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Abstract

Let Msw denote the least iterable inner model with a strong cardinal above
a Woodin cardinal. By [11], Msw has a fully iterable core model, KMsw , and
Msw is thus the least iterable extender model which has an iterable core model
with a Woodin cardinal. In V , KMsw is an iterate of Msw via its iteration
strategy Σ.

We here show that Msw has a bedrock which arises from KMsw by telling
KMsw a specific fragment Σ̄ of its own iteration strategy, which in turn is a tail
of Σ. Hence Msw is a generic extension of L[KMsw , Σ̄], but the latter model is
not a generic extension of any inner model properly contained in it.

These results generalize to models of the form Ms(x) for a cone of reals x,
where Ms(x) denotes the least iterable inner model with a strong cardinal con-
taining x. In particular, the least iterable inner model with a strong cardinal
above two (or seven, or boundedly many) Woodin cardinals has a 2–small core
model K with a Woodin cardinal and its bedrock is again of the form L[K, Σ̄].

1 Introduction.

By a theorem of W. Hugh Woodin, every pure extender model W with a Woodin
cardinal has a non–trivial ground,1 i.e., there is some inner model W̄ ( W such that
W is a generic extension of W̄ . E.g., let W̄ = PW (M), where M arises from an

∗2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
†Keywords: Mouse, inner model theory, descriptive set theory, hod mouse.
1The terms “ground,” “bedrock,” and “mantle” are taken from [2]. If W̄ ⊂ W are both inner

models, then W̄ is a ground of W iff W is a generic extension of W̄ . W is a bedrock iff W itself is
the only ground of W .
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L[E]–construction inside W up to its first Woodin cardinal and PW (M) denotes the
P–construction above M and performed inside W , cf. [13].

The situation is different for hod mice, also called “strategic mice.” Woodin
showed that there are strategic mice which are bedrocks, i.e., which don’t admit any
non–trivial grounds, cf. [23]. Strategic mice naturally arise as HODs of models of
determinacy, cf. [9].

The current paper produces a minimal example of an extender model with a
Woodin cardinal which, when equipped with a fragment of its own iteration strategy,
is a bedrock, and it will also be the HOD of a homogeneous generic extension of an
extender model.

By a theorem of John Steel, extender models with no strong cardinals cannot
have a fully iterable core model with a Woodin cardinal. The paper [3] analyzes the
mantle2 of (tame) extender models with Woodin cardinals but no strong cardinals
and shows that it is always a lower part model; in particular, their mantles are
not grounds. On the other hand, writing Msw for the least iterable inner model
with a strong cardinal above a Woodin cardinal, [11] shows that Msw does have a
fully iterable core model KMsw which in turn has a strong cardinal above a Woodin
cardinal, so that the mantle of Msw should contain KMsw and not be a lower part
model.

The current paper analyzes the mantle of Msw and shows that it is a ground, hence
the smallest ground, and thus a bedrock. The mantle turns out to be L[KMsw , Σ̄],
where Σ̄ is a fragment of the iteration strategy of KMsw which Msw can see and which
in turn is a fragment of the tail of Msw’s own iteration strategy. KMsw is fully iterable
inside L[KMsw , Σ̄].

Most of the results in this paper were obtained while the second author visited
the first author in Warsaw (Poland) in November, 2015. The second author would
like to thank the first author for his great hospitality. Both authors would like to
thank Kawiarnia Kafka, Café Rue de Paris, and Pijalnia Czekolady E. Wedel for their
math supporting atmospheres. We would like to thank the referee for his detailed
and helpful report.

The second author would also like to thank Farmer Schlutzenberg for some pivotal
discussions during the hod mouse meeting at UC Irvine, July 2016, and he would
also like to thank Gabriel Fernandes for drawing the diagram on p. 34.

2The mantle of an inner model is defined to be the intersection of all of its grounds.
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2 The mantle of Msw.

For the record, a mouse is a premouse which is countably iterable, i.e., all transi-
tive collapses of sufficiently elementary countable substructures are supposed to be
(ω, ω1, ω1 + 1)–iterable. Cf. [19, Definition 4.4].

Throughout our paper, we shall assume that V is closed under the operation
a 7→ a¶ mapping a to a–pistol, the least active a–mouse with a strong cardinal. For
any transitive s.w.o.’d3 set a, we let Ms(a) be the minimal proper class a-mouse with
a strong cardinal. Ms(a) is obtained from a¶ by iterating its top measure out of the
universe.

The premice of the current paper are Mitchell–Steel premice, see [8, section 1]
and [12, section 2]. For the purposes of the current paper, a premouse N is called
suitable if for some δ ∈ N ,

1. N � “δ is a Woodin cardinal,”

2. N = Ms(N|δ)|δ+Ms(N ),

3. for every η < δ, Ms(N|η) � “η is not Woodin,” and

4. N � “I’m (ω, δ, δ)–iterable.”

We shall now also assume that there is a suitable premouse, and more: Let us
call a premouse M sw–small iff for all extenders F from M’s sequence,

M|crit(F ) � “there is no strong cardinal above a Woodin cardinal.”

Let us assume that there is a non–sw–small mouse, and let M#
sw be the unique sound

non–sw–small mouse M such that every proper initial segment of M is sw–small.
As we assume V to be closed under a 7→ a¶, the (ω, ω1, ω1)–iterability of M#

sw implies
that M#

sw be fully iterable with respect to arbitrary stacks of normal trees. Let us
denote by

Msw

the result of iterating M#
sw’s top measure out of the universe. Let δ = δMsw be the

Woodin cardinal of Msw, and let κ = κMsw be the strong cardinal of Msw. We have
that Msw = Ms(Msw|δ), and Msw|δ+Msw is suitable.

By way of notation, if W is any extender model, then we will denote by δW the
least Woodin cardinal of W (if it exists), we will denote by BW the δ–generator
version of the extender algebra of W at δW (cf. [19, pp. 1657f.] and [13, Lemma

3self–well–ordered
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1.3]) given by the total extenders of W ’s sequence up to δW (if it exists), and we will
denote by κW the least strong cardinal of W (if it exists).

In what follows, the relevant W will always be an iterate of Msw, so that δW will
also be the unique Woodin cardinal of W , and κW will be the unique strong cardinal
of W .

The iteration strategy forM with respect to finite stacks of normal trees induces
an iteration strategy, call it Σ, for Msw with respect to finite stacks of normal trees.
We have the following.

(1) Σ satisfies hull condensation, cf. [9, Definition 1.31],

(2) Σ satisfies branch condensation, cf. [9, Definition 2.14], and

(3) Σ is positional, cf. [9, Definition 2.35 (4)].4

As suggested by the referee, let us also state the following property of Σ. If
T is a normal iteration tree on Msw which is according to Σ and has limit length,
and if b is a cofinal well–founded non–dropping branch through T , then b = Σ(T ).
The reason is that if δ(T ) 6= πT0,b(δ

Msw), then if Q /MT
b is the least extension of

M(T ) such that δ(T ) is not definably Woodin over Q, then Q is ¶–small above
δ(T ) and hence iterable by absoluteness, so that b picks the right Q–structure; and
if δ(T ) = πT0,b(δ

Msw), thenMT
b will also be ¶–small above δ(T ) and hence iterable by

absoluteness, so that b moves the theory of any finite set of indiscernibles correctly.
This property of Σ may be used to prove (1) through (3) above, and it could also be
used to simplify the proofs of Lemma 2.1 as well as parts of the proofs of Lemma 2.9.
The reason why we decided to not make use of this property is that it fails for more
complicated mice, e.g. the ones studied in [10], and that we try to give arguments
which generalize.

We shall need the following slight refinement of (2):

Lemma 2.1 Let M be a proper class sized Σ–iterate of Msw. Let U be an iteration
tree on M living on M |δM with a last model MU

θ such that [0, θ]U does not drop and
U is according to ΣM . Let T be an iteration tree on M living on M |δM and of limit
length which is according to ΣM . If b and k are in some generic extension of V such
that

(a) b is a cofinal non–dropping branch through T , and

4The last “positional” in [9, Definition 2.35 (4)] should read “weakly positional,” though.

4



(b) k : MT
b |δM

T
b →MU

θ |δM
U
θ is elementary with

πU0,θ �M |δM = k ◦ πT0,b �M |δM , (1)

then b = ΣM(T ).

Proof. Write c = ΣM(T ). If δ(U) 6= πT0,b(δ
M) = δM

T
b , then MT

b comes with a
Q–structure which by the existence of k is iterable, and this gives that b = c.

Let us now assume that δ(U) = πT0,b(δ
M). The key fact is that k may be extended

to k+ : MT
b →MU

θ by setting

k+(πT0,b(f)(a)) = πU0,θ(f)(k(a)).

It is easy to verify that k+ is well–defined and elementary. Also,

πU0,θ = k+ ◦ πT0,b. (2)

Now let λ be a sufficiently large V –cardinal, and let λ+n denote the nth cardinal
successor of λ as being computed in V .

We have that
X = HullM({λ+n : 0 < n < ω}) ∩ δM

is cofinal in δM . Also,

πT0,c(λ
+n) = λ+n for all n, 0 < n < ω, (3)

and
πU0,θ(λ

+n) = λ+n for all n, 0 < n < ω,

and by (2) the latter implies that

πT0,b(λ
+n) = λ+n for all n, 0 < n < ω. (4)

But (3) and (4) give that
πT0,c � X = πT0,b � X,

which implies that b = c by the “zipper argument,” cf. e.g. [19, p. 1645f.], as desired.
� (Lemma 2.1)

Some of the arguments to follow will look pretty familiar to researchers working
in the area of descriptive inner model theory, cf. e.g. [21, Section 3].

Let us consider the set U consisting of all U = (Uk : k ≤ n), some n < ω, such
that either n = 0 and lh(U0) = 1 (i.e., U is trivial), or else there is a sequence
η0 < . . . < ηn < κ of cutpoints of Msw and:
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(a) U ∈Msw|κ,

(b) U = (Uk : k ≤ n) is a finite stack of normal iteration trees Uk,

(c) U0 is on Msw and lives below δ,

and for every k ≤ n,

(d) lh(Uk) = (ηk)
+Msw = δ(Uk),

(e) Uk is defiable over Msw|(ηk)+Msw and is guided by Q–structures which are ob-
tained via P–constructions, cf. [13, Section 1],

(f) P (M(Uk)) is a proper class,5 δ(Uk) is a Woodin cardinal of P (M(U)), and

P (M(U))[G] = Msw

for some G which is BP (M(U))–generic over P (M(U)), and

(g) if k > 0, then Uk is on P (M(Uk−1)) and lives below δ(Uk−1).

Let U = (Uk : k ≤ n) be as above, where Un is not trivial. For every k ≤ n and
inside Msw, P (M(Uk)) is a universal weasel overM(Uk) belowM(Uk)¶. Let us write
K(M(Uk)) for theM(Uk)¶–small core model overM(Uk) as constructed inside Msw.
In V , let bk = Σ(Uk). We then have:

Lemma 2.2 Let U = (Uk : k ≤ n) ∈ U, where Un is not trivial. Let I be the class of
generating indiscernibles for Msw given by iterating the top measure of (Msw|δ)¶ out
of the universe, and let π = πMsw,P (M(Un)) be the map given by b0

_ . . ._bn, i.e., the
iteration map from Msw to P (M(Un)) which is given by Σ.

(a) For every k ≤ n, P (M(Uk)) = K(M(Uk)) = Ms(M(Uk)) =MUk
bk

.
(b) For every k ≤ n, I is a class of generating indiscernibles for P (M(Uk))

relative to M(Uk).
(c) π(η) = η for every η ∈ I.

Proof. (a) and (b): Let us write M = M(Uk). As P (M)[G] = Msw for some
generic G, K(M) = K(M)Msw = K(M)P (M)[G] = K(M)P (M) ⊂ P (M). On the
other hand, P (M) is a universal weasel over M , so that there is an elementary
embedding j : K(M) → P (M), which, as K(M) and P (M) are below M¶, is given
by an iteration of K(M). But then K(M) ⊂ P (M) gives K(M) = P (M).

5Here and in what follows we write P (M) for the P–construction over M as being performed
inside Msw. [13, Section 1] would write P(Msw,M,−) for this model.
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We have that Msw = HullMsw(I). We claim that

P (M) = HullP (M)(δ(Uk) ∪ I). (5)

To show (5), notice first that the extender sequence of Msw may be defined over
P (M)[G] from the parameter Msw|δ(Uk) ∈ P (M)[G] and the extender sequence of
P (M). The forcing language associated with forcing with BP (M) over P (M) thus has
a term for the extender sequence of Msw and therefore also a term for the canonical
Σ1 Skolem function hMsw of Msw, cf. [14, Theorem 10.16]. Writing h for this term
for hMsw , we have that the function h∗ : BP (M) × ω × [Msw]<ω → P (M) with

h∗(p, n, a) =

{
y if p BP (M)

P (M) h(ň, ǎ) = y̌, and

∅ otherwise.

is definable over P (M) using a name for Msw|δ(Uk). But G and Msw|δ(Uk) are
computable from each other, so that HullP (M)(X) is closed under h∗ for any X and
by BP (M) ⊂ HullP (M)(δ(Uk) ∪ I) and Msw = HullMsw(I), we obtain (5).

The fact that P (M) is an inner model of Msw which is definable there from M
an the extender sequence of Msw above δ(Uk) easily implies that I is also a class
of indiscernibles for P (M), so that by (5) it is a class of generating indiscernibles
relative to M(Uk). This shows (b).

But now Ms(M(Uk)) is also a least inner model with a strong cardinal end–
extending M =M(Uk) and having a proper class of generating indiscernibles relative
to M(Uk). It follows that P (M) = Ms(M(Uk)).

Virtually the same argument shows P (M) = MUk
bk

by induction on k ≤ n. We
have shown (a).

(c) In the light of (a), (5) buys us that

MUn
bn

= HullM
Un
bn (δ(Un) ∪ I). (6)

At the same time, Msw = HullMsw(I) implies that

MUn
bn

= HullM
Un
bn (δ(Un) ∪ π”I), (7)

and π”I is a class of indiscernibles for MUn
bn

relative to Un.
Let ϕ be a formula, let τ be a Σ1 Skolem term, let x ∈ M(Un), let η1 < . . . < η`

be from I, and let λ1 < . . . < λ` be V –cardinals with π(η`) < λ1. We have that
π(λi) = λi for 0 < i ≤ `, so that we may conclude that
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MUn
bn
� ϕ(τ(x, η1, . . . , η`)) ⇐⇒

MUn
bn
� ϕ(τ(x, λ1, . . . , λ`)) ⇐⇒

MUn
bn
� ϕ(τ(x, π(λ1), . . . , π(λ`))) ⇐⇒

MUn
bn
� ϕ(τ(x, π(η1), . . . , π(η`))).

This shows that τM
Un
bn (x, η1, . . . , η`) 7→ τM

Un
bn (x, π(η1), . . . , π(η`)) defines an ∈–

automorphism of MUn
bn

and is hence the identity. We have shown (c). � (Lemma
2.2)

Let U = (U : k ≤ n) ∈ U. If Un is not trivial, then we shall write M(U) for
M(Un). To uniformize the notation, if n = 0 and T0 is trivial, then we shall denote
by P (M(U)) the model Msw. Let us write F for the family of all proper class mice
of the form P (M(U)), where U ∈ U. For the record, F is definable inside Msw using
Msw’s extender sequence as a predicate.

Let T , U ∈ U, and write N = P (M(T )) and N ′ = P (M(U)). By Lemma 2.2, N
is a Σ–iterate of Msw. Let ΣN denote the iteration strategy for N which is induced
by Σ. As Σ is positional, ΣN only depends on N , not on the particular iteration tree
which witnesses that N is a Σ–iterate of Msw.

Assume for now that N ′ is a ΣN–iterate of N via a finite stack of normal trees,
which is tantamount to saying that there is a finite stack T0

_ . . ._Tk of normal trees
on Msw such that N is the last model of one of the Ti, i < k, and N ′ is the last model
of Tk. As Σ satisfies hull condensation, Σ is commuting, cf. [9, Definition 2.35 (9)],
so that ΣN satisfies the Dodd–Jensen property, cf. [9, Proposition 2.36], and hence
there is a unique iteration map from N to N ′. In what follows, we let πN,N ′ denote
this unique iteration map from N to N ′.

Let’s now drop the assumption that N ′ be a ΣN–iterate of N . Let η < κ, η >
max(δ(T ), δ(U)), be a cutpoint of Msw. Let T ∗, U∗ be normal iteration trees on N ,
N ′, respectively, such that both start out by iterating the least measurable cardinal
and its images η + 1 times, and from then on T ∗ and U∗ result from comparison,
simultaneously making an initial segment of the background model generic over the
respective iterate; more precisely, if T ∗ � α and U∗ � α have already been defined,
where η+ 2 ≤ α ≤ η+Msw , then if α is a successor ordinal, then we let ν be least such
that

(a) E
MT ∗α−1
ν 6= E

MU∗α−1
ν , or
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(b) E
MT ∗α−1
ν = E

MU∗α−1
ν , there is no drop along [0, α− 1]T ∗ and no drop along [0, α−

1]U∗ , and writing F = E
MT ∗α−1
ν and µ = crit(F ), ν > µ+MT ∗α−1 = µ+MU∗α−1 and

there is some sequence ~ϕ = (ϕi : i < µ) ∈ MT ∗
α−1|ν = MU∗

α−1|ν of formulae
associated with the δ–version of the extender algebra of the current models
such that the extender sequence of Msw satisfies

∨
iF (~ϕ) ∩ MT ∗

α−1|ν but not∨
~ϕ,

and then we let T ∗ � (α + 1) and U∗ � (α + 1) arise by applying E
MT ∗α−1
ν and E

MU∗α−1
ν

(and padding on one side if ν was chosen according to (a) and on this one side the
extender is empty), with the understanding that we stop the construction if there
is no such ν; and if α is a limit ordinal, then we pick the unique cofinal branches
through T ∗ � α and U∗ � α whose limit models have Q–structures as initial segments
which are given by P (M(T ∗ � α)) = P (M(T ∗ � α)), and we let T ∗ � (α + 1) and
U∗ � (α + 1) arise by adding those branches, again with the understanding that we
stop the construction if such branches don’t exist. Notice that T ∗ and U∗ are defined
inside Msw. By [13, Lemmata 1.3 and 1.5], the construction of T ∗ and U∗ will stop
exactly at stage η+Msw , which means that we produced P (M(T ∗)) = P (M(U∗)) ∈ F
such that by Lemma 2.2, writing R = P (M(T ∗)) = P (M(U∗)), R is a ΣN–iterate
of N as well as a ΣN ′–iterate of N ′.

We may now let

(M∞, (πN,∞ : N ∈ F)) = dirlim(N, (πN,N ′ : N,N
′ ∈ F)).

Notice that even though F is a definable collection of classes in Msw, this system is
not in Msw, as the maps πN,N ′ are not in Msw.

We are now going to show that we may “catch” F by a system which does exist
in Msw.

In what follows, we shall write δ∞ = δM∞ and κ∞ = κM∞ .
Let s be a non–empty finite set of ordinals. Write s− = s \ max(s). For N =

P (M(U)) ∈ F we call N s–iterable iff for all T ∈ Msw on M(U) of limit length
λ < κ such that U_T ∈ U, say T = (Tk : k < n), n < ω, there are for every i < n
cofinal branches

bi ∈ (Msw)Col(ω,max(s))

through Ti such that, writing N0 for the starting model of T0 and Ni+1 = P (M(Ti)),

πTi0,bi
(s) = s, and (8)

πTi0,bi
(Ni|max(s)) = Ni+1|max(s). (9)

9



Writing b for the composition of the branches bi, i < n, and then writing

γNs = sup(δN ∩ HullN |max(s)(s−)),

the “zipper argument,” cf. e.g. the proof of [19, Theorem 6.10], shows that the map

πT0,b � HullN |max(s)(γNs ∪ s−) (10)

is independent from the particular choice of b and hence is in Msw, and moreover if

πN,N ′(s) = s, and (11)

πN,N ′(N |max(s)) = N ′|max(s), (12)

then

πT0,b � HullN |max(s)(γNs ∪ s−) = πN,N ′ � HullN |max(s)(γNs ∪ s−). (13)

We now aim to define πsN,N ′ . For this, we make use of the concept of “strong
s–iterability.”6 Let s, s−, and N = P (M(U)) ∈ F be as before. We call N strongly
s–iterable iff N is s–iterable and for all T ∈ Msw on M(U) of limit length λ < κ
such that U_T ∈ U, say T = (Tk : k < n), n < ω, and for all T ′ ∈ Msw on M(U)
of limit length λ′ < κ such that U_T ′ ∈ U, say T ′ = (T ′k : k < n′), n′ < ω, if the
bi ∈ (Msw)Col(ω,max(s)) are cofinal branches through Ti which “fix s” à la (8) and (9),
i < n, and if the b′i ∈ (Msw)Col(ω,max(s)) are cofinal branches through T ′i which “fix s”
à la (8) and (9), i < n′, and if b is the composition of the branches bi, i < n, and if
b′ is the composition of the branches b′i, i < n′, then

πT0,b � HullN |max(s)(γNs ∪ s−) = πT
′

0,b′ � HullN |max(s)(γNs ∪ s−). (14)

If (11) and (12) hold true, then by (13) so does (14).
Let us write

(N, s) �F (N ′, t)

to express the fact that N ∈ F is strongly s–iterable, N ′ ∈ F is strongly t–iterable,
t ⊃ s, and there is a tree T ∈ Msw on N as above such that N ′ = P (M(T )). If
(N, s) �F (N ′, s), then we shall write πsN,N ′ for the unique map as in (14).

6At the cost of making use of [20], we could avoid the concept of “strong s–iterability,” as follows.
If N = P (M(U)), N ′ ∈ F and there is some T with U_T ∈ U such that N ′ = P (M(T )), then
by [20], there is a unique normal such T with U_T ∈ U. We may then define πsN,N ′ as the unique

map as in (10) for any cofinal branch b ∈ (Msw)Col(ω,max(s)) through T which “fixes s” as in (8)
and (9).
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Notice that for N and s as above, the (strong) s–iterability of N is uniformly
defined in a way which is first order over Msw.

Let s be a non–empty finite set of ordinals, N = P (M(U)) ∈ F , and U_T ∈ U.
Write c = ΣN(T ). If πT0,c(s) = s, then an easy absoluteness argument shows that

there is also some b ∈ (Msw)Col(ω,max(s)) with (8) and (9) above.

Lemma 2.3 Let N = P (M(U)) ∈ F .
(1) Let s be any non–empty finite set of ordinals. There is some T such that

U_T ∈ U and N ′ = P (M(T )) is strongly s–iterable.
(2) Let {η1 < . . . < η`} ⊂ I, where I is the class of generating indiscernibles for

Msw given by iterating the top measure of (Msw|δ)¶ out of the universe, and write
s = {η1, . . . , η`}. Then N is strongly s–iterable.

Proof. (1): Otherwise there would some non–empty finite set s of ordinals and
some infinite sequence (Nn : n < ω) such that N0 = Msw, and Nn+1 is a ΣNn–iterate
of Nn via some tree Tn such that T0

_ . . ._Tn ∈ U and πNn,Nn+1(s) > s for all n < ω.
This contradicts the (ω, ω,OR)–iterability of Msw in V .

(2): This follows from Lemma 2.2 (c) by a trivial absoluteness argument. �
(Lemma 2.3)

The collection of all strongly s–iterable N ∈ F is finitely directed in that if N ∈ F
is strogly s–iterable and N ′ ∈ F is strongy t–iterable, then there is N∗ ∈ F which is
strongly (s ∪ t)–iterable and

(N, s), (N ′, t) �F (N∗, s ∪ t).

This is true because given (N, s) and (N ′, t), we may pick some R ∈ F which is
strongly s∪t–iterable. A joint comparison process as defined above will then produce
some strongly s∪ t–iterable N∗ ∈ F which in V is ΣN–iterate of N , a ΣN ′–iterate of
N ′, as well as a ΣR–iterate of R.

We may then let

(M′
∞, (π

s
N,∞ : N ∈ F , N is strongly s–iterable)) (15)

be the direct limit of the system (N, (πsN,N ′ : (N, s) �F (N ′, s)).

Lemma 2.4

M∞ =M′
∞. (16)
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Proof. Let ρ′ be any ordinal, and let ρ′ = πN,∞(ρ), where N ∈ F . Let χ < δN

and let s̄ be a finite set of indiscernibles for Msw such that

ρ ∈ HullN(χ ∪ {s̄}).

Such χ and s̄ exist by Lemma 2.2 (b). As ran(πMsw,N) ∩ δN is cofinal in δN , we may
in addition assume (by enlarging χ and s̄ if necessary) that

[χ, δN) ∩ HullN({s̄}) 6= ∅.

Let s = s̄∪{τ}, where τ is any V –cardinal strictly above max(s̄). Then N is strongly
s–iterable by Lemma 2.3, and γNs > χ, so that ρ ∈ dom(πsN,∞).

This shows that we may define an elementary embedding ϕ : M∞ → M′
∞ by

ϕ(πN,∞(ρ)) = πsN,∞(ρ) for ρ and s as above. It remains to be shown that ϕ is
surjective.

To this end, let again ρ′ be any ordinal, and let πsN,∞(ρ) = ρ′, where N ∈ F
is strongly s–iterable. Let N = P (M(U)), and let T be such that U_T ∈ U and,
setting N ′ = P (M(T )),

πN ′,N ′′(s) = s for all (N ′, s) �F (N ′′, s), (17)

cf. the proof of Lemma 2.3 (1). We may pick a finite set t of indiscernibles for Msw

such that
s ∈ HullN

′|max(t)(γN
′

t ∪ t−),

cf. above. We then have that

πsN,N ′(ρ) ∈ HullN
′|max(t)(γN

′

t ∪ t−).

Also N ′ is strongly s ∪ t–iterable, by (17) and the proof of Lemma 2.3 (2), and
because πsN ′,N ′′ ⊂ πs∪tN ′,N ′′ = πN ′,N ′′ � HullN

′|max(t)(γN
′

t ∪ t−) for (N ′, s∪ t) � (N ′′, s∪ t)
(which is equivalent to (N ′, s) � (N ′′, s)), we will get that

ρ′ = πsN,∞(ρ) = πs∪tN ′,∞(πsN,N ′(ρ)) = πN ′,∞(πsN,N ′(ρ)),

soi that ϕ is indeed onto and hence the identity. We showed (16). � (Lemma 2.4)

The following is straightforward to verify.

Lemma 2.5 In V , M∞ is a Σ–iterate of Msw via an ω–stack of normal trees each
of which are individually in Msw.

Moreover, let F be a total extender from the Msw–sequence with crit(F ) = κ, and
write j : Msw →F ult(Msw;F ). Then j(M∞) is an ΣM∞– iterate of M∞ via using
πMsw,∞(F ), followed by an ω–stack of normal iteration trees which are according to
Σult(M∞;πMsw,∞(F )).
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Proof. Let (Uk : k < ω) be such that Uk ∈ U for all k < ω and setting Nk =
P (M(Uk)) for k < ω, (Nk : k < ω) is cofinal in F , i.e., if P (M(U)) ∈ F , then there
is some k < ω such that Nk is a ΣP (M(U))–iterate of P (M(U)). The direct limit of
the Nk, along with the maps πNk,N` , k ≤ ` < ω, must yield M∞.

Next, we have for every N ∈ F , j(N) ∈ j(F) and j(N) = ult(N ;F � N),
where F � N is on the sequence of N . The direct limit of the ult(N ;E � N),
along with j(πN,N ′), with N , N ′ ∈ F , N ′ being a ΣN–iterate of N , is then equal to
ult(M∞; πMsw,∞(F )) and canonically embeds into j(M∞). If N = P (M(U)) ∈ F ,
then ult(N ;E � N) is an iterate of Msw via U_E � N , and if N , N ′ ∈ F , where N ′ is
a ΣN–iterate of N via T , and if T = U0

_ . . ._Uk−1, where all Ui, i < k, are normal,
then j(Ui) has the very same tree structure as Ui, and, as Ui is a hull of j(Ui), the
fact that Σ satisfies branch condensation implies that j(Ui) is according to Σ and
Σ(Ui) = Σ(j(Ui)) for i < k.

We may conclude that the collection of all j(N), for N ∈ F , is definable in
ult(Msw;F ), and for η = κ which is a cutpoint of ult(Msw;F ) below j(κ) we may work
in ult(Msw;F ) to simultaneously compare all j(N), N ∈ F , in a fashion as on p. 8f.
to produce some M = P ult(Msw;F )(M(U ′)) ∈ j(F) with δ(U ′) = κ+ult(Msw;F ) = κ+Msw

and such that M is a Σj(N)–iterate of j(N) for all N ∈ F .
ult(M∞; πMsw,∞(F )) is a definable inner model of ult(Msw;F ) and the former

must now canonically embed into M . We may then choose some η > κ which is a cut-
point of ult(Msw;F ) and work in ult(Msw;F ) to compareM with ult(M∞; πMsw,∞(F ))
in a fashion as on p. 8f. to produce some M∗ = P ult(Msw;F )(M(U∗)) ∈ j(F) with
δ(U∗) = η+ult(Msw;F ) and such that M∗ is a ΣM–iterate of M and also an iterate of
ult(M∞; πMsw,∞(F )) via Σult(M∞;πMsw,∞(F )). We may actually produce an ω–sequence

of such M∗ which is cofinal in Fult(Msw;F ).
j(M∞) may thus be represented as an iterate of M∞ via using πMsw,∞(F ), fol-

lowed by an ω–stack of normal iteration trees which are according to Σult(M∞;πMsw,∞(F )).
� (Lemma 2.5)

Inside M∞, we may look at the image of the system (15) under the map π0,∞.
Let us write M∞

∞ for the direct limit model, i.e.,

M∞
∞ = πMsw,∞(M∞),

which is a definable subclass ofM∞, defined in the same way overM∞ asM∞ was
defined over Msw by (15). In analogy to Lemma 2.5, we have:

Lemma 2.6 If N ∈ FM∞,then N is a ΣM∞–iterate of M∞, and M∞
∞ is a ΣM∞–

iterate of M∞ via an ω–stack of normal trees on M∞
∞.

13



In particular, we get a unique iteration map, call it π∞0,∞, from M∞ into M∞
∞,

which is given by ΣM∞ . A priori, there doesn’t seem to be a reason why π∞0,∞ should
be definable in Msw.

However, for each ordinal ρ let us denote by ρ∗ the minimum of the set of all
πN,∞(ρ) for N ∈ F . The argument for M∞ = M′

∞ we gave above shows that for
every ρ and every N ∈ F there is some finite set s of ordinals such that N is strongly
s–iterable and ρ ∈ dom(πsN,∞). We may then define ρ 7→ ρ∗ inside Msw by

ρ∗ = min({πsN,∞(ρ) : N is strongly s–iterable and ρ ∈ dom(πsN,∞)}). (18)

We have that if ρ = πN,∞(ρ̄), where N is strongly s–iterable for some s such that
ρ ∈ ran(πsN,∞), then

πN,∞(ρ) = πN,∞(πN,∞(ρ̄))

= πN,∞(πsN,∞(ρ̄))

= πN,∞(πsN,∞)(πN,∞(ρ̄))

= π∞0,∞(ρ),

which means that
ρ∗ = π∞0,∞(ρ).

Notice that π∞0,∞ is also equal to the ultrapower map produced by applying the
long extender derived from π∞0,∞ �M∞|δ∞ to the model M∞. In other words,

ρ 7→ ρ∗ may be defined inside the model L[M∞, (ρ 7→ ρ∗) � δ∞], (19)

and in particular

L[M∞, (ρ 7→ ρ∗)] = L[M∞, (ρ 7→ ρ∗) � δ∞].

Lemma 2.7 (a) κ is the least measurable cardinal of M∞.
(b) δ∞ = κ+Msw .
(c) κ+Msw < κ∞ < (κ∞)+M∞ < (κ∞)++M∞ = κ++Msw .

Proof. (a): This is easy.
(b): Cf. [21, Lemma 3.38 (2)]. To show that δ∞ ≤ κ+ in Msw, let η < δ∞,

say η = πsN,∞(η̄), where N ∈ F is strongly s–iterable and η̄ < γNs . Then each
ordinal below η is of the form πsN ′,∞(ζ) for some N ′ ∈ F with (N, s) �F (N ′, s) and
ζ < πsN,N ′(η̄). As F has cardinality κ, this shows that η < κ+ in Msw.

14



Let us now show that κ+Msw ≤ δ∞. Let α < κ+Msw , and let f : κ→ α, f ∈ Msw,
be bijective, say f = τMsw|max(s)(s−), where τ is a Σ1–Skolem term and s is a finite
set of Msw–indiscernibles.

Let β < α, and let λ < κ be such that β = f(λ). Let N ∈ F be such that

λ < min(γNs , the least measurable cardinal of N)

and πsN,N ′(β) = β for all N ′ ∈ F where πsN,N ′ is defined. Let

SN = {ε : ∃µ < the least measurable of N ∃p ∈ BN p BN
N τN [Ġ]|max(s)(š−)(µ̌) = ε̌}.

We have that β ∈ SN and otp(SN) < δN . Let γNβ be the unique γ such that β is the

γth element of SN . In particular, γNβ < δN .
We claim that β 7→ πsN,∞(γNβ ) is well–defined, i.e., that it is independent from the

particular choice of an N as above, and that it is also order–preserving. Well, this is
because if β ≤ β′ < α and γNβ and γN

′

β′ are defined, then there is some Q ∈ F such

that πsN,Q and πsN ′,Q are both defined and πsN,Q(SN) = QN = πsN ′,Q(SN
′
), and hence

γQβ ≤ γQβ′ .

But now β 7→ πsN,∞(γNβ ) is an injection from α into δ∞ which exists in Msw.
(c): κ+Msw < κ∞ is obviously given by (b).
To show that (κ∞)+M∞ < κ++Msw , we use the argument from the proof of Lemma

2.5 and let F = EMsw
ν be the least total extender of the Msw–sequence which has

critical point κ. Write iF : Msw →F W = ult(Msw;F ), so that iF (κ)+W < κ++Msw =
κ++W . For each N ∈ F , F ∩N is the least total extender of the N–sequence which
has critical point κ = κN , and ult(N ;F ∩N) ∈ FW . A joint comparison process as
defined above on p. 8f. allows us to produce some N∗ ∈ FW such that

1. in V , N∗ is a Σult(N ;F∩N)–iterate of ult(N ;F ∩N) for all N ∈ F = FMsw , and

2. δN
∗

= κ+W = κ+Msw .

As Σ is commuting, for each N ∈ F there is a unique iteration map, call it πN,N∗ ,
from N to N∗, namely the ultrapower map N → ult(N ;F ∩ N) followed by the
iteration map from ult(N ;F ∩ N) to N∗, and if N , N ′ ∈ F such that πN,N ′ exists,
then

πN ′,N∗ ◦ πN,N ′ = πN,N∗ .

Therefore, there is a canonical elementary embedding

k : M∞ → N∗.

15



But N∗ = P (N∗|κ+Msw), as being constructed inside W . Therefore,

k(κ∞) = κN
∗

= κW = iF (κ),

and
(κ∞)+M∞ ≤ iF (κ)+W < κ++Msw .

Finally, (κ∞)++M∞ = πMsw,∞(κ++Msw) ≥ κ++Msw . As κ++Msw is a cardinal in
M∞, this gives (κ∞)++M∞ = κ++Msw . � (Lemma 2.7)

The following key lemma makes up the first key step in analyzing the mantle of
Msw.

Lemma 2.8 Let us write κ+ = κ+Msw and κ++ = κ++Msw .7 Msw is a forcing exten-
sion of L[M∞, ρ 7→ ρ∗] via some P which satisfies the κ+–c.c.

In fact,
Msw = L[M∞, ρ 7→ ρ∗][Msw|κ++],

where Msw|κ++ is P–generic over L[M∞, ρ 7→ ρ∗] for some P ∈ L[M∞, ρ 7→ ρ∗] such
that L[M∞, ρ 7→ ρ∗] � “P has the κ+-c.c. and is of size κ++.”

Proof. We shall make use of Bukovský’s theorem from [1]. For the reader’s
convenience, we give a proof sketch in the appendix to the current paper, cf. Theorem
3.5, cf. also [15].

We claim that L[M∞, ρ 7→ ρ∗] uniformly κ+–covers Msw, cf. Definition 3.1, i.e., for
all functions f ∈ Msw with dom(f) ∈ L[M∞, ρ 7→ ρ∗] and ran(f) ⊂ L[M∞, ρ 7→ ρ∗]
there is some function g ∈ L[M∞, ρ 7→ ρ∗] with dom(g) = dom(f) such that for all
x ∈ dom(g),

(a) f(x) ∈ g(x) and

(b) Card(g(x)) < κ+ for all x ∈ dom(g).

It obviously suffices to prove this for all f whose domain is an ordinal and whose
range is contained in the class of all ordinals.

Suppose what we claim would not be true. As L[M∞, ρ 7→ ρ∗] is definable inside
Msw (from Msw’s extender sequence8), there is then some counterexample f : θ → OR
which is parameter–free definable inside Msw (again, from Msw’s extender sequence).

7Making use of this notation, we will later show that κ++ = (κ∞)++M∞ , cf. Lemma 2.9.
8Claim 2.12 (a) will in fact prove a stronger definability fact, but this is not needed here.
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Let us fix such an f , f : θ → OR, and let ϕ be a formula in the language of Msw such
that for all ξ, η, f(ξ) = η iff Msw � ϕ(ξ, η).

If N ∈ F , then Msw = N [h] for some h which is BN–generic over N ; in fact,
h = Msw|δN . The extender sequence of Msw is then uniformly definable inside N [h]
from the extender sequence of N and the parameter Msw|δN . There is then a formula
ψ such that for all N ∈ F , ψ is a formula of the forcing language of N associated to
forcing with BN over N such that if Msw = N [h], where h which is BN–generic over
N , then for all ξ, η, Msw � ϕ(ξ, η) iff there is some p ∈ h such that p Bh

N ψ(ξ̌, η̌). Of
course, the formula ψ is also a formula of the forcing language of M∞ associated to
forcing with BM∞ over M∞.

Let N ∈ F or N =M∞. If p ∈ BN , then we write

p BN
N “ψ defines a function”

to mean that
p BN

N ∀v∀w∀w′ ψ(v, w) ∧ ψ(v, w′)→ w = w′.

Let gN ∈ N be the function with domain πMsw,N(θ) (in case N = M∞ by this we
mean πMsw,∞(θ)) such that for all ξ < πMsw,N(θ),

gN(ξ) = {η : ∃p ∈ BN p BN
N “ψ defines a function and ψ(ξ̌, η̌)”} (20)

As BN has the δN–c.c. inside N , Card(g̃(ξ)) < δN in N for all ξ < πMsw,N(θ).
Of course, if N ∈ F , then πN,∞(gN) = gM∞ .
Let g ∈ L[M∞, ρ 7→ ρ∗] be the function with domain θ such that for all ξ < θ,

g(ξ) = {η : η∗ ∈ gM∞(ξ∗)}. (21)

Obviously, Card(g(ξ)) ≤ Card(gM∞(ξ∗)) < δ∞ in L[M∞, ρ 7→ ρ∗].
Let ξ < θ and η = f(ξ), i.e., Msw � ϕ(ξ, η). Pick N ∈ F such that ξ∗ = πN,∞(ξ)

and η∗ = πN,∞(η). As Msw = N [h], for some h which is BN–generic over N , there is
some p ∈ h ⊂ BN with

p BN
N “ψ defines a function and ψ(ξ̌, η̌),” (22)

so that η ∈ gN(ξ). But then

η∗ = πN,∞(η) ∈ πN,∞(gN)(πN,∞(ξ)) = gM∞(ξ∗),

and hence η ∈ g(ξ). Because δ∞ = κ+ by Lemma 2.7, we have shown that L[M∞, ρ 7→
ρ∗] κ+–uniformly covers Msw.

The conclusion now follows from Theorem 3.5, letting the λ from the statement
of Theorem 3.5 be equal to κ+Msw . � (Lemma 2.8)
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Lemma 2.9 (a) M∞ is fully iterable inside Msw, in fact ΣM∞ �Msw is definable in
Msw.

(b) If P is a poset in Msw and if g ∈ V is P–generic over Msw, then M∞ is fully
iterable inside Msw[g], in fact ΣM∞ �Msw[g] is definable in Msw[g].

(c) κ+Msw = δ∞ < (δ∞)+L[M∞,ρ 7→ρ∗] = κ++Msw .
(d) If λ is a cardinal of L[M∞, ρ 7→ ρ∗] with λ ≥ δ∞, then λ is also a cardinal of

Msw.

Proof. (a): Cf. [11]. We aim to show that ΣM∞ � Msw is definable in Msw. To
this end, let T ∈ Msw be a tree of limit length on M∞ which is according to ΣM∞ .
Let c = ΣM∞(T ).

If there is a drop along c, or if there is no drop along c and δ(T ) 6= δM
T
c , then

there is a Q–structure Q EMT
c which is ¶–small above δ(T ). But then Q ∈ Msw,

as Q may be found inside W by stacking sound mice which are ¶–small above δ(T )
and project to δ(T ) on top of M(T ).

Let us now assume that there is no drop along c and δ(T ) = δM
T
c . We have that

MT
c is an iterate of K(M(T ))Msw . Let us assume that MT

c = K(M(T ))Msw and
leave the other case to the reader’s discretion.

We then have that MT
c is definable in Msw. Let E be a total extender on the

Msw–sequence such that crit(E) = κ and T ∈ ult(Msw;E). Let us write

j : Msw →E W = ult(Msw;E).

We may produce some N ∈ FW such that in V , N |δN is a normal iterate ofMT
c |δ(T ).

There is hence some elementary

k′ : MT
c |δ(T )→ j(M∞|δ∞) = (M∞)W |δMW

∞ . (23)

Let g be Col(ω, δ(T ))–generic over V . Inside Msw[g] let us consider a tree T searching
for a cofinal branch b through T such that b does not drop and there is an elementary
embedding

k : MT
b |δ(T )→ j(M∞|δ∞)

such that

k ◦ πT0,b �M∞|δ∞ = j �M∞|δ∞ (24)

We claim that c = ΣM∞(T ) is given by a branch through T . To see this, let
x ∈ M∞|δ∞. Let x ∈ ran(πN,∞), where N ∈ F , and write x̄ = πN,∞

−1(x). Pick
s, a finite set of Msw–indiscernibles which is moved neither by πMsw,∞ nor by j and
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such that x̄ ∈ HullN |max(s)(γNs ∪ s−) = dom(πsN,∞). Notice that j(x̄) = x̄, and
j(N) = ult(N ;E ∩ N) ∈ FW . We may copy T onto ult(M∞; πMsw,∞(E)) via the
map i = iπMsw,∞(E), write iT for the resulting tree. Let

i∗ : MT
c → ult(MT

c ; iTc ◦ i(E)) =MiT
c .

We may produce some N∗ ∈ FW such that in V , N∗ is a Σj(N)–iterate of j(N) as well
as a ΣMiT

c
–iterate of MiT

c . We write πj(N),N∗ and πMiT
c ,N∗ for the iteration maps,

and we also write πN∗,j(M∞) for the iteration map from N∗ to j(M∞).
We now get that

j(x) = j(πN,∞(x̄))

= j(πsN,∞(x̄))

= j(πsN,∞)(j(x̄))

= πsj(N),j(M∞)(x̄)

= πN∗,j(M∞) ◦ πMiT
c ,N∗ ◦ πiT0,c ◦ πj(N),ult(M∞;πMsw,∞(E))(x̄)

= πN∗,j(M∞) ◦ πMiT
c ,N∗ ◦ πiT0,c ◦ i∗ ◦ πT0,c(x),

so that k = πN∗,j(M∞) ◦πMiT
c ,N∗ ◦πiT0,c ◦ i∗ witnesses that c is indeed given by a branch

through T .
Notice that (24) implies that

k ◦ πT0,b ◦ πMsw,∞ �Msw|δ = j ◦ πMsw,∞ �Msw|δ. (25)

Let x ∈ Msw|δ, and let s be a finite set of Msw–indiscernibles which are moved nei-
ther by πMsw,∞ nor by j and such that x ∈ HullMsw|max(s)(γMsw

s ∪ s−) = dom(πsMsw,∞).
Then πsMsw,∞ ∈ Msw and j ◦ πMsw,∞(x) = j ◦ πsMsw,∞(x) = j(πsMsw,∞)(j(x)) =
πsMsw,j(M∞)(x) = πMsw,j(M∞)(x), where πMsw,j(M∞) is the iteration map from Msw

to j(M∞). Hence the right hand side of (25) is equal to πMsw,j(M∞). The left hand
side of (25) is equal to the iteration map πT0,b ◦ πMsw,∞ �Msw|δ followed by k.

By Lemmas 2.5 and 2.1, b must therefore be equal to c, so that in fact c ∈Msw.
We have shown that ΣM∞(T ) ∈ Msw for every T ∈ Msw. But recall that δ∞ =

κ+Msw , cf. Lemma 2.7 (b), and δ∞ is hence regular in Msw. Hence if T is a tree on
M∞ with δ(T ) = π0,Σ(T )(δ∞), then Msw will have exactly one cofinal branch through
T , namely Σ(T ). ΣM∞ �Msw is therefore definable in Msw.

(b): Let T ∈Msw[g] be a tree of limit length onM∞ which is according to ΣM∞ .
Let c = ΣM∞(T ). Assume that there is no drop along c and δ(T ) = δM

T
c .

Let θ be an appropriate ordinal, and let h be Col(ω, θ)–generic over V such that

Msw[g] ⊂Msw[h]. Say p Col(ω,θ)
Msw

“Ṫ is a tree of limit length onM∞ which is guided

by ¶–small iterable Q–structures, and δ(Ṫ ) is Woodin in K(M(Ṫ )).”
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For any q ≤Col(ω,θ) p let hq denote the unique Col(ω, θ)–generic filter over N such
that for n < ω,

(
⋃

hq)(n) =

{
q(n) if n ∈ dom(q), and

(
⋃
h)(n) otherwise.

Inside Msw[h], we may pseudo–compare all K(M(Ṫ hq)), q ≤Col(ω,θ) p, so as to
produce K(M) for someM. AsM is definable inside Msw[h] from {hq : q ≤Col(ω,θ) p}
and some parameters from Msw,M will actually be an element of Msw, and in V [h],
K(M) is a ΣMTc –iterate of MT

c , a fact which will give rise to the existence of the
natural iteration map from MT

c = K(M(T )) into K(M).
Inside Msw, we may now pseudo–compare M∞ with K(M), producing a ΣM∞–

iterate M∗ of M∞ such that in V , K(M) is also a ΣK(M)–iterate of K(M), a fact
which will give rise to the existence of the natural iteration map from K(M) into
M∗. As M∞ is iterable in Msw by (a), the iteration map

i : M∞ →M∗

is definable inside Msw. Inside Msw[h], we may now construct a tree T searching for a
cofinal branch b through T together with an elementary embedding k : MT

b |δ(T )→
M∗|δM∗ such that

k ◦ πT0,c �M∞|δ∞ = i �M∞|δ∞.
T is ill–founded in V [h], hence in Msw[h], and by Lemma 2.1 there is a unique b given
by a branch through T , so that b ∈Msw[g].

This argument shows that ΣM∞ �Msw[g] is definable in Msw[g].
(c): Let E be the least extender on the M∞–sequence such that E is total and

crit(E) = κ∞. Inside ult(M∞;E), we may pick some N = P (M(U)) ∈ Fult(M∞;E)

such that δ(U) = (κ∞)+ult(M∞;E) = (κ∞)+M∞ . Let c = ΣM∞(U).
By the proof of Lemma 2.2, N = MU

c . But c ∈ L[M∞, ρ 7→ ρ∗] by (b), and
hence π0,c”δ∞ ∈ L[M∞, ρ 7→ ρ∗] witnesses that (κ∞)+M∞ has cofinality δ∞ inside
L[M∞, ρ 7→ ρ∗].

Because N is also the ¶–small core model over M(U) inside ult(M∞;E), again
by the proof of Lemma 2.2, the Weak Covering Lemma (cf. e.g. [4]) therefore gives
that Card((κ∞)+M∞) = δ∞ inside L[M∞, ρ 7→ ρ∗]. By Lemma 2.7 (c), (κ∞)++M∞ =
κ++Msw , so that now (δ∞)+L[M∞,ρ 7→ρ∗] = κ++Msw .

(d): This now immediately follows from (c) and Lemma 2.8. � (Lemma 2.9)

Let us define the meaning of “the core model of Msw.” One way to make sense
of this phrase is to define the core model as a hull of Kc, essentially as Steel did it
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in [18]. To this end, let us work in Msw. Let Kc be as defined in [5, Definition 2.7],9

but with the following additivity adjustment: the critical point of an extender added
(i.e., crit(G) for G as in [5, Definition 2.7 (a)]) is supposed to be above κ+Msw . In the
light of Lemma 2.9 (a), the paper [11] shows that Kc is fully iterable (inside Msw).
The core model K may then be isolated as the unique weasel W such that for every
α, W |α is isomorphic to an initial segment of⋂

{HullK
c

(Γ) : Γ is A0–thick in Kc},

where A0 is defined as in [18, p. 8] and the notion of an “S–thick class” of ordinals
is defined as in [18, Definition 3.8] (but with Ω being replaced by the class of all
odinals in both cases). The paper [11] verifies that the core model K of Msw, thus
defined, exists and is fully iterable inside Msw.

In our context, there is a shortcut, though, which will serve our purposes. We
may let M∞ play the role of Kc, as follows. Inside Msw, we define Γ ⊂ OR to
be thick iff for all but nonstationary many inaccessibles α, Γ ∩ α+ contains an α–
club. As M#

sw exists but all mice in Msw are sw–small, Msw thinks that for all but
nonstationary many α, α is inaccessible, α+M∞ = α+, and α is not the critical point
of an M∞–measure. (Cf. [18, Definition 3.8].) By Lemma 2.9 (a), the arguments
of [18, section 5] then go through to show that definably over Msw there is a unique
weasel W such that for some thick class Γ0, whenever Γ ⊂ Γ0 is a thick class, then

W ∼= HullM∞(Γ). (26)

We call this weasel the core model of Msw, abbreviated by K. As K elementarily
embeds into M∞ (by (26), Lemma 2.9 (a) implies that K is fully iterable inside
Msw. Also, Msw thinks that for all but nonstationary many α, α is inaccessible and
α+M∞ = α+.

We are now going to verify that K is actually equal to M∞.

Lemma 2.10 M∞ = K.

Proof. Let us fix g which is Col(ω,< κ)–generic over Msw. Let us write10

H = HODMsw[g].
9This definition is a variant of the one presented in [7, section 2], but with the smallness as-

sumption on the premice showing up in the Kc construction being relaxed, and it builds upon the
definition which is given in [18, p. 6f.].

10Ordinal definability here is taken as definability in the usual language of set theory with ∈
as the only non–logical predicate, in particular excluding a predicate for the extender sequence of
Msw.
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Claim 2.11 L[M∞, ρ 7→ ρ∗] ⊂ H.

Proof. Let us write C for the collection, as being defined inside Msw[g], of all
extender models N with a Woodin cardinal, δN , and a strong cardinal, κN , such that
the following conditions (1) through (6) are met.

(1) N |(δN)+N is suitable,

(2) κN = κ,

(3) N [h] = Msw[g] for some h which is Col(ω,< κ)–generic over N ,

(4) N = K(N |δN) is the ¶–small core model over N |δN ,

(5) N is pseudo–iterable in the following sense. Let T(N) be the collection of all
U = (Uk : k ≤ n) ∈ N , some n < ω, such that either n = 0 and lh(U0) = 1
(i.e., U is trivial), or else there is a sequence η0 < . . . < ηn < κ of cutpoints of
N and:

(a) U ∈ N |κ,

(b) U = (Uk : k ≤ n) is a finite stack of normal iteration trees Uk,
(c) U0 is on N and lives below δN ,

and for every k < n,

(d) if k < n, then lh(Uk) = (ηk)
+N = δ(Uk), and lh(Un) = (ηn)+N = δ(Un),

(e) Uk is definable over N |(ηk)+N and is guided by Q–structures which are
obtained via P–constructions inside N , cf. [13, Section 1],

(f) if k < n, then PN(M(Uk)) is a proper class, δ(Uk) is a Woodin cardinal
of PN(M(U)), and

PN(M(U))[G] = N

for some G which is BP (M(U))–generic over P (M(U)), and

(g) if k > 0, then Uk is on PN(M(Uk−1)) and lives below δ(Uk−1). (We allow
Un to consist of only one model, namely PN(M(Un−1)).)

For N to be pseudo–iterable we demand that if U = (Uk : k ≤ n) ∈ T(N), then

(a) if Un has a last model, sayMUn
θ and if F is an extender from the sequence

of MUn
θ such that if [0, θ]Un does not drop, then the index of F is below

δM
Un
θ , then (Uk : k < n)_(Un_F ) ∈ T(N), where (Un_F ) is the normal

extension of Un, and
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(b) if Un is of limit length, then there is either a cofinal branch b through Un
such that (Uk : k < n)_(Un_b) ∈ T(N), or else letting U∗ be the trivial
tree consisting only of the model PN(Un), (Uk : k ≤ n)_U∗ ∈ T(N).

Before stating condition (6) let us say that we call M a pseudo–iterate of N iff there
is some U = (Uk : k ≤ n) ∈ T(N) such that Un consists of only one model, namely
M . We will write FN for the collection of all pseudo–iterates of N .11 Let s be a
non–empty finite set of ordinals. For M ∈ FN we call M ∈ FN s–iterable inside N
iff for all U = (Uk : k ≤ n) ∈ T(N), writing Mk for the starting model of Uk, k ≤ n,
if M = Mk0 for some k0 < n, there are for every i ≥ k0, i < n+ 1, cofinal branches

bi ∈ (Msw)Col(ω,max(s))

through Ui such that

(1) πUi0,bi
(s) = s, and

(2) πUi0,bi
(Ni|max(s)) = Ni+1|max(s).12

In this situation, we may write b for the composition of the branches bi, k0 ≤ i < n+1,
and we may consider the map

π
U_k0 ...

_Un
0,b � HullMk0

|max(s)(γ
Mk0
s ∪ s−). (27)

We call M strongly s–iterable inside N iff the map in (27) doesn’t depend on the
particular choice of U .

Our last condition on N now runs:

(6) For every finite set s of ordinals there is some M ∈ FN such that M is strongly
s–iterable in N .

Given N ∈ C, we may define a direct limit system inside N in much the same way as
the system was defined in Msw to give rise to M∞. We write (M∞)N for the direct
limit of that system as being defined in N .

We claim that if N ∈ C, then

(M∞)N =M∞

11We have that FMsw , defined this way, is equal to F as being defined earlier.
12The two notions of being s–iterable in Msw we have now defined, cf. p. 9, coincide with each

other.
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and that in fact the systems giving rise toM∞ and (M∞)N , respectively, have cofi-
nally many common points. As C is ordinal definable inside Msw[g], this immediately
establishes Claim 2.11.

Let us thus fix some N ∈ C. Let ξ < κ be least such that N |δN ∈Msw[g � ξ]. We
have, by the forcing absoluteness of the ¶–small K over N |δN ,

N = (K(N |δN))N = (K(N |δN))N [h] = (K(N |δN))Msw[g] = (K(N |δN))Msw[g�ξ], (28)

so that in particular N exists in Msw[g � ξ] as a subclass which is definable there from
the parameter N |δN . Symmetrically, if ξ′ < κ is least such that Msw|δ ∈ N [h � ξ′],
then

Msw = (K(Msw|δ))N [h�ξ′] (29)

and Msw exists in N [h � ξ′] as a subclass which is definable there from the parameter
Msw|δ.

Let us denote by F1 the Msw–extender of Mitchell order 0 and with critical point
κ, and let us denote by F2 the N–extender of Mitchell order 0 with critical point κ.
Let π1 : Msw → ult(Msw;E1) and π2 : N → ult(N ;E2) denote the ultrapower maps.
Let us write

H̄ = (Hκ+)ult(Msw;E1)[g] = (Hκ+)Msw[g] = (Hκ+)N [h] = (Hκ+)ult(N ;E2)[h].

We have that

ult(Msw;E1)[g] = K(H̄)Msw[g] = K(H̄)ult(Msw;E1)[g],

and

ult(N ;E2)[h] = K(H̄)N [h] = K(H̄)ult(N ;E2)[h]

Let us write K(H̄) for this common value of the ¶–small K over H̄. Then

ult(Msw;E1)[g] = K(H̄) = ult(N ;E2)[h]. (30)

This immediately gives

π1(κ) = π2(κ). (31)

But also, Msw|κ+Msw may be defined over H̄ from the parameter Msw|κ as the stack
of all ¶–small sound mice end–extending Msw|κ and projecting to κ, and

ult(Msw;E1) = Pult(Msw;E1)[g](Msw|κ+Msw) = PK(H̄)(Msw|κ+Msw). (32)
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In the same way, N |κ+N may be defined over H̄ from the parameter N |κ as the stack
of all ¶–small sound mice end–extending N |κ and projecting to κ, and

ult(N ;E2) = Pult(N ;E2)[h](N |κ+N) = PK(H̄)(N |κ+N). (33)

Let k be Col(ω, [κ, π1(κ)))–generic over the common model from (30), cf. (31).
Then π1 and π2 lift to

π̃1 : Msw[g]→ ult(Msw;E1)[g_k] = K(H̄)[k]

and
π̃2 : N [h]→ ult(N ;E2)[h_k] = K(H̄)[k],

respectively. The maps π̃1 and π̃2 might be different, but the universes of their
domains and target models are the same, and by (31), any objects defined inMsw[g] =
N [h] from parameters in (Hκ)

Msw[g] ∪ {κ} = (Hκ)
N [h] ∪ {κ} will be moved the same

way.
In particular, π̃1 maps N = (K(N |δN))Msw[g] to

(K(N |δN))ult(Msw;E1)[g_k] = (K(N |δN))ult(N ;E2)[h_k] = π̃2(K(N |δN)N [h])

= π̃2(N) = ult(N ;E2),

i.e.,

π̃1(N) = ult(N ;E2). (34)

Let ρ < κ be arbitrary. We have that ult(Msw;E1)[g_k] thinks that there is
some strong cutpoint η < π̃1(κ) of both ult(Msw;E1) = π̃1(Msw) = K(Msw|δ) and
ult(N ;E2) = π̃1(N) = K(N |δN) with η > ρ (namely, η = κ) such that setting

H ′ = (Hη+)π̃1(Msw)[g_k�η]

(so H ′ = H̄ for η = κ), π̃1(Msw)|η+π̃1(Msw) may be defined over H ′ from the pa-
rameter π̃1(Msw)|η as the stack of ¶–small sound mice end–extending π̃1(Msw)|η and
projecting to η,

π̃1(Msw) = P π̃1(Msw)[g_k�η](π̃1(Msw)|η+π̃1(Msw)) = PK(H′)(π̃1(Msw)|η+π̃1(Msw)),

π̃1(N)|η+π̃1(N) may be defined over H ′ from the parameter π̃1(N)|η as the stack of
all ¶–small sound mice end–extending π̃1(N)|η and projecting to η, and finally there
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is some h∗ which is Col(ω,< η)–generic over π̃2(N) (namely, h∗ = h) such that
π̃1(Msw)[g_k � η] = π̃1(N)[h∗] and

π̃1(N) = P π̃1(N)[h∗](π̃1(N)|η+π̃1(N)) = PK(H′)(π̃1(N)|η+π̃1(N)).

By the elementarity of π̃1 and because ρ < κ was arbitrary, we then get arbitrarily
large η < κ which are strong cutpoints of both Msw and N such that setting

H ′′ = (Hη+)Msw[g�η], (35)

Msw|η+Msw may be defined over H ′′ from the parameter Msw|η as the stack of all
¶–small sound mice end–extending Msw|η and projecting to η,

Msw = PMsw[g�η](Msw|η+Msw) = PK(H′′)(Msw|η+Msw),

N |η+N may be defined over H ′′ from the parameter N |η as the stack of all ¶–small
sound mice end–extending N |η and projecting to η, and there is some h∗ which is
Col(ω,< η)–generic over N such that

N = PN [h∗](N |η+N) = PK(H′′)(N |η+N), (36)

where K(H ′′) is the ¶–small core model over H ′′ inside the model

Msw[g � η] = N [h∗].

Let us write S ⊂ κ for the set all of η < κ with the properties as above, so that S is
unbounded in κ.

Let us now suppose that M is a premouse with a largest limit ordinal δM such
that

1. η+Msw < δM ≤ η++Msw for some η ∈ S,

2. M∈Msw ∩N ,

3. M � “δM is a Woodin cardinal,” and

4. both Msw|δM and N |δM are BM–generic over M.

We then have, for H ′′ as in (35) and h∗ being Col(ω,< η)–generic over N with (36),

PMsw(M) = PMsw[g�η](M)

= PK(H′′)(M) (37)

= PN [h∗](M)

= PN(M),
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where K(H ′′) is the ¶–small K over H ′′ in Msw[g � η] = N [h∗].
Now let s ∈ OR<ω, and let M ∈ F = FMsw be strongly s–iterable in Msw, and

let M ′ ∈ FN be strongly s–iterable in N . We aim to find M∗ ∈ F ∩ FN such that

(M, s) �F (M∗, s) and (M ′, s) �FN (M∗, s).

Let ξ′ ≤ ξ′′ < κ be such that g � ξ ∈ N [h � ξ′′], so that by (28) and (29)

N ⊂Msw[g � ξ] ⊂ N [h � ξ′′],

which implies that N is a ground of Msw[g � ξ], and in fact both Msw and N grounds
of Msw[g � ξ] via posets of size less than κ. Therefore, by [22, Proposition 5.1], there
is an inner model P ⊂Msw ∩N such that P is a ground of Msw[g � ξ] via a poset of
size less than κ. We may then pick some θ < κ such that for some ` ∈Msw[g] which
is Col(ω, θ)–generic over P ,

{Msw|δ,N |δN ,M |δM ,M ′|δM ′} ⊂ P [`], (38)

and in fact all of Msw, N , M , M ′ exist in P [`] as subclasses which are definable there
as K(Msw|δ), K(N |δN), K(M |δM), and K(M ′|δM ′), respectively.

Let τ0, τ1, σ0, σ1 ∈ PCol(ω,θ) be such that

τ `0 = Msw|δ+Msw , τ `1 = N |(δN)+N , σ`0 = M |(δM)+M , and σ`1 = M ′|(δM ′)+M ′ . (39)

Let p ∈ Col(ω, θ) force over P all the relevant properties about τ0,τ1, σ0,σ1 for the
following to go through. For any q ≤Col(ω,θ) p let `q denote the unique Col(ω, θ)–
generic filter over N such that for n < ω,

(
⋃

`q)(n) =

{
q(n) if n ∈ dom(q), and

(
⋃
`)(n) otherwise.

Let η ∈ S, η > max{ξ, ξ′}. Notice that η++N ≤ η++Msw[g�ξ] = η++Msw ≤
η++N [h�ξ = η++N by (28) and (29), so that

η++Msw = η++N .

This is then also the common η++ of all K(τ
`q
0 ), K(τ

`q
1 ). Working in P [`], let for

q ≤Col(ω,θ) p,

Uq and U ′q be normal iteration trees on σ
`q
0 and σ

`q
1 , respectively,

such that
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1. lh(Uq) = lh(U ′q) = η++Msw = δ(Uq) = δ(U ′q) for all q ≤Col(ω,θ) p,

2. M(Uq) =M(U ′q′) for all q, q′ ≤Col(ω,θ) p,

3. every Uq as well as every U ′q is guided by ¶–small Q–structures,

4. K(τ
`q
0 )|δ(Uq) is generic over M(Uq) for all q ≤Col(ω,θ) p, and

5. K(τ
`q
1 )|δ(U ′q) is generic over M(U ′q) for all q ≤Col(ω,θ) p.

Let us write M for the common value of all M(Uq) and M(U ′q). Notice that M ∈
P ⊂Msw ∩N . Set

M∗ = (K(M))P .

By (37), we have that

M∗ = (P(M))Msw = (P(M))N . (40)

Also, Up is normal and is a tree on M which producesM∗, so that (modulo potential
padding) Up can be computed in Msw via the comparison process which tries to
coiterate M and M∗. Similarly, U ′p is normal and is a tree on M ′ which produces
M∗, so that (again modulo potential padding) U ′p ∈ N . As M is strongly s–iterable
in Msw and M ′ is strongly s–iterable in N , we therefore get that

M∗ ∈ F ∩ FN , (M, s) �F (M∗, s), and (M ′, s) �FN (M∗, s),

as desired. � (Claim 2.11)

Claim 2.12 (a) H ⊂ L[M∞, ρ 7→ ρ∗]. Hence, H = L[M∞, ρ 7→ ρ∗].

(b) If γ < δ∞ and X ∈ H ∩ P(γ), then X ∈ M∞. In particular, (Hδ∞)H =
M∞|δ∞.

Proof. (a): Let us fix X, a set of ordinals, such that X ∈ H, say X ⊂ γ and
ξ ∈ X iff

Col(ω,<κ)
Msw

ϕ(ξ̌, α̌1, . . . , α̌k). (41)

If N ∈ F , then there is some h which is Col(ω,< κ)–generic over N such that
N [h] = Msw[g], so that (41) is equivalent with

Col(ω,<κ)
N ϕ(ξ̌, α̌1, . . . , α̌k). (42)
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In particular, X ∈
⋂
F and πN,N ′(X) = X for all N , N ′ ∈ F such that πN,N ′ exists

and

πN,N ′(α1, . . . , αk) = α1, . . . , αk. (43)

Let N ∈ F be such that (43) holds true for all N ′ ∈ F such that πN,N ′ exists, and
set X̃ = πN,∞(X) ∈ M∞. Then for any ξ < γ, if N ′ ∈ F is such that πN,N ′ exists
and πN ′,N ′′(ξ) = ξ for all N ′′ ∈ F for which πN ′,N ′′ exists, we have that ξ ∈ X iff

ξ∗ = πN ′,∞(ξ) ∈ πN ′,∞(X) = πN,∞(X) = X̃,

so that X ∈ L[M∞, ρ 7→ ρ∗].
We have shown (a). (b): Let γ < δ∞, say γ ≤ πMsw,∞(γ̄). Pick a finite set s of

ordinals such that Msw is strongly s–iterable and γ̄ < γMsw
s , cf. the argument on p.

12. We have that πsMsw,∞ � γ
Msw
s ∈Msw, so that

(ρ 7→ ρ∗) � γ = π∞0,∞ � γ = πMsw,∞(πsMsw,∞ � γ
Msw
s ) � γ

is an element of M∞. The above argument then shows (b). � (Claim 2.12)

Claim 2.12 (a) has the following remarkable consequence.

Lemma 2.13 M∞|δ∞ is fully iterable inside L[M∞, ρ 7→ ρ∗], in fact ΣM∞ � L[M∞, ρ 7→
ρ∗] is definable inside L[M∞, ρ 7→ ρ∗].

Proof. Let T ∈ L[M∞, ρ 7→ ρ∗] be a tree on M∞|δ∞ of limit length which is
according to ΣM∞ . Write b = ΣM∞(T ). By Lemma 2.9 (a), b ∈ Msw. If there is a
(necessarily, ¶–small) Q–structure Q E MT

b , then Q ∈ L[M∞, ρ 7→ ρ∗] and hence
also b ∈ L[M∞, ρ 7→ ρ∗]. So let us assume that there is no such Q–structure.

Then δ(T ) = MT
b ∩ OR, and hence cf(lh(T )) = cf(δ(T )) = cf(MT

b ∩ OR) =
δ∞ = κ+ inside Msw. Let g be Col(ω,< κ)–generic over Msw. Then δ∞ = ℵ2

in Msw[g], so that inside Msw[g], b is the unique cofinal branch through T . As
T ∈ L[M∞, ρ 7→ ρ∗] = H = HODMsw[g] by Claim 2.12 (a), we get b ∈ HODMsw[g], and
hence b ∈ L[M∞, ρ 7→ ρ∗].

The argument we gave shows that ΣM∞ � L[M∞, ρ 7→ ρ∗] is definable inside
L[M∞, ρ 7→ ρ∗]. � (Lemma 2.13)

We are now ready to finish the proof of Lemma 2.10.
As L[M∞, ρ 7→ ρ∗] is a ground of Msw by Lemma 2.8 and M∞ is fully iterable

inside both Msw as well as L[M∞, ρ 7→ ρ∗] by Lemma 2.9 (a) and Lemma 2.13, we
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may define the core model KL[M∞,ρ 7→ρ∗] of L[M∞, ρ 7→ ρ∗] in much the same way as
we defined the core model K = KMsw of Msw on p. 21 and K = KMsw = KL[M∞,ρ 7→ρ∗].
Inside L[M∞, ρ 7→ ρ∗], there is a canonical elementary embedding j : K →M∞ given
by (26). We aim to show that j = id.

Let us assume that j 6= id, and set λ = crit(j). Inside L[M∞, ρ 7→ ρ∗], K and
M∞ coiterate to a common weasel, Q, such that if πK,Q and πM∞,Q denote the
canonical iteration maps,

πM∞,Q ◦ j = πK,Q. (44)

If j(λ) < δ∞, then by (44) j � λ+K is cofinal in j(λ)+M∞ and witnesses that j(λ)+M∞

is singular. However, this contradicts Claim 2.12 (b). If j(λ) = δ∞, then λ is the
Woodin cardinal of K, but there is some initial segement N of M∞ projecting to λ
which defines a counterexample to the Woodinness of λ. However, by universality, N
would have to be an initial segment of K. Finally, if j(λ) > δ∞, then j comes from
an iteration of K strictly above δ∞, the common Woodin cardinal of K and M∞.
ButM∞ is generated from δ∞ together with a club class of indiscernibles above κ∞,
which immediately gives j � κ∞ = id and then j = id. � (Lemma 2.10)

Theorem 2.14 L[M∞, ρ 7→ ρ∗] is the mantle of Msw.

Proof. As L[M∞, ρ 7→ ρ∗] is a ground of Msw by Lemma 2.8, if suffices to prove
that L[M∞, ρ 7→ ρ∗] ⊂ W for every ground W of Msw.

So let us fix W , a ground of Msw. Let P ∈ W be a poset such that for some
g ∈ Msw which is P–generic over W , Msw = W [g]. Let λ be the cardinality of P
inside W , so that P ∗ Col(ω, λ) ∼= Col(ω, λ). Let h̄ be Col(ω, λ)–generic over Msw,
and let h be Col(ω, λ)–generic over W such that W [h] = Msw[h̄].

W [h] containsM∞|δ∞ as an element, and it can defineM∞ as K(M∞|δ∞). Let
τ ∈ WCol(ω,λ) be such that M∞|δ∞ = τh. By Lemma 2.9 (b), M∞ is fully iterable
inside W [h], so that we may pick some p ∈ h such that

p Col(ω,λ)
W K(τ) is sw–small, has a strong cardinal above

the Woodin cardinal τ ∩OR, and is fully iterable.

For any q ≤Col(ω,λ) p let hq denote the unique Col(ω, λ)–generic filter over W such
that for n < ω,

(
⋃

hq)(n) =

{
q(n) if n ∈ dom(q), and

(
⋃
h)(n) otherwise,
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and let us write M q for K(τhq), as being computed inside W [h] = W [hq]. By (45),
every M q, q ≤Col(ω,λ) p, is fully iterable inside W [h], and it is straightforward to see
that all M q, q ≤Col(ω,λ) p, coiterate to a common coiterate, say Q. We have that Q
is a definable inner model of W .

Let Γ ⊂ OR be the class of all ordinal fixed points under all the iteration maps
from an M q, q ≤Col(ω,λ) p, to Q. Γ is then a definable class in W , and also Γ is easily
verified to be thick in the sense of the definition given on p. 21. We must then have
that

M∞ ∼= HullQ(Γ),

so that M∞ ⊂ W .
In order to show that the map ρ 7→ ρ∗ is in W , it suffices to show that ΣM∞ is

amenable to and definable over W .
Let T ∈ W be an iteration tree on M∞ of limit length which is according to

ΣM∞ . Write b = ΣM∞(T ). We have that b ∈ W [h] by Lemma 2.9 (c). If MT
b has

an initial segment Q end–extending M(T ) such that δ(T ) is not definably Woodin
over Q, then the unique least such Q may be found inside W by stacking sound mice
which are ¶–small above δ(T ) and project to δ(T ) on top of M(T ), so that b ∈ W .
Otherwise b does not drop and δ(T ) = πT0,b(δ∞). We then have that inside W [h], b is
the only cofinal branch c through T such that δ(T ) = πT0,c(δ∞) and MT

c is iterable
above δ(T ). (In fact, inside W [h], b is the only cofinal branch c through T such that
δ(T ) = πT0,c(δ∞) andMT

c is well–founded, cf. the remark on p. 4.) Therefore b ∈ W .
But the argument we gave also shows that ΣM∞ is amenable to and definable

over W . � (Theorem 2.14)

We call L[M∞, ρ 7→ ρ∗] the Varsovian model derived from Msw. If M is a model
which is elementarily equivalent to Msw, then the Varsovian model derived from M
is that inner model of M which is defined over M as L[M∞, ρ 7→ ρ∗] is defined over
Msw.

Lemma 2.15 (F. Schlutzenberg)

(a) ran(πMsw,∞) is closed under both π∞0,∞ and (π∞0,∞)−1.

(b) HullL[M∞,ρ 7→ρ∗](ran(πMsw,∞)) ∩OR = ran(πMsw,∞) ∩OR.

Proof. (a) Let ρ be such that {ρ, ρ∗} ∩ ran(πMsw,∞) 6= ∅. Let s be a finite set of
Msw–indiscernibles such that

ρ ∈ HullMsw|max(s)(γMsw
s ∪ s−).
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We have that π∞0,∞ � HullM∞|max(s)(γM∞s ∪ s−) ∈M∞ and in fact

π∞0,∞ � HullM∞|max(s)(γM∞s ∪ s−) = πMsw,∞(πMsw,∞ � HullMsw|max(s)(γMsw
s ∪ s−),

where πMsw,∞ � HullM∞|max(s)(γM∞s ∪ s−) ∈ Msw. Then if ρ ∈ ran(πMsw,∞), then

ρ∗ = (π∞0,∞ � HullM∞|max(s)(γM∞s ∪ s−))(ρ) ∈ ran(πMsw,∞), and if ρ∗ ∈ ran(πMsw,∞),

then ρ = (π∞0,∞ � HullM∞|max(s)(γM∞s ∪ s−))−1(ρ∗) ∈ ran(πMsw,∞).

(b) Let ρ ∈ HullL[M∞,ρ 7→ρ∗](ran(πMsw,∞)) ∩ OR. By (a), it suffices to prove that
ρ∗ ∈ ran(πMsw,∞).

We may pick a finite set s of Msw–indiscernibles such that

ρ ∈ HullL[M∞,ρ 7→ρ∗](s). (45)

Let N ∈ F be strongly s–iterable such that πN,N ′(ρ) = ρ for all N ′ ∈ F with πN,N ′ ↓.
As L[M∞, ρ 7→ ρ∗] = HODN [h] for some/all h which are Col(ω,< κ)–generic over N ,
cf. Claim 2.12 (a), (45) implies that

ρ ∈ HullN(s).

But then
ρ∗ ∈ HullM∞(s) ⊂ ran(πMsw,∞).

� (Lemma 2.15)

Corollary 2.16 Let σ : V ∼= HullL[M∞,ρ 7→ρ∗](ran(πMsw,∞)), where V is transitive.
V = L[Msw, ρ 7→ πMsw,∞(ρ)], and σ ⊃ πMsw,∞.

Proof. By Lemma 2.15 (b) and by (19), it remains to be seen that

σ−1((ρ 7→ ρ∗) � δ∞) = πMsw,∞ � δ. (46)

For n < ω let us write sn = {ℵV1 , . . . ,ℵVn+1}. Then for each n < ω, πMsw,∞ � γ
Msw
sn =

πsnMsw,∞ � γ
Msw
sn ∈Msw and σ(πsnMsw,∞ � γ

Msw
sn ) = πsnM∞,M∞∞ , by the elementarity of σ and

σ(sn) = sn, and the latter is equal to π∞0,∞ � γ
M∞
sn which is hence in M∞. But then

σ−1((ρ 7→ ρ∗) = σ−1(
⋃
n<ω π

∞
0,∞ � γ

M∞
sn ) =

⋃
n<ω σ

−1(π∞0,∞ � γ
M∞
sn ) =

⋃
n<ω π

sn
Msw,∞ �

γMsw
sn = πMsw,∞ � δ, which shows (46). � (Corollary 2.16)

Lemma 2.17 Let σ : V = L[Msw, ρ 7→ πMsw,∞(ρ)] ∼= HullL[M∞,ρ 7→ρ∗](ran(πMsw,∞)).
V is iterable via iteration trees which live on Msw|δ.
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Proof. Implicitly, [21] contains a simplified version of the argument to follow, cf.
[21, Lemma 3.46]. This was pointed out to the authors by Farmer Schlutzenberg
who then independently arrived at a proof of Lemma 2.17.

We claim that Σ may serve as an iteration strategy for iteration trees on V
which live on Msw|δ. This makes sense by Claim 2.12 (b), Corollary 2.16, and the
elementarity of σ.

Let T be a putative tree on V which lives on Msw|δ and is according to Σ. If
MT

α is a transitive proper class, α < lh(T ), then we may write MT
α = L[Mα, πα].

The tree T induces a canonical tree, which we shall denote by T̄ , on Msw which is
according to Σ.

Let us write Π for the set of all α < lh(T ) such that MT
α is a proper class. If

α ∈ lh(T ) \ Π, then MT̄
α =MT

α . We claim that we may define a sequence

((Mα, πα,M
∗
α, π

∗
α,Vα, π̃α) : α ∈ Π)

such that

(a) M0 = Msw, π0 = πMsw,∞, M∗
0 =M∞, π∗0 = (ρ 7→ ρ∗)

and for all α ≤T β < lh(T ) with α, β ∈ Π:

(b) Mα =MT̄
α ,

(c) L[Mα, πα � OR] =MT
α ,

(d) Vα = L[M∗
α, π

∗
α] is the Varsovian model derived from Mα,

(e) πα : Mα →M∗
α is an elementary embedding,

(f) π̃α : L[Mα, πα � OR]→ L[M∗
α, π

∗
α] is an elementary embedding,

(g) π̃β � lh(Eγ) = π̃α � lh(Eγ) for α <T γ + 1 ≤T β,

(h) π̃α ⊃ πα, and

(i) πTα,β ⊃ πT̄α,β.

Let us present the successor steps of the construction, leaving the limit steps
to the reader’s discretion. Let α = T –prec(β + 1), where β + 1 ∈ Π, and write
F = ETβ = ET̄β .

We may define an elementary embedding

π̃β+1 : ult(L[Mα, πα � OR];F )→ Vβ+1
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by setting

π̃β+1([a, f ]
MTα
F ) = [a, u 7→ π̃α(f)(πα(u))]Mα

F .

L[Mα, πα � OR] L[M∗
α, π

∗
α]

L[Mβ+1, πβ+1 � OR] L[M∗
β+1, π

∗
β+1]

Mα

Mβ+1

∈

∈

π̃α

πTα,β+1

π̃β+1

πTα,β+1

This is indeed well–defined and elementary, as we may use (πα � [crit(F )]Card(a)) ∈
Mα and compute as follows. Let ϕ be a formula, let us assume for notational conve-
nience that ϕ has only one free variable, and let a ∈ [lh(F )]<ω and f : [crit(F )]Card(a) →
MT

α , f ∈MT
α .

MT
β+1 � ϕ([a, f ]M

T
α )

⇐⇒ {u ∈ [crit(F )]Card(a) : MT
α � ϕ(f(u))} ∈ Fa

⇐⇒ {u ∈ [crit(F )]Card(a) : L[M∗
α, π

∗
α] � ϕ(π̃α(f)(π̃α(u)))} ∈ Fa

⇐⇒ {u ∈ [crit(F )]Card(a) : L[M∗
α, π

∗
α] � ϕ(π̃α(f)((πα � [crit(F )]Card(a))(u)))} ∈ Fa

⇐⇒ a ∈ πT̄α,β+1({u ∈ [crit(F )]Card(a) : L[M∗
α, π

∗
α] � ϕ(π̃α(f)((πα � [crit(F )]Card(a))(u)))})

⇐⇒ L[M∗
β+1, π

∗
β+1 � ϕ(πT̄α,β+1(π̃α(f))(((πα � [crit(F )]Card(a))(a)))

⇐⇒ L[M∗
β+1, π

∗
β+1 � ϕ(πT̄α,β+1(π̃α(f))((πα(a))).

Notice that π̃β+1 � lh(F ) = π̃α � lh(F ), as required by (g).
The key point is now that

M∗
β+1 ∩ ran(π̃β+1) ∼=MT̄

β+1. (47)

(47) is established by the argument which gave Schlutzenberg’s Lemma 2.15. Let I
denote the class of all Msw–indiscernibles, and let us assume for notational conve-
nience that all embeddings which we consider fix all the points in I.
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In order to show (47), let x ∈M∗
β+1∩ran(π̃β+1), say x = π̃β+1(x̄) ∈M∗

β+1. We have

that x̄ ∈ HullM
T
β+1(lh(F )∪I), so that x ∈ HullL[M∗β+1,π

∗
β+1](π̃β+1”lh(F )∪I)∩M∗

β+1. By
the elementarity of πT0,β+1, L[M∗

β+1, π
∗
β+1] is the Varsovian model derived from Mβ+1

which in turn is equal to HODP [h] for all P ∈ FMβ+1 and all h which are Col(ω,< κP )–
generic over P , cf. Claim 2.12 (a). We thus have x ∈ HullP (π̃β+1”lh(F ) ∪ I) for all
P ∈ FMβ+1 . By picking P sufficiently far out in the system, we thus get that

π∗β+1(x) ∈ HullM
∗
β+1(π∗β+1 ◦ π̃β+1”lh(F ) ∪ I). (48)

However, for each ordinal ρ we may pick some s ∈ [I]<ω such that ρ ∈ dom(π∗β+1 �

HullM
∗
β+1|max(s)(γ

M∗β+1
s )∪{s−}), i.e., π∗β+1(ρ) = (π∗β+1 � HullM

∗
β+1|max(s)(γ

M∗β+1
s )∪{s−}))(ρ),

and then

π∗β+1(ρ) = (π∗β+1 � HullM
∗
β+1|max(s)(γ

M∗β+1
s ) ∪ {s−}))(ρ)

= πT0,β+1(π∗0 � HullM
∗
0 |max(s)(γM

∗
0

s ) ∪ {s−}))(ρ)

= πT0,β+1(π0(π0 � HullM
∗
0 |max(s)(γM

∗
0

s ) ∪ {s−})))(ρ).

But π0 � HullM
∗
0 |max(s)(γ

M∗0
s )∪ {s−}) ∈ HullM0(I), hence π0(π0 � HullM

∗
0 |max(s)(γ

M∗0
s )∪

{s−})) ∈ HullM
∗
0 (I), hence πT0,β+1(π0(π0 � HullM

∗
0 |max(s)(γ

M∗0
s )∪{s−}))) ∈ HullM

∗
β+1(I).

This shows that HullM
∗
β+1(π̃β+1”lh(F ) ∪ I) is closed under ρ 7→ π∗β+1(ρ) as well as

under ρ 7→ (π∗β+1)−1(ρ), so that by x ∈M∗
β+1, (48) is tantamount to saying that

x ∈ HullM
∗
β+1(π̃β+1”lh(F ) ∪ I). (49)

We have shown that x ∈M∗
β+1 ∩ ran(π̃β+1) implies (49). This gives (47).

By (47), we may let πβ+1 = π̃β+1 �Mβ+1. It remains to be verified that

πTα,β+1(πα) = π̃β+1 � OR. (50)

Let ξ = πTα,β+1(f)(a), where a ∈ [lh(F )]<ω and f : [crit(F )]Card(a) → OR, f ∈
MT

α . Then

πTα,β+1(πα)(ξ) = πTα,β+1(πα)(πTα,β+1(f)(a))

= πTα,β+1(πα ◦ f)(πTα,β+1(a))

= πTα,β+1(u 7→ π̃α(f)((πα � [crit(F )]<ω)(u))(a)

= π̃β+1(πTα,β+1(f)(a))

= π̃β+1(ξ).
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� (Theorem 2.17)

The proof of Theorem 2.19 makes use of the following result. We know thatM∞
is an iterate of Msw via an ω–stack of normal trees, (Tn : n < ω). The normalizing
procedure which is developed in the papers [16], [17], and [20] produces a normal
iteration tree X(Tn : n < ω) on Msw with last model M∞.

Theorem 2.18 (F. Schlutzenberg, J. Steel) ([16], [17], [20]) M∞ is a Σ–iterate of
Msw via a normal iteration tree on Msw which lives on Msw|δ and with iteration map
πMsw,∞.

Theorem 2.19 δ is a Woodin cardinal inside L[Msw, ρ 7→ πMsw,∞(ρ)].

Proof. The proof we are about to present was also found independently by Farmer
Schlutzenberg following a hint by John Steel.

Let T be the (unique) tree on Msw which witnesses the statement of Theorem
2.18. By Corollary 2.16 (b), we may construe T as a tree on L[Msw, ρ 7→ πMsw,∞(ρ)],
and we may lift the iteration map πMsw,∞ to an iteration map

π̃ : L[Msw, ρ 7→ πMsw,∞(ρ)]→ L[M∞, σ],

where σ is the image of ρ 7→ πMsw,∞(ρ) under π̃. However, the same argument as in
the proof of Corollary 2.16 (a) shows that

πMsw,∞(πMsw,∞ � δ) = π∞0,∞ � δ∞. (51)

This is true because if again sn = {ℵ1, . . . ,ℵn+1} for n < ω, then πMsw,∞(πMsw,∞ �
δ) = πMsw,∞(

⋃
n<ω π

sn
Msw,∞ � γ

Msw
sn ) =

⋃
n<ω πMsw,∞(πsnMsw,∞ � γ

Msw
sn ) =

⋃
n<ω π

∞
0,∞ �

γM∞sn = π∞0,∞ � δ∞.
We therefore have that

π̃ : L[Msw, ρ 7→ πMsw,∞(ρ)]→ L[M∞, ρ 7→ ρ∗]

is given by the normal iteration tree T .
Let us now suppose that δ is not a Woodin cardinal in L[Msw, ρ 7→ πMsw,∞(ρ)]

which implies that δ∞ is not a Woodin cardinal in L[M∞, ρ 7→ ρ∗]. Notice that
T must have length δ∞ + 1 = κ+Msw + 1, and T � κ+Msw is guided by ¶–small
Q–structures, so that T � κ+Msw ∈Msw.

Write λ = κ++Msw , and V = L[M∞, ρ 7→ ρ∗]. Let g ∈ V be Col(ω, λ)–generic
over Msw. Inside Msw[g], let T be a tree of height ω searching for a Q and b such
that
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(α) Q is a transitive model of ZFC− of height λ such that δ is a cardinal in Q and
HQδ = Msw|δ,

(β) b is a cofinal branch through T � κ+Msw such that when T ′ is T � κ+Msw ,
being construed as a tree on Q,13 then all the models MT ′

α , α < κ+Msw , are
well–founded, and

πT
′

0,b : Q → HVλ .

T is ill–founded in V , as we may set Q = H
L[Msw,πMsw,∞�OR]
λ and b = [0, κ+Msw)T .

Therefore, T is ill–founded in Msw[g] ⊂ V as well. Let Q and b in Msw[g] be given
by a branch through T . Suppose that b 6= [0, κ+Msw)T . As T � κ+Msw is normal, the
“zipper argument,” cf. e.g. [19, p. 1645f.], then shows that δ(T � κ+Msw) = δ∞ must
be Woodin in HVλ which is against our current hypothesis.

Therefore, [0, κ+Msw)T = b ∈ Msw[g]. As this was shown to be true for any b
such that Q and b come from a branch through T for some Q, we must have that
[0, κ+Msw)T ∈Msw by the homogeneity of Col(ω, λ). But this gives that

πMsw,∞ � δ = πT �κ
+Msw

0,[0,κ+Msw )T
∈Msw,

which is a map which sends δ < κ cofinally into δ∞ = κ+Msw . Hence κ+Msw is singular
in Msw. Contradiction! � (Theorem 2.19)

J. Steel observed that if g is Col(ω,< κ)–generic over Msw, then Msw[g] is not a
model of “every OD–set of reals is determined,” so that one canot use [6] to deduce
the conclusion of Lemma 2.19.

Lemma 2.20 L[M∞, ρ 7→ ρ∗] = L[M∞|δ∞,ΣM∞|δ∞ ].

Proof sketch. “⊃”: By Lemma 2.13, ΣM∞ � L[M∞, ρ 7→ ρ∗] is definable inside
L[M∞, ρ 7→ ρ∗].

“⊂”: Let us writeW forK(M∞|δ∞) as being constructed inside L[M∞|δ∞,ΣM∞|δ∞ ].
Inside L[M∞|δ∞,ΣM∞|δ∞ ], W is fully iterable, W satisfies weak covering above δ∞,
and W has a Woodin cardinal. By an unpublished theorem of Steel, W must then
have a strong cardinal above δ∞. From the point of view of L[M∞, ρ 7→ ρ∗], W must
then be a universal weasel.

We thus get an elementary embedding j :M∞ → W . Suppose j 6= id. Using an
argument from [11], we may then reconstruct j �M∞|crit(j)+ inside L[M∞|δ∞,ΣM∞|δ∞ ]
as follows.

13This is possible by item (α).
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Write λ = crit(j)+M∞ and λ′ = j(λ). There are trees T and T ′, both on M∞
and inside L[M∞|δ∞,ΣM∞|δ∞ ] of length λ + 1 and λ′ + 1, respectively, such that
λ = πT0λ(δ∞) and λ′ = πT

′

0λ′(δ∞). j � M∞|crit(j)+ is then the unique map which
sends πT0λ”δ∞ to πT

′

0λ′”δ∞.
Contradiction! � (Lemma 2.20)

In a sequel to this paper, cf. [10], we will study Varsovian models in more gener-
ality.

The attentive reader will notice that the preceding arguments actually produced
the following statement.

Theorem 2.21 For a cone of reals x, Ms(x) has a 2–small core model K = KMs(x)

which in V is an iterate of Msw, and the mantle of Ms(x) is the Varsovian model
L[K,ΣK ], where ΣK is the tail of Σ.

3 Appendix: Bukovský’s theorem.

Definition 3.1 Let W be an inner model of V . Let λ be an infinite cardinal. We
say that W uniformly λ–covers V iff for all functions f ∈ V with dom(f) ∈ W
and ran(f) ⊂ W there is some function g ∈ W with dom(g) = dom(f) such that
f(x) ∈ g(x) and Card(g(x)) < λ for all x ∈ dom(g).

If there is some poset P ∈ W having the λ–c.c. in W and some g which is P–
generic over W such that V = W [g], then W uniformly λ–covers V . Bukovský’s
Theorem 3.5 will say that the converse is true also.

The following is probably part of the folklore.

Theorem 3.2 Let W be an inner model of V , and let λ be an infinite regular cardi-
nal. Assume that W uniformly λ–covers V , and assume also that P(2<λ)∩ V ⊂ W .
Then W = V .

Proof. Let us call any set Γ of functions an antichain iff for all a, b ∈ Γ with
a 6= b there is some i ∈ dom(a) ∩ dom(b) with a(i) 6= b(i).

It is easily seen that the hypotheses on W give that

2<λW ⊂ W. (52)

To verify (52), notice first that by P(2<λ) ∩ V ⊂ W , W computes the cardinal
successor of 2<λ correctly and for every γ < (2<λ)+, P(γ) ∩ V ⊂ W .
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Now let f : 2<λ → OR, f ∈ V . Using the fact that W uniformly λ–covers V , let
g ∈ W be a function with dom(g) = 2<λ such that g(ξ) is a set of ordinals, f(ξ) ∈
g(ξ), and Card(g(ξ)) < λ for all ξ < 2<λ. Let e : γ ∼=

⋃
ran(g) be the (inverse of the)

transitive collapse of
⋃

ran(g), so that e ∈ W and γ < (2<λ)+. As P(γ) ∩ V ⊂ W ,
the function e−1 ◦ f : 2<λ → γ is in W , which gives that f = e ◦ (e−1 ◦ f) ∈ W . We
showed (52).

Assume that A : α→ 2, for some ordinal α, is such that A ∈ V \W . Let us write
F for the collection of all functions a such that there is some x ⊂ α of size < λ such
that a : x→ 2. Using again the fact that W uniformly λ–covers V ,14 we may pick a
function g in W such that if Γ ⊂ F is an antichain with Γ ∈ W , then

(i) g(Γ) ∈ W is a subset of Γ of size < λ, and

(ii) if there is some (unique!) a ∈ Γ with a = A � dom(a), then a ∈ g(Γ).

We call a ∈ F legal iff for no antichain Γ ∈ W , a ∈ Γ \ g(Γ). Notice that being legal
is defined inside W (from the parameter g ∈ W ).

Every A � x, where x ⊂ α has size < λ, is legal.
If Γ ⊂ F is an antichain with Γ ∈ W , and if every a ∈ Γ is legal, then we must

have g(Γ) = Γ, from which it follows that Γ has size < λ.
Let θ >> α be such that θ<λ = θ. Let

X ≺ (Hθ;∈, {A},F , g,Hθ ∩W )

be such that <λX ⊂ X and Card(X) = 2<λ. By (52), X ∩W ∈ W , and of course

X ∩W ≺ (Hθ ∩W ;∈,F , g) ∈ W. (53)

Write σ : W̄ ∼= X ∩W for the (inverse of the) transitive collapse of X ∩W , so
that σ ∈ W . σ extends to σ̃ : H ∼= X, the (inverse of the) transitive collapse of X.

Notice that P(2<λ) ∩ V ⊂ W gives that Ā = σ̃−1(A) ∈ W , which in turn yields
that

A � (X ∩ α) = σ”Ā ∈ W. (54)

We are now going to derive a contradiction from (54).
Using (54), we may work inside W and define a sequence (ai : i < λ) of elements

of F such that ai ∈ X and dom(ai) ⊃ dom(aj) for all j < i < λ as follows.
Assume (aj : j < i) has already been chosen. Notice that (aj : j < i) ∈ X by

14This use is now substantial, in contrast to the previous one.
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<λX ⊂ X. Write x =
⋃
j<i dom(aj), so that x ∈ X. Clearly, for every ξ < α there

is some legal a ∈ F such that x ∪ {ξ} ⊂ dom(a) and a = A � dom(a) (just pick
A � (x ∪ {ξ})). There must then be some ξ < α such that there are legal a and b in
F with x ∪ {ξ} ⊂ dom(a) ∩ dom(b) and a(ξ) 6= b(ξ), as otherwise A would be the
union of all legal a ∈ F with a ⊃ A � x and thus A would be in W .

By (53) we must then have inside X some ξ < α and some legal a and b in F with
x∪{ξ} ⊂ dom(a)∩dom(b) and a(ξ) 6= b(ξ). By (54), we may then choose in W some
ξ ∈ α∩X and some a ∈ F∩X such that x∪{ξ} ⊂ dom(a), a � x = (A � (X∩α)) � x
(= A � x), and a(ξ) 6= (A � (X ∩ α))(ξ) (= A(ξ)). Let ai = a.

Writing Γ = {ai : i < λ}, Γ ∈ W , and Γ is an antichain consisting of legal
functions. But this is a contradiction! � (Theorem 3.2)

Let us fix W ⊂ V , an inner model, and let λ and µ be infinite cardinals, λ ≤ µ.
We aim to define a poset in W which will be a candidate for generically adding a
given subset of µ.

Working in W , let L be the infinitary language with atomic fomulae “ξ̌ ∈ ȧ,”
for ξ < µ, and such that the set of formulae is closed under negation and infinite
disjunctions of the form

∨∨
Γ for all well–ordered sets Γ of fomulae with Card(Γ) < λ.

Writing µ<λ = (µ<λ)W , L has size µ<λ.
For A ⊂ µ, A ∈ V Col(ω,µ<λ), and ϕ ∈ L, we may define the meaning of “A � ϕ”

in the obvious recursive fashion: A � “ξ̌ ∈ ȧ” iff ξ ∈ A, A � ¬ϕ iff A 6� ϕ, and
A �

∨∨
Γ iff A � ϕ for some ϕ ∈ Γ. Inside V Col(ω,µ<λ), the relation “A � ϕ” is Borel

in the codes. For Γ ⊂ L, A � Γ means A � ϕ for all ϕ ∈ Γ. For Γ∪{ϕ} ∈ P(L)∩W ,
we write

Γ ` ϕ (55)

iff in WCol(ω,µ<λ), for all A ⊂ µ, if A � Γ, then A � ϕ. (55) is thus defined over
W , and inside WCol(ω,µ<λ), (55) is Π1

1 in the codes By absoluteness, (55) is thus
equivalent with the fact that in V Col(ω,µ<λ), for all A ⊂ µ, if A � Γ, then A � ϕ.
For Γ ∈ P(L) ∩W , Γ is called consistent iff there is no ϕ ∈ L such that Γ ` ϕ and
Γ ` ¬ϕ, which in turn is easily seen to be equivalent with the fact that in WCol(ω,µ<λ)

(equivalently, in V Col(ω,µ<λ)) there is some A ⊂ µ with A � Γ.
Now let

g : [L]λ ∩W → [L]<λ ∩W , g ∈ W
be a function such that

(i) g(Γ) ⊂ Γ, and

(ii) Card(g(Γ)) < λ
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for all Γ ∈ [L]λ ∩W . Let us call ϕ ∈ L illegal iff there is some Γ ∈ [L]λ ∩W such
that ϕ ∈ Γ \ g(Γ), and let us write T g for the set of all formulae of the form15

ϕ→
∨∨

g(Γ), (56)

where ϕ is illegal, Γ ∈ [L]λ ∩W , and ϕ ∈ Γ \ g(Γ).
Let us write Pg for the set of all ϕ ∈ L such that T g ∪ {ϕ} is consistent. We also

write

ϕ ≤Pg ϕ
′ (57)

for T g ∪ {ϕ} ` ϕ′.

Claim 3.3 Pg has the λ–c.c. inside W .

Proof. Let Γ ∈ [Pg]λ ∩W . Let ϕ ∈ Γ \ g(Γ). By (56), ϕ ≤Pg
∨∨

g(Γ), so that Γ
cannot be an antichain. � (Claim 3.3)

For an arbitrary choice of g, we might have that Pg is quite trivial, or even Pg = ∅.
Let A ⊂ µ, A ∈ V . We set

GA = {ϕ ∈ Pg : A � ϕ}.

Claim 3.4 Assume that A � T g. Then GA ⊂ Pg is a Pg–generic filter over W and

A = {ξ < µ : “ξ̌ ∈ ȧ” ∈ GA} ∈ W [GA].

Proof. If ϕ, ϕ′ ∈ Pg, A � ϕ, and ϕ ≤Pg ϕ
′, then A � ϕ′ using absoluteness. If ϕ,

ϕ′ ∈ Pg, A � ϕ, and A � ϕ′, then A � ϕ ∧ ϕ′,16 ϕ ∧ ϕ′ ∈ Pg by A � T g, and clearly
ϕ ∧ ϕ′ ≤Pg ϕ and ϕ ∧ ϕ′ ≤Pg ϕ

′. Hence GA is a filter.
Now let Γ ∈ W be a maximal antichain in Pg. By Claim 3.3, Γ ∈ [Pg]<λ. If

GA ∩ Γ = ∅, then A � ¬
∨∨

Γ. By A � T g, ¬
∨∨

Γ ∈ Pg, and

Γ ∪ {¬
∨∨

Γ} ) Γ

is an antichain. Contradiction!
The rest is easy. � (Claim 3.4)

15ϕ→ ϕ′ is short for
∨∨
{¬ϕ,ϕ′}.

16ϕ ∧ ϕ′ is short for ¬
∨∨
{¬ϕ,¬ϕ′}.
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Theorem 3.5 (Lev Bukovský) Let W ⊂ V be an inner model, and let λ be an
infinite regular cardinal such that W uniformly λ–covers V . Let e : 22<λ → P(2<λ)
be a bijection, and let

A = {2<λ · η + ξ : η < 22<λ ∧ ξ ∈ e(η)}.

There is then some poset P ∈ W such that

(a) P has the λ–c.c. in W ,

(b) P has size 22<λ in W ,

(c) A is P–generic over W , and

(d) V = W [A].

Proof. Let us write
µ = 22<λ ,

as being computed in V .
By the fact that W uniformly λ–covers V , we may find a function

g : [L]λ → [L]<λ, g ∈ W

such that for all Γ ∈ [L]λ ∩W ,

(i) g(Γ) ⊂ Γ,

(ii) Card(g(Γ)) < λ, and

(iii) if A � ϕ for some ϕ ∈ Γ, then A �
∨∨

g(Γ).

For this choice of g, A � T g. Hence by Claim 3.4, GA is Pg–generic over W , and
A ∈ W [GA]. This gives (a), (b), and (c). Clearly, W [GA] inherits from W the fact
that it uniformly λ–covers V , so that (d) is given by Theorem 3.2. � (Theorem 3.5)
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