Ralf Schindler: Talks#2 on Logic Summer School of Fudan University, 2020

TODAY:

- Restate \mathbf{PFA} , \mathbf{SPFA} , \mathbf{MM} as well as \mathbf{PFA}^{++} , \mathbf{SPFA}^{++} , \mathbf{MM}^{++} ;
- A few words on *iterated* forcing
- Supercompact Cardinals, Laver functions;
- Forcing **SPFA**⁽⁺⁺⁾
- Weak reflection principle;
- $\mathbf{M}\mathbf{M} \Rightarrow 2^{\aleph_1} = \aleph_2.$

Recall our forcing axioms:

- MA_{ω1}: If P has the c.c.c. and if D = {D_i : i < ω₁} is a family of dense sets in P then there is a filter G such that G ∩ D_i ≠ Ø for all i < ω₁.
- **PFA** : Same with "c.c.c." replaced by "proper".
- **SPFA** : Same with "c.c.c." replaced by "semi-proper".
- MM : Same with "c.c.c." replaced by "stationary set preserving".
- $\mathbf{MA}_{\omega_1}^{++}$: If \mathbb{P} has the c.c.c. and if $\mathcal{D} = \{D_i : i < \omega_1\}$ is a family of dense sets in \mathbb{P} and if $\{\tau_i : i < \omega_1\}$ is s.t. $\Vdash_{\mathbb{P}}^n \tau_i \subset \check{\omega}_1$ is stationary" then there is a filter G such that $\overline{G \cap D_i \neq \emptyset}$ for all $i < \omega_1$ and

$$\tau_i^G = \{\xi < \omega_1 : \exists p \in G(p \Vdash \check{\xi} \in \tau_i)\}$$

is stationary for all $i < \omega_1$.

• $\overline{\mathbf{PFA}^{++}, \mathbf{SPFA}^{++}, \mathbf{MM}^{++}}$: Just add the underlined part to the axioms.

A reformulation of $\mathbf{M}\mathbf{M}^{++}$:

Theorem 1. The following are equivalent:

- **MM**⁺⁺;
- Let P be a stationary set preserving forcing, let M be a model such that M's signature has size at most ℵ₁, let φ be Σ₁, and suppose

$$\Vdash \phi(M, \mathbf{NS}_{\omega_1});$$

where \mathbf{NS}_{ω_1} is the ideal of all non-stationary subset of ω_1 . Then in V there is some elementary $j: \overline{M} \to M$ and $\phi(\overline{M}, \mathbf{NS}_{\omega_1})$.

Comment. Since \mathbb{P} is stationary preserving, $\mathbf{NS}_{\omega_1}^{V^{\mathbb{P}}} \cap V = \mathbf{NS}_{\omega_1}^{V}$. Then in V their are the same.

Remark. If M has size $\leq \aleph_1$, then we can add all of M's elements as constant symbols, where we can let j = id, with $\overline{M} = M$. Thus the theorem implies that if $\phi(M, \mathbf{NS}_{\omega_1})$ holds in the generic extension, it holds in the ground model as well.

1 Iterated forcing

Say $\mathbb{P} \in V$, let G be V-generic for \mathbb{P} . Say $\mathbb{Q} \in V[G]$, let H be V[G]-generic for \mathbb{Q} .

We can also say it in another way. $\mathbb{P} \in V$, $\mathbb{P} \Vdash \overset{\circ}{\mathbb{Q}}$ is a poset". Then we may define

- $\mathbb{P} * \dot{\mathbb{Q}} \ni (p, \dot{q})$ such that $p \in \mathbb{P}, \Vdash_{\mathbb{P}} \dot{q} \in \dot{\mathbb{Q}}$.
- $(p', \dot{q}') \leq_{\mathbb{P}*\dot{\mathbb{O}}} (p, \dot{q})$ iff $p' \leq p$ and $p' \Vdash \dot{q}' \leq \dot{q}$.

Longer iterations:

$$((\mathbb{P}_{\alpha} : \alpha \leq \theta), (\dot{\mathbb{Q}}_{\alpha} : \alpha < \theta))$$

Given $\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}, \mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$. For limit stage \mathbb{P}_{λ} : $\vec{p} = (p_i : i < \lambda) \in \mathbb{P}_{\lambda}$ iff $\mathbb{P}_i \Vdash p_i \in \dot{\mathbb{Q}}_i$ for all i.

Countable support iteration: $\{i < \lambda : \mathbb{P}_i \not\models p_i = 1_{\hat{D}}\}$ is at most countable.

Revised countable support iteration: $\{i < \lambda : \mathbb{P}_i \not\models p_i = 1_{\hat{\mathbb{Q}}}\}$ is at most countable as being forced by some $\mathbb{P}_j, j < \lambda$.

Theorem 2 (Shelah's iteration theorems).

1.

$$((\mathbb{P}_{\alpha} : \alpha \le \theta), (\mathbb{Q}_{\alpha} : \alpha < \theta))$$

is a countable support iteration s.t. $\mathbb{P}_{\alpha} \Vdash \mathbb{Q}_{\alpha}$ is proper" f.a. $\alpha < \theta$, then \mathbb{P}_{θ} is proper.

2.

$$((\mathbb{P}_{\alpha} : \alpha \leq \theta), (\dot{\mathbb{Q}}_{\alpha} : \alpha < \theta)).$$

is a revised countable support iteration such that $\mathbb{P}_{\alpha} \Vdash "\dot{\mathbb{Q}}_{\alpha}$ is semiproper" f.a. $\alpha < \theta$, then \mathbb{P}_{θ} is semiproper.

Please note that everything we do today is covered by [1].

2 Supercompact cardinal and forcing

Definition. (Magidor Characterization) κ is a supercompact cardinal iff: f.a. cardinal $\lambda > \kappa$, and f.a. $X \in H_{\lambda}$, there is some $\overline{\lambda} < \kappa$ and some elementary embedding $j : H_{\overline{\lambda}} \to H_{\lambda}^{-1}$ such that

• $j(\operatorname{crit}(j)) = \kappa$; and

• $X \in \operatorname{ran}(j)$.

Now we denote δ as some supercompact cardinal without further notice.

Definition. $f : \delta \to V_{\delta}$ is a Laver function iff f.a. $\lambda > \delta$, f.a. $x = (\mathbb{P}, M) \in H_{\lambda}$ there is some $\alpha < \delta$ and an elementary embedding

$$j: H_{f(\alpha)_0} \to H_\lambda, \quad f(\alpha)_1 \mapsto x.$$

 $[f(\alpha) \text{ is an ordered pair } (\lambda, \bar{x}).]$

Theorem 3 (Laver). $\exists \delta \text{ supercompact} \implies \text{There is a Laver function.}$

¹It could also be V_{λ} by a matter of taste.

Proof. Recursively construct $f(\alpha), \alpha < \delta$. Suppose $f \upharpoonright \alpha$ is given. Let $f(\alpha) =$ some pair $(\bar{\lambda}, \bar{x})$ such that there is no $\beta < \alpha$ with a elementary embedding

$$j: H_{f(\beta)_0} \to H_{\bar{\lambda}}; \quad f(\beta)_1 \mapsto \bar{x}$$

while λ is the least possible cardinal. If there is no such pair, let $f(\alpha) = (0, 0)$. This works since otherwise let $\lambda > \delta, x \in H_{\lambda}$ be a counterexample. Let Ω be sufficiently large. Then there is $H_{\overline{\Omega}}$, together with elementary embedding j which sends \overline{x} to x, $\overline{\lambda}$ to λ and $\overline{\delta}$ to δ . Since H_{Ω} can see that (λ, x) is a counterexample, by elementarity, $H_{\overline{\Omega}}$ can see $(\overline{\lambda}, \overline{x})$ is an counterexample and $f(\alpha)$ is defined. Let $(\lambda^*, x^*) = j(f(\alpha)_0, f(\alpha)_1)$. Then by elementarity,

$$H_{\Omega} \models$$
 "There is no $k : H_{f(\beta)_0} \to H_{\lambda^*}; f(\beta)_1 \mapsto x^*$ "

This is a contradiction since H_{Ω} can see j.

Theorem 4 (Foreman-Magidor-Shelah). If δ is supercompact, then **SPFA** holds in a generic extension.

Proof. Define a revised countable support iteration

$$((\mathbb{P}_{\alpha} : \alpha \leq \theta), (\mathbb{Q}_{\alpha} : \alpha < \theta)).$$

of semiproper forcing. Let $f : \delta \to V_{\delta}$ be a Laver function. At stage α : Force with $\dot{\mathbb{Q}}_{\alpha} = f(\alpha)_{1,0}$ provided

 $\mathbb{P}_{\alpha} \Vdash "f(\alpha)_{1,0}$ is a semiproper forcing."

Otherwise force with $Col(\omega_1, f(\alpha)_0)$. Verify that **SPFA** holds true in $V^{\mathbb{P}_{\delta}}$: Let G be Vgeneric for \mathbb{P}_{δ} . Given $M \in V[G]$, a model with signature $\leq \aleph_1$, $\mathbb{P} \in V[G]$ a semiproper
forcing, ϕ is Σ_1 , $\mathbb{P} \Vdash \phi(M)$. Let λ be sufficiently large and note that δ would be collapsed
to ω_2^2 . Take V-names $\dot{M}, \dot{\mathbb{P}}$ for M, \mathbb{P} , respectively. In V we may pick an elementary
embedding j, which witnessing f is a Laver function with $j(f(\alpha)) = (\lambda, (\dot{\mathbb{P}}, \dot{M}))$. Then $\dot{\mathbb{P}}$ is the name for the forcing used at stage α of the iteration. So $\phi(j^{-1}(\dot{M}^{G|\alpha}))$ holds true in $H_{f(\alpha)_0}[G \upharpoonright (\alpha+1)]$, hence in $V[G \upharpoonright (\alpha+1)]$, hence in V[G](as ϕ is Σ_1). But j lifts to \hat{j} from $H_{f(\alpha)_0}[G \upharpoonright \alpha]$ to $H_{\lambda}[G]$, so in the end we get what we want. As the tail end of the iteration
from $\alpha + 1$ to δ preserves stationary sets, ϕ could be Σ_1 in the language with a predicate
for \mathbf{NS}_{ω_1} , and then the argument actually produces \mathbf{SPFA}^{++} .

Now what about **MM**? Foreman-Magidor-Shelah actually verified that **MM**⁺⁺ holds true in the model $V[G] = V^{\mathbb{P}_{\delta}}$ which we constructed. In order to verify this:

Definition. WRP(θ)(Weak Reflection Principle at uncountable θ):

If $S \subset [H_{\theta}]^{\omega}$ is stationary, then there is some $Y \subset H_{\theta}$, $|Y| = \aleph_1$, $\omega_1 + 1 \subset Y$ such that $S \cap [Y]^{\omega}$ is stationary.

²Since it is a revised countable support iteration, and each forcing notion is semi-proper which has size $< \delta$, \aleph_1 and cardinal above δ are preserved.

Theorem 5.

(A) If WRP(θ) holds true for all θ, then every stationary set preserving forcing is semiproper.
(B) In the model V[G] constructed before, WRP(θ) holds true for all θ.

Corollary 6. MM^{++} holds true in V[G].³

Proof. Let's first prove (B). Let $[H_{\theta}[G]]^{\omega}$ and $S \subset [H_{\theta}]^{\omega}$ be stationary. Then by forcing with $Col(\omega_1, H_{\theta})$, since it is proper, we have in the extension that $f : \omega \to H_{\theta}$ surjective together with a stationary $T \subset \omega_1$ s.t. $f''\xi \in S$ for all $\xi \in T$. Now apply **SPFA**⁺⁺⁴, which gives $f : \omega_1 \to H_{\theta}$ and a stationary $T \subset \omega_1$ s.t. $f''\xi \in S$ for all $\xi \in T$.

For (A), let the sentence "every stationary set preserving forcing is semiproper" be denoted as (†). Fix \mathbb{P} preserving stationary subsets of ω_1 . If \mathbb{P} is not semiproper, then

 $S = \{x \prec H_{\theta} : |x| = \omega \land \text{"there is } p \in x \cap \mathbb{P} \text{ with no } x \text{-semigeneric extension"} \}$

is stationary.

- By Fodor: $\exists T \subset S$ stationary $\exists p \in \mathbb{P}$ such that $p \in x$ f.a. $x \in T$ and there is no x-generic extensions of p f.a. $x \in T$.
- By $\mathbf{WRP}(\theta)$: $\exists Y \subset H_{\theta}$ of size \aleph_1 such that $T \cap [Y]^{\omega}$ is stationary.

Pick G as V-generic for \mathbb{P} , with $p \in G$. \mathbb{P} preserves stationary sets of $\omega_1 \implies$ we can find $x \in T \cap [Y]^{\omega}$ s.t. $x[G] \cap \omega_1 = x \cap \omega_1 = \alpha$. In $V[G] : \tau^G < \alpha$ f.a. $\tau \in x, \Vdash \tau < \omega_1^V$. This is forced by some $q \leq p$, thus q is an x-semigeneric extension. Contradiction.

To summarize:

$$\delta \text{ supercompact } \implies V^{\mathbb{P}_{\delta}} \Vdash \mathbf{SPFA}^{++} \land \mathbf{WRP}(\theta) \text{ f.a. } \theta \implies V^{\mathbb{P}_{\delta}} \Vdash \mathbf{SPFA}^{++} \land (\dagger)$$
$$\implies V^{\mathbb{P}_{\delta}} \vDash \mathbf{MM}^{++}.$$

It is called "Martin's Maximum" since if we allow forcing that is not stationary preserving, then the forcing may lead to an inconsistent result. Let $S \subset \omega_1$ be stationary and costationary set, we may force S to contain a club $C \subset S$ by a forcing which preserves the stationarity of all stationary subsets of S. Since "S contains a club set" is Σ_1 , if we further assume that a forcing axiom for this kind of forcing holds true, then in the ground model one can still find the Σ_1 sentence holds true. Contradiction. Thus \mathbf{MM}^{++} cannot be extended in this way. However, can we extend the \mathbf{MM}^{++} in another direction to allow more dense sets to be met by the generic filter?

Theorem 7 ((FMS)). MM $\implies 2^{\aleph_1} = \aleph_2$.

[Consequence: A version of **MM** when G is supposed to hit more than \aleph_1 dense sets is inconsistent.]

³Iterating stationary set preserving forcing notions can be problematic, as it can probably collapse ω_1 with even an ω -long iteration. This is proved by Shelah.

⁴In fact, \mathbf{PFA}^+ is enough.

Proof. Define $S_{\omega_2}^{\omega} = \{\xi < \omega_2 : \operatorname{cf}(\xi) = \omega\}$. Then $S_{\omega_2}^{\omega}$ is a stationary subset of ω_2 . Solovay's theorem $\implies S_{\omega_2}^{\omega} = \bigsqcup_{i < \omega_2} S_i$, where every S_i is stationary. Fix $\omega_1 = \bigsqcup_{i < \omega_1} T_i$, each T_i is stationary, and let $S_{\omega_2}^{\omega} = \bigsqcup_{i < \omega_1} S_i$. Fix $X \subset \omega_1$ nonempty. Our goal: find $\alpha \in S_{\omega_2}^{\omega_1}$ such that $S_i \cap \alpha$ is stationary in α iff $i \in X$. We propose the following forcing to prove this:

 $p \in \mathbb{P}$ iff $\exists \alpha < \omega_1$ and $p : \alpha + 1 \to S_{\omega_2}^{\omega}$ normal⁵, $\forall \eta \leq \alpha \forall i < \omega_1 [\eta \in T_i \implies p(\eta) \in S_{f(i)}]$, for $X \subset \omega_1$ non-empty and $f : \omega_1 \to \omega_1$, with $X = \operatorname{ran}(f)$.

We shall complete this proof in the next lecture.

References

[1] Thomas Jech. Set theory. Springer Science & Business Media, 2013.

⁵Strictly increasing and continuous.