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This is joint work with A. Apter, A. Blass and B. Löwe.

We discuss some new partition results around the level of an
inaccessible Suslin cardinal.

We assume AD + DC throughout.

The picture at an inaccessible Suslin cardinal is somewhat similar
to that at a projective ordinal.
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Figure: Overview of the regular cardinals. Regular Suslin cardinals in
red, other regular cardinals in green.
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Let κ an inaccessible Suslin cardinal (i.e., a regular, limit Suslin
cardinal).

So, κ+ and κ++ are regular, and κ+n for n ≥ 3 are singular of
cofinality κ++.

A basic fact (Kechris, Kleinberg, Moschovakis, Woodin) is that we
have the strong partition relation at any inaccessible Suslin κ.

Fact (KKMW)
Let κ = o(∆), where ∆ is closed under quantifiers, ∨, ∧, and
cof(κ) > ω. Assume the Steel pointclass Γ at κ is closed under ∨.
Then κ → (κ)κ.
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With Apter and Löwe we showed:

Theorem (AJL)
κ+ → (κ+)κ and κ++ → (κ++)κ. In fact, we have the polarized
partition property

(κ, κ+, κ++)→ (κ, κ+, κ++)κ.

Question
What is the exact partition strength of κ+ and κ++? What is the
partition strength of other cardinals in the gap?
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Main Results

Theorem
κ+ → (κ+)<κ

+
but κ+ 9 (κ+)κ

+
.

Theorem
κ++ → (κ++)<κ

+
but κ++ 9 (κ++)κ

+
.

We don’t have the partition strength at κ++ to guarantee that the
κ+-cofinal c.u.b. filter is a normal measure. Neverthess we get this
fact directly.

Theorem
The κ+-cofinal c.u.b. filter on κ++ is a normal measure.
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The situation is somewhat similar to that in the projective hierarchy:

Theorem
Let ρ be a regular cardinal with δ1

2n+1 < ρ < δ
1
2n+3. Then

ρ→ (ρ)δ
1
2n+1 but ρ9 (ρ)δ

1
2n+2 .

In summary: we know the exact partition strength of the regular
cardinals in the projective hierarchy, and for κ, κ+, κ++ where κ is
an inaccessible Suslin cardinal.
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Let Γ be the Steel class at κ, P a Γ-complete set, and {ϕn} a
Γ-scale on P. Let |x | = ϕ(x).

Let Pα = {x : |x | < α}.

Let G be the ω-c.u.b. set of Suslin cardinals < κ of cofinality ω
which are sufficiently closed:
I For all α′ < α, sup{ϕn(x) : |x | = α′} < α.
I |Pα|W = α.
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Let Σα
0 =
⋃
ω(∪α′<α∆α′), etc.

I We uniformly in α ∈ G have Σα
0-complete sets P′α and Σα

0
scales {ϕαn}. Note that if α ≤ β then P′α ⊆ P′β.

I We uniformly in α ∈ G have Πα
1 sets Qα and Πα

1-scales {ψαn}
on Qα. We can take then so that if α ≤ β then Qα ⊇ Qβ.

For example, Qα = {x : (P′α)x is wellfounded }.
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We will consider the following “types” of functions.

Definition
A type-1 block function is a function f : κ → κ such that for all α ∈ G
we have f(α) ∈ (α, α+).
A type-2 block function is a function f with domain the (α, β) with
α ∈ G and β < α+. We have f(α, β) ∈ (α, α+). We sometimes just
write f(β).
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There are trees T+ and T++ on ω × κ with the following properties.

1. For any type-1 block function f : κ → κ, there is an x ∈ ωω

such that T+
x is wellfounded and |T+

x � α| > f(α) for all good α
with cof(α) = ω.

2. If f : κ → κ is a type-2 block function, then there is an x such
that T++

x is wellfounded and for all α ∈ G there is an ω c.u.b.
set of β < α+ such that |T++

x � β| > f(β).
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Remark
Let µ be the ω-cofinal normal measure on κ. For α ∈ G, let µα be
the ω-cofinal normal measure on α+.

It follows from the existence of T+ and T++ that

[α 7→ α+]µ = κ+.

[α 7→ [β 7→ α+]µα ]µ = κ++.

(equivalently [α 7→ α++]µ = κ++)
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Remark
From the proof that κ+ → (κ+)κ and κ++ → (κ++)κ we get a
version of the block partition property:

If P is a partition of the type-1 (or type-2) block functions which
only depends on [f ], then there are c.u.b. sets Cα ⊆ α

+ which are
homogeneous for P.

Question
Do we get the full partition property for block functions of type-1 or
type-2?
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We first show:

Theorem
κ+ 9 (κ+)κ

+
.

Proof: Consider P: we partition F : κ+ → κ+ of the correct type
according to whether F ∈ Ultµ(V).

Suppose C ⊆ κ+ is homogeneous for the contrary side.

Lemma
There are c.u.b. Cα ⊆ α

+ with [α 7→ Cα]µ ⊆ C.
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Proof: Consider the partition P1 of pairs (f , g) of type-1 block
functions according to whether C ∩ ([f ]µ, [g]µ) , ∅.

This is an invariant partiton.

We cannot have Cα ⊆ α
+ homogeneous for the contrary side. So,

let Cα be homogeneous for the stated side.

Let C ′α ⊆ Cα be the closure points of Cα. Then any type-1 f into the
C ′α is such that [f ]µ is a limit of C and so in C. �
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Let h : κ → κ be a type-2 function of the correct type with f(β) ∈ Cα

for all β ∈ (α, α+). Then H = [h]µ is a function from κ+ to κ+ which
is of the correct type and takes values in [α→ Cα]µ ⊆ C. However,
H ∈ Ultµ(V), a contradiction.

So, fix a c.u.b. C ⊆ κ+ which is homogeneous for the stated side of
P.

Fix F : κ+ → C of the correct type, and let A = ran(F). By the
homogeneity of C, for any B ⊆ A of size κ+ we have that
B ∈ Ultµ(V).
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Claim
For any B ⊆ κ+ of size κ+, B ∈ Ultµ(V).

Proof.
Ultµ(V) can compute the transitive collapse map π : A → κ+. If
B ⊆ κ+, then B ∈ Ultµ(V) iff π−1(B) ∈ Ultµ(V). However,
π−1(B) ⊆ A , and so π−1(B) ∈ Ultµ(V). �

To get a contradiction we prove the following.

Lemma
Let Aω ⊆ (κ, κ+) be the points of cofinality ω. Then Aω < Ultµ(V).
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Proof: Suppose Aω = [g]µ where wlog:

∀α ∈ G g(α) ⊆ Cofω ∩ (α, α+).

Claim
∀∗µα ∀

∗
µα
β (β ∈ g(α)).

Proof.
If not, we can get Cα ⊆ α

+ to the contrary (use a coding lemma
argument). Then take a type-1 function f with range in the Cα and
of uniform cofinality ω. �
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By the coding lemma argument again, let Cα be such that for µ
almost all α, Cα ∩ Cofω ⊆ g(α).

Fix a type-1 block function f with f(α) ∈ Cα and f(α) of uniform
cofinality α.

I Since for µ almost all α we have cof(α) = ω, we have
f(α) ∈ Cα ∩ Cofω ⊆ g(α), and so cof([f ]µ) = ω.

I Since f(α) has uniform cofinality α, cof([f ]µ) = κ.

This contradiction completes the proof that κ+ 9 (κ+)κ
+

. �
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The proof that κ++ 9 (κ++)κ
+

is similar.

P: partition f : κ+ → κ++ of the correct type according to whether
f ∈ Ultµ(V).

Suppose C ⊆ κ++ were homogeneous for the contrary side.

For f of type-2, let δf = [α 7→ [β 7→ f(α, β)]µα ]µ < κ
++.

Claim
There are Cα ⊆ α

+ such that for any type-2 f with range in the Cα

of uniform cofinality ω, we have δf ∈ C.

Proof.
Similar to before, now partitioning pairs (f , g) of type-2 functions
according to (δf , δg) ∩ C , ∅. �
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Fix then f a type-2 function with range in the Cα and with f(α, β) of
uniform cofinality β. Let f ′(α, β, γ) induce f (so γ < β).

Then f ′ gives a function F ′ : κ+ → C of the correct type which is in
Ultµ(V), a contradiction.

So, let C ⊆ κ++ be homogeneous for the stated side of P. Fix
F : κ+ → C of the correct type.

Any A ⊆ κ+ can be coded into F , and so A ∈ Ultµ(V). This
contradicts Aω < Ultµ(V).
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We sketch the proof that the κ+-cofinal c.u.b. filter is a normal
measure.

This follows from the n-fold version of the following partition result:

Theorem
Let P be a partition on the type-2 block functions with f(β) of
uniform cofinality β. Suppose that P depends only on
[f ] = [α 7→ [β 7→ f(β)]µα ]µ. Then there are c.u.b. Cα ⊆ α

+ which are
homogeneous for P.
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We code functions f with domain the triples (α, β, γ) where α ∈ G,
β < α+, and γ < β.

Definition
For α ∈ G, β < α+, and γ < β, we say (x, y, z) is (α, β, γ)-good if:

1. z ∈ P .

2. |z| ∈ wf(T+
y � α).

3. γ ⊆ wf(T++
x � β(|T+

y � α(|z|))).

Then we define:

rx,y,z(α, β, γ) = sup{|T++
x � β(γ′)| : γ′ < γ∧γ′ <T++

x �β
|T+

y � α(|z|)|)|}.
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Claim
If f is a type-2 block function with f(β) of uniform cofinality β, then
there is an (x, y, z) with z ∈ P, T+

y and T++
x wellfounded, and such

that
∀µα ∀

∗
µα
β < α+ f(β) = sup

γ<β
rx,y,z(α, β, γ).

Proof.
Use properties of T+ and T++ to get x, y, z with
f(β) = |T++

x � β (|T+
y � α(|z|)|)| almost everywhere.

Then use the fact that if f(β) has uniform cofinality β then f cannnot
have any smaller uniform cofinality to show x, y, z works. �
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We play the game G where I plays out (x1, y1, z1), II plays out
(x2, y2, z2). The payoff set for G is defined as follows.

First suppose there is a lexicographically least (α, β, γ) such that
either (x1, y1, z1) or (x2, y2, z2) is not (α, β, γ)-good. Then II wins if
(x1, y1, z1) is not (α, β, γ)-good.

Suppose that both (x1, y1, z1) and (x2, y2, z2) are (α, β, γ)-good for
all (α, β, γ). Let r1 = rx1,y1,z2 and likewise for r2. Let

r(α, β) = sup
γ<β

max{r1(α, β, γ), r2(α, β, γ)}.

Then II wins the run iff P(r) = 1.
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For α ∈ G, β < α+, γ < β, and δ < α+ we define:

(x, y, z) ∈ Aα,β,γ,δ iff

1. (z ∈ P ∧ |z| < α)

2. ∀α′ < α (|T+
y � α

′| < α ∧ |T++
x � α′| < α)

3. ∀β′ < β (|T++
x � β′| < β)

4. (|T+
y � α(|z|)| < β)

5. ∀γ′ ≤ γ (γ′ ∈ T++
x � β (T+

y � α(|z|))→ |T
++
x � β (γ′)| ≤ δ)
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From the closure of ∆α
1 under < α+ length unions and

intersections (Martin’s theorem) we get that Aα,β,γ,δ ∈ ∆
α
1 .

A boundedness argument then gives:

Claim
For α ∈ G, β < α+, and γ < β,

hτ(α, β, γ) = sup{rx2,y2,z2(α, β, γ) : (x2, y2, z2) ∈ τ[Aα,β,γ,δ]} < α
+.

This defines the c.u.b. sets homogeneous for P.
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