
August 25, 2020 Jiaming Zhang

Ralf Schindler: Talks#1 on Logic Summer School of Fudan University, 2020

• How many real numbers are there?

• More specifically: We want to discuss 2 sets of prominent axioms which decides the
size of 2ℵ0 the same way;

– Forcing Axioms: MA, PFA, SPFA = MM;

– Woodin’s Axiom (∗)

• MM++ ⇒ (∗)
Richness: If you have a set of axioms which has a transitive model, then you have a transitive
model inside L.

”Maximize”: If an object can be imagined to exist, then it exists.

TODAY:

• Stationary sets;

• Forcing revisited;

• Forcing Axioms: MA;

• Proper forcing; semi-proper forcing; stationary set preserved forcing;

• PFA, SPFA, MM.

1 Stationary Sets

Definition. C ⊂ [X]ω is a club iff:

∃f : X<ω → X, C = {x ∈ [X]ω : f”x<ω ⊂ x}.

Remark. We may think f as a set of relations on X, and consider (X; f) as a model. Then
C is just the collection of every countable substructures of (X; f).

Definition. S ⊂ [X]ω is stationary iff S ∩ C 6= ∅ for all club C ⊆ [X]ω

Remark. Hence, S is stationary iff for all models (X; f), there is some x ∈ S, x ≺ (X; f).

Lemma 1 (Fodor). Let S ⊆ [X]ω be stationary, let f : S → V , f(x) ∈ x for all x ∈
S(regressive), then there is a stationary T ⊆ S, f � T is constant.

Proof. o.w.(otherwise) f.a.(for all) a ∈ X, Sa = {x ∈ S : f(x) = a} is nonstationary. Thus
there is a club Ca = {x ∈ [X]ω : fa”x

<ω ⊂ x} with some function fa : X<ω → X and
Ca ∩ Sa = ∅.
Define f∗(a, u) = fa(u), for u ∈ [X]<ω. Let C = {x ∈ [X]ω : f∗”x<ω ⊂ x}. For all
a ∈ x ∈ C, x ∈ Ca. Pick x ∈ S ∩ C. Let a = f(x) ∈ x, then x ∈ Ca. Contradicts to the
choice of Ca.

Observation. If S ⊂ [ω1]ω is stationary, then so is {ξ ∈ S : ξ ∈ ω1}.

[Hint. if C ⊂ [ω1]ω is a club, then so is {ξ ∈ S : ξ ∈ ω1}.]
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1.1 Splitting stationary sets

Theorem 2 (Solovay). S ⊂ ω1 stationary, then we may split S =
⊔
i<ω1

Si, while all Si
are stationary.

Proof. Let aξn ↗ ξ < ω1, n < ω.

Claim. ∃n∀α < ω1{ξ ∈ S : αξn ≥ α} is stationary.

Otherwise, ∀n∃αn∃ club Cn : Cn ∩ {ξ ∈ S : αξn ≥ αn} = ∅. Therefore we can pick ξ ∈
(
⋂
n<ω Cn) ∩ S, thus ξ > supn αn. However, αξn < supm αm for all n. Contradiction.

Remark. Improve: Fix n as in the Claim.. As a immediate consequence of Fodor’s
Lemma, we have

Claim. ∀α < ω1∃β ≥ α{ξ ∈ S : αξn = β} stationary.

Now we only need the pairwise disjoint property. Construct (Si, βi : i < ω1) as the above
Claim.: Assume (Si, βi : i < j) are defined, let α = supi<j βi + 1 and βj = β as in the
Claim., and let Sj be the corresponding set defined in the Claim..

Comment. (Shi.) This statement may be credited to Ulam, since the technique of Ulam
matrix proves the statement for all successor ordinal instead of just ω1. This procedure is
described in [3], Theorem 6.11.

Comment. In fact Solovay has proved that the above statement works for any weakly
inaccessible cardinal. See [4]

2 Forcing

V 3 P, P = (P;≤P) a partial order. D ⊂ P is dense iff

∀p ∈ P∃q ∈ D : q ≤P p(q is stronger than p)

G ⊆ P is V−generic iff G ∩D 6= ∅ f.a. D ⊂ P, D ∈ V dense.

V [G] = {τG : τ ∈ V P} where τ is a P−name.

Theorem 3 (Forcing Theorem). If V [G] � φ(τG, ...), then ∃p ∈ G, p  φ(τ, ...). If
p  φ(τ, ...), then V [G] � φ(τG, ...) f.a. G 3 p.

3 Forcing Axiom

Definition. P has the c.c.c.(countable chain condition) iff P does not have any uncountable
antichain.

A ⊆ P is an antichain iff ∀p, q ∈ A, p 6= q → p ⊥ q(p, q incompatible = no common
extension).

C = Cohen forcing = ω<ω, p ≤C q iff p ⊃ q.
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Definition. MAκ(Martin’s Axiom for κ): P has the c.c.c., D = {Di : i < κ} a collection
of dense sets; then there is a filter G ⊆ P, G ∩Di 6= ∅ for all i < κ.

MAω is always true: define ω-sequence

p1 ≤ p2 ≤ ... ≤ pi ≤ ..., i < ω

while pi ∈ Di. Thus the filter G = {q ∈ P : ∃n ∈ ω(q ≥ pn)} is V -generic.

Remark. This is exactly the diagonal argument, known as the Rasiowa-Sikorski Lemma.

MA2ℵ0 is false: C Cohen forcing: Let (xi : i < 2ℵ0) enumerate all sets of ωω. Di = {p ∈
C : ∃n ∈ dom(p), p(n) 6= xi(n)}. {Di : i < 2ℵ0} is a collection of dense sets. If G ∩Di 6= ∅
f.a. i < 2ℵ0 , then

⋃
G : ω → ω, so

⋃
G = xi for some i < 2ℵ0 . However,

∃p ∈ G∃n[p(n) 6= xi(n) =⇒ xi(n) 6=
⋃
G(n)].

Contradiction.

Using a.d.(almost disjoint) coding, we can prove the Souslin Hypothesis:

MAω1 =⇒ 2ℵ0 = 2ℵ1

Claim. ∃ a.d. sequence (aξ : ξ < ω1) of subsets ω, i.e., f.a. ξ, η < ω1, ξ 6= η, aξ ∩ aη is
finite.

Proof. Look at 2<ω. Let e : 2<ω → ω be bijection. Let (bξ : ξ < ω1) be a sequence of
pairwise different branches of the tree 2<ω. Let aξ = {e(bξ � n) : n < ω}. Then aξ proves
the statement.

Theorem 4. MAω1 =⇒ 2ℵ0 = 2ℵ1.

Proof. Let (aξ : ξ < ω1) be a sequence of pairewise a.d. subsets of ω. Let X ⊂ ω1. p ∈ P
iff p = (f, x):

• f : n→ 2, for some n < ω;

• x ⊂ X finite.

(f ′, x′) ≤P (f, x) iff f ′ ⊃ f, x′ ⊃ x, and {m ∈ dom(f ′) − dom(f) : f ′(m) = 1} ∩ aξ = ∅ for
all ξ ∈ x.

One can check that this forcing satisfies c.c.c. since every pair of conditions that shares
a common f is compatible. {(f, x) : n ∈ dom(f)} is dense for all n; {(f, x) : ξ ∈ x} is
dense for all ξ ∈ X.⇒ the generic gives rise to a function F : ω → ω such that f.a. ξ ∈ X,
{n ∈ ω : F (n) = 1} ∩ aξ is finite. And if ξ 6∈ X, {(f, x) : ∃m ≥ n(m ∈ aξ ∧ f(m) = 1)} is
dense f.a. n < ω. Thus f.a. ξ 6∈ X, {n ∈ ω : F (n) = 1} is infinite.

In sum, the generic filter G gives rise to F : ω → ω such that if a ⊂ ω such that F is the
characteristic function of a, then [a∩ aξ of finite ⇔ ξ ∈ X] f.a. ξ < ω1. So a codes X ⊆ ω1

modulo (aξ : ξ < ω1) in that sense. Thus,

MAω1 → ∀X ⊂ ω1∃a ⊂ ω∀ξ < ω(ξ ∈ X ⇔ a ∩ aξ is finite.) (1)

Define T : P(ω1)→ P(ω), X 7→ a where a satisfies (1). Clearly T is injective.
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Thus, MAω1 =⇒ ¬CH since 2ℵ0 = 2ℵ1 ≤ ℵ2.One can show 2ℵ0 > ℵ1 and MAκ for all
κ < 2ℵ0 is consistent.

We will go ahead and discuss more profound forcing axiom.

Rest of today:

• Proper forcing; (PFA)

• Semi-proper forcing; (SPFA)

• Stationary set preserving forcing. (MM)

4 Proper forcing

Definition. P is proper iff for all X, if S ⊂ [X]ω is stationary, then S is still stationary in
V P.

Remark. Here V P means all generic extension.

Examples of forcing notions that are NOT proper:

• Col(ω, ω1); 1

• (Shoot a club) Let S ⊂ ω1, S stationary and ω1 − S is stationary. There is a forc-
ing which adds C ⊂ S club, every stationary subset of S remains stationary (In
consequence, ω1 is not collapsed). But C witness the fact that ω1 − S is no longer
stationary.

Definition. Let x ≺ Hθ, x countable, p ∈ P ∩ x. q ≤P p is x−generic iff f.a. τ ∈ V P ∩ x
such that  τ ∈ Ȟθ, we have q  τ ∈ x̌.(E.g. There is no x for Col(ω, ω1) to be x−generic.)

Lemma 5. The following statements are equivalent:

(1) P is proper;

(2) F.a. x ≺ Hθ, (x countable, θ sufficiently large,) f.a. p ∈ P ∩ x, ∃q ≤ p x−generic.

Proof. ( [2], Theorem 31.7.)

(2) =⇒ (1): Let S ⊂ [X]ω be stationary. p ”Ċ is a club in[X]ω, Ċ = {x ∈ [X]ω : ḟ”x<ω ⊂
x}”. Let x ≺ Hθ, x countable, and p, Ċ, ḟ ∈ x, x ∩X ∈ S(possible, as S is stationary).

Let q ≤ p be x-generic.

Claim. q  Ċ ∩ Š 6= ∅; in fact, q  (x ∩X )̌ ∈ Ċ.

This follows from the definition of x-genericity.

(1) =⇒ (2): We may not prove that for all substructures x (2) holds but, the countable

1Proper forcing does not collapse ℵ1. See [2], Lemma. 31.4.
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substructures satisfying (2) form a club of [Hθ]
ω.2 Towards a contradiction, let

S = {x ≺ Hθ : |x| ≤ ω,∃p ∈ x ∩ P( 6 ∃f ≤ p x-generic)}

is stationary. By Fodor’s Lemma, let g : S → V maps x to some p ∈ x where p does not
have any x-generic extension. g is regressive and thus there is a stationary T ⊂ S such that
∃p∀x ∈ T (p ∈ x∧ 6 ∃f ≤ p[f x-generic]). Pick a filter G that is V−generic, p ∈ G. T is still
stationary in V [G]. This implies we may pick countable x ≺ HΩ[G] so that x ∩ Hθ ∈ T .
This implies a contradiction since if τ ∈ V P ∩ x ∩Hθ,  τ ∈ Hθ, then τG ∈ x ∩Hθ. This is
forced by some q ≤ p.

Definition. x ≺ Hθ, x countable, p ∈ P ∩ x, q ≤ p is x−semigeneric iff f.a. τ ∈ V P ∩ x,
 τ ∈ ω̌1, we have q  τ ∈ x̌(⇔ τ ∈ (x ∩ ω1)̌). That is, q  τ ∈ α̌, where α = x ∩ ω1 ∈ ω1,
since x ∩ ω1 is transitive.

Definition. P is semi-proper iff f.a. x ≺ Hθ, countable, P ∈ x, f.a. p ∈ x∩ P there is q ≤ p
such that q is x−semigeneric.

Observation. P is proper, then P is semiproper.

Definition. P preserves stationary subsets (of ω1) iff

∀S ⊂ ω1(S stationary in V =⇒ S stationary in V P).

Lemma 6.

• P is semi-proper =⇒ P preserves stationary subsets of ω1;

• P has the c.c.c., then P is proper.

Definition.

• PFA: Every ω1 family of every proper forcing notion has a generic filter;

• SPFA: Every ω1 family of every semiproper forcing notion has a generic filter;

• MM: Every ω1 family of every stationary preserving forcing notion has a generic
filter.

Remark. One cannot extend those axioms to κ families like what we do in MA, since
these axioms implies(as we shall later show,) that 2ℵ0 = 2ℵ1 = ℵ2.

Theorem 7. The followings are equivalent:

• MM;

• f.a. models M ∈ V (signature ≤ ω1) f.a. P stationary set preserving f.a. φ Σ1−formula,
if V P � φ(M), then ∃j : M →M elementary, |M | ≤ ω1, V � φ(M).

Proof given by: [1], Theorem 1.3.

2Suppose C is a club of countable x ∈ [Hθ]
ω such that every p ∈ P ∩ x has an x-generic extension. Let

[Hθ]
ω ∈ HΩ, with Ω sufficiently large, and let some x ≺ HΩ be countable with P ∈ x. Then some θ and C

are elements of x, but then x ∩Hθ ∈ C, from which it follows that every p ∈ P ∩ x can be extended to an
x-generic condition. So if f.a. sufficiently large θ there is a club of countable x ∈ [Hθ]

ω s.t. every p ∈ P ∩ x
can be extended to an x-generic condition, then for all sufficiently large θ and for every x ∈ [Hθ]

ω with
P ∈ x, every p ∈ P ∩ x can be extended to an x-generic condition.
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