Some recent results in descriptive inner model theory

Grigor Sargsyan

Department of Mathematics Rutgers University

August 2-4, 2017 A Set Theory Meeting Muenster Germany

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A personal story

Theorem (Jensen, 1975)

Suppose $0^{\#}$ doesn't exist. Then for any singular κ , $(\kappa^+)^L = \kappa^+$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A personal story

Theorem (Jensen, 1975)

Suppose $0^{\#}$ doesn't exist. Then for any singular κ , $(\kappa^+)^L = \kappa^+$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

x is a real if and only if x belongs to a mouse.

A personal story

Theorem (Jensen, 1975)

Suppose $0^{\#}$ doesn't exist. Then for any singular κ , $(\kappa^+)^L = \kappa^+$.

Definition

x is a real if and only if x belongs to a mouse.

Woodin's Ultimate *L* is an axiom that not only says what the reals are but what $\mathcal{P}(\kappa)$ is for all κ .

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$ \bigcirc HOD^{$L(\mathbb{R})$} \models *CH*,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

 many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

 many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(Becker) the least measurable cardinal of HOD is ω_1 ,

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

- many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),
- (Becker) the least measurable cardinal of HOD is ω_1 ,
- (Steel, Martin-Steel) detailed analysis of scales in $L(\mathbb{R})$,

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

- many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),
- (Becker) the least measurable cardinal of HOD is ω_1 ,
- (Steel, Martin-Steel) detailed analysis of scales in $L(\mathbb{R})$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(Becker-Kechris) L[T₄] is unique,

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

- many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),
- (Becker) the least measurable cardinal of HOD is ω_1 ,
- (Steel, Martin-Steel) detailed analysis of scales in $L(\mathbb{R})$,
- **(Becker-Kechris)** $L[T_4]$ is unique,
- (Kechris, Martin, Solovay, Harrington) the fascinating world of *Q*-theory,

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

- many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),
- (Becker) the least measurable cardinal of HOD is ω_1 ,
- (Steel, Martin-Steel) detailed analysis of scales in $L(\mathbb{R})$,
- **(Becker-Kechris)** $L[T_4]$ is unique,
- (Kechris, Martin, Solovay, Harrington) the fascinating world of *Q*-theory,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Jackson's analysis of measures,

It was known to the Cabal group that under $AD^{L(\mathbb{R})}$

• HOD^{$L(\mathbb{R}) \models CH$,}

- many regular cardinals < Θ are measurable (in fact satisfy strong partition properties),
- (Becker) the least measurable cardinal of HOD is ω_1 ,
- (Steel, Martin-Steel) detailed analysis of scales in $L(\mathbb{R})$,
- **(Becker-Kechris)** $L[T_4]$ is unique,
- (Kechris, Martin, Solovay, Harrington) the fascinating world of *Q*-theory,
- Jackson's analysis of measures,
- there are 4+ Cabal volumes, each about 300+ pages, they knew a lot.

The starting point

Theorem (Steel, 1995) Assume $\mathcal{M}^{\#}_{\omega}$ exists. Let $\mu = (\delta_1^2)^{L(\mathbb{R})}$ and set $\mathcal{M} = \text{HOD}^{L(\mathbb{R})}|(\mu^+)^{\text{HOD}^{L(\mathbb{R})}}.$

Let \mathcal{H} be the direct limit of all countable iterates of $\mathcal{P} =_{def} \mathcal{M}_{\omega} | (\delta^+)$ where δ is the least Woodin of \mathcal{M}_{ω} , and let $i : \mathcal{P} \to \mathcal{H}$ be the iteration embedding. Let λ be the least $< \delta$ -strong cardinal of \mathcal{P} and let κ be its successor in \mathcal{P} . Then

 $\mathcal{M}=\mathcal{H}|i(\kappa).$

Consequences

Corollary

Assume $\mathcal{M}^{\#}_{\omega}$ exists. Then $V^{HOD^{\mathcal{L}(\mathbb{R})}}_{\Theta} \vDash GCH$.

Theorem (Steel)

Assume $\mathcal{M}^{\#}_{\omega}$ exists. Then $L(\mathbb{R}) \vDash "\kappa \in (\omega, \Theta)$ is regular if and only if κ is measurable".

Theorem (Steel)

 $L[T_{2n}] = L[\mathcal{M}]$ where \mathcal{M} is the direct limit of all countable iterates of \mathcal{M}_{2n} cut at the least cardinal that is strong up to the least Woodin of the aformentioned direct limit.

Full HOD

Theorem (Woodin)

Assume $\mathcal{M}^{\#}_{\omega}$ exists and let Σ be its strategy. Then $\mathrm{HOD}^{L(\mathbb{R})}$ has the form $L[\mathcal{M}, \Lambda]$ where

- **①** \mathcal{M} is the direct limit of all countable iterates of \mathcal{M}_{ω} ,
- 2 $\Theta^{L(\mathbb{R})} =_{def} \delta$ is the least Woodin cardinal of \mathcal{M} ,
- **3** A is the fragment of $\Sigma_{\mathcal{M}}$ that acts on trees belonging to $\mathcal{M}|\lambda$ where λ is the sup of the Woodin cardinals of \mathcal{M} .

Alternative representations of HOD

• HOD^{$L(\mathbb{R})$} = $L[\mathcal{M}, \pi]$ where π is the iteration embedding via $\Sigma_{\mathcal{M}|\delta}$ from $\mathcal{M}|\delta$ into HOD of the derived model of \mathcal{M} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Alternative representations of HOD

- HOD^{$L(\mathbb{R})$} = $L[\mathcal{M}, \pi]$ where π is the iteration embedding via $\Sigma_{\mathcal{M}|\delta}$ from $\mathcal{M}|\delta$ into HOD of the derived model of \mathcal{M} .
- **2** HOD^{$L(\mathbb{R})$} has the form $L[\mathcal{M}, \rho \to \rho^*]$ where $\rho \to \rho^*$ is the restriction of π to the ordinals.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Assume $\mathcal{M}_1^{\#}$ exists and Σ is its strategy.
- **2** Given $a \in HC$, let κ_a be the least inaccessible of L[a].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Assume $\mathcal{M}_1^{\#}$ exists and Σ is its strategy.
- **2** Given $a \in HC$, let κ_a be the least inaccessible of L[a].
- Given *a* ∈ *HC* such that $\mathcal{M}_1^\# \in L[a]$, let \mathcal{M}_a be the direct limit of all iterates of \mathcal{M}_1 that belong to $L_{\kappa_a}[a]$,

- Assume $\mathcal{M}_1^{\#}$ exists and Σ is its strategy.
- **2** Given $a \in HC$, let κ_a be the least inaccessible of L[a].
- Siven a ∈ HC such that M[#]₁ ∈ L[a], let M_a be the direct limit of all iterates of M₁ that belong to L_{κa}[a], and let Λ_a be the fragment of Σ_{Ma} that acts on trees in L_{κMa}[M_a].

- Assume $\mathcal{M}_1^{\#}$ exists and Σ is its strategy.
- 3 Given $a \in HC$, let κ_a be the least inaccessible of L[a].
- Siven a ∈ HC such that M[#]₁ ∈ L[a], let M_a be the direct limit of all iterates of M₁ that belong to L_{κa}[a], and let Λ_a be the fragment of Σ_{Ma} that acts on trees in L_{κMa}[M_a].
- Let $\pi_a : \mathcal{M}_a \to \mathcal{M}_{\mathcal{M}_a}$ be the iteration embedding via $\Lambda_{\mathcal{M}_a}$.

- Assume $\mathcal{M}_1^{\#}$ exists and Σ is its strategy.
- 3 Given $a \in HC$, let κ_a be the least inaccessible of L[a].
- Siven a ∈ HC such that M[#]₁ ∈ L[a], let M_a be the direct limit of all iterates of M₁ that belong to L_{κa}[a], and let Λ_a be the fragment of Σ_{Ma} that acts on trees in L_{κMa}[M_a].
- Let $\pi_a : \mathcal{M}_a \to \mathcal{M}_{\mathcal{M}_a}$ be the iteration embedding via $\Lambda_{\mathcal{M}_a}$.

Theorem (Woodin)

Suppose $x \in \mathbb{R}$ is such that $\mathcal{M}_1^{\#} \in L[x]$, and $g \subseteq Coll(\omega, < \kappa_x)$ is L[x]-generic. Then $HOD^{L[x][g]} = L[\mathcal{M}_x, \Lambda_x] = L[\mathcal{M}_x, \pi_x]$.

HOD of L[x]

Problem

What is HOD of L[x] where $x \in \mathbb{R}$ codes $\mathcal{M}_1^{\#}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

HOD of L[x]

Problem

What is HOD of L[x] where $x \in \mathbb{R}$ codes $\mathcal{M}_1^{\#}$.

There are partial results due to Schlutzenberg, Steel, Woodin and Zhu.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Goal: Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Show that HOD is a fine structural model, is a hod premouse.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Goal: Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Show that HOD is a fine structural model, is a hod premouse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

This is probably the most central project of DIMT.

Goal: Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Show that HOD is a fine structural model, is a hod premouse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

- This is probably the most central project of DIMT.
- **2** This would give GCH in HOD.

Goal: Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Show that HOD is a fine structural model, is a hod premouse.

Remark

- This is probably the most central project of DIMT.
- **2** This would give GCH in HOD.
- To complete the goal one would need some form of capturing.

Goal: Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Show that HOD is a fine structural model, is a hod premouse.

Remark

- This is probably the most central project of DIMT.
- 2 This would give GCH in HOD.
- To complete the goal one would need some form of capturing.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ILE stands for "no mouse with a long extender".

HOD analysis: Mouse Capturing

Definition

MC is the statement that given $x, y \in \mathbb{R}$, $x \in OD_y$ if and only if x is in a y-mouse.

HOD analysis: Mouse Capturing

Definition

MC is the statement that given $x, y \in \mathbb{R}$, $x \in OD_y$ if and only if x is in a y-mouse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conjecture (Mouse Set Conjecture) Assume AD⁺⁺ + NLE. Then MC holds.

HOD analysis: Hod Pair Capturing

Definition

Hod Pair Capturing (HPC) says that every set of reals is Wadge reducible to the code of a strategy of a hod mouse.

HOD analysis: Hod Pair Capturing

Definition

Hod Pair Capturing (HPC) says that every set of reals is Wadge reducible to the code of a strategy of a hod mouse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conjecture

Assume $AD^{++} + NLE$. Then HPC holds.

HOD analysis: Some global results

In the presence of large cardinals, Steel reduced HPC to unique iterability of V, or UBH.

HOD analysis: Some global results

In the presence of large cardinals, Steel reduced HPC to unique iterability of V, or UBH.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 Under $AD_{\mathbb{R}}$, Steel reduced HOD analysis to *HPC*.

HOD analysis: Some global results

- In the presence of large cardinals, Steel reduced HPC to unique iterability of V, or UBH.
- **2** Under $AD_{\mathbb{R}}$, Steel reduced HOD analysis to *HPC*.
- It has been known before that under AD⁺, HPC reduces to MC.

HOD analysis: Some global results

- In the presence of large cardinals, Steel reduced HPC to unique iterability of V, or UBH.
- **2** Under $AD_{\mathbb{R}}$, Steel reduced HOD analysis to *HPC*.
- It has been known before that under AD⁺, HPC reduces to MC.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

So proving *MC* from *AD*⁺ is probably the best route to take. However, it is not likely that one can prove *MC* without proving *HPC* simultaneously.

Given a set of reals *A* and a triple $(\mathcal{P}, \delta, \Sigma)$ such that δ is a Woodin cardinal of \mathcal{P} and Σ is an ω_1 -strategy, we say $(\mathcal{P}, \delta, \Sigma)$ Suslin, co-Suslin captures *A* if there are δ -complementing trees $T, S \in \mathcal{P}$ such that whenever $i : \mathcal{P} \to \mathcal{Q}$ is an iteration via Σ and $g \subseteq Coll(\omega, i(\delta))$ is \mathcal{Q} generic,

 $A \cap \mathcal{Q}[g] = (p[i(T)])^{\mathcal{Q}[g]}.$

Given a set of reals *A* and a triple $(\mathcal{P}, \delta, \Sigma)$ such that δ is a Woodin cardinal of \mathcal{P} and Σ is an ω_1 -strategy, we say $(\mathcal{P}, \delta, \Sigma)$ Suslin, co-Suslin captures *A* if there are δ -complementing trees $T, S \in \mathcal{P}$ such that whenever $i : \mathcal{P} \to \mathcal{Q}$ is an iteration via Σ and $g \subseteq Coll(\omega, i(\delta))$ is \mathcal{Q} generic,

$$A \cap \mathcal{Q}[g] = (p[i(T)])^{\mathcal{Q}[g]}.$$

Theorem (Woodin)

Under AD⁺, every Suslin, co-Suslin set is captured by some triple as above.

Conjecture (Tentatively: †)

Suppose A is a set of reals and $(\mathcal{P}, \delta, \Sigma)$ Suslin, co-Suslin captures A. Let Λ be the induced strategy of the fully backgrounded construction of $\mathcal{P}|\delta$. Then $A \leq_w Code(\Lambda)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conjecture (Tentatively: †)

Suppose A is a set of reals and $(\mathcal{P}, \delta, \Sigma)$ Suslin, co-Suslin captures A. Let Λ be the induced strategy of the fully backgrounded construction of $\mathcal{P}|\delta$. Then $A \leq_w Code(\Lambda)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

Conjecture (Tentatively: †)

Suppose A is a set of reals and $(\mathcal{P}, \delta, \Sigma)$ Suslin, co-Suslin captures A. Let Λ be the induced strategy of the fully backgrounded construction of $\mathcal{P}|\delta$. Then $A \leq_w Code(\Lambda)$.

Remark

- † implies HPC and MC.
- It is probably more likely that one would first show that the hod pair construction of P|δ inherits complicated strategy.

HOD analysis: Some partial results

The Largest Suslin Axiom: AD^+ + "there is a largest Suslin cardinal κ such that for any $\alpha < \kappa$, κ is not a surjective image of an *OD* function with domain α^{ω^n} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HOD analysis: Some partial results

The Largest Suslin Axiom: AD^+ + "there is a largest Suslin cardinal κ such that for any $\alpha < \kappa$, κ is not a surjective image of an *OD* function with domain α^{ω} ".

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

Both HPC and MC hold in the minimal model of LSA.

HOD analysis: Some partial results

The Largest Suslin Axiom: AD^+ + "there is a largest Suslin cardinal κ such that for any $\alpha < \kappa$, κ is not a surjective image of an *OD* function with domain α^{ω} ".

Theorem

Both HPC and MC hold in the minimal model of LSA.

Theorem

Assume AD⁺ + "there is no largest Suslin cardinal", and suppose that there is no hod mouse with a non-domestic cardinal. Then HPC holds.

 Both theorems build on earlier partial results due to S., Steel and Woodin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 Both theorems build on earlier partial results due to S., Steel and Woodin.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Both theorems are proved by proving †.

 Both theorems build on earlier partial results due to S., Steel and Woodin.

- Both theorems are proved by proving †.
- The second result isn't useful without *MC*.

- Both theorems build on earlier partial results due to S., Steel and Woodin.
- Both theorems are proved by proving †.
- The second result isn't useful without *MC*.
- Probably things work out all the way to Woodin limit of Woodins

- Both theorems build on earlier partial results due to S., Steel and Woodin.
- Both theorems are proved by proving †.
- The second result isn't useful without *MC*.
- Probably things work out all the way to Woodin limit of Woodins and beyond that things are somewhat mysterious.

- Both theorems build on earlier partial results due to S., Steel and Woodin.
- Both theorems are proved by proving †.
- The second result isn't useful without *MC*.
- Probably things work out all the way to Woodin limit of Woodins and beyond that things are somewhat mysterious.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basically we have been working inside the region where the Chang⁺ model is a Q-structure,

- Both theorems build on earlier partial results due to S., Steel and Woodin.
- Both theorems are proved by proving †.
- The second result isn't useful without *MC*.
- Probably things work out all the way to Woodin limit of Woodins and beyond that things are somewhat mysterious.
- Basically we have been working inside the region where the Chang⁺ model is a Q-structure, and now we are about to leave it, and be where?

Assume AD⁺. Suppose Γ ⊂ P(ℝ). Then C⁺(Γ) be the model constructed from ∪_{λ<Θ}λ^ω and ω₁-s.c. measures on them.

(ロ) (同) (三) (三) (三) (○) (○)

Assume AD⁺. Suppose Γ ⊂ P(ℝ). Then C⁺(Γ) be the model constructed from ∪_{λ<Θ}λ^ω and ω₁-s.c. measures on them.

(ロ) (同) (三) (三) (三) (○) (○)

- Assume AD⁺. Suppose Γ ⊂ P(ℝ). Then C⁺(Γ) be the model constructed from ∪_{λ<Θ}λ^ω and ω₁-s.c. measures on them.
- $C^+(\Gamma) = L(\Gamma, \cup_{\lambda < \Theta} \lambda^{\omega})[\vec{\mu}]$
- **3** Say Γ resists C^+ if $C^+(\Gamma) \cap \mathcal{P}(\mathbb{R}) = \Gamma$.

Conjecture

Assume AD^+ and suppose that there is $\Gamma \subset \mathcal{P}(\mathbb{R})$ consisting of Suslin, co-Suslin sets that resists C^+ . Then there is an iteration strategy for a mouse with a Woodin cardinal that is a limit of Woodin cardinals.

- Assume AD⁺. Suppose Γ ⊂ P(ℝ). Then C⁺(Γ) be the model constructed from ∪_{λ<Θ}λ^ω and ω₁-s.c. measures on them.
- $C^+(\Gamma) = L(\Gamma, \cup_{\lambda < \Theta} \lambda^{\omega})[\vec{\mu}]$
- **3** Say Γ resists C^+ if $C^+(\Gamma) \cap \mathcal{P}(\mathbb{R}) = \Gamma$.

Conjecture

Assume AD^+ and suppose that there is $\Gamma \subset \mathcal{P}(\mathbb{R})$ consisting of Suslin, co-Suslin sets that resists C^+ . Then there is an iteration strategy for a mouse with a Woodin cardinal that is a limit of Woodin cardinals.

Basically it seems that the methods we have been using to build hod mice from AD^+ work in models of AD^+ whose initial segments do not resist C^+ .

Theorem (Steel)

Suppose M is a hod mouse with a Woodin limit of Woodins and ω more Woodins above. Then some initial segment of the derived model of M resists C^+

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Steel)

Suppose \mathcal{M} is a hod mouse with a Woodin limit of Woodins and ω more Woodins above. Then some initial segment of the derived model of \mathcal{M} resists C^+ and in fact resists more.

Suppose (\mathcal{M}, Σ) is a hod premouse, λ is a limit of Woodins and \mathcal{M} has ω more Woodins above.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Suppose (M, Σ) is a hod premouse, λ is a limit of Woodins and M has ω more Woodins above.
- 2 Suppose (\mathcal{M}, Σ) is below C^+ i.e. no initial segment of the derived model of \mathcal{M} resists C^+ .

・ロト・日本・日本・日本・日本

- Suppose (*M*, Σ) is a hod premouse, λ is a limit of Woodins and *M* has ω more Woodins above.
- Suppose (*M*, Σ) is below *C*⁺ i.e. no initial segment of the derived model of *M* resists *C*⁺.
- 3 Let P be the direct limit of all iterates of M, and i : M → P be the iteration embedding. Let E be any extender on the sequence of P indexed at α < i(λ). Must it be the case that E is definable in L((P|α)^ω, Σ_{P|α}, μ) from the displayed objects?

- Suppose (*M*, Σ) is a hod premouse, λ is a limit of Woodins and *M* has ω more Woodins above.
- Suppose (*M*, Σ) is below *C*⁺ i.e. no initial segment of the derived model of *M* resists *C*⁺.
- Solution Content in the second content of all iterates of M, and i : M → P be the iteration embedding. Let E be any extender on the sequence of P indexed at α < i(λ). Must it be the case that E is definable in L((P|α)^ω, Σ_{P|α}, μ) from the displayed objects? (μ is the s.c. measure on P_{ω1}(P|α))

- Suppose (*M*, Σ) is a hod premouse, λ is a limit of Woodins and *M* has ω more Woodins above.
- Suppose (*M*, Σ) is below *C*⁺ i.e. no initial segment of the derived model of *M* resists *C*⁺.
- 3 Let P be the direct limit of all iterates of M, and i : M → P be the iteration embedding. Let E be any extender on the sequence of P indexed at α < i(λ). Must it be the case that E is definable in L((P|α)^ω, Σ_{P|α}, μ) from the displayed objects? (μ is the s.c. measure on P_{ω1}(P|α))

(日) (日) (日) (日) (日) (日) (日)

Expected Answer: Yes.

- Suppose (*M*, Σ) is a hod premouse, λ is a limit of Woodins and *M* has ω more Woodins above.
- Suppose (*M*, Σ) is below *C*⁺ i.e. no initial segment of the derived model of *M* resists *C*⁺.
- Solution Content in the second content of all iterates of M, and i : M → P be the iteration embedding. Let E be any extender on the sequence of P indexed at α < i(λ). Must it be the case that E is definable in L((P|α)^ω, Σ_{P|α}, μ) from the displayed objects? (μ is the s.c. measure on P_{ω1}(P|α))
- Expected Answer: Yes.
- Known (work in progress): Below strong reflecting a strong that reflects a strong (alternating chain of length 3) and is also a limit of Woodins.

- Suppose (*M*, Σ) is a hod premouse, λ is a limit of Woodins and *M* has ω more Woodins above.
- Suppose (*M*, Σ) is below *C*⁺ i.e. no initial segment of the derived model of *M* resists *C*⁺.
- Solution Content in the second content of all iterates of M, and i : M → P be the iteration embedding. Let E be any extender on the sequence of P indexed at α < i(λ). Must it be the case that E is definable in L((P|α)^ω, Σ_{P|α}, μ) from the displayed objects? (μ is the s.c. measure on P_{ω1}(P|α))
- Expected Answer: Yes.
- Known (work in progress): Below strong reflecting a strong that reflects a strong (alternating chain of length 3) and is also a limit of Woodins.
- Is it always true ? or is it false beyond Woodin limit of Woodins or perhaps below "alternating chain of length 3"?

HOD analysis: Questions on $C^+(\Gamma)$

Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$.

• Are there models in which $\mathcal{P}(\mathbb{R})$ is not contained in *C*, the Chang model?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HOD analysis: Questions on $C^+(\Gamma)$

Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$.

- Are there models in which $\mathcal{P}(\mathbb{R})$ is not contained in *C*, the Chang model?
- Probably yes. Let *M* ⊆ *N* be the minimal pair of models of *AD*⁺ + *V* = *L*(*P*(ℝ)) + θ₀ = Θ with the same Δ₁² and such that *N* ⊨ cf(Θ^M) = ω₁. Is it the case that *P*(ℝ) ∩ *C^N* ⊆ *M*?

HOD analysis: Questions on $C^+(\Gamma)$

Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$.

- Are there models in which $\mathcal{P}(\mathbb{R})$ is not contained in *C*, the Chang model?
- Probably yes. Let $M \subseteq N$ be the minimal pair of models of $AD^+ + V = L(\mathcal{P}(\mathbb{R})) + \theta_0 = \Theta$ with the same Δ_1^2 and such that $N \models cf(\Theta^M) = \omega_1$. Is it the case that $\mathcal{P}(\mathbb{R}) \cap C^N \subseteq M$?
- What is the large cardinal strength of the above theory?

Large Cradinals \rightarrow Determinacy: the derived model theorem

Theorem (Woodin, The New DMT)

Suppose λ is a limit of Woodin cardinals and let $g \subseteq Coll(\omega, <\lambda)$. Set $\mathbb{R}^* = \bigcup_{\alpha < \lambda} \mathbb{R}^{V[g \cap Coll(\omega, <\alpha)]}$, and let, in $V(\mathbb{R}^*)$, $\Gamma = \{A \subseteq \mathbb{R}^* : L(A, \mathbb{R}^*) \models AD^+\}$. Then $L(\Gamma, \mathbb{R}) \models AD^+$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Large Cradinals \rightarrow Determinacy: the derived model theorem

Theorem (Woodin, The New DMT)

Suppose λ is a limit of Woodin cardinals and let $g \subseteq Coll(\omega, <\lambda)$. Set $\mathbb{R}^* = \bigcup_{\alpha < \lambda} \mathbb{R}^{V[g \cap Coll(\omega, <\alpha)]}$, and let, in $V(\mathbb{R}^*)$, $\Gamma = \{A \subseteq \mathbb{R}^* : L(A, \mathbb{R}^*) \vDash AD^+\}$. Then $L(\Gamma, \mathbb{R}) \vDash AD^+$.

Theorem (Woodin, The Old DMT)

Working in $V(\mathbb{R}^*)$, let Hom* be the set of reals A that are λ -uB along the way. Then $L(Hom^*, \mathbb{R}) \models AD^+$ and $Hom^* = \{$ Suslin, co-Suslin sets of $L(\Gamma, \mathbb{R})\}$.

Large Cradinals \rightarrow Determinacy: all sets are uB

Question

What predicates can be added to the derived model and preserve AD⁺?

Large Cradinals \rightarrow Determinacy: all sets are uB

Question

What predicates can be added to the derived model and preserve AD⁺?

Theorem (Larson, s., Wilson)

Suppose λ is a limit of Woodins and strongs. Let $g \subseteq Coll(\omega, < \lambda)$. Then in $V(\mathbb{R}^*)$, there is a definable class F such that $L^F(Hom^*) \vDash AD^+ +$ "Every set of reals is uB".

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Question

What predicates can be added to the derived model and preserve AD⁺?

Theorem (Larson, s., Wilson)

Suppose λ is a limit of Woodins and strongs. Let $g \subseteq Coll(\omega, < \lambda)$. Then in $V(\mathbb{R}^*)$, there is a definable class F such that $L^F(Hom^*) \vDash AD^+ +$ "Every set of reals is uB".

Remark

Using AD^+ , it is not hard to build a model of "all sets of reals are uB". Suppose $\theta_{\alpha+1} = \Theta$ and α is limit. Let $\Gamma = \{A \subseteq \mathbb{R} : w(A) < \theta_{\alpha}\}$. Then $HOD_{\Gamma} | \Theta \models$ "All sets of reals are hom Suslin".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Question

Is there a derived model theorem for "all sets of reals are homogenously Suslin".

Question

Is there a derived model theorem for "all sets of reals are homogenously Suslin".

Problem

Show that AD^+ + "All sets of reals are uB" is equiconsistent with ZFC + "There is λ that is a limit of Woodins and strongs."

Question

Is there a derived model theorem for "all sets of reals are homogenously Suslin".

Problem

Show that AD^+ + "All sets of reals are uB" is equiconsistent with ZFC + "There is λ that is a limit of Woodins and strongs."

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Question

Assume UBH. Does $L[\vec{E}](Hom^*, \mathbb{R}^*) \vDash AD^+$?

Question

Is there a derived model theorem for "all sets of reals are homogenously Suslin".

Problem

Show that AD^+ + "All sets of reals are uB" is equiconsistent with ZFC + "There is λ that is a limit of Woodins and strongs."

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

Assume UBH. Does $L[\vec{E}](Hom^*, \mathbb{R}^*) \vDash AD^+$?

Question Does $C^+(Hom^*, \mathbb{R}^*) \vDash AD^+$?

Large Cradinals \rightarrow Determinacy: upper bound for LSA

Theorem

Assume \mathcal{M}_{wlw} exists (there is class size iterable mouse with a Woodin cardinal that is a limit of Woodin cardinals). Then some initial segment of the derived model of \mathcal{M}_{wlw} satisfies LSA.

Large Cradinals \rightarrow Determinacy: upper bound for LSA

Theorem

Assume \mathcal{M}_{wlw} exists (there is class size iterable mouse with a Woodin cardinal that is a limit of Woodin cardinals). Then some initial segment of the derived model of \mathcal{M}_{wlw} satisfies LSA.

Conjecture

The following are equiconsistent.

- There are divergent models of AD⁺.
- There is an inner model with a Woodin cardinal that is a limit of Woodin cardinals.

Remark

Known to follow from MSC.

Large Cradinals \rightarrow Determinacy: derived models of mice

Question

Is the strategy of a mouse the next new set beyond the derived model?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Large Cradinals \rightarrow Determinacy: derived models of mice

Question

Is the strategy of a mouse the next new set beyond the derived model?

More specifically

Problem

Suppose $x \to \mathcal{M}(x)$ is a tractable mouse operator such that for every x there is λ_x with the property that $\mathcal{M}(x) = L[\mathcal{M}(x)|\lambda_x]$ and $\mathcal{M}_x \models ``\lambda_x$ is a limit of Woodin cardinals''. Let Σ_x be the unique strategy of $\mathcal{M}(x)$. Let M be the derived model of $\mathcal{M}(\emptyset)$, and suppose N is a model of determinacy such that $\mathcal{P}(\mathbb{R}) \cap M \subset N$. Must $\Sigma_x \in N$?

Assume AD^+ . The Solovay sequence is a closed sequence of cardinals ($\theta_{\alpha} : \alpha \leq \Omega$) such that

- $\theta_0 = \sup\{\gamma : \text{there is an } OD \text{ surjection } f : \omega^{\omega} \to \gamma\},$
- 2 if $\theta_{\alpha} < \Theta$, then $\theta_{\alpha+1} = \sup\{\gamma : \text{there is an } OD \text{ surjection } f : \theta_{\alpha}^{\omega} \to \gamma\}$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3 if α is limit then $\theta_{\alpha} = \sup_{\beta < \alpha} \theta_{\beta}$,

$$\Theta = \theta_{\Omega}.$$

(Woodin, Steel) $AD_{\mathbb{R}}$ is equiconsistent with $AD_{\mathbb{R}}$ -hypo.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- **(**Woodin, Steel) $AD_{\mathbb{R}}$ is equiconsistent with $AD_{\mathbb{R}}$ -hypo.
- Woodin, Steel) AD⁺ + θ₁ = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-strong.</p>

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **(Woodin, Steel)** $AD_{\mathbb{R}}$ is equiconsistent with $AD_{\mathbb{R}}$ -hypo.
- Woodin, Steel) AD⁺ + θ₁ = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-strong.</p>
- (Closson, Neeman, s., Steel) AD⁺ + θ_{ω1+1} = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-hyperstrong.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **(Woodin, Steel)** $AD_{\mathbb{R}}$ is equiconsistent with $AD_{\mathbb{R}}$ -hypo.
- Woodin, Steel) AD⁺ + θ₁ = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-strong.</p>
- (Closson, Neeman, s., Steel) AD⁺ + θ_{ω1+1} = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-hyperstrong.
- (Adolf-s.) AD⁺ + θ_{ω2} ≤ Θ holds in the derived model of a mouse in which there is λ that is a limit of Woodins and κ < λ whose degree of hyperstrongness is u₂ for sets in V_λ.

(日) (日) (日) (日) (日) (日) (日)

- **(Woodin, Steel)** $AD_{\mathbb{R}}$ is equiconsistent with $AD_{\mathbb{R}}$ -hypo.
- Woodin, Steel) AD⁺ + θ₁ = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-strong.</p>
- (Closson, Neeman, s., Steel) AD⁺ + θ_{ω1+1} = Θ is equiconsistent with λ is a limit of Woodins and there is a < λ-hyperstrong.
- (Adolf-s.) AD⁺ + θ_{ω2} ≤ Θ holds in the derived model of a mouse in which there is λ that is a limit of Woodins and κ < λ whose degree of hyperstrongness is u₂ for sets in V_λ.

(ロ) (同) (三) (三) (三) (○) (○)

Solution Adolf and s. have what they believe are the optimal hypothesis for each of $\theta_n \leq \Theta$ and $\Theta_{\Theta} = \Theta$ but the reversals have not been verified.

Problem

• Determine the large cardinal strength of $AD_{\mathbb{R}} + "\Theta$ is regular" and of LSA.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Problem

- Determine the large cardinal strength of $AD_{\mathbb{R}} + "\Theta$ is regular" and of LSA.
- Is there a mouse whose new derived model satisfies LSA?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Problem

- Determine the large cardinal strength of $AD_{\mathbb{R}} + "\Theta$ is regular" and of LSA.
- Is there a mouse whose new derived model satisfies LSA?

Theorem

The following are equiconsistent.

- LSA.
- 2FC+" there are ω Woodins with limit λ such that the old derived model at λ is a model of AD_R but the new and old derived models are different".

Theorem (Zhu)

Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ and there is no inner model of $AD_{\mathbb{R}} + "\Theta$ is regular". Then V is either a derived model of a mouse or embeds into the derived model of a mouse.

Theorem (Zhu)

Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ and there is no inner model of $AD_{\mathbb{R}} + "\Theta$ is regular". Then V is either a derived model of a mouse or embeds into the derived model of a mouse.

Remark

Woodin showed that any model of $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ is either a derived model or embeds into a derived model.

Theorem (Zhu)

Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ and there is no inner model of $AD_{\mathbb{R}} + "\Theta$ is regular". Then V is either a derived model of a mouse or embeds into the derived model of a mouse.

Remark

Woodin showed that any model of $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ is either a derived model or embeds into a derived model.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problem

Generalize Zhu's result to models of LSA.

Forcing Axioms \rightarrow Determinacy

Let $\Gamma_{max} = \{A \subseteq \mathbb{R} : \text{there is a hod pair } (\mathcal{P}, \Sigma) \text{ such that } A \leq_w Code(\Sigma)\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $\Gamma_{max} = \{A \subseteq \mathbb{R} : \text{there is a hod pair } (\mathcal{P}, \Sigma) \text{ such that } A \leq_w Code(\Sigma)\}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(Steel) *PFA* implies $AD^{L(\mathbb{R})}$.

Let $\Gamma_{max} = \{A \subseteq \mathbb{R} : \text{there is a hod pair } (\mathcal{P}, \Sigma) \text{ such that } A \leq_w Code(\Sigma)\}$

- (Steel) *PFA* implies $AD^{L(\mathbb{R})}$.
- **②** (Trang) *PFA* implies that if $g \subseteq Coll(\omega, \omega_1)$ is generic, then there is Γ ⊆ Γ_{max} such that $L(\Gamma, \mathbb{R}) \models "AD_{\mathbb{R}} + "Θ$ is regular".

Let $\Gamma_{max} = \{A \subseteq \mathbb{R} : \text{there is a hod pair } (\mathcal{P}, \Sigma) \text{ such that } A \leq_w Code(\Sigma)\}$

- (Steel) *PFA* implies $AD^{L(\mathbb{R})}$.
- (Trang) *PFA* implies that if g ⊆ Coll(ω, ω₁) is generic, then there is Γ ⊆ Γ_{max} such that L(Γ, ℝ) ⊨ "AD_ℝ + "Θ is regular".
- (Conjecture) Assume *PFA* and let $g \subseteq Coll(ω, ω_1)$ be generic. Then $L(Γ_{max}) \models AD^+$ and $HOD^{L(Γ_{max})} \models$ "there is a superstrong cardinal".

Let $\Gamma_{max} = \{A \subseteq \mathbb{R} : \text{there is a hod pair } (\mathcal{P}, \Sigma) \text{ such that } A \leq_w Code(\Sigma)\}$

- (Steel) *PFA* implies $AD^{L(\mathbb{R})}$.
- (Trang) *PFA* implies that if g ⊆ Coll(ω, ω₁) is generic, then there is Γ ⊆ Γ_{max} such that L(Γ, ℝ) ⊨ "AD_ℝ + "Θ is regular".
- (Conjecture) Assume *PFA* and let $g \subseteq Coll(ω, ω_1)$ be generic. Then $L(Γ_{max}) \models AD^+$ and $HOD^{L(Γ_{max})} \models$ "there is a superstrong cardinal".
- Itrang and s.) Assume *PFA* and let *g* ⊆ *Coll*(ω, ω₁) be generic. Then in *V*[*g*] there is *A* ∈ Γ_{max} such that *L*(*A*, ℝ) ⊨ *LSA*.

Let $\Gamma_{max} = \{A \subseteq \mathbb{R} : \text{there is a hod pair } (\mathcal{P}, \Sigma) \text{ such that } A \leq_w Code(\Sigma)\}$

- (Steel) *PFA* implies $AD^{L(\mathbb{R})}$.
- (Trang) *PFA* implies that if g ⊆ Coll(ω, ω₁) is generic, then there is Γ ⊆ Γ_{max} such that L(Γ, ℝ) ⊨ "AD_ℝ + "Θ is regular".
- (Conjecture) Assume *PFA* and let $g \subseteq Coll(ω, ω_1)$ be generic. Then $L(Γ_{max}) \models AD^+$ and $HOD^{L(Γ_{max})} \models$ "there is a superstrong cardinal".
- Itrang and s.) Assume *PFA* and let *g* ⊆ *Coll*(ω, ω₁) be generic. Then in *V*[*g*] there is *A* ∈ Γ_{max} such that *L*(*A*, ℝ) ⊨ *LSA*.
- Sy an absoluteness argument, we also get models as above in V.

$\neg \Box \rightarrow Determinacy$

Assume κ is a singular strong limit cardinal such that $\neg \Box_{\kappa}$ holds. Let $\mu < \kappa$ be a countably closed regular cardinal $< \kappa$. Let $g \subseteq Coll(\omega, \mu)$ be generic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$\neg \Box \rightarrow Determinacy$

Assume κ is a singular strong limit cardinal such that $\neg \Box_{\kappa}$ holds. Let $\mu < \kappa$ be a countably closed regular cardinal $< \kappa$. Let $g \subseteq Coll(\omega, \mu)$ be generic.

(日) (日) (日) (日) (日) (日) (日)

● (Steel) $V[g] \vDash AD^{L(\mathbb{R})}$ (by absoluteness, $AD^{L(\mathbb{R})}$).

$\neg \Box \rightarrow Determinacy$

Assume κ is a singular strong limit cardinal such that $\neg \Box_{\kappa}$ holds. Let $\mu < \kappa$ be a countably closed regular cardinal $< \kappa$. Let $g \subseteq Coll(\omega, \mu)$ be generic.

- (Steel) $V[g] \vDash AD^{L(\mathbb{R})}$ (by absoluteness, $AD^{L(\mathbb{R})}$).
- ② (s.) $V[g] \models \exists A \subseteq \Gamma_{max}$, $L(A, \mathbb{R}) \models AD^+ + \theta_0 < \Theta$ (by absoluteness the same holds in *V*).

$\neg \Box \rightarrow \mathsf{Determinacy}$

Assume κ is a singular strong limit cardinal such that $\neg \Box_{\kappa}$ holds. Let $\mu < \kappa$ be a countably closed regular cardinal $< \kappa$. Let $g \subseteq Coll(\omega, \mu)$ be generic.

- (Steel) $V[g] \vDash AD^{L(\mathbb{R})}$ (by absoluteness, $AD^{L(\mathbb{R})}$).
- ② (s.) $V[g] \models \exists A \subseteq \Gamma_{max}$, $L(A, \mathbb{R}) \models AD^+ + \theta_0 < \Theta$ (by absoluteness the same holds in *V*).
- (Adolf) V[g] ⊨ ∃Γ ⊆ Γ_{max}, L(Γ, ℝ) ⊨ AD_ℝ + "Θ is regular".
 (by absoluteness the same holds in V).

(日) (日) (日) (日) (日) (日) (日)

$\neg \Box \rightarrow \mathsf{Determinacy}$

Assume κ is a singular strong limit cardinal such that $\neg \Box_{\kappa}$ holds. Let $\mu < \kappa$ be a countably closed regular cardinal $< \kappa$. Let $g \subseteq Coll(\omega, \mu)$ be generic.

- (Steel) $V[g] \vDash AD^{L(\mathbb{R})}$ (by absoluteness, $AD^{L(\mathbb{R})}$).
- ② (s.) $V[g] \models \exists A \subseteq \Gamma_{max}$, $L(A, \mathbb{R}) \models AD^+ + \theta_0 < \Theta$ (by absoluteness the same holds in *V*).
- (Adolf) V[g] ⊨ ∃Γ ⊆ Γ_{max}, L(Γ, ℝ) ⊨ AD_ℝ + "Θ is regular".
 (by absoluteness the same holds in V).
- (Open Problem) Does $V[g] \vDash \exists \Gamma \subseteq \Gamma_{max}, L(\Gamma, \mathbb{R}) \vDash LSA$?

(日) (日) (日) (日) (日) (日) (日)

• (Woodin) Assume $V = L(\mathcal{P}(\mathbb{R}))$ and $V \vDash AD_{\mathbb{R}} + "\Theta$ is regular". Then $V^{\mathbb{P}_{max}*Add(\omega_3,1)} \vDash MM(c)$. Hence, $\neg \Box(\omega_2)$ holds.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- (Woodin) Assume V = L(P(ℝ)) and V ⊨ AD_ℝ + "Θ is regular". Then V<sup>ℙ_{max}*Add(ω₃,1) ⊨ MM(c). Hence, ¬□(ω₂) holds.
 </sup>
- ② (Caicedo-Larson-s.-Schindler-Steel-Zeman) Assume *LSA*. Then for some $\Gamma \subseteq \mathcal{P}(\mathbb{R})$, letting $W = L(\Gamma, \mathbb{R})$, $W^{\mathbb{P}_{max}*Add(\omega_3, 1)} \models MM(c) + \neg \Box_{\omega_2}$.

- (Woodin) Assume $V = L(\mathcal{P}(\mathbb{R}))$ and $V \vDash AD_{\mathbb{R}} + "\Theta$ is regular". Then $V^{\mathbb{P}_{max}*Add(\omega_3,1)} \vDash MM(c)$. Hence, $\neg \Box(\omega_2)$ holds.
- ② (Caicedo-Larson-s.-Schindler-Steel-Zeman) Assume *LSA*. Then for some $\Gamma \subseteq \mathcal{P}(\mathbb{R})$, letting $W = L(\Gamma, \mathbb{R})$, $W^{\mathbb{P}_{max}*Add(\omega_3, 1)} \models MM(c) + \neg \Box_{\omega_2}$.

3 Thus, $MM(c) + \neg \Box_{\omega_2}$ is weaker than a Woodin limit of Woodins.

- (Woodin) Assume V = L(P(ℝ)) and V ⊨ AD_ℝ + "Θ is regular". Then V^{Pmax*Add(ω₃,1)} ⊨ MM(c). Hence, ¬□(ω₂) holds.
- ② (Caicedo-Larson-s.-Schindler-Steel-Zeman) Assume *LSA*. Then for some $\Gamma \subseteq \mathcal{P}(\mathbb{R})$, letting $W = L(\Gamma, \mathbb{R})$, $W^{\mathbb{P}_{max}*Add(\omega_3, 1)} \models MM(c) + \neg \Box_{\omega_2}$.

- 3 Thus, $MM(c) + \neg \Box_{\omega_2}$ is weaker than a Woodin limit of Woodins.
- (Open Problem) Can one force $\neg \Box_{\omega_3} + \neg \Box(\omega_3)$ over models of determinacy?

Determinacy $\rightarrow \neg \Box_{\omega_2} + \neg \Box(\omega_2)$

- (Woodin) Assume $V = L(\mathcal{P}(\mathbb{R}))$ and $V \vDash AD_{\mathbb{R}} + "\Theta$ is regular". Then $V^{\mathbb{P}_{max}*Add(\omega_3,1)} \vDash MM(c)$. Hence, $\neg \Box(\omega_2)$ holds.
- ② (Caicedo-Larson-s.-Schindler-Steel-Zeman) Assume *LSA*. Then for some $\Gamma \subseteq \mathcal{P}(\mathbb{R})$, letting $W = L(\Gamma, \mathbb{R})$, $W^{\mathbb{P}_{max}*Add(\omega_3, 1)} \models MM(c) + \neg \Box_{\omega_2}$.
- 3 Thus, $MM(c) + \neg \Box_{\omega_2}$ is weaker than a Woodin limit of Woodins.
- (Open Problem) Can one force $\neg \Box_{\omega_3} + \neg \Box(\omega_3)$ over models of determinacy?
- A more doable project is to force failure of "maximal model covering" over models of determinacy.

 (Open Problem, Woodin) What is the strength of *MM*(*c*)? (Guess: probably *AD*_ℝ + "⊖ is regular", but we can only get *AD*^L(ℝ) and its neighborhoods).

・ロト・日本・日本・日本・日本

- (Open Problem, Woodin) What is the strength of *MM*(*c*)? (Guess: probably *AD*_ℝ + "⊖ is regular", but we can only get *AD*^L(ℝ) and its neighborhoods).
- (Open Problem) What is the strength of $\neg \Box_{\omega_2} + \neg \Box(\omega_2)$? Not much is known as above.

(日) (日) (日) (日) (日) (日) (日)

- (Open Problem, Woodin) What is the strength of *MM*(*c*)? (Guess: probably *AD*_ℝ + "⊖ is regular", but we can only get *AD*^L(ℝ) and its neighborhoods).
- (Open Problem) What is the strength of $\neg \Box_{\omega_2} + \neg \Box(\omega_2)$? Not much is known as above.
- **③** (Trang) Suppose $2^{\omega} = \omega_1$, $2^{\omega_1} = \omega_2$ and $2^{\omega_2} = \omega_3$. Suppose further $\neg \Box_{\omega_3} + \neg \Box(\omega_3) + \neg \Box(\omega_4)$. Let $g \subseteq Coll(\omega, \omega_1)$ be generic. Then there is Γ ⊆ Γ_{max} such that $L(\Gamma, \mathbb{R}) \models AD_{\mathbb{R}} + "\Theta$ is regular".

(ロ) (同) (三) (三) (三) (○) (○)

- (Open Problem, Woodin) What is the strength of *MM*(*c*)? (Guess: probably *AD*_ℝ + "⊖ is regular", but we can only get *AD*^L(ℝ) and its neighborhoods).
- (Open Problem) What is the strength of $\neg \Box_{\omega_2} + \neg \Box(\omega_2)$? Not much is known as above.
- **③** (Trang) Suppose $2^{\omega} = \omega_1$, $2^{\omega_1} = \omega_2$ and $2^{\omega_2} = \omega_3$. Suppose further $\neg \Box_{\omega_3} + \neg \Box(\omega_3) + \neg \Box(\omega_4)$. Let $g \subseteq Coll(\omega, \omega_1)$ be generic. Then there is Γ ⊆ Γ_{max} such that $L(\Gamma, \mathbb{R}) \models AD_{\mathbb{R}} + "Θ$ is regular".
- (Trang-s.) Can push the above theorem to LSA.

Theorem (Schindler-Busche)

Assume all uncountable cardinals are singular. Then $AD^{L(\mathbb{R})}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Schindler-Busche)

Assume all uncountable cardinals are singular. Then $AD^{L(\mathbb{R})}$.

Theorem (Adolf)

Assume all uncountable cardinals are singular. Then there is a model of $AD_{\mathbb{R}} + "\Theta$ is regular".

Theorem (Schindler-Busche)

Assume all uncountable cardinals are singular. Then $AD^{L(\mathbb{R})}$.

Theorem (Adolf)

Assume all uncountable cardinals are singular. Then there is a model of $AD_{\mathbb{R}} + "\Theta$ is regular".

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problem

Can one get a model of LSA?

Theorem (Schindler-Busche)

Assume all uncountable cardinals are singular. Then $AD^{L(\mathbb{R})}$.

Theorem (Adolf)

Assume all uncountable cardinals are singular. Then there is a model of $AD_{\mathbb{R}} + "\Theta$ is regular".

Problem

Can one get a model of LSA?

Remark

Gitik showed that the hypo is consistent relative to proper class of strongly compacts.

(日) (日) (日) (日) (日) (日) (日)

Strongcompactness and determinacy

Theorem (Trang-Wilson)

The following theories are equiconsistent:

- **1**ZF + DC + AD.
- 2 $ZF + DC + \omega_1$ is \mathbb{R} -strongly compact and $\neg \Box_{\omega_1}$

(日) (日) (日) (日) (日) (日) (日)

Strongcompactness and determinacy

Theorem (Trang-Wilson)

The following theories are equiconsistent:

- **O**ZF + DC + AD.
- 2 $ZF + DC + \omega_1$ is \mathbb{R} -strongly compact and $\neg \Box_{\omega_1}$

Theorem (Trang-Wilson)

The following theories are equiconsistent:

- **O** $ZF + DC + AD_{\mathbb{R}}.$
- **2** $ZF + DC + \omega_1$ is $P(\mathbb{R})$ -strongly compact.

Supercompactness

Theorem (Woodin)

Assume there is a proper class of Woodin limit of Woodins. Then $C^+ \models AD^+$ and C^+ has universally Baire sharp.

Supercompactness

Theorem (Woodin)

Assume there is a proper class of Woodin limit of Woodins. Then $C^+ \models AD^+$ and C^+ has universally Baire sharp.

Theorem (Trang-s.)

Assume AD⁺ and suppose ω_1 is supercompact. Then there is a model of LSA.

Theorem (Woodin)

Assume there is a proper class of Woodin limit of Woodins. Then $C^+ \models AD^+$ and C^+ has universally Baire sharp.

Theorem (Trang-s.)

Assume AD⁺ and suppose ω_1 is supercompact. Then there is a model of LSA.

Question

Can one get more? We are close to an equiconsistency here!

Theorem (Wilson)

If κ is a measurable limit of Woodin cardinals and two-step $\exists^{\mathbb{R}}(\Pi_{1}^{2})^{uB_{\kappa}}$ generic absoluteness holds below κ , then $L(\mathbb{R}^{*}_{\kappa}, Hom^{*}_{\kappa})$ satisfies $\theta_{0} < \Theta$.

・ロト・日本・日本・日本・日本

Theorem (Wilson)

If κ is a measurable limit of Woodin cardinals and two-step $\exists^{\mathbb{R}}(\Pi_{1}^{2})^{uB_{\kappa}}$ generic absoluteness holds below κ , then $L(\mathbb{R}^{*}_{\kappa}, Hom^{*}_{\kappa})$ satisfies $\theta_{0} < \Theta$.

Problem

Find natural parameter free generic absoluteness results corresponding to $\theta_1 < \Theta$, $\theta_2 < \Theta$,..., $AD_{\mathbb{R}} + "\Theta$ is regular" and etc?

Theorem (Wilson)

If κ is a measurable limit of Woodin cardinals and the (lightface) theory of $L(\mathbb{R}, uB_{\kappa})$ is generically absolute below κ , then $L(\mathbb{R}, uB_{\kappa})$ and $L(\mathbb{R}_{\kappa}^*, Hom_{\kappa}^*)$ both satisfy $AD_{\mathbb{R}}$.

Theorem (Wilson)

If κ is a measurable limit of Woodin cardinals and the (lightface) theory of $L(\mathbb{R}, uB_{\kappa})$ is generically absolute below κ , then $L(\mathbb{R}, uB_{\kappa})$ and $L(\mathbb{R}_{\kappa}^*, Hom_{\kappa}^*)$ both satisfy $AD_{\mathbb{R}}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Question

Do they satisfy more?

Problem

What is the large cardinal strength of uB-sealing+proper class of Woodin cardinals? What is the large cardinal strength of Σ_1^2 -absoluteness (modulo CH).

Theorem (Woodin, s.-Wilson, s.)

The following theories are equiconsistent.

- There is a proper class of Woodin cardinals and a strong cardinal.
- 2 There is a proper class of Woodin cardinals and two-step ∃^ℝ(Π²₁)^{uB} generic absoluteness holds.
- Solution There is a proper class of Woodin cardinals and no generic extension has a $(\Delta_1^2)^{uB}$ wellordering of its reals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

There is a proper class of Woodin cardinals and for a stationary class of λ, L(ℝ^{*}_λ, Hom^{*}_λ) satisfies θ₀ < Θ.</p>

Generic absoluteness → determinacy

Theorem (Woodin, s.-Wilson, s.)

The following theories are equiconsistent.

- There is a proper class of Woodin cardinals and a strong cardinal.
- 2 There is a proper class of Woodin cardinals and two-step ∃^ℝ(Π₁²)^{uB} generic absoluteness holds.
- 3 There is a proper class of Woodin cardinals and no generic extension has a $(\Delta_1^2)^{uB}$ wellordering of its reals.
- There is a proper class of Woodin cardinals and for a stationary class of λ, L(ℝ^{*}_λ, Hom^{*}_λ) satisfies θ₀ < Θ.</p>

Problem

Determine the large cardinal strength of "for a stationary class of λ , the old derived model at λ satisfies $\theta_1 < \Theta$ " and etc

• W is a ground if V is set generic over W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *M_{ws}* be the minimal class size mouse with a strong cardinal and a Woodin cardinal.

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.

- Let *M_{ws}* be the minimal class size mouse with a strong cardinal and a Woodin cardinal.
- Solution Let $\delta < \kappa$ be the Woodin and the strong.

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.
- Let *M_{ws}* be the minimal class size mouse with a strong cardinal and a Woodin cardinal.
- Solution Let $\delta < \kappa$ be the Woodin and the strong.
- Solution Let \mathcal{M} be the direct limit of all iterates of \mathcal{M}_{ws} via trees that are based on $\mathcal{M}_{ws}|\delta$ and are inside $\mathcal{M}_{ws}|\kappa$.

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.
- Let *M_{ws}* be the minimal class size mouse with a strong cardinal and a Woodin cardinal.
- **(**) Let $\delta < \kappa$ be the Woodin and the strong.
- Let *M* be the direct limit of all iterates of *M_{ws}* via trees that are based on *M_{ws}*|δ and are inside *M_{ws}*|κ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 Let $i: \mathcal{M}_{ws} \to \mathcal{M}$ be the iteration embedding.

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.
- Let M_{ws} be the minimal class size mouse with a strong cardinal and a Woodin cardinal.
- Solution Let $\delta < \kappa$ be the Woodin and the strong.
- Let *M* be the direct limit of all iterates of *M_{ws}* via trees that are based on *M_{ws}*|δ and are inside *M_{ws}*|κ.
- **2** Let $i: \mathcal{M}_{ws} \to \mathcal{M}$ be the iteration embedding.
- Let Λ be the fragment of the strategy of *M* that acts on trees that are inside *M*|*i*(κ).

- W is a ground if V is set generic over W.
- 2 The mantle is the intersection of all grounds.
- Fuchs and Schindler computed the mantle of many models that do not have a strong cardinal.
- Let *M_{ws}* be the minimal class size mouse with a strong cardinal and a Woodin cardinal.
- Solution Let $\delta < \kappa$ be the Woodin and the strong.
- Solution Let \mathcal{M} be the direct limit of all iterates of \mathcal{M}_{ws} via trees that are based on $\mathcal{M}_{ws}|\delta$ and are inside $\mathcal{M}_{ws}|\kappa$.
- Let $i : \mathcal{M}_{ws} \to \mathcal{M}$ be the iteration embedding.
- Let Λ be the fragment of the strategy of *M* that acts on trees that are inside *M*|*i*(κ).
- Set $\mathcal{V} = L[\mathcal{M}, \Lambda]$ (\mathcal{V} is called Varsovian model).

Theorem (s-Schindler)

 \mathcal{V} is the mantle of \mathcal{M}_{ws} and \mathcal{M} is the core model.

Theorem (s-Schindler)

 \mathcal{V} is the mantle of \mathcal{M}_{ws} and \mathcal{M} is the core model.

Remark

Theorem (s-Schindler)

 \mathcal{V} is the mantle of \mathcal{M}_{ws} and \mathcal{M} is the core model.

Remark

Problem

What is the mantle of the minimal class size mouse with proper class of strongs and Woodins?

Theorem (s-Schindler)

 \mathcal{V} is the mantle of \mathcal{M}_{ws} and \mathcal{M} is the core model.

Remark

Problem

What is the mantle of the minimal class size mouse with proper class of strongs and Woodins? Guess: just the Lp stack.

Problem

- Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R})) + \theta_1 = \Theta$.
- **2** We know that V_{Θ}^{HOD} is a hod mouse with 2 Woodins.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Problem

- Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R})) + \theta_1 = \Theta$.
- **2** We know that V_{Θ}^{HOD} is a hod mouse with 2 Woodins.

Is it also a varsovian model?

 i.e., of the form L_Θ[M, π] where M is an L[Ē]-model of height Θ with a strong cardinal, its least strong is a limit of Woodins and π : M|θ₀ → N is the iteration embedding of M|θ₀ into the HOD of the derived model of M at the least strong of M.

Varsovian Models

Problem

- Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R})) + \theta_1 = \Theta$.
- 2 We know that V_{Θ}^{HOD} is a hod mouse with 2 Woodins.

Is it also a varsovian model?

 i.e., of the form L_Θ[M, π] where M is an L[Ē]-model of height Θ with a strong cardinal, its least strong is a limit of Woodins and π : M|θ₀ → N is the iteration embedding of M|θ₀ into the HOD of the derived model of M at the least strong of M.

(日) (日) (日) (日) (日) (日) (日)

(a) Can we take \mathcal{M} to be $K^{V_{\Theta}^{HOD}}$?

Varsovian Models

Question

Is there a way of making sense of the mantle of a determinacy world?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Varsovian Models

Question

Is there a way of making sense of the mantle of a determinacy world? Guess: W is a ground if V is a symmetric extension of W. The mantle is the intersection of all grounds. Is it true that HOD is the mantle?

When does the core model exist?

Theorem (Jensen-Steel)

Assume there is no inner model with a Woodin cardinal. Then the core model exists.

When does the core model exist?

Theorem (Jensen-Steel)

Assume there is no inner model with a Woodin cardinal. Then the core model exists.

Theorem (Jensen-Steel)

Assume F is a nice operator defined on all of V and there is no inner model with a Woodin cardinal that is closed under F. Then the core model relative to F exists.

When does the core model exist?

Theorem (Jensen-Steel)

Assume there is no inner model with a Woodin cardinal. Then the core model exists.

Theorem (Jensen-Steel)

Assume F is a nice operator defined on all of V and there is no inner model with a Woodin cardinal that is closed under F. Then the core model relative to F exists.

Question

Can we have core model theory in models that are saturated?

First attempt

Theorem (s.-Zeman)

Assume (\mathcal{P}, Σ) is a hod pair such that \mathcal{P} is a mouse (i.e. has a single Woodin and etc) and that Σ is a fullness preserving (Ord, Ord)-iteration strategy with branch condensation. Suppose further that $\Sigma^{\#}$ doesn't exist. Then the core model exists and it has a Woodin cardinal.

First attempt

Theorem (s.-Zeman)

Assume (\mathcal{P}, Σ) is a hod pair such that \mathcal{P} is a mouse (i.e. has a single Woodin and etc) and that Σ is a fullness preserving (Ord, Ord)-iteration strategy with branch condensation. Suppose further that $\Sigma^{\#}$ doesn't exist. Then the core model exists and it has a Woodin cardinal.

Funny Fact: If the core model has 2 Woodins then it has ω Woodins.

Problem

Suppose \mathcal{M} is the minimal mouse with a strong that is a limit of Woodins. Let κ be the strong and let $g \subseteq Coll(\omega, \kappa)$ be \mathcal{M} -generic. Show that in $\mathcal{M}[g]$, K exists and has a strong cardinal that is a limit of Woodins.

Problem

Suppose \mathcal{M} is the minimal mouse with a strong that is a limit of Woodins. Let κ be the strong and let $g \subseteq Coll(\omega, \kappa)$ be \mathcal{M} -generic. Show that in $\mathcal{M}[g]$, K exists and has a strong cardinal that is a limit of Woodins.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Question

Are there core models that have strongs past Woodins?

Problem

Suppose \mathcal{M} is the minimal mouse with a strong that is a limit of Woodins. Let κ be the strong and let $g \subseteq Coll(\omega, \kappa)$ be \mathcal{M} -generic. Show that in $\mathcal{M}[g]$, K exists and has a strong cardinal that is a limit of Woodins.

Question

Are there core models that have strongs past Woodins? More specifically, suppose $\mathcal{M} = \mathcal{M}_{wsws}$ and g collapses the second strong to ω . Does $\mathcal{K}^{\mathcal{M}[g]}$ exist? If yes, is it an iterate of \mathcal{M} ?

Problem

Suppose \mathcal{M} is the minimal mouse with a strong that is a limit of Woodins. Let κ be the strong and let $g \subseteq Coll(\omega, \kappa)$ be \mathcal{M} -generic. Show that in $\mathcal{M}[g]$, K exists and has a strong cardinal that is a limit of Woodins.

Question

Are there core models that have strongs past Woodins? More specifically, suppose $\mathcal{M} = \mathcal{M}_{wsws}$ and g collapses the second strong to ω . Does $\mathcal{K}^{\mathcal{M}[g]}$ exist? If yes, is it an iterate of \mathcal{M} ?

The answer to the original question is Yes in hod mice.

Problem

Suppose \mathcal{M} is the minimal mouse with a strong that is a limit of Woodins. Let κ be the strong and let $g \subseteq Coll(\omega, \kappa)$ be \mathcal{M} -generic. Show that in $\mathcal{M}[g]$, K exists and has a strong cardinal that is a limit of Woodins.

Question

Are there core models that have strongs past Woodins? More specifically, suppose $\mathcal{M} = \mathcal{M}_{wsws}$ and g collapses the second strong to ω . Does $\mathcal{K}^{\mathcal{M}[g]}$ exist? If yes, is it an iterate of \mathcal{M} ?

The answer to the original question is Yes in hod mice.

Question

Are there core models in universes that are completely saturated?

Problem

Suppose \mathcal{M} is the minimal mouse with a strong that is a limit of Woodins. Let κ be the strong and let $g \subseteq Coll(\omega, \kappa)$ be \mathcal{M} -generic. Show that in $\mathcal{M}[g]$, K exists and has a strong cardinal that is a limit of Woodins.

Question

Are there core models that have strongs past Woodins? More specifically, suppose $\mathcal{M} = \mathcal{M}_{wsws}$ and g collapses the second strong to ω . Does $\mathcal{K}^{\mathcal{M}[g]}$ exist? If yes, is it an iterate of \mathcal{M} ?

The answer to the original question is Yes in hod mice.

Question

Are there core models in universes that are completely saturated? What does this even mean?

An approach to the *K^c* problem

Goal: Show the following: there is a K^c construction that either

- converges or
- it reaches a model N with a measurable cardinal κ that is a limit of Woodins, (κ⁺)^N exists, cf((κ⁺)^N) ≥ ω₂ and the square sequence of N | (κ⁺)^N is not threadable.

(日) (日) (日) (日) (日) (日) (日)

An approach to the *K^c* problem

Goal: Show the following: there is a K^c construction that either

- converges or
- ② it reaches a model \mathcal{N} with a measurable cardinal κ that is a limit of Woodins, $(\kappa^+)^{\mathcal{N}}$ exists, $cf((\kappa^+)^{\mathcal{N}}) \ge \omega_2$ and the square sequence of $\mathcal{N}|(\kappa^+)^{\mathcal{N}}$ is not threadable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (s.-Zeman)

Suppose the goal fails. Then $Lp(\mathbb{R}) \vDash AD^+$.

An approach to the K^c problem

- Suppose N is a model appearing in the K^c-construction and it doesn't have the properties we want.
- 2 Suppose κ is a measurable cardinal of \mathcal{N} and suppose we have a thread to the square sequence of $\mathcal{N}|(\kappa^+)^{\mathcal{N}}$.

An approach to the *K^c* problem

- Suppose N is a model appearing in the K^c-construction and it doesn't have the properties we want.
- 2 Suppose κ is a measurable cardinal of \mathcal{N} and suppose we have a thread to the square sequence of $\mathcal{N}|(\kappa^+)^{\mathcal{N}}$.
- This gives rise to a mouse S_{κ} extending $\mathcal{N}|(\kappa^+)^{\mathcal{N}}$ and projecting to or across κ .

Problem

Show that if S_{κ} is defined for all κ as above then countable submodels of N are iterable (Idea: S_{κ} determines extenders with critical point κ).

An approach to the K^c problem

Problem

In the case we have $cf((\kappa^+)^{\mathcal{N}}) \ge \omega_2$, show that there are collapsing structures coming from HOD analysis (recall covering with derived models), and use them to repeat the above proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

An approach to the K^c problem

Problem

In the case we have $cf((\kappa^+)^N) \ge \omega_2$, show that there are collapsing structures coming from HOD analysis (recall covering with derived models), and use them to repeat the above proof.

Conjecture

Assume there is no inner model of LSA. Then there is a K^c construction such that either

- It converges or
- 2 It produces a model \mathcal{N} in which there is a measurable cardinal κ such that κ is a limit of Woodins, $cf((\kappa^+)^{\mathcal{N}}) \ge \omega_2$ and the square sequence of $\mathcal{N}|(\kappa^+)^{\mathcal{N}}$ is not threadable.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Thank you Ronald!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ