# Inner Models from Generalized Logics

#### Menachem Magidor

Institute of Mathematics Hebrew University of Jerusalem

Ronald Jensen 80th birth day conference

## A tribute to Ronald Jensen



## A tribute to Ronald Jensen

# A great mathematician who completely transformed Set Theory .

# A tribute to Ronald Jensen

A great mathematician who completely transformed Set Theory .

This talk is dedicated to Ronald with great admiration for his work and a great gratitude for his friendship.

# A very partial list of Ronald's Major achievements

• The fine structure.



< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")
- The work on Soulsin problem . (A tour de force proof of CON(SH + GCH).

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")
- The work on Soulsin problem . (A tour de force proof of CON(SH + GCH).
- Coding the universe by a real technique.

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")
- The work on Soulsin problem . (A tour de force proof of CON(SH + GCH).
- Coding the universe by a real technique.
- Covering theorems.

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")
- The work on Soulsin problem . (A tour de force proof of CON(SH + GCH).
- Coding the universe by a real technique.
- Covering theorems.
- Core models.

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")
- The work on Soulsin problem . (A tour de force proof of CON(SH + GCH).
- Coding the universe by a real technique.
- Covering theorems.
- Core models.
- Subcomplete forcings.

- The fine structure.
- The combinatorial principles like ◊, □, morasses and their applications. ("Diamonds are the mathematician best friends")
- The work on Soulsin problem . (A tour de force proof of CON(SH + GCH).
- Coding the universe by a real technique.
- Covering theorems.
- Core models.
- Subcomplete forcings.

Stationary Logic





The present talk is about joint work with J. Kennedy and J. Vaananen (A work in progress)



- 1. Robustness: Three meanings of robustness:
  - Stability of the model under changes in the definition (In the fixed universe of Set Theory)

- 1. Robustness: Three meanings of robustness:
  - Stability of the model under changes in the definition (In the fixed universe of Set Theory)
  - Robustness across universes of Set Theory, stability under forcing extensions.

- 1. Robustness: Three meanings of robustness:
  - Stability of the model under changes in the definition (In the fixed universe of Set Theory)
  - Robustness across universes of Set Theory, stability under forcing extensions.
  - The theory of the model (or an important part of it being invariant under forcing extensions.

(ロ) (同) (三) (三) (三) (○) (○)

- 1. Robustness: Three meanings of robustness:
  - Stability of the model under changes in the definition (In the fixed universe of Set Theory)
  - Robustness across universes of Set Theory, stability under forcing extensions.
  - The theory of the model (or an important part of it being invariant under forcing extensions.
- 2. Completeness: Canonical definable objects should be included.

(ロ) (同) (三) (三) (三) (○) (○)

## What does one expect from canonical inner model?

- 1. Robustness: Three meanings of robustness:
  - Stability of the model under changes in the definition (In the fixed universe of Set Theory)
  - Robustness across universes of Set Theory, stability under forcing extensions.
  - The theory of the model (or an important part of it being invariant under forcing extensions.
- 2. Completeness: Canonical definable objects should be included.

*Litmus test:* Closure under sharps or other canonical operations.

#### Universe constructed from Generalized Logic

Generalized Logic  $\mathcal{L}$  has two components (S, T) where S is the set of formulas (which may have free variables) and T is the truth predicate relation, between a model M, a formula  $\Phi$  and an assignment to the free variables  $\vec{a}$ 

# Universe constructed from Generalized Logic

Generalized Logic  $\mathcal{L}$  has two components (S, T) where S is the set of formulas (which may have free variables) and T is the truth predicate relation, between a model M, a formula  $\Phi$  and an assignment to the free variables  $\vec{a}$ As usual  $M \models \Phi(\vec{a})$  is an alternative notation for  $T(M, \Phi, \vec{a})$ 

(ロ) (同) (三) (三) (三) (○) (○)

# Universe constructed from Generalized Logic

Generalized Logic  $\mathcal{L}$  has two components (S, T) where S is the set of formulas (which may have free variables) and T is the truth predicate relation, between a model M, a formula  $\Phi$  and an assignment to the free variables  $\vec{a}$ As usual  $M \models \Phi(\vec{a})$  is an alternative notation for  $T(M, \Phi, \vec{a})$ 

#### Definition

For a logic  $\mathcal{L}$  and a set M we denote by  $Def_{\mathcal{L}}(M)$  the collection of all subsets of M definable in the logic  $\mathcal{L}$  in the structure  $< M, \varepsilon >$  in the logic  $\mathcal{L}$  using parameters from M.

## Inner constructed by the Logic ${\cal L}$

#### Definition

Given the logic  $\mathcal{L}$ . The sequence of sets  $L_{\alpha}^{\mathcal{L}}$  is defined by induction on the ordinal  $\alpha$ :

1. 
$$L_0^{\mathcal{L}} = \emptyset$$
  
2. For  $\alpha$  limit  $L_{\alpha}^{\mathcal{L}} = \bigcup_{\beta < \alpha} L_{\beta}^{\mathcal{L}}$   
3.  $L_{\alpha+1}^{\mathcal{L}} = Def^{\mathcal{L}}(L_{\alpha}^{\mathcal{L}})$ 

## Inner constructed by the Logic ${\cal L}$

#### Definition

Given the logic  $\mathcal{L}$ . The sequence of sets  $L_{\alpha}^{\mathcal{L}}$  is defined by induction on the ordinal  $\alpha$ :

1. 
$$L_0^{\mathcal{L}} = \emptyset$$
  
2. For  $\alpha$  limit  $L_{\alpha}^{\mathcal{L}} = \bigcup_{\beta < \alpha} L_{\beta}^{\mathcal{L}}$   
3.  $L_{\alpha+1}^{\mathcal{L}} = Def^{\mathcal{L}}(L_{\alpha}^{\mathcal{L}})$ 

#### Definition

The inner model constructed by the logic  $\mathcal{L}$  is  $\mathcal{C}(\mathcal{L}) = \bigcup_{\alpha \in On} L_{\alpha}^{\mathcal{L}}$ 

・ロト・西ト・ヨト・ヨー うへぐ

#### Two extreme examples

Goedel's *L* is  $C(\mathcal{L})$  where  $\mathcal{L}$  is first order logic.



#### Two extreme examples

Goedel's *L* is  $C(\mathcal{L})$  where  $\mathcal{L}$  is first order logic. *L* is very robust (under the two meanings of robustness) but does not pass the litmus test for completeness.

#### Two extreme examples

Goedel's *L* is  $C(\mathcal{L})$  where  $\mathcal{L}$  is first order logic. *L* is very robust (under the two meanings of robustness) but does not pass the litmus test for completeness.

#### Theorem (Myhill-Scott)

The class of hereditarily ordinal definable sets (a.k.a. HOD ) is exactly  $C(\mathcal{L})$  where  $\mathcal{L}$  is second order logic.

#### Two extreme examples

Goedel's *L* is  $C(\mathcal{L})$  where  $\mathcal{L}$  is first order logic. *L* is very robust (under the two meanings of robustness) but does not pass the litmus test for completeness.

#### Theorem (Myhill-Scott)

The class of hereditarily ordinal definable sets (a.k.a. HOD ) is exactly  $C(\mathcal{L})$  where  $\mathcal{L}$  is second order logic.

*HOD* has maximal completeness , canonical objects are ordinal definable. It is somewhat robust under changes in the definition, but non robust across universes of Set Theory.

## Some extensions of first order logic

*L*(*Q*<sub>1</sub>) is first order logic with the additional quantifier *Q*<sub>1</sub>
 where *Q*<sub>1</sub>*x*Φ(*x*) means "There are uncountably many *x*'s
 such that Φ(*x*) holds."

(日) (日) (日) (日) (日) (日) (日)

# Some extensions of first order logic

- *L*(*Q*<sub>1</sub>) is first order logic with the additional quantifier *Q*<sub>1</sub>
   where *Q*<sub>1</sub>*x*Φ(*x*) means "There are uncountably many *x*'s
   such that Φ(*x*) holds."
- 2.  $\mathcal{L}(Q_1^{MM})$  is first order logic with the additional quantifier ("The Magidor-Malitz quantifier")  $Q_1^{MM}$  where  $Q_1^{MM}xy\Phi(x,y)$  means "There is an uncountable subset of the model *A* such that for every  $x, y \in A \Phi(x, y)$  holds".

(日) (日) (日) (日) (日) (日) (日)

# Some extensions of first order logic

- *L*(*Q*<sub>1</sub>) is first order logic with the additional quantifier *Q*<sub>1</sub>
   where *Q*<sub>1</sub>*x*Φ(*x*) means "There are uncountably many *x*'s
   such that Φ(*x*) holds."
- 2.  $\mathcal{L}(Q_1^{MM})$  is first order logic with the additional quantifier ("The Magidor-Malitz quantifier")  $Q_1^{MM}$  where  $Q_1^{MM}xy\Phi(x,y)$  means "There is an uncountable subset of the model *A* such that for every  $x, y \in A \Phi(x, y)$  holds".
- 3.  $\mathcal{L}(Q_{\omega}^{cf})$  is first order logic with the additional quantifier  $Q_{\omega}^{cf}$  where  $Q_{\omega}^{cf}xy\Phi(x,y)$ " means " $\Phi(x,y)$  defines a linear order having cofinality  $\omega$ .

# Some extensions of first order logic

- *L*(*Q*<sub>1</sub>) is first order logic with the additional quantifier *Q*<sub>1</sub>
   where *Q*<sub>1</sub>*x*Φ(*x*) means "There are uncountably many *x*'s
   such that Φ(*x*) holds."
- 2.  $\mathcal{L}(Q_1^{MM})$  is first order logic with the additional quantifier ("The Magidor-Malitz quantifier")  $Q_1^{MM}$  where  $Q_1^{MM}xy\Phi(x,y)$  means "There is an uncountable subset of the model *A* such that for every  $x, y \in A \Phi(x, y)$  holds".
- 3.  $\mathcal{L}(Q_{\omega}^{cf})$  is first order logic with the additional quantifier  $Q_{\omega}^{cf}$  where  $Q_{\omega}^{cf}xy\Phi(x,y)$ " means " $\Phi(x,y)$  defines a linear order having cofinality  $\omega$ .
- 4.  $\mathcal{L}(Q^{aa})$  is the logic ("stationary logic") is second order logic with only unary second order variables. The only second order quantifier is  $Q^{aa}$  where  $Q^{aa}X\Phi(X)$  ( X is a second order variable) meaning in a model  $M \{X \in P_{\omega_1}(M) | \Phi(X)\}$ is a stationary subset of  $P_{\omega_1}(M)$ .  $(P_{\omega_1}(M)$  is the collection of countable subsets of M.)

Stationary Logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### The four examples are nice logics

The four logics in the above examples we have a completeness theorem , (For the Magidor -Malitz quantifier assuming  $\Diamond_{\omega_1}$ .)

Stationary Logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### The four examples

The Logic of "there are uncountably many "

The Magidor-Malitz logic

The countable cofinality Logic

Stationary Logic

(ロ) (同) (三) (三) (三) (○) (○)

 $C(Q_1)$  is *L* (though "being uncountable set" is not absolute between models os Set Theory ) because if  $X \in L$  then if  $\kappa = \omega_1^V$  then *X* is uncountable in *V* iff  $L \models |X| \ge \kappa$ .

 $\mathcal{C}(Q_1)$  is L (though "being uncountable set" is not absolute between models os Set Theory ) because if  $X \in L$  then if  $\kappa = \omega_1^V$  then X is uncountable in V iff  $L \models |X| \ge \kappa$ . Hence in any universe of set theory the steps of the construction of  $\mathcal{L}(Q_1)$  can be defined in L.

# $C(Q_1^{MM})$ can be changed by forcing over *L*.

Usinging the ideas of Jensen We can define in *L* a sequence  $\langle T_{\alpha} | \alpha < \omega_2 \rangle$  of Souslin trees on  $\omega_1$  which are independent in the sense that we can destroy the Souslinity of some without destroying the Soulinity of others.

(日) (日) (日) (日) (日) (日) (日)

# $C(Q_1^{MM})$ can be changed by forcing over *L*.

Usinging the ideas of Jensen We can define in *L* a sequence  $\langle T_{\alpha} | \alpha < \omega_2 \rangle$  of Souslin trees on  $\omega_1$  which are independent in the sense that we can destroy the Souslinity of some without destroying the Soulinity of others.

Using that We can code a non constructible subset of  $\omega_2$  as the set  $B = \{\alpha < \omega_2 | T_\alpha \text{ is Soulin} \}$ . Since one can express in  $\mathcal{L}(Q_1^{MM})$  that  $(T, \prec)$  is a Souslin tree then one gets  $B \in \mathcal{C}(Q_1^{MM})$ . So we can have models in which  $\mathcal{C}(Q_1^{MM} \models 2^{\aleph_0} = \aleph_1$  as well as models in which  $\mathcal{C}(Q_1^{MM} \models 2^{\aleph_0} = \aleph_2$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## The effect of $0^{\sharp}$ on $\mathcal{C}(Q_1^{MM})$

Theorem If  $0^{\sharp}$  exists then  $C(Q_1^{MM}) = L$ 

# The effect of $0^{\sharp}$ on $\mathcal{C}(Q_1^{MM})$

#### Theorem

If  $0^{\sharp}$  exists then  $C(Q_1^{MM}) = L$ 

Sketch of proof: The main lemma is:

#### Lemma

Assume  $0^{\sharp}$  exists . Let A be a subset of unordered pairs such that  $A \in L$ . Then there is a set B such that  $|B| \ge \omega_1$  and  $[B]^2 \subseteq A$  iff  $L \models \exists B(|B| \ge \omega_1 \land [B]^2 \subseteq A)$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# $\mathcal{C}(Q^{cf}_{\omega})$ is closed under sharps.

#### Theorem

# Let $X \in C(Q^{cf}_{\omega})$ be a set of ordinals such that $X^{\sharp}$ exists then $X^{\sharp} \in C(Q^{cf}_{\omega})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# $\mathcal{C}(Q^{cf}_{\omega})$ is closed under sharps.

#### Theorem

Let  $X \in C(Q^{cf}_{\omega})$  be a set of ordinals such that  $X^{\sharp}$  exists then  $X^{\sharp} \in C(Q^{cf}_{\omega})$ 

The proof is based on the following lemma:

#### Lemma

*X* is a set of ordinals such that  $X^{\sharp}$  exists. Let  $\lambda$  be an ordinal above sup(*X*) which has uncountable cofinality and which is a regular cardinal in L[*X*] then  $\lambda$  is one of the canonical indescernibles for *X*.

# $\mathcal{C}(Q^{cf}_{\omega})$ is closed under sharps.

#### Theorem

Let  $X \in C(Q^{cf}_{\omega})$  be a set of ordinals such that  $X^{\sharp}$  exists then  $X^{\sharp} \in C(Q^{cf}_{\omega})$ 

The proof is based on the following lemma:

#### Lemma

*X* is a set of ordinals such that  $X^{\sharp}$  exists. Let  $\lambda$  be an ordinal above sup(*X*) which has uncountable cofinality and which is a regular cardinal in L[*X*] then  $\lambda$  is one of the canonical indescernibles for *X*.

Since in  $X \in \mathcal{C}(Q_{\omega}^{cf})$  then we can find in  $\mathcal{C}(Q_{\omega}^{cf})$  arbitrarily long sequences of  $\lambda$ 's satisfying the conditions in the lemma, so we can find enough indescernibles for X to define  $X^{\sharp}$ .

### Some more closure of $C(Q_{\omega}^{cf})$

 $C(Q_{\omega}^{cf})$  is closed under a large variety of definable operations for instance:

### Theorem

- If C is a set of ordinals then the Dodd-Jensen core models over X is included in C(Q<sup>cf</sup><sub>ω</sub>).
- Let X be a set of ordinals in C(Q<sup>aa</sup>). Suppose that in V there is an inner model M with a measurable cardinal κ such X ⊆ κ and X ∈ M. Then there is such a model in C(Q<sup>aa</sup>).

### Some more closure of $C(Q^{cf}_{\omega})$

 $C(Q_{\omega}^{cf})$  is closed under a large variety of definable operations for instance:

### Theorem

- If C is a set of ordinals then the Dodd-Jensen core models over X is included in C(Q<sub>ω</sub><sup>cf</sup>).
- Let X be a set of ordinals in C(Q<sup>aa</sup>). Suppose that in V there is an inner model M with a measurable cardinal κ such X ⊆ κ and X ∈ M. Then there is such a model in C(Q<sup>aa</sup>).
- If  $X \in \mathcal{C}(\mathcal{Q}^{cf}_{\omega})$  and  $X^{\dagger}$  exists then  $X^{\dagger} \in \mathcal{C}(\mathcal{Q}^{cf}_{\omega})$

### Some more closure of $C(Q^{cf}_{\omega})$

 $C(Q_{\omega}^{cf})$  is closed under a large variety of definable operations for instance:

### Theorem

- If C is a set of ordinals then the Dodd-Jensen core models over X is included in C(Q<sub>ω</sub><sup>cf</sup>).
- Let X be a set of ordinals in C(Q<sup>aa</sup>). Suppose that in V there is an inner model M with a measurable cardinal κ such X ⊆ κ and X ∈ M. Then there is such a model in C(Q<sup>aa</sup>).
- If  $X \in \mathcal{C}(\mathcal{Q}^{cf}_{\omega})$  and  $X^{\dagger}$  exists then  $X^{\dagger} \in \mathcal{C}(\mathcal{Q}^{cf}_{\omega})$

### Robustness of $C(Q^{cf}_{\omega})$

By forcing over *L* one can change  $C(Q_{\omega}^{cf})$ . In particular make it violate the Continuum Hypothesis.

### Theorem

Assume there is a proper class of Woodin cardinals. Then

• The theory of  $\mathcal{C}(Q^{cf}_{\omega})$  is not changed by set forcing.

### Robustness of $C(Q^{cf}_{\omega})$

By forcing over *L* one can change  $C(Q_{\omega}^{cf})$ . In particular make it violate the Continuum Hypothesis.

### Theorem

Assume there is a proper class of Woodin cardinals. Then

- The theory of  $C(Q^{cf}_{\omega})$  is not changed by set forcing.
- The set of reals of  $C(\mathbf{Q}^{cf}_{\omega})$  is not changed by set forcing.

### Robustness of $C(Q^{cf}_{\omega})$

By forcing over *L* one can change  $C(Q_{\omega}^{cf})$ . In particular make it violate the Continuum Hypothesis.

### Theorem

Assume there is a proper class of Woodin cardinals. Then

- The theory of  $C(Q^{cf}_{\omega})$  is not changed by set forcing.
- The set of reals of  $C(Q^{cf}_{\omega})$  is not changed by set forcing.
- The theory of C(Q<sub>ω</sub><sup>cf</sup>) is the same as the theory of C(Q<sub><κ</sub><sup>cf</sup>) for every regular cardinal κ. (The quantifier Q<sub><κ</sub><sup>cf</sup> xyΦ(x, y) means "Φ(x, y) defines a linear order whose cofinality is less than κ".)

### Robustness of $C(Q^{cf}_{\omega})$

By forcing over *L* one can change  $C(Q_{\omega}^{cf})$ . In particular make it violate the Continuum Hypothesis.

### Theorem

Assume there is a proper class of Woodin cardinals. Then

- The theory of  $C(Q^{cf}_{\omega})$  is not changed by set forcing.
- The set of reals of  $C(Q^{cf}_{\omega})$  is not changed by set forcing.
- The theory of C(Q<sub>ω</sub><sup>cf</sup>) is the same as the theory of C(Q<sub><κ</sub><sup>cf</sup>) for every regular cardinal κ. (The quantifier Q<sub><κ</sub><sup>cf</sup> xyΦ(x, y) means "Φ(x, y) defines a linear order whose cofinality is less than κ".)

Question Does  $C(Q_{\omega}^{cf})$  satisfy CH,  $\Diamond_{\omega_1}$  ?



### Question Does $C(Q_{\omega}^{cf})$ satisfy CH, $\Diamond_{\omega_1}$ ?

Given a set X we can define  $C(Q_{\omega}^{cf})(X)$  by including X as a predicate in the construction.



### Question

Does  $C(Q^{cf}_{\omega})$  satisfy CH,  $\diamondsuit_{\omega_1}$  ?

Given a set X we can define  $C(Q_{\omega}^{cf})(X)$  by including X as a predicate in the construction.

### Theorem (Assuming Woodin cardinals)

The sets of reals y such that  $C(Q_{\omega}^{cf})(y) \models CH, \Diamond_{\omega_1}$  contains a Turing cone.

### Limiting the completeness of $C(Q_{\omega}^{cf})$

### Theorem (M.-Schindler)

Suppose there is a Woodin cardinal and that  $M_1^{\sharp}$  exists. ( $M_1^{\sharp}$  is a countable canonical model for Woodin cardinal with its sharp.) then every real of  $C(Q_{\omega}^{cf})$  appears in  $M_1^{\sharp}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Large cardinals in $C(Q_{\omega}^{cf})$

Question Can  $C(Q^{cf}_{\omega})$  contain large cardinals like measurables?

### Large cardinals in $C(Q^{cf}_{\omega})$

### Question

Can  $C(Q^{cf}_{\omega})$  contain large cardinals like measurables?

We know it can contain inner models for measurables . Since it contains the Dodd-Jensen Core Model , if our universe is the Dodd-Jensen core model then  $V = C(Q_{\omega}^{cf})$ . Hence it can contain cardinals like Ramsey cardinals.

### Large cardinals in $C(Q^{cf}_{\omega})$

### Question

Can  $C(Q^{cf}_{\omega})$  contain large cardinals like measurables?

We know it can contain inner models for measurables . Since it contains the Dodd-Jensen Core Model , if our universe is the Dodd-Jensen core model then  $V = C(Q_{\omega}^{cf})$ . Hence it can contain cardinals like Ramsey cardinals.

What if we start from a canonical inner model for measurable  $L_{\mu}$ ?

### Large cardinals in $C(Q^{cf}_{\omega})$

#### Question

Can  $C(Q^{cf}_{\omega})$  contain large cardinals like measurables?

We know it can contain inner models for measurables . Since it contains the Dodd-Jensen Core Model , if our universe is the Dodd-Jensen core model then  $V = C(Q_{\omega}^{cf})$ . Hence it can contain cardinals like Ramsey cardinals.

What if we start from a canonical inner model for measurable  $L_{\mu}$ ?

#### Theorem

Assume  $V = L_{\mu}$ . Let  $M_{\alpha}$  be the  $\alpha$ 's iterate of V by the (unique) normal measure on the unique measurable cardinal. Then  $C(Q_{\omega}^{cf}) = M_{\omega^2}[P]$  where P is a Prikry sequence of the unique measurable cardinal of  $M_{\omega^2}$ . In particular  $C(Q_{\omega}^{cf})$  has no measurable cardinal.

### Club Determinacy

Theorem ( A proper class of measurable Woodins or  $\mathbf{MM}^{++})$ 

Let  $\Phi(P)$  be a formula of  $\mathcal{L}(Q^{aa})$  with the second order quantifier P. Then for every ordinal  $\alpha$  if we let  $M = L_{\alpha}^{Q^{a}a}$  then either

 $\{P \in P_{\omega_1}(M) | M \models \Phi(P)\}$ 

contains a club in  $P_{\omega_1}(M)$  or

$$\{P \in P_{\omega_1}(M) | M \models \neg \Phi(P)\}$$

Contains a club in  $P_{\omega_1}(M)$ .

(The formula  $\Phi(P)$  may contain more second order unary variables which are replaced by parameters from  $P_{\omega_1}(M)$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Robustness of $C(Q^{aa})$

### Theorem

Assume there is a proper class of measurable Woodin cardinals. Then

The theory of C(Q<sup>aa</sup>) is not changed by set forcing.

### Robustness of $C(Q^{aa})$

### Theorem

Assume there is a proper class of measurable Woodin cardinals. Then

- The theory of  $C(Q^{aa})$  is not changed by set forcing.
- The set of reals of  $C(Q^{aa})$  is not changed by set forcing.

### Robustness of $C(Q^{aa})$

### Theorem

Assume there is a proper class of measurable Woodin cardinals. Then

- The theory of  $C(Q^{aa})$  is not changed by set forcing.
- The set of reals of  $C(Q^{aa})$  is not changed by set forcing.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Robustness of $C(Q^{aa})$

### Theorem

Assume there is a proper class of measurable Woodin cardinals. Then

- The theory of  $C(Q^{aa})$  is not changed by set forcing.
- The set of reals of  $C(Q^{aa})$  is not changed by set forcing.

#### Theorem

Assume a proper class of measurable Woodins, then  $C(Q^{aa})$  satisfies CH and  $\Diamond_{\omega_1}$ .

### The *Q<sup>aa</sup>*- extender

Let  $M = \mathcal{L}_{\alpha}(Q^{aa})$ . We define an extender on M by cosidering all functions  $f : P_{\omega_1}(M) \to M$  such that there is a  $Q^{aa}$  formula  $\Phi(P, x)$  such that for all  $P \in P_{\omega_1}$  $\langle M, \epsilon, P \rangle \models \Phi(P, x) \leftrightarrow x = F(P)$ .

### The Q<sup>aa</sup>- extender

Let  $M = \mathcal{L}_{\alpha}(Q^{aa})$ . We define an extender on M by cosidering all functions  $f : P_{\omega_1}(M) \to M$  such that there is a  $Q^{aa}$  formula  $\Phi(P, x)$  such that for all  $P \in P_{\omega_1}$  $\langle M, \epsilon, P \rangle \models \Phi(P, x) \leftrightarrow x = F(P)$ . Consider the equivalence relation on these functions  $F \equiv G$  iff  $\{P \in P_{\omega_1}(M) | F(P) = G(P)\}$  contains a club in  $P_{\omega_1}(M)$ . Similarly  $[F]_{\equiv}$  is member of  $[G]_{\equiv}$  iff  $\{P \in P_{\omega_1}(M) | F(P) \in G(P)\}$ contains a club in  $P_{\omega_1}(M)$ .

### The *Q<sup>aa</sup>*- extender

Let  $M = \mathcal{L}_{\alpha}(Q^{aa})$ . We define an extender on M by cosidering all functions  $f : P_{\omega_1}(M) \to M$  such that there is a  $Q^{aa}$  formula  $\Phi(P, x)$  such that for all  $P \in P_{\omega_1}$  $\langle M, \epsilon, P \rangle \models \Phi(P, x) \leftrightarrow x = F(P)$ . Consider the equivalence relation on these functions  $F \equiv G$  iff  $\{P \in P_{\omega_1}(M) | F(P) = G(P)\}$  contains a club in  $P_{\omega_1}(M)$ . Similarly  $[F]_{\equiv}$  is member of  $[G]_{\equiv}$  iff  $\{P \in P_{\omega_1}(M) | F(P) \in G(P)\}$ contains a club in  $P_{\omega_1}(M)$ . This is defined an extender  $F(Q^{aa}) : M \to U^{trad}(M)$ 

This is defines an extender  $E(Q^{aa}): M \to Ult^{aa}(M)$ .

### The Q<sup>aa</sup>- extender

Let  $M = \mathcal{L}_{\alpha}(Q^{aa})$ . We define an extender on M by cosidering all functions  $f: P_{\omega_1}(M) \to M$  such that there is a  $Q^{aa}$  formula  $\Phi(P, x)$  such that for all  $P \in P_{\omega_1}$  $\langle M, \epsilon, P \rangle \models \Phi(P, x) \leftrightarrow x = F(P).$ Consider the equivalence relation on these functions  $F \equiv G$  iff  $\{P \in P_{\omega_1}(M) | F(P) = G(P)\}$  contains a club in  $P_{\omega_1}(M)$ . Similarly  $[F]_{=}$  is member of  $[G]_{=}$  iff  $\{P \in P_{\omega_1}(M) | F(P) \in G(P)\}$ contains a club in  $P_{\omega_1}(M)$ .

This is defines an extender  $E(Q^{aa}): M \to Ult^{aa}(M)$ .

#### Lemma

 $E(Q^{aa})$  is definable in  $C(Q^{aa})$ . and it is iterable.

Stationary Logic

#### Hence we can define an " $Q^{aa}$ – mouse.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

(日)

#### Hence we can define an " $Q^{aa}$ – mouse.

#### Lemma

Every countable  $Q^{aa}$  mouse can be iterated to structure of the form  $\mathcal{L}_{\beta}(Q^{aa})$ . Hence any two countable mice can be compared.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Hence we can define an " $Q^{aa}$ – mouse.

### Lemma

Every countable  $Q^{aa}$  mouse can be iterated to structure of the form  $\mathcal{L}_{\beta}(Q^{aa})$ . Hence any two countable mice can be compared.

The proof of CH and  $\diamondsuit_{\omega_1}$  is based on :

#### Lemma

For every real  $x \in C(Q^{aa})$  there is (in  $C(Q^{aa})$ ) a countable mouse M such that  $x \in M$ .

#### Hence we can define an " $Q^{aa}$ – mouse.

#### Lemma

Every countable  $Q^{aa}$  mouse can be iterated to structure of the form  $\mathcal{L}_{\beta}(Q^{aa})$ . Hence any two countable mice can be compared.

The proof of CH and  $\diamondsuit_{\omega_1}$  is based on :

#### Lemma

For every real  $x \in C(Q^{aa})$  there is (in  $C(Q^{aa})$ ) a countable mouse M such that  $x \in M$ .

#### Lemma

.

If a real  $x \in \mathcal{L}_{\alpha+1}(Q^{aa}) - \mathcal{L}_{\alpha}(Q^{aa})$  then

$$\mathcal{C}(Q^{aa}) \models P(\omega) \cap \mathcal{L}_{\alpha+1}(Q^{aa})$$
 is countable

・ロト・西下・日下・日下・日下

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The study of the inner models constructed by generalized logics sheds light both about Set Theory and about the expressive power of the generalized logics and quantifiers.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The study of the inner models constructed by generalized logics sheds light both about Set Theory and about the expressive power of the generalized logics and quantifiers. It is a fascinating combination of Set Theory and Generalized Model Theory.

# We wish that the founding father of inner models theory will have many more productive and enjoyable years !

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

# We wish that the founding father of inner models theory will have many more productive and enjoyable years !

Ronald, thank you !

Stationary Logic

