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Ralf Schindler: Talks#4 on Logic Summer School of Fudan University, 2020

TODAY:

• Show a characterization of precitiousness;

• V is generically iterable with respect to precitious ideals;

• Discussion of effecitive counterexamples to CH.

• Illustrations of Admissible Club Guessing(ACG) =⇒ u2 = ω2.

• Prove ACG follows from MM.

Theorem 1. The followings are equivalent:

• NSω1 is precipitous;

• Let x ≺ Hθ be countable, and let Mx be its transitive collapse via embedding σ. Define

Gx = {X ∈ P (ωMx
1 ) ∩Mx : ωMx

1 ∈ σ(X)}.

Then the collection

S = {x ≺ Hθ : |x| = ω ∧Gx is σ−1(NS+
ω1

)-generic over Mx}

is projective stationary.

Definition. S is projective stationary iff f.a. T ⊂ ω1 stationary, {x ∈ S : x ∩ ω1 ∈ T} is
stationary.

Proof. (Sketch) ” =⇒ ”: Fix a stationary set T ⊂ ω1 and let C ⊂ [Hθ]
ω = {x ∈ [Hθ]

ω :
f”x ⊂ x, f : H<ω

θ → Hθ} be a club. Let G be V -generic for NS+
ω1

such that T ∈ G. This
implies the existence of an elementary embedding j : V → Ult(V ;G) = M.

ωV1

θ

j(ω1)

θ

j(θ)

j

V M

Since T ∈ G, ωV1 ∈ j(T ). Now we consider the structure j”HV
θ . It is a substructure

of HM
j(θ), ω

M
1 ∩ j”HV

θ = ωV1 , and is closed under j(f). By reflection and absoluteness

between V [G] and M , it will be true that in M there is a countable x ≺ HM
j(θ) such that

x ∩ j(ωV1 ) = ωV1 ∈ j(T ), and x is closed under j(f). By pulling back the appropriate
statement via j, we get that in V there is a countable x ≺ Hθ with x ∩ ω1 ∈ T and closed
under f . Since θ is chosen as large as we want, we now have that S is in fact projective
stationary.
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”⇐= ” Assume that NSω1 is not precipitous and let x ∈ S. Then there is a stationary set
T ∈ NS+

ω1
, such that T V ” Ult(V ; Ġ) is ill-founded”.

ωM1

ω1

j

M ' x ≺ Hθ

Ult(M ; Ḣ)

M Hθ
j

Then by definition ωM1 = ω1 ∩ M ∈ T . Let T̄ = T ∩ ωM1 ∈ M , then the condition
ωM1 ∈ j(T̄ ) gives that T̄ ∈ H, where H is the generic filter derived from j. Thus by
downstairs elementarity, T̄ M ” Ult(M ; Ḣ) is ill-founded”. This leads to a contradiction
since by factoring j by H, the diagram on the right commutes, therefore Ult(M ; Ḣ) embeds
elementarily into Hθ, which is well-founded.

Corollary 2. NSω1 saturated =⇒ NSω1 precipitous.

How do you obtain models in which NSω1 is saturated/precipitous? We can first pick a
measurable cardinal and collapse it to ω1. Then there is a precipitous ideal of ω1. Then
we can shoot a club through the stationary complements of members of the ideal and make
this precipitous ideal to be NSω1 . However, this does not work for NSω1 to be saturated.
To get it one may need the existence of a Woodin cardinal δ, and some δ-c.c. semi-proper
forcing to do that. A proof of this theorem can be found on here∗.

It is also true that MM =⇒ NSω1 is saturated. This theorem is obtained by Foreman-
Magidor-Shelah in their original MM paper [2], [3].

1 Generic iterablity

Assume I ⊂ P (ω1) is a precitious normal uniform ideal on ω1. Work in V Col(ω,θ), where
θ > ω1 is large enough. We may do the following iteration process:

V = M0
j01−−→M1 = Ult(M0;G0)→ ...→Mω = lim dirn→ω(Mn;Gn)→ ...

For every n < ω, we let Gn to be the generic filter of (NS+
ω1

)Mn . By elementarity, (NS+
ω1

)Mn

is percipitous for every n < ω, so every successor stages are well-founded. We now show
that whenever we can construct (Mα, Gα), it is always well-founded.

Remark. Notice that here, the use of Col(ω, θ) is to collape Hθ to countable size, so we
can always pick Gn(clearly not unique) in V Col(ω,θ). Because of this, we cannot do this
iteration to any ordinal stages, but only as much as we want.

∗https://ivv5hpp.uni-muenster.de/u/rds/sat_ideal_better_version.pdf
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Theorem 3. Let I ⊂ P (ω1) is a precipitous normal uniform ideal on ω1, then V is gener-
ically iterable via I+ and its images.

Here, being generically iterable means that V can be iterated along the sequence without
being ill-founded at limit stages.

Proof. A variant of the argument of the iterablity of V via a measure in V and its images.
Suppose the statement is false. Then we pick the least triple (θ, λ, α) with respect to
lexicographic order, such that

• θ is the least ordinal such that in V Col(ω,θ), there is a λ < θ such that the λ-th generic
iteration taken inside V Col(ω,θ) is ill-founded.

• λ is the least ordinal such that the λ-th generic iteration contains an ill-founded
sequence of ordinals;

• α is the least ordinal such that there is a ill-founded sequence of ordinals below j0λ(α).

Suppose γ < λ such that there is an ᾱ1, jγλ(ᾱ1) is the first element of the infinite descending
sequence in Mλ. By elementarity, Mγ sees that (j0γθ, j0γλ, j0γα) is the lexicographically
least triple, however, (θ, λ− γ, ᾱ1) is lexicographically smaller, and it satisfies our require-
ments listed above. Contradiction.

2 Effective counterexamples to CH

In the last lecture, we have proved that MM =⇒ 2ℵ0 = 2ℵ1 = ℵ2. This implies a surjection
f : R→ ω2. We now look at the set

Rf = {(x, y) ∈ R2 : f(x) ≤ f(y)}.

What are possible levels of definability of Rf? And can we have f such that Rf ∈ L(R)†?
Or even: Can(in the presence of large cardinals, or under MM) such an Rf be projective?

Definition. R ⊂ Rn is projecive iff R is definable(with parameters) over (Hω1 ;∈).

This is not the usual definition for projectiveness; however, since every element in Hω1 is

coded by a real, H
L(R)
ω1 = HV

ω1
. So if something is definable over (Hω1 ;∈), then it is certainly

inside L(R). Equivalently, R is projective iff we can write ~x ∈ R iff

∃x0 ∈ R∀x1 ∈ R...Qxk(~x, x0, ..., xk) ∈ C,

where C is a Borel set of Rn+k+1.

Let us look at Hω2 . A formula φ is Π
Hω2
2 if it is equivalent(in ZFC) to a function of the

form:
∀A ∈ Hω2∃B ∈ Hω2ψ(A,B),

where ψ is Σ0. It turns out that MM is complete with respect to Π
Hω2
2 statements. Im-

portant example of Π
Hω2
2 statements:

†L(R) = the least transitive model of ZF which contains R ∪ORD.
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• u2
‡= ωV2 .

• Admissible Club Guessing(ACG).

• ϕAC and ψAC, etc..

u2 = ω2 is a Π
Hω2
2 statement: Since u2 = sup{(ωV1 )+L[x] : x ∈ R}, and u2 ≤ ωV2 , we have

• u2 ≥ ωV2 ⇐⇒ ∀α < ω2∃x ∈ R[(ωV1 )+L[x] ≥ α];

• (ωV1 )+L[x] ≥ α ⇐⇒ ∃β[Lβ[x] � α ≤ (ωV1 )+] ⇐⇒ ∃β∃N [N is a transitive structure of
hight β ∧N �”Everything is at most countable”∧Lβ[x] � ”α ≤ N ∩ORD ”].

Under the hypothesis ∀x ∈ R(∃x#)(given by MM) and u2 = ω2, we have

f : R→ ω2; ω ⊃ x 7→ ω
+L[x]
1 .

Since u2 = ω2, f is cofinal. Now look at Rf we defined above and we want to claim this is
projective, actually ∆1

3. For any x, y ∈ R, we have

(ωV1 )+L[x] ≤(ωV1 )+L[y]

⇐⇒ ∃z ⊂ ω∃(Lτ [z];U) iterable [κ = crit(j) ∧ (Lτ [z];U) � κ+L[x] ≤ κ+L[y]].

Proof. Note that here, κ+L[x] and κ+L[y] is actually the interpretation inside Lτ [z], that is:
(κ+L[x])Lτ [z] and (κ+L[y])Lτ [z]. Thus to get ” ⇐= ” direction, we may need to assume x, y
are Turing reducible to z(or other canonical way), and we want to prove that (κ+L[x])Lτ [z] =
κ+L[x]. Let z, τ be chosen to satisfy:

(Lτ [z];U) � κ+L[x] ≤ κ+L[y],

for κ = crit(j). Then by the amenability of (Lτ [z], U), we may iterate this structure and
see that τ = κ+L[z]. Thus there are no more subset of κ beyond τ and by elementarity,
κ+L[x] = (κ+L[x])Lτ [z].

τ

κ+L[x]

κ

τ = κ+L[z]

j(κ)

j

(Lτ [z];U)

L[z]

‡u2 is the second uniform indiscernible ordinal: Suppose x# exists for all x ∈ R. Since the x-indiscernible
ordinal class Cx is a club for every x ∈ R,

⋂
x∈R Cx = (ui : i ≥ 1) is another class of indiscernibles called

the uniform indiscernibles. Clearly countable ordinals can never be uniform indiscernible, and ω1 is uniform
indiscernible, u1 = ω1.
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So the complexity of this statement is Σ2 over Hω1 . Thus, this statement is ∆1
3.

Definition. ACG is the following statement:

∀C ⊂ ω1 club ∃D ⊂ C club ∃x ⊂ ω1[D is the set of all countable x-admissible].

Here, x-admissible are ordinals τ such that Lτ [x] are model of KP set theory. Or just:
D ∈ L[z] for some z ⊂ ω.

Remark. It can be proved that ACG implies the existence of x# for all x ⊂ ω.

Definition. ψAC is the following statement:

∀S, T ⊂ ω1 stationary and co-stationary ∃η < ω2∃C ⊂ ω1 club ∀ξ ∈ C[ξ ∈ T ⇐⇒ fη(ξ) ∈ S].

Here, fη is the function defined by some surjection g : ω1 → η such that fη(ξ) is the
ordertype of g”ξ. It is also called the canonical function of η.

All the listed Π
Hω2
2 statements are implied by (∗), and MM++ implies (∗). Next we want

to show ACG implies u2 = ω2 and MM++ implies ACG.

Theorem 4. ACG =⇒ u2 = ω2.

Proof. (Sketch) Let α < ω2 and some bijection f : ω1 → α. Moreover, fix a continuous
tower (Xi : i < ω1) of countable substructure of Hθ. Let Ni be the transitive collapse of
Xi. We then let f ∈ X0, which gives that there is αi > ωNi1 in Ni such that αi would be

maped to α in Hθ. We can then modify the tower such that αi < ω
Ni+1

1 for every i < ω1.

Thus ACG gives a club D ⊂ {ωNi1 : i = ωNi1 , i < ω1}, and D ∈ L[x]. We may then assume
that D is definable with ωV1 as the only parameter. Thus,

ξ ∈ D ⇐⇒ L[x] � φ(ξ, x, ωV1 );

Assuming that η < ωV1 is x-indiscernible, we have

ξ ∈ D ∩ η ⇐⇒ L[x] � φ(ξ, x, η).

So now η 7→ ωV1 , and D ∩ η 7→ D by the elementary embedding from L[x] to itself. This

gives every x-indiscernible in D is a limit point of D. Thus if ξ ∈ D, then ξ = ω
Nξ
1 and the

next x-indiscernible > ξ is bigger than ω
Nξ+1

1 , thus bigger than αξ.

Now we pick another tower (Yi : i < ω1) such that x# ∈ Y0(in particular, D ∈ Y0), and
f ∈ Y0. So there is a club E ⊂ D such that Yi ∩ α = Xi ∩ α for all i ∈ E. Now if i ∈ E, we
denote the transitive collapse of Yi as Mi, and thus

Mi � ”the next x-indiscernible > i is > αi”.

By elementarity, this gives

Hθ � ”the next x-indiscernible > ω1 is > α”.

which gives u2 = ω2.
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Theorem 5. MM++ =⇒ ACG.

Proof. (Sketch, Easier) Let C ⊂ ω1 be a club. Now we are going to construct a tower
(Xi : i < ω1) of countable substructures of Hθ, where θ ≥ ω2. Let X0 be some countable
transitive substructure of Hθ, and N0 its transitive collapse. Let X0 satisfy:

• ω1 ∈ X0 and ωN0
1 = α0;

• There is some α0 ∈ N0 such that the elementary embedding j0 : N0 → Hθ maps α0

to ω1;

• C ∈ X0 and C0 ∩ α0 ∈ N0.

Let G0 = {s ∈ P (α0) ∩ N0 : α0 ∈ j0(x)}. Then this filter is N0-generic, since NS+N0
ω1

is
saturated(by MM, NSω1 is saturated). Now by the precitiousness, we can do the generic
iteration:

N0 N1 ... N<ω1

Hθ

...

where Ni+1 = Ult(Ni, Gi). By elementarity, the derived Gi is always saturated, so this
iteration process can keep on going before we meet ω1. Now let Xi = ran(ji). Since N0 is
countable, we can find some countable x ⊂ ω such that x codes N0. Now by the following
unproved claim:

Claim. Suppose α < ω1 is x-admissible, then α is the limit point of {ωNi1 : i < ω1}.§

We have that every x-admissible ordinal α is inside C since ωNi1 is the limit point of C for
every i < ω1. Let D be the set of all limit point of α and hence ACG is proved.

Now we would like to present a harder proof which can be further motified into a way to
prove MM++ =⇒ (∗).

Proof. (Sketch, Harder, [1]) We would like to force the existence of some iterable countable
structure (M ; I), together with its generic iteration (Mi; Ii : i ≤ ω1) such that Mω1 = HV

ω2

¶.
We do it via a forcing which preserves stationary subsets of ω1.

We aim to find a transitive model N in the generic extension such that

N � ”∃generic iteration (Mi, Gi : i < ω1), |Mi| = ω s.t.

M0 iterable ∧Mω1 = lim diri→ω1 Mi = (HV
ω2

;∈,NSVω1
)”.

§It seems that we only need the MM++ to make NSω1 saturated until this claim. However, to prove this
claim we may need a little bit more, say there is a measurable cardinal in V , or P (ω1)# exists. This follows
from descriptive set theory, where one can draw the conclusion from the existence of such a ω1-iterable
structure N0.

¶Clearly, the iteration cannot be performed in V , since |Mω1 | = ℵ1. Moreover, since the generic iteration
embedding is cofinal, Mω1 adds a ω-cofinal sequence of ω2.
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Think of N as a term model. The forcing will consist of finite sets of sentences in a language
describing the full theory of such a model + starting to prove that this model is well-founded
by ranking the constants:

φ(ci0 , ..., cik), f : ci0 7→ ξ ∈ ORD

such that in some outer model, this finite piece of information can be extended to a maximal
consistenct theory + a proof that the model which arises is well-founded.

Our forcing notion will actually have size 2ω2 ≥ ω3. We will need to assume 2ω2 = ω3,
which follows from ♦ω3

‖. We will finish this proof in our next lecture.
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‖There is a sequence ((Qα, Aα) : α < ω3) such that (Qα : α < ω3) is a tower of transitive substructures
of Hω3 of size ℵ2 with

⋃
αQα = Hω3 ; Moreover, for all A ⊂ Hω3 , {α : (Qα, Aα) ≺ (Hω3,A)} is stationary.
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