. Thus $V^{\mathbb{P}} \models \kappa^{+\iota[x]} = \beta$. Say $\gamma = j'(\beta)$.



Since \mathbb{Q} can be coded by a real, the statement

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Since \mathbb{Q} can be coded by a real, the statement

 $\exists x \exists g(g \text{ is } \mathbb{Q}\text{-generic over } z^{\#} \land x \in z^{\#}[g] \land \beta = \kappa^{+l[x]^{z^{\#}[g]}}) \quad (*)$ is Σ_{1}^{1} in the parameters $z^{\#}, \beta, \mathbb{Q}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Since \mathbb{Q} can be coded by a real, the statement

$$\exists x \exists g(g \text{ is } \mathbb{Q}\text{-generic over } z^{\#} \land x \in z^{\#}[g] \land \beta = \kappa^{+L[x]^{z^{\#}[g]}}) \quad (*)$$

is Σ_1^1 in the parameters $z^{\#}, \beta, \mathbb{Q}$.
As (*) holds in $V^{\mathbb{P}}$, by Σ_1^1 -absoluteness it also holds in V .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Since \mathbb{Q} can be coded by a real, the statement

$$\exists x \exists g(g \text{ is } \mathbb{Q}\text{-generic over } z^{\#} \land x \in z^{\#}[g] \land \beta = \kappa^{+\iota[x]^{z^{\#}[g]}}) \quad (*)$$

is
$$\Sigma_1^1$$
 in the parameters $z^{\#}, \beta, \mathbb{Q}$.

As (*) holds in $V^{\mathbb{P}}$, by Σ_1^1 -absoluteness it also holds in V. Let $x' \in V$ be a witness for (*). Then we have that $x' \in z^{\#}[g]$ and $\beta = \kappa^{+\iota[x']}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Since \mathbb{Q} can be coded by a real, the statement

$$\exists x \exists g(g \text{ is } \mathbb{Q}\text{-generic over } z^{\#} \land x \in z^{\#}[g] \land \beta = \kappa^{+\iota[x]^{z^{\#}[g]}}) \quad (*)$$

is
$$\Sigma_1^1$$
 in the parameters $z^{\#}, \beta, \mathbb{Q}$.

As (*) holds in $V^{\mathbb{P}}$, by Σ_1^1 -absoluteness it also holds in V. Let $x' \in V$ be a witness for (*). Then we have that $x' \in z^{\#}[g]$ and $\beta = \kappa^{+\iota[x']}$.

Therefore $\gamma = j'(\beta) = \omega_1^{+L[x']}$, i.e. xEx'.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Uniform indiscernibles

Uniform indiscernibles

Definition Let $x \in {}^{\omega}\omega$ and assume that $x^{\#}$ exists.

Uniform indiscernibles

Definition

Let $x \in {}^{\omega}\omega$ and assume that $x^{\#}$ exists. If C_x is the club of indiscernibles for L[x] let $Next(x, \delta) = min\{\alpha \in C_x : \alpha > \delta\}.$

Uniform indiscernibles

Definition

Let $x \in {}^{\omega}\omega$ and assume that $x^{\#}$ exists. If C_x is the club of indiscernibles for L[x] let $Next(x, \delta) = min\{\alpha \in C_x : \alpha > \delta\}$. We set

$$u_{\gamma}^{x} = \begin{cases} \operatorname{Next}(x, 0) & \text{if } \gamma = 1\\ \operatorname{Next}(x, u_{\alpha}^{x}) & \text{if } \gamma = \alpha + 1\\ \sup_{\alpha \in \lambda} u_{\alpha}^{x} & \text{if } \gamma \text{ is limit} \end{cases}$$

Uniform indiscernibles

Definition

Let $x \in {}^{\omega}\omega$ and assume that $x^{\#}$ exists. If C_x is the club of indiscernibles for L[x] let $Next(x, \delta) = min\{\alpha \in C_x : \alpha > \delta\}$. We set

$$u_{\gamma}^{x} = \begin{cases} \operatorname{Next}(x, 0) & \text{if } \gamma = 1\\ \operatorname{Next}(x, u_{\alpha}^{x}) & \text{if } \gamma = \alpha + 1\\ \sup_{\alpha \in \lambda} u_{\alpha}^{x} & \text{if } \gamma \text{ is limit} \end{cases}$$

Under the existence of sharps for reals, we can define the $\gamma\text{-th}$ uniform indiscernible:

Uniform indiscernibles

Definition

Let $x \in {}^{\omega}\omega$ and assume that $x^{\#}$ exists. If C_x is the club of indiscernibles for L[x] let $Next(x, \delta) = min\{\alpha \in C_x : \alpha > \delta\}$. We set

$$u_{\gamma}^{x} = \begin{cases} \operatorname{Next}(x, 0) & \text{if } \gamma = 1\\ \operatorname{Next}(x, u_{\alpha}^{x}) & \text{if } \gamma = \alpha + 1\\ \sup_{\alpha \in \lambda} u_{\alpha}^{x} & \text{if } \gamma \text{ is limit} \end{cases}$$

Under the existence of sharps for reals, we can define the $\gamma\text{-th}$ uniform indiscernible:

$$u_{\gamma} = \sup_{x \in {}^{\omega} \omega} u_{\gamma}^{x}$$

Uniform indiscernibles

Definition

Let $x \in {}^{\omega}\omega$ and assume that $x^{\#}$ exists. If C_x is the club of indiscernibles for L[x] let $Next(x, \delta) = min\{\alpha \in C_x : \alpha > \delta\}$. We set

$$u_{\gamma}^{x} = \begin{cases} \operatorname{Next}(x, 0) & \text{if } \gamma = 1\\ \operatorname{Next}(x, u_{\alpha}^{x}) & \text{if } \gamma = \alpha + 1\\ \sup_{\alpha \in \lambda} u_{\alpha}^{x} & \text{if } \gamma \text{ is limit} \end{cases}$$

Under the existence of sharps for reals, we can define the $\gamma\text{-th}$ uniform indiscernible:

$$u_{\gamma} = \sup_{x \in {}^{\omega} \omega} u_{\gamma}^{x}$$

Since all the cardinals in *V* are indiscernibles for every real, we have that $u_1 = \omega_1$. For the same reason, $u_2 \leq \omega_2$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Kunen-Martin)

If for every $x^{\in \omega}\omega$, $x^{\#}$ exists the following are all equal:

*u*₂;

- $\sup\{(\omega_1)^{+\iota[x]}: x \in {}^{\omega}\omega\}$ where $\omega_1 = \omega_1^V$;
- sup{ α : α is the rank of a Π_1^1 well-founded relation};
- $\delta_2^1 = \sup\{\alpha : \exists f : {}^{\omega}\omega \to \alpha \text{ such that } f \text{ defines a } \Delta_2^1 \text{ well-ordering of } {}^{\omega}\omega\}$

Theorem (Kunen-Martin)

If for every $x^{\in \omega}\omega$, $x^{\#}$ exists the following are all equal:

- *u*₂;
- $\sup\{(\omega_1)^{+L[x]}: x \in {}^{\omega}\omega\}$ where $\omega_1 = \omega_1^V$;
- sup{ α : α is the rank of a Π_1^1 well-founded relation};
- $\delta_2^1 = \sup\{\alpha : \exists f : {}^{\omega}\omega \to \alpha \text{ such that } f \text{ defines a } \Delta_2^1 \text{ well-ordering of } {}^{\omega}\omega\}$

From the characterization above, we can establish the next result in connection with the equivalence relation E:

Theorem (Kunen-Martin)

If for every $x^{\in \omega}\omega$, $x^{\#}$ exists the following are all equal:

- *u*₂;
- $\sup\{(\omega_1)^{+\iota[x]}: x \in {}^{\omega}\omega\}$ where $\omega_1 = \omega_1^V$;
- sup{ α : α is the rank of a Π_1^1 well-founded relation};
- $\delta_2^1 = \sup\{\alpha : \exists f : {}^{\omega}\omega \to \alpha \text{ such that } f \text{ defines a } \Delta_2^1 \text{ well-ordering of } {}^{\omega}\omega\}$

From the characterization above, we can establish the next result in connection with the equivalence relation E:

Corollary

Suppose that $x^{\#}$ exists for every real x and let \mathbb{P} be a forcing notion in \mathcal{T} . Then \mathbb{P} does not change the value of u_2 , i.e. $u_2^{V} = u_2^{V^{\mathbb{P}}}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Open questions and further work

Our results about preservation of sharps can be extended to any Σ¹₂ provably strongly proper forcing. Also, every such a forcing does not change the value of u₂.

- Our results about preservation of sharps can be extended to any Σ¹₂ provably strongly proper forcing. Also, every such a forcing does not change the value of u₂.
- Do all Σ_2^1 -definable proper forcings preserve sharps for reals?

- Our results about preservation of sharps can be extended to any Σ¹₂ provably strongly proper forcing. Also, every such a forcing does not change the value of u₂.
- Do all Σ₂¹-definable proper forcings preserve sharps for reals?
- Does a projective proper forcing \mathbb{P} change the value of u_2 under presence of sharps for reals?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- Our results about preservation of sharps can be extended to any Σ¹₂ provably strongly proper forcing. Also, every such a forcing does not change the value of u₂.
- Do all Σ¹₂-definable proper forcings preserve sharps for reals?
- Does a projective proper forcing \mathbb{P} change the value of u_2 under presence of sharps for reals?
- Can exist a projective proper forcing \mathbb{P} adding a new class to E such that in $V^{\mathbb{P}}$, ${}^{\omega}\omega$ is still closed under sharps?

- Our results about preservation of sharps can be extended to any Σ¹₂ provably strongly proper forcing. Also, every such a forcing does not change the value of u₂.
- Do all Σ¹₂-definable proper forcings preserve sharps for reals?
- Does a projective proper forcing \mathbb{P} change the value of u_2 under presence of sharps for reals?
- Can exist a projective proper forcing \mathbb{P} adding a new class to E such that in $V^{\mathbb{P}}$, ${}^{\omega}\omega$ is still closed under sharps?
- In which scenario can a projective proper forcing \mathbb{P} increase δ_2^1 ?

◆□ > ◆檀 > ◆臣 > ◆臣 >

Many thanks!