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This talk is expository. None of the theorems or definitions are due
to the speaker. I have not included credits for various definitions.
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Definition

G is < λ-generic iff G is (V ,P)-generic for a poset P of size < λ.

Definition

Let T ,U be trees on ω × X . Say (T ,U) is λ-absolutely
complementing iff whenever G is < λ-generic, then

V [G ] |= “p[T ] = R\p[U]”.

Given A ⊆ R, we say that A is λ-universally Baire iff there is a
λ-absolutely complementing pair (T ,U) such that A = p[T ].
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Lemma

Let (T ,U) and (R, S) be two λ-absolutely complenting pairs.
Suppose p[T ] = p[R]. Let G be < λ-generic. Then

V [G ] |= “p[T ] = p[R]”.

Definition

Let A = p[T ] where (T ,U) is λ-absolutely complementing.
Let G be < λ-generic.
We write AV [G ] for p[T ]V [G ].
By the lemma, this notation is unambiguous.
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Definition

By measure we mean countably complete ultrafilter.
Let m ≤ n < ω, µ0 be a measure on Xm, and µ1 a measure on X n.
We say µ1 projects to µ0 iff for every A ∈ µ0, we have

A ̂ X n−m ∈ µ1

where
A ̂ X n−m = {u ̂ v | u ∈ A & v ∈ X n−m}.

Equivalently, for every B ∈ µ1, we have

{u �m | u ∈ B} ∈ µ0.
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Definition

Let X , µ0, µ1 be as above and µ1 project to µ0.
We have the natural elementary embedding

k = kµ0,µ1 : Ult(V , µ0)→ Ult(V , µ1)

given by
k([f ]Vµ0

) = [f m,n
X ]Vµ1

where f m,n : X n → V is

f m,n
X (u) = f (u �m).

Moreover, k ◦ iµ0 = iµ1 .
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Definition

A tower of measures (on X ) is a sequence ~µ = 〈µn〉n<ω such that
for all m ≤ n < ω, µn projects to µm.
Given a tower of measures ~µ, define

Ult(V , ~µ) = dirlimm≤n<ω(Ult(V , µm),Ult(V , µn), kµm,µn).

We say the tower is wellfounded iff Ult(V , ~µ) is wellfounded.
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Lemma

Let ~µ = 〈µn〉n<ω be a tower of measures on X .
Then ~µ is wellfounded iff for all sequences 〈An〉n<ω such that

An ∈ µn for all n < ω,

there is f : ω → X threading 〈An〉n<ω, i.e. such that

f �n ∈ An for all n.
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Proof Sketch.

Suppose there is a bad sequence 〈An〉n<ω (there’s no f threading
the sequence).
May assume that An+1 ⊆ An ̂ X for each n.
Let T be the tree of attempts to build a threading f .
So T is wellfounded.
Let ψ : T → OR be the rank function, and ψn = ψ �X n.
Then

〈
[ψn]~µ

〉
n<ω

illfounds the ordinals of Ult(V , ~µ).
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Definition

Let T be a tree on ω × X .
For s ∈ <ωω, Ts = {u|(s, u) ∈ T}.
A homogeneity system for T is a system 〈µs〉s∈<ωω such that:

for all s, µs is a measure on Ts ,

if s ⊆ t then µt projects to µs ,

for all x ∈ p[T ], the tower 〈µx�n〉n<ω is wellfounded.

The homogeneity system is κ-complete iff every µs is κ-complete.
T is κ-homogeneous iff there is a κ-complete homogeneity system
for T .

Note: hom will abbreviate homogeneous/ly. From now on assume
there is a measurable cardinal.
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Definition

Let A ⊆ ωω and κ ∈ OR.

A is κ-homogeneously Suslin iff A = p[T ] for some κ-hom tree T .
Homκ denotes the collection of κ-homogeneously Suslin sets.

A is < λ-homogeneously Suslin iff A is κ-hom Suslin for all κ < λ.
Hom<λ denotes the collection.

A is homogeneously Suslin iff A is ω1-hom Suslin.

A is κ-weakly homogeneously Suslin iff* there is a κ-hom Suslin
set B ⊆ ωω × ωω such that A = p[B].

A is < λ-weakly homogeneously Suslin iff A is κ-weakly hom Suslin
for all κ < λ.
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Lemma

Homκ closed under Wadge reduction (continuous preimages), and
countable intersections.

Theorem (Martin)

Every homogeneously Suslin set is determined.

Theorem (Martin, Solovay, Steel, Woodin)

Let λ be a limit of Woodins and A ⊆ R.
Then the following are equivalent:

1 A ∈ Hom<λ,

2 A is < λ-weakly homogeneously Suslin,

3 A is λ-universally Baire.

Hom<λ is closed under complementation and real quantifiers.
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Theorem (Martin, Solovay)

Every κ-weakly hom Suslin set of reals is κ-universally Baire.

Theorem (Woodin)

Let δ be Woodin.
Then every δ+-universally Baire set of reals is < δ-weakly hom
Suslin.

Theorem (Martin, Steel)

Let δ be Woodin. Let A ⊆ R be δ+-weakly hom Suslin.
Then R\A is < δ-hom Suslin.
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Theorem (Steel, Woodin)

Let λ be a limit of Woodins. Then there is γ < λ such that
Homγ = Hom<λ.

Proof Sketch.

We have
α < β =⇒ Homβ ⊆ Homα.

If the theorem fails we can pick a sequence 〈An〉n<ω of sets of reals
such that An+1 <w An and R\An+1 <w An. Using the determinacy
of sets in Hom, we can run Martin’s proof that the Wadge order is
wellfounded, for a contradiction.
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Derived model theorem (old version) (Woodin, 1980s)

Let λ be a limit of Woodins and G ⊆ Col(ω,< λ) be V -generic.
Let R∗ =

⋃
α<λRV [G�α].

For A, α such that A ∈ Hom
V [G�α]
<λ , let A∗α =

⋃
α≤β<λ AV [G�β].

(Here AV [G�β] is in the sense of V [G �α]). Let

Hom∗ = {A∗α | α < λ & A ∈ Hom
V [G�α]
<λ }.

Then:

1 R∗ = RV [G ] ∩ L(R∗,Hom∗),

2 L(R∗,Hom∗) |= AD+,

3 Hom∗ is the set of all Suslin co-Suslin sets of reals of
L(R∗,Hom∗).
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Definition

AD+ is the theory AD + DCR + Ordinal determinacy + “All sets
of reals are ∞-Borel”.
When λ is a limit of Woodins, we call L(R∗,Hom∗) as above the
derived model at λ.

Remark: Woodin has also shown that AD+ implies that Σ2
1 has the

scale property.
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A key reflection theorem:

Theorem (Woodin)

Let λ be a limit of Woodins. Let A ∈ Hom<λ. Let ϕ be a formula
and suppose there is B ∈ L(R∗,Hom∗) such that B ⊆ R∗ and

(R∗,A∗,B) |= ϕ.

Then there is B ∈ Hom<λ (so B ∈ V ) such that

(R,A,B) |= ϕ.

Theorem (Steel)

Let λ be a limit of Woodins. Then every set in Hom<λ has a
Hom<λ scale.

Steel’s proof of this theorem uses the stationary tower.
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Lemma

Let λ be a limit of Woodins. Let A ∈ Hom<λ. Let P be the set of
all projective-in-A formulas.
Then there is a sequence 〈Tϕ,Uϕ〉ϕ∈P of λ-absolutely
complementing pairs (Tϕ,Uϕ), such that for all < λ-generics G
and x ∈ RV [G ] and ϕ ∈ P,

(RV [G ],AV [G ]) |= ϕ(x) ⇐⇒ x ∈ p[Tϕ]V [G ].

Lemma

Let λ,A,G be as above. Let H be < λ-generic over V [G ]. Then

(RV [G ],AV [G ]) 4 (RV [G ][H],AV [G ][H]).

Therefore (RV [G ],AV [G ]) 4 (R∗,A∗).
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Proof of old Derived model theorem (modulo above facts):

Claim: L(R∗,Hom∗) |= AD+.

First consider AD. Let ϕ be the natural formula expressing “B is
determined”, when interpreted over the structure (R,B). Suppose
L(R∗,Hom∗) |= ¬AD. Then

L(R∗,Hom∗) |= ∃B ⊆ R∗[(R∗,B) |= ¬ϕ].

So by Woodin’s reflection theorem, there is B ∈ Hom<λ such that

(R,B) |= ¬ϕ.

But every set in Hom<λ is determined, contradiction.
DCR is easier.
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Claim: Every set in Hom∗ is Suslin-co-Suslin in L(R∗,Hom∗).

Let A′ ∈ Hom∗. We may assume A′ = A∗ some A ∈ Hom<λ.
By Steel’s scales theorem, there’s a scale B on A s.t. B ∈ Hom<λ.
The statement “B is a scale on A” is projective in (A,B).
So by elementarity, B∗ is a scale on A∗ in L(R∗,Hom∗).
Therefore A∗ is Suslin in L(R∗,Hom∗).
Since Hom∗ is closed under complements, we are done.
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Claim: Every Suslin-co-Suslin set of L(R∗,Hom∗) is in Hom∗.

Let X ,T ,U ∈ L(R∗,Hom∗) be such that

X = p[T ] and R∗\X = p[U].

Let α and A ∈ Hom
V [G�α]
<λ be such that

(T ,U) is OD
L(R∗,Hom∗)
A .

Then T ,U ∈ V [G �α] (use homogeneity of the forcing and
homogeneous names for R∗,Hom∗).
Note T ,U project to complements in V [G �β], for α < β < λ.
It follows that T ,U are λ-absolutely complementing in V [G �α].
So X ∈ Hom∗, as required.
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The remaining axioms are proved somewhat like AD was proved,
using that every set in Hom∗ is Suslin in the derived model,
together with some other AD results. However, these results are
beyond the scope of the talk, so we omit further discussion.
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We will focus on the proof of Woodin’s reflection theorem, mostly
following Steel’s “A stationary tower free proof of the derived
model theorem” (the only difference between the argument here
and that in Steel’s paper is that we use another tool in place of the
“tower flipping” function).
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We first discuss where we get Hom<λ sets from.

Definition

An iteration tree T is:

1 2ℵ0-closed iff MTα |=“Ult(V ,ETα ) is 2ℵ0-closed” for all α,

2 nice iff MTα |=“strength(ETα ) = lh(ETα ) is inaccessible” for all
α.

1 Every nice tree is 2ℵ0-closed.

2 If T on V is 2ℵ0-closed and lh(T ) ≤ ω then MTn is 2ℵ0-closed
for every n.
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The key to getting Hom<λ sets is the following theorem:

Theorem (Windßus)

Let (Vθ, δ) be a coarse premouse.
Let π : M → (Vθ, δ) be elementary, with M countable.
Let κ ∈ ORM .
Let W be the set of all (reals coding some) T such that:

1 T is an iteration tree on M of length ω + 1,

2 T is above κ (critical points ≥ κ),

3 T is 2ℵ0-closed,

4 πT has wellfounded models (equiv, MπT
ω is wellfounded).

Then W is π(κ)-homogeneously Suslin.
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Proof of Windßus’ Theorem:

Assume κ = 0. Let N, τ be such that:

1 τ : N → (Vθ, δ) is elementary,

2 N has cardinality 2ℵ0 ,

3 rg(π) ⊆ rg(τ); so let σ : M → N be the factor,

4 for every tree T on M of length ω + 1,

MπT
ω wellfounded ⇐⇒ MσT

ω wellfounded.

Let τ : N → Vθ be the uncollapse.
We define a tree S of attempts to build:

1 (1st coordinate) a 2ℵ0-closed tree T on M of length ω + 1,

2 (2nd coordinate) an elementary % : MσT
ω → Vθ.
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A non-empty node s of S specifies:

1 a 2ℵ0-closed tree T̄ on M, of length n + 1 < ω,

2 a sequence 〈%k〉k≤T̄ n, such that

%k : MσT̄
k → Vθ,

%n ◦ iσT̄kn = %k ,

with lh(s) = card([0, n]T̄ ).
(Here s is declaring that n ∈ bT , for the tree T being built.)

Claim: p[S ] = W .
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Proof that p[S ] = W :

If T ∈ p[S ] then MσT
ω is wellfounded, so MπT

ω is wellfounded, so
T ∈W .

Conversely, suppose T ∈W , so MπT
ω is wellfounded.

For n ∈ bT let πn : MσT
n → MπT

n be the copy map.
We have πn ∈ MπT

n by 2ℵ0-closure, and

%′n =def iπTnω ◦ πn = iπTnω (πn) ∈ MπT
ω .

It follows that 〈%′n〉n<T ω is a branch through S ′T = iπT0ω (S)T .

Since MπT
ω is wellfounded, S ′T has a branch in MπT

ω .
Therefore ST has a branch in V . So T ∈ p[S ], as required.
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Now we define a homogeneity system

〈µT̄ 〉T̄ ∈F

on S , where F is the set of finite trees on M, as follows.
Let T̄ ∈ F , of length n + 1. We define a measure µT̄ on ST̄ .
Recall ST̄ consists of tuples 〈%k〉k≤T̄ n where %k : MσT

k → Vθ.

Let Ū = πT̄ .
Let πk : MσT̄

k → M Ūk be the copy map.

Let π′k = i Ūkn(πk), for k ≤Ū n.
For A ⊆ ST̄ , put A ∈ µT̄ iff〈

π′k
〉
k≤Ūn

∈ i Ū0,n(A).

An easy modification of the Claim proof shows that this gives a
homogeneity system for S , completing the proof.
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Neeman’s genericity iterations give the trees T above:

Theorem (Neeman)

Let M be countable transitive model of ZFC. Suppose M |=“δ is
Woodin”. Then for every real x there is a length ω (nice) iteration
tree T on M such that for every wellfounded T -cofinal branch b,
there is an MTb -generic g ⊆ Col(ω, iTc (δ)) such that x ∈ MTc [g ].
Moreover, given α < δ we may take T above α.

(See Neeman’s “Determinacy in L(R)”.) We will combine this
with iterability results of Martin and Steel (see “Iteration trees”):

Theorem (Martin, Steel)

(a) Every finite length, putative iteration tree on V has
wellfounded models.
(b) Let T be a length ω, nice iteration tree on V . Then there is a
T -cofinal branch b such that MTb is wellfounded.
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Corollary

Let (Vθ, δ) be a coarse premouse and π : M → (Vθ, δ) be
elementary, with M countable.
Let T be a length ω, nice iteration tree on M, so πT is nice on V .
Let b be such that MπT

b is wellfounded. Then b is π-realizable.
That is, there is an elementary σ : MTb → Vθ such that σ ◦ iTb = π.

If M as above has infinitely many Woodins, we can combine these
results repeatedly to form RV -genericity iterations, working in
V [G ] where G collapses R...
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RV -genericity iterations: We have M as above with infinitely many
Woodins. Work in V [G ] where G collapses R. Let 〈xn〉n<ω
enumerate RV . Let 〈δn〉n<ω be an increasing sequence of Woodins
of M. Let T0 be a Neeman genericity iteration on M0 = M,
making x0 generic at the image of δ0. Let b0 be a
π0 = π-realizable branch, witnessed by

π1 : MT0
b0
→ Vθ.

Let M1 = MT0
b0

. Repeat with M1, π1, x1, i
T0
b0

(δ1), iterating above

iT0
b0

(δ0).
Let T = T0 ̂ T1 ̂ . . .. So T has a unique cofinal branch b∞ and
we have σ : MTb∞ → V commuting with all the πn’s. We have each
Tn ∈ V (but maybe T /∈ V ).
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Proof of Woodin’s reflection theorem: We mostly follow Steel’s
stationary tower free proof. We have A ∈ Hom<λ, and there is
B ∈ L(R∗,Hom∗) such that B∗ ⊆ R∗ and (R∗,A∗,B) |= ϕ.

Claim 1: There is B ∈ P(R) ∩ L(R,Hom<λ) s.t. (R,A,B) |= ϕ.

Proof of Claim 1: Let π : M → Vθ be elementary, θ high cofinality,
λ ∈ Vθ 4n V , everything relevant in rg(π), M countable.

Notation: Write π(λM) = λ, π(AM) = A, etc. Given iteration tree
T on M and P = MTα , and a P-generic H ⊆ Col(ω,< λP), write:

1 iTMP = iT0α and λP = iTMP(λM) and AP = iTMP(AM), etc,
2 DP

λP
for the name for the derived model of P at λP ,

3 (Hom∗)P , ((AP)∗)P , etc, for the names for associated objects,

4 D
P[H]

λP
, ((AP)∗)P[H] for the H-interpretations of such names,

etc.
F. Schlutzenberg Derived model theorem



Background
Derived model theorem

Derived model theorem and lemmas
Proof of reflection

We have M |= ψ(λM ,AM), where ψ(λ′,A′) is the formula:

Col(ω,< λ′) “∃B ∈ DλM such that (R∗, (A′)∗,B) |= ϕ”.

Let 〈δn〉n<ω be a strictly increasing sequence of Woodins of M
cofinal in λM .
Working in V [G ] where G collapses R, let T = T0 ̂ T1 ̂ . . . be a
π-realizable Neeman RV -genericity iteration on M, with Tn based
on the interval iTn−1((δn−1, δn)). We have Tn ∈ V . We have
〈σn〉n<ω ⊆ V such that σ0 = π and

σn+1 : MTnω → Vθ and σn+1 ◦ iTn = σn.

Choose T with iT continuous at λM .
Let N = MT∞ and σω : N → Vθ be the limit. So N |= ψ(λN ,AN).
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We can realize RV as the reals (R∗)N[H] of some derived model D
of N, via a generic H ⊆ Col(ω,< λN). So for some α,

D = D
N[H]

λN
= Lα(RV , (Hom∗)N[H]).

Subclaim 1.1: ((AN)∗)N[H] = A.
Proof: Let T ,U ∈ rg(π) be λ-absolutely complementing trees such
that p[T ] = A. Then TN ,UN are λN -absolutely complementing in
N, and

((AN)∗)N[H] = p[TN ] ∩ RV .

But σ(TN ,UN) = (T ,U). So given x ∈ RV , either:

1 x ∈ p[TN ]\p[UN ], which implies x ∈ p[σ(TN)] = A, or

2 x ∈ p[UN ]\p[TN ], which implies x ∈ p[σ(UN)] = RV \A.

This gives the subclaim.
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Subclaim 1.2: (Hom∗)N[H] is a Wadge initial segment of Hom<λ.

With Subclaim 1.2 we can prove Claim 1. For N |= ψ(λN ,AN); so
in N it is forced by Col(ω,< λN) that

∃B ∈ DN
λN such that (R∗, (AN)∗,B) |= ϕ.

But by Subclaim 1.2,

(DλN )N[H] = Lα(RV , (Hom∗)N[H]) ∈ L(RV ,Hom<λ),

and by Subclaim 1.1, ((AN)∗)N[H] = A. Therefore

∃B ∈ L(R,Hom<λ) such that (RV ,A,B) |= ϕ,

giving Claim 1.
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Subclaim 1.2: (Hom∗)N[H] is a Wadge initial segment of Hom<λ.

Proof of Subclaim 1.2:
It suffices to see that (Hom∗)N[H] ⊆ Hom<λ, because (Hom∗)N[H]

is closed under Wadge reducibility.

So let X ∈ (Hom∗)N[H]. We want X ∈ Hom<λ. Recall

Hom<λ = Homγ0 for some γ0 < λ.

Let ξ0 be the least Woodin > γ0. It suffices to see that X is
ξ+

0 -weakly hom Suslin. (For then RV \X is in Hom<ξ0 , hence in
Homγ0 , hence in Hom<λ. But (Hom∗)N[H] is self-dual, so we are
done.) Note γ0, ξ0 ∈ rg(π).
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Fix n < ω and Hn,Y ,Z such that:

1 Hn = H �δNn
2 Y ,Z ∈ N[Hn] |=“Y ,Z are λN -absolutely complementing

trees”,

3 X = p[Y ] ∩ RV ,

4 ξN0 < δNn = iT (δn).

Let P = MTnω , so P|δPn = N|δNn and ξP0 = ξN0 . Let

iT +
PN : P[Hn]→ N[Hn]

be the canonical extension of iTPN (Tk is above δPn + 1 for k > n).
We may assume we have Y P ,ZP ∈ P[Hn] such that

1 iT +
PN (Y P ,ZP) = (Y ,Z ).
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We have σ = σn+1 : P → Vθ.

Let W be the set of 2ℵ0-closed above-(δPn + 1) iteration trees U on
P, of length ω + 1, such that σU is wellfounded. By Windßus’
theorem, W is π(δn)-hom Suslin, hence ξ+

0 -hom Suslin.

Let X ′ be the set of all reals x such that for some U ∈W , letting

iU+ : P[Hn]→ MUω [Hn]

be the elementary extension, then x ∈ p[iU+(Y P)]. Then X ′ is
ξ+

0 -weakly hom Suslin. We want that X is ξ+
0 -weakly hom Suslin,

so it suffices to prove:

Subsubclaim 1.2.1: X ′ = X .
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Subsubclaim 1.2.1: X ′ = X .
Proof:
Suppose x ∈ X ′, as witnessed by U . We need to see that
x ∈ X = p[Y ]. Let m ∈ (n, ω) be such that x ∈ N[Hm] and let
Q = MTmω . Extend iTP,Q and iTQN elementarily to

iT +
PQ : P[Hn]→ Q[Hn],

iT +
QN : Q[Hm]→ N[Hm].

Let (Y Q ,ZQ) = iT +
PQ (Y P ,ZP). It suffices to see x ∈ p[Y Q ], as

iT +
QN (Y Q) = Y . We have x ∈ Q[Hm], so

x ∈ p[Y Q ] ∪ p[ZQ ],

so suppose x ∈ p[ZQ ].
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In V we have the map

% = σn+1 : Q → Vθ

with commutativity % ◦ iTPQ = σ.

Now let V = τU where τ = iTPQ . By commutativity, %V = σU , and

since U ∈W , therefore M%V
ω = MσU

ω is wellfounded. Therefore MVω
is wellfounded. We have

iU
+

: P[Hn]→ MUω [Hn],

iV+ : Q[Hn]→ MVω [Hn],

τ+
ω : MUω [Hn]→ MVω [Hn]

extending the iteration maps and the final copy map τω
respectively.
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The maps commute, so

(Ỹ , Z̃ ) =def τ
+
ω (iU+(Y P ,ZP)) = iV+(Y Q ,ZQ).

We chose U such that x ∈ p[iU+(Y P)] (in V ). As usual it follows
that

x ∈ p[τ+
ω (iU+(Y P))] = p[Ỹ ].

But because x ∈ p[ZQ ], we also have

x ∈ p[iV+(ZQ)] = p[Z̃ ].

So p[Ỹ ] ∩ p[Z̃ ] 6= ∅. But MVω [Hn] is wellfounded and

MVω [Hn] |= ZFC−ε + “p[Ỹ ] ∩ p[Z̃ ] = ∅”,

giving a contradiction. This completes the proof that X ′ ⊆ X .
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Now suppose x ∈ X . We find U witnessing that x ∈ X ′. Let δ be
the least Woodin of P such that δ > δPn . Let Ũ be a nice Neeman
genericity iteration of P at δ, above δPn , making a real y generic,
where y computes (Hn, x). So Ũ is nice of length ω, and for every

Ũ-cofinal wellfounded b, y is < λM
Ũ
b -generic over M Ũb .

We have σŨ on V . By Martin-Steel theorem, we may fix b such

that MσŨ
b is wellfounded. Let U = Ũ ̂ b. We claim that U

witnesses that x ∈ X ′. For U ∈W . Extend iU to

iU+ : P[Hn]→ MUω [Hn].

Now x is < λM
U
ω -generic over MUω [Hn], as y computes (Hn, x). So

x ∈ p[iU+(Y P)] ∪ p[iU+(ZP)].

If x ∈ p[iU+(Z )], argue as before for a contradiction. So
x ∈ p[iU+(Y )], so U witnesses that x ∈ X ′.
This completes the proof of Claim 1.
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In the final part of the proof, we will show that we get some such
B ∈ Hom<λ. Thanks to Trevor Wilson for pointing out one issue
that arises in this part, which I had initially overlooked. We will
actually give two different arguments, which each deal with this
issue somewhat differently. Argument 1 is based on Steel’s
argument. In order to deal with one issue that arises, we will prove
an extra fact, the proof of which takes some extra work, postponed
until after Argument 2. Argument 2 deals with this issue
differently, and in a more elementary manner, avoiding the need for
the extra fact. It instead uses a modification to Argument 1 due to
Wilson (cf. “A model of the Axiom of Determinacy in which every
set of reals is universally Baire”, by Larson, Sargsyan and Wilson).
(Actually we set things up slightly different to Wilson’s original
argument, but use the same idea.)
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Argument 1:

By Claim 1, we can fix the Wadge least initial segment Γ0 of
Hom<λ such that A ∈ Γ0 and

L(R, Γ0) |= ∃B[(R,A,B) |= ϕ]. (1)

Fix the least α0 such that there is a witness B ∈ Jα0+1(R, Γ0).
Fix C0 ∈ Γ0 and a formula ϕ0 such that

∃!B0 ∈ Jα0+1(R, Γ0) such that Jα0+1(R, Γ0) |= ϕ0(C0,B0),

and moreover, the unique B0 witnesses (1). The theorem will now
follow from:

Claim 2: B0 ∈ Hom<λ.
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Claim 2: B0 ∈ Hom<λ.

Proof: Let γ0, ξ0 < λ be as before. If λ is regular let ν = ξ0;
otherwise let ν = max(cof(λ)+, ξ0). Let ξ1 be the the least
Woodin > ν. Let π : M → Vθ be as usual. Notation is as before,
so π(AM) = A, etc. Abbreviate AR[g ] = (AR)R[g ], etc.

Let W be the set of all above-νM , 2ℵ0-closed trees U on M of
length ω + 1 such that MπU

ω is wellfounded. So W is ξ+
0 -hom

Suslin.
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Let X ′ be the set of all x ∈ R such that for some tree U ∈W , U is
based below ξM1 , and letting R = MUω , there is an R-generic
g ⊆ Col(ω, iU (ξ1)) such that x ∈ R[g ], and

R[g ] |= ψ0(λR ,AR[g ],C
R[g ]
0 , x),

where ψ0(λ̇, Ȧ, Ċ , ẋ) says that Col(ω,< λ̇) forces that Dλ̇ satisfies:

1 There is B s.t. (R∗, (Ȧ)∗,B) |= ϕ.
2 Let Γ′ be the Wadge least initial segment of Hom∗ such that

(Ȧ)∗ ∈ Γ′ and there is some such B ∈ L(R∗, Γ′).
3 (Ċ )∗ ∈ Γ′.
4 Let α′ be least such that some such B is in Lα′+1(R∗, Γ′).
5 There is a unique B̃ ∈ Lα′+1(R∗, Γ′) such that

Lα′+1(R∗, Γ′) |= ϕ0(Ċ ∗, B̃).

6 ẋ ∈ B̃.
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So X ′ is ξ+
0 -weakly homogeneously Suslin, so the following

completes the proof of the theorem:

Subclaim 2.1: X ′ = B0.

Proof: Let x ∈ X ′, as witnessed by U , g . Let R = MUω . As before,
in some V [G ], form a nice Neeman RV -genericity iteration T on
R, iterating above ξR1 . Let N = MT∞ and σ : N → Vθ be as before.
Realize the derived model

D
N[H]

λN
= Lα(RV , (Hom∗)N[H])

as before. By the proof of Subclaim 1.2, (Hom∗)N[H] is a Wadge
initial segment of Hom<λ.
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We have iU+ : R[g ]→ N[g ] extending iU . So

N[g ] |= ψ0(λN ,AN[g ],C
N[g ]
0 , x)

(but AN[g ] = AR[g ], etc). Let Γ′, α′, B̃ as mentioned in ψ0 be their

interpretations relative to D
N[H]

λN
.

We have
(AN[g ])∗ = A and (C

N[g ]
0 )∗ = C0

because there are λ-absolutely complementing trees T ,U ∈ rg(π)
such that p[T ] = A, and likewise for C0, and σ ◦ iT ◦ iU = π.

Now because (Hom∗)N[H] is a Wadge initial segment of Hom<λ, it
clearly follows that if ORN > α0 then Γ′ = Γ0 and α′ = α0 and
B̃ = B0, and therefore x ∈ B0, as desired.
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So it suffices to verify the following:

Subsubclaim 2.1.1: ORN > α0.

Proof: Postponed until after Argument 2, which deals with this
issue in a more elementary manner.

So finally suppose x ∈ B0; we want x ∈ X ′.

Let U be a nice Neeman genericity iteration on M, based on the
interval (νM , ξM1 ), making x generic. Let b be such that

U = Ũ ̂ b ∈W . Using an RV -genericity iteration on MUω , as
before (repeating Subsubclaim 2.1.1), and because x ∈ B0, it easily
follows that U witnesses that x ∈ X ′, as required.

This completes the proof (via Argument 1), mod the Subsubclaim.
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Before proving Subclaim 2.1.1, we give a modification of Argument
1, which gets around the issue of the subclaim in a different
manner. This modification is due to Wilson (though we have
reorganized his original argument somewhat):
Argument 2: We define a finite sequence of objects

(Γ0, α0,C0,B0), . . . , (Γz , αz ,Cz ,Bz).

By Claim 1, we can fix the Wadge least initial segment Γ0 of
Hom<λ such that A ∈ Γ0 and

L(R, Γ0) |= ∃B[(R,A,B) |= ϕ]. (2)

Fix the least α0 such that there is a witness B ∈ Jα0+1(R, Γ0).
Fix C0 ∈ Γ0 and a formula ϕ0 such that

∃!B0 ∈ Jα0+1(R, Γ0) such that Jα0+1(R, Γ0) |= ϕ0(C0,B0),

and moreover, the unique B0 witnesses (2).
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Now suppose we have defined (Γn, αn,Cn,Bn).

Case 1: There is a Wadge segment Γ of Hom<λ such that

Lαn(R, Γ) |= ∃B[(R,A,B) |= ϕ].

Then we set n < z . Let Γn+1 be the least such Γ. Note that
Γn ( Γn+1. Let αn+1 be the least α such that there is some such
B ∈ Lα+1(R, Γn+1). Let Cn+1 ∈ Γn+1\Γn be such that there is

some such B ∈ OD
Lα+1(R,Γn+1)
Cn+1

. Now pick ϕn+1,Bn+1 relative to
these things much as we chose ϕ0,B0.

Case 2: Otherwise.
Then z = n, so we are done.
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Let ψ(i̇ , λ̇, Ȧ, Ċ , ˙C +) be the formula asserting that Col(ω,< λ̇)
forces that Dλ̇ satisfies:

1 There is B s.t. (R∗, (Ȧ)∗,B) |= ϕ.

2 Let Γ′ be the Wadge least initial segment of Hom∗ such that
(Ȧ)∗ ∈ Γ′ and there is some such B ∈ L(R∗, Γ′).

3 (Ċ )∗ ∈ Γ′ and if i̇ < z then ( ˙C +)∗ /∈ Γ′.

Let Cz+1 = ∅.

Claim 3: There is i ≤ z such that ψ(i , λ,A,Ci ,Ci+1).

Proof: By homogeneity, it suffices to see that some condition in
Col(ω,< λ) forces the statement. We establish this by showing
that it is true of some countable elementary substructure of Vθ.
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Let π : M → Vθ be as usual. Notation is as before, so
π(CM

i ) = Ci , etc. Abbreviate AR[g ] = (AR)R[g ], etc.

As before, in some V [G ], form a nice Neeman RV -genericity
iteration T on M, above cof(λ)+ if λ is regular. Let N = MT∞ and
σ : N → Vθ be as before. Realize the derived model

D = D
N[H]

λN
= Lα(RV , (Hom∗)N[H])

as before. By the proof of Subclaim 1.2, (Hom∗)N[H] is a Wadge
initial segment of Hom<λ.
Now D |= ∃B[(RV , (A∗)N[H],B) |= ϕ]. Let Γ′ be the Wadge least
segment of (Hom∗)N[H] such that D |=“There is some such
B ∈ L(RV , Γ′)”. Let α′ be the least α such that there is some such
B ∈ Lα′+1(RV , Γ′).
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Now Γ′ is a Wadge segment of Hom<λ, and there is some
ϕ-witness B ∈ LORN (RV , Γ′), so Γ0 ⊆ Γ′. If ORN > α0 then it
easily follows that Γ′ = Γ0 and α′ = α0. But (this was the issue
with the argument noticed by Wilson) we might have ORN ≤ α0.
Suppose this is the case. Then note that Γ1 ⊆ Γ′. If ORN > α1

then we get Γ′ = Γ1 and α′ = α1. Etc. So we get some i ≤ z such
that Γ′ = Γi and α′ = αi .

But ((CM
j )∗)N[H] = Cj for each j ≤ z + 1 (see proof of Claim 1), so

((CM
i )∗)N[H] = Ci ∈ Γi = Γ′,

((CM
i+1)∗)N[H] = Ci+1 /∈ Γi = Γ′,

which clearly gives Claim 3.
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Fix the i from Claim 3. The reflection theorem follows from:

Claim 4: Bi ∈ Hom<λ.

Proof: Let γ0, ξ0 < λ be as before. If λ is regular let ν = ξ0;
otherwise let ν = max(cof(λ)+, ξ0). Let ξ1 be the the least
Woodin > ν.

Let W be the set of all above-νM , 2ℵ0-closed trees U on M of
length ω + 1 such that MπU

ω is wellfounded. So W is ξ+
0 -hom

Suslin.
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Let X ′ be the set of all x ∈ R such that for some tree U ∈W , U is
based below ξM1 , and letting R = MUω , there is an R-generic
g ⊆ Col(ω, iU (ξ1)) such that x ∈ R[g ], and

R[g ] |= ψ0(λR ,AR[g ],C
R[g ]
i , x),

where ψ0(λ̇, Ȧ, Ċ , ẋ) says that Col(ω,< λ̇) forces that Dλ̇ satisfies:

1 There is B s.t. (R∗, (Ȧ)∗,B) |= ϕ.
2 Let Γ′ be the Wadge least initial segment of Hom∗ such that

(Ȧ)∗ ∈ Γ′ and there is some such B ∈ L(R∗, Γ′).
3 (Ċ )∗ ∈ Γ′.
4 Let α′ be least such that some such B is in Lα′+1(R∗, Γ′).
5 There is a unique B̃ ∈ Lα′+1(R∗, Γ′) such that

Lα′+1(R∗, Γ′) |= ϕi (Ċ ∗, B̃).

6 ẋ ∈ B̃.
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So X ′ is ξ+
0 -weakly homogeneously Suslin, so the following

completes the proof of the theorem:

Subclaim 4.1: X ′ = Bi .

Proof: Let x ∈ X ′, as witnessed by U , g . Let R = MUω . As before,
in some V [G ], form a nice Neeman RV -genericity iteration T on
R, iterating above ξR1 . Let N = MT∞ and σ : N → Vθ and the
derived model

D
N[H]

λN
= Lα(RV , (Hom∗)N[H])

be as before. We have that (Hom∗)N[H] is a Wadge initial segment
of Hom<λ.
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We have iU+ : R[g ]→ N[g ] extending iU . So

N[g ] |= ψ0(λN ,AN[g ],C
N[g ]
i , x)

(but AN[g ] = AR[g ], etc). Let Γ′, α′, B̃ as mentioned in ψ0 be their

interpretations relative to D
N[H]

λN
.

We have (AN[g ])∗ = A and (C
N[g ]
j )∗ = Cj for j ≤ z + 1. By the

proof of Claim 3, there is j such that Γ′ = Γj and α′ = αj . So by
Claim 3, Ci ∈ Γj and if i < z then Ci+1 /∈ Γj . Therefore i = j .

Note then that B̃ = Bi . Therefore x ∈ Bi , as desired.
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Finally suppose x ∈ Bi ; we want x ∈ X ′.

Let U be a nice Neeman genericity iteration on M, based on the
interval (νM , ξM1 ), making x generic. Let b be such that

U = Ũ ̂ b ∈W . Using an RV -genericity iteration on MUω , as
before, and because x ∈ Bi , it easily follows that U witnesses that
x ∈ X ′, as required.

This completes the proof of Subclaim 4.1, and hence, Claim 4 and
the reflection theorem (via Argument 2).
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Finally, we complete:

Proof of Subsubclaim 2.1.1: We use the following theorem due to
Steel and Van Wesep, and independently to Kechris and Woodin:

Theorem

Assume AD + DCR. Let A,B ⊆ R and suppose that A /∈ L(R,B).
Then B# exists.

See “Two consequences of determinacy consistent with choice”,
(Steel, Van Wesep), Theorem 1.3.3. Here we can consider B# as
an R-sound, iterable premouse over (R,B) (with exactly one
extender on its sequence, which is active). For a general discussion
on these see “Scales in K (R)” (Steel); there are also some more
details in “Scales in hybrid mice over R” (Schlutzenberg, Trang).
(All elements of R ∪ {B} are added to all fine structural hulls, and
the language will have symbols for R and B.)
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One can alternatively consider B# as the theory of
(R,B)-indiscernibles, but the properties must be set up carefully.

Now we also need the following simple variant of the theorem
above, proved in almost the same way:

Theorem

Assume AD + DCR. Let Γ be an initial segment of the Wadge
hierarchy, let A ⊆ R and suppose that A /∈ L(R, Γ). Then there is
an elementary embedding j : L(R, Γ)→ L(R, Γ), and Γ# exists.

Proof: We will give most of the proof of this theorem here, though
it is just a slight variant of the theorem mentioned above. Here
Γ ⊆ P(R), and Γ# is defined as a premouse much like B#, but
now the premouse is over R ∪ Γ, and we only require
R ∪ Γ-soundness. (All elements of R ∪ Γ are put into all fine
structural hulls, and the language has symbols for R and Γ.)
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Here are some further details. Our R∪Γ premice will have the form

M = (Jα(R ∪ Γ),E )

for some α ∈ OR and E , and for some κ < α, α = (κ++)M , and E
is an extender over M, with only one generator κ, and E is
P(R)M × κ-complete, and P(R)M -weakly amenable to M. Here
P(R)M × κ-completeness means that whenever α < κ and
f : α× P(R)M → M and f ∈ M and f (β,X ) ∈ E{κ} for all β,X ,
then ⋂

β,X

f (β,X ) ∈ E{κ}.

And P(R)M -weakly amenable means that whenever

f : κ× P(R)M → P(κ<ω)

and f ∈ M and β < ORM , then

E �(rg(f )× β<ω) ∈ M.
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Let ΘP denote the least α not the surjective image of P(R).

Lemma

Assume ZF + AD. Let Γ ⊆ P(R). Let µ > ΘL(Γ,R) be regular.

Then µ ≥ Θ
L(Γ,R)
P .

Proof.

Suppose not. Let θ = Θ
L(Γ,R)
P and M = L(Γ,R) and

P = P(R) ∩M and f : P → µ be surjective, with f ∈ M. Let
g : µ→ θ be g(α) is the least β such that for some X ∈ P of
Wadge rank β in M, we have f (X ) = α. As µ is regular, there is
A ⊆ µ unbounded in µ with f �A constant. Let g“A = {β}. Let
B ⊆ P be the set of all sets of Wadge rank β in M. Then
A ⊆ f “B. But B is the surjective image of R in M. But µ is
regular, so µ is then surjective image of R in M, contradiction.
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We now prove the theorem on the existence of Γ#; we follow the
Steel-Van Wesep proof mentioned above:

Proof: Write M = L(Γ,R). We first produce an elementary
j : M → M, following almost identically the proof of Steel-Van
Wesep. Because A /∈ M, and by AD, every set of reals in M is
Wadge below A, so there is a surjection from R onto P(R) ∩M.
So Θ > ΘM . Moschovakis showed that ZF + AD + DC proves “Θ
is a limit of cardinals which are weakly inaccessible and
measurable” (see Steel-Van Wesep, Theorem 1.1.5). We are only
assuming DCR, but note we may assume V = L(A,R), where DCR
implies DC. So let ΘM < µ < κ < Θ be such that µ is regular and
κ is weakly inaccessible and measurable. By the lemma,
ΘM
P ≤ µ < κ. Let U be a κ-complete normal ultrafilter over κ.
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Now we can form Ult(M,U), using functions f : κ→ M with
f ∈ M, and we get the ultrapower embedding

j : M → Ult(M,U).

We want to see that we have Los’ theorem, and so j is elementary.
For this, suppose we have some function f ∈ M and a formula ϕ
and

{α < κ | ∃xϕ(x , f (α))} ∈ U.

We want to find some g ∈ M such that

{α < κ | ϕ(g(α), f (α))} ∈ U.

Now M |=“For every x there is some Y ⊆ R such that x ∈ ODY ”.
So working in M, let h : κ→ ΘM be h(α) = the least β such that
for some set Y of Wadge rank β, there is x ∈ ODY such that
ϕ(x , f (α)). Then there is D0 ∈ U and β such that h“D0 = {β}.
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In M, fix some surjection b : R→Wβ, where Wβ is the set of all
sets of Wadge rank β. For α < κ and y ∈ R, let y ∈ Aα iff there is
x ∈ ODb(y) such that ϕ(x , f (α)). So for α ∈ D0, Aα 6= ∅. Now we
claim that there is D1 ∈ U such that D1 ⊆ D0 and for all
α, α′ ∈ D1, we have Aα = Aα′ . For otherwise note that there is
D1 ∈ U such that D1 ⊆ D0 and for all α ∈ D1, we have Aα 6= Aα′

for all α′ < α. Let w : X1 → ΘM be w(α) = the Wadge rank of
Aα. Then w is injective, but X1 is unbounded in κ > ΘM ,
contradiction. So we have D1 as claimed. Now let y ∈ Aα, where
α ∈ X1, and let Y = b(y). Then for all α ∈ X1, there is some
x ∈ ODY such that ϕ(x , f (α)). So let g : X1 → M be g(α) = the
ODY -least x ∈ ODY witnessing this. Then g works.

So we have an elementary j : M → M. We now want Γ#.
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Assume V = L(P(R)). For κ ∈ OR we say κ is a P-cardinal iff
there is no α < κ and surjection f : P × α→ κ; κ is an
ordinal-cardinal iff there is no α < κ and surjection f : α→ κ.

Lemma

Assume V = L(P(R)). Let κ ≥ ΘP . Then κ is a P-cardinal iff κ
is an ordinal-cardinal.

Proof.

Let f : P × α→ κ be a surjection with α < κ. If κ = ΘP then
because α < κ = ΘP , we get a surjection P × P → ΘP ,
contradiction. So ΘP < κ. For β < α let fβ : P → κ be
fβ(X ) = f (X , β). Note then that rg(fβ) has ordertype ξβ < ΘP .
Let gβ : ξβ → rg(fβ) be the order-preserving bijection. Let
g : ΘP × α→ κ be g(γ, β) = gβ(γ) if γ < ξβ, and gβ(γ) = 0
otherwise. Then κ = rg(f ) ⊆ rg(g), so κ is not an
ordinal-cardinal.
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Therefore, if V = L(P(R)) and κ ≥ ΘP , we say that κ is a
cardinal iff κ is an ordinal-cardinal iff κ is a P-cardinal. Using the
previous lemma, we easily get:

Lemma

Assume V = L(P(R)). Then forcing with Col(ω,P(R)) preserves
all cardinals ≥ ΘP (and collapses those < ΘP to ω).

Now we have j : M → M and want Γ#. Let P = Col(ω,P(R))M .
Let x be V -generic for P. We have j �P ∪ {P} = id. So we can
extend j elementarily to j+ : M[x ]→ M[x ]. There is some real y

such that M[x ] = L[y ]. So by Kunen, y # exists. Let α = ORy#

and E be the measure of y # (we mean y # in mouse form). Let
bNc = Lα(P(R)M) and

N = (bNc ,E �bNc).
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The next claim finishes the proof:

Claim: N = Γ#.

Proof Sketch: It is straightforward to see that the measure of N is
(P(R)M , µ)-complete and P(R)M -weakly amenable, where
µ = cr(E ). (Note maybe µ < κ.) By the lemma above, L[x ] and
M have the same cardinals ≥ ΘP , so α = (µ++)L[x] = (µ++)M .
(Remark: We get Los’ theorem from (P(R)M , µ)-completeness:
For example suppose there are measure one many α < µ such that
N |= ∃xϕ(x , f (α)), some Σ0 formula ϕ, and for simplicity assume
that ϕ does not mention the active extender. Let f ∈ N|β,
β < ORN . We claim that there is X ∈ P(R)M such that for

measure one many α < µ, there is x ∈ OD
N|β
X such that

N |= ϕ(x , f (α)). For otherwise we get an R-sequence of measure
one sets whose intersection has measure 0.)
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Now the usual small forcing calculation shows that for every
f : µ→ OR with f ∈ L[x ], there is f̃ : µ→ OR with f̃ ∈ M, such
that f (β) = f̃ (β) for E -measure one many β. With this it is easy
to see that N is iterable.
Finally, we get N = HullNΣ1

(P(R)M) using the soundness of y #,
the forcing relation, and the fact that the active extender of y # is
just the small forcing extension of the active extender of N. So N
is sound.
This completes the proof of the theorem.

We can now prove Subsubclaim 2.1.1. So suppose ORN ≤ α0.
(Recall that N is the RV -genericity iterate of M, where M was

some countable hull of V .) Recall that D = D
N[H]

λN
has a ϕ-witness

B, and recall the minimality of Γ0, α0 in V , and that (Hom∗)N[H]

is a Wadge segment of Hom<λ.
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Because ORN ≤ α0 and by the minimality of α0, it therefore
follows that there is X ∈ (Hom∗)N[H] such that X /∈ L(Γ0,RV ).
Since the derived model of V at λ satisfies AD+, it satisfies the
conclusions of the theorems above on sharp existence. Therefore D
satisfies these same conclusions. Therefore D |=“Γ#

0 exists”.

Because RD = RV , (Γ#
0 )D is truly iterable, so (Γ#

0 )D = Γ#
0 . Since

N |=“L(Γ0,RV ) has no ϕ-witness” and Γ#
0 ∈ N, it follows that

L(Γ0,RV ) really has no ϕ-witness, contradicting the choice of Γ0.

This completes the proof of Subsubclaim 2.1.1, hence Argument 1.
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