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A trichotomy theorem in natural models of AD
+
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Abstract. Assume AD
+ and that either V = L(P(R)), or V = L(T, R) for

some set T ⊂ ORD. Let (X,≤) be a pre-partially ordered set. Then exactly
one of the following cases holds: (1) X can be written as a well-ordered union of
pre-chains, or (2) X admits a perfect set of pairwise ≤-incomparable elements,
and the quotient partial order induced by (X,≤) embeds into (2α,≤lex) for
some ordinal α, or (3) there is an embedding of 2ω/E0 into (X,≤) whose range
consists of pairwise ≤-incomparable elements.

By considering the case where ≤ is the diagonal on X, it follows that for
any set X exactly one of the following cases holds: (1) X is well-orderable, or
(2) X embeds the reals and is linearly orderable, or (3) 2ω/E0 embeds into X.
In particular, a set is linearly orderable if and only if it embeds into P(α) for
some α. Also, ω is the smallest infinite cardinal, and {ω1, R} is a basis for the
uncountable cardinals.

Assuming the model has the form L(T, R) for some T ⊂ ORD, the result
is a consequence of ZF + DCR together with the existence of a fine σ-complete
measure on Pω1

(R) via an analysis of Vopěnka-like forcing. It is known that in
the models not covered by this case, ADR holds. The result then requires more
of the theory of determinacy; in particular, that V = OD((< Θ)ω), and the
existence and uniqueness of supercompactness measures on Pω1

(γ) for γ < Θ.
As an application, we show that (under the same basic assumptions)

Scheepers’s countable-finite game over a set S is undetermined whenever S is
uncountable.
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Vopěnka forcing, Glimm-Effros dichotomy, countable-finite game.

The first author wants to thank the National Science Foundation for partial support through
grant DMS-0801189.

c©2010 American Mathematical Society

1
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1. Introduction

This paper deals with consequences of the strengthening AD
+ of the axiom of

determinacy AD for the general theory of sets, not just for sets of reals or sets of
sets of reals.

Particular versions of our results were known either in L(R) or under the addi-
tional assumption of ADR. They can be seen as generalizations of well-known facts
in the theory of Borel equivalence relations.

We consider “natural” models of AD
+, namely, those that satisfy V = L(P(R)),

although our results apply to a slightly larger class of models. The special form of
V is used in the argument, not just consequences of determinacy.

Although an acquaintance with determinacy is certainly desirable, we strive to
be reasonably self-contained and expect the paper to be accessible to readers with a
working understanding of forcing, and combinatorial and descriptive set theory. We
state explicitly all additional results we require, and provide enough background
to motivate our assumptions. Jech [15] and Moschovakis [25] are standard sources
for notation and definitions. For basic consequences of determinacy, some of which
we will use without comment, see Kanamori [16].

1.1. Results.
Our main result can be seen as a simultaneous generalization of the Harrington-
Marker-Shelah [10] theorem on Borel orderings, the Dilworth decomposition the-
orem of Foreman [7], the Glimm-Effros dichotomy of Harrington-Kechris-Louveau
[9], and the dichotomy theorem of Hjorth [13].

Recall that a pre-partial ordering ≤ on a set X (also called a quasi-ordering
on X) is a binary relation that is reflexive and transitive, though not necessarily
anti-symmetric. Recall that E0 is the equivalence relation on 2ω defined by

xE0y ⇐⇒ ∃n ∀m ≥ n
(
x(m) = y(m)

)
.

Theorem 1.1. Assume AD
+ holds and either V = L(T, R) for some T ⊂ ORD,

or else V = L(P(R)). Let (X,≤) be a pre-partially ordered set. Then exactly one
of the following holds:

(1) X is a well-ordered union of ≤-pre-chains.
(2) There are perfectly many ≤-incomparable elements of X, and there is an

order preserving injection of the quotient partial order induced by X into
(2α,≤lex) for some ordinal α.

(3) There are 2ω/E0 many ≤-incomparable elements of X.

The argument can be seen in a natural way as proving two dichotomy theorems,
Theorems 1.2 and 1.3.

Theorem 1.2. Assume AD
+ holds and either V = L(T, R) for some T ⊂ ORD,

or else V = L(P(R)). Let (X,≤) be a pre-partially ordered set. Then either:

(1) There are perfectly many ≤-incomparable elements of X, or else
(2) X is a well-ordered union of ≤-pre-chains.

Theorem 1.3. Assume AD
+ holds and either V = L(T, R) for some T ⊂ ORD,

or else V = L(P(R)). Let (X,≤) be a partially ordered set. Then either:

(1) There are 2ω/E0 many ≤-incomparable elements of X, or else
(2) There is an order preserving injection of (X,≤) into (2α,≤lex) for some

ordinal α.
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It is easy to see that R injects into 2ω/E0, and it is well-known that, under
determinacy, ω1 does not inject into R, and 2ω/E0 is not linearly orderable and
therefore cannot embed into any linearly orderable set. This shows that the cases
displayed above are mutually exclusive.

Theorem 1.2 generalizes a theorem of Foreman [7] where, among other results,
it is shown (in ZF + AD + DCR) that if ≤ is a Suslin/co-Suslin pre-partial ordering
of R without perfectly many incomparable elements, then R is a union of λ-many
Suslin sets, each pre-linearly-ordered by ≤, where λ is least such that both ≤ and
its complement are λ-Suslin.

By considering the case ≤= {(x, x) : x ∈ X}, the following corollary, a gener-
alization of the theorem of Silver [29] on co-analytic equivalence relations, follows
immediately:

Theorem 1.4. Assume AD
+ holds and either V = L(T, R) for some T ⊂ ORD,

or else V = L(P(R)). Let X be a set. Then either:

(1) R embeds into X, or else
(2) X is well-orderable.

The corollary gives us the following basis result for infinite cardinalities:

Corollary 1.5. Assume AD
+ holds and either V = L(T, R) for some T ⊂

ORD, or else V = L(P(R)). Let S be an infinite set. Then:

(1) ω embeds into S.
(2) If κ is a well-ordered cardinal, and S is strictly larger than κ, then either

κ+ or κ ∪ R embeds into S. In particular, ω1 and R form a basis for the
uncountable cardinals. �

Note that there are no assumptions in Theorems 1.2–1.4 on the set X . If, in
Theorem 1.4, the set X is a quotient of R by, say, a projective equivalence relation,
one can give additional information on the length of the well-ordering. This has
been investigated by several authors including Harrington-Sami [11], Ditzen [5],
Hjorth [12], and Schlicht [28].

Theorems 1.2 and 1.4 were our original results, and we consider Theorem 1.2
the main theorem of this paper. After writing a first version of the paper, we found
Hjorth [13], where the version of Theorem 1.4 for L(R) is attributed to Woodin.
Hjorth [13] investigates in L(R) what happens when alternative 1 in Theorem 1.4
holds but the quotient R/E0 does not embed into X ; much remains to be explored
in this area. We remark that the argument of Hjorth [13] easily combines with
our techniques, so we in fact have Theorem 1.3, a simultaneous generalization of
further results in Foreman [7], and the main result in Hjorth [13]. The following
corollary is immediate:

Corollary 1.6. Assume AD
+ holds and either V = L(T, R) for some T ⊂

ORD, or else V = L(P(R)). Let X be a set. Then either:

(1) 2ω/E0 embeds into X, or else
(2) X embeds into P(α) for some ordinal α. �

In particular:

Corollary 1.7. Assume AD
+ holds and either V = L(T, R) for some T ⊂

ORD, or else V = L(P(R)). Then a set is linearly orderable if and only if it embeds
into P(α) for some ordinal α. �
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Since it is slightly easier to follow, we arrange the exposition around the proof
of Theorem 1.4, and then explain the easy adjustments to the argument that allow
us to obtain Theorem 1.2, and the modifications required to the argument in Hjorth
[13] to obtain Theorem 1.3.

Weak versions of some of these results were known previously in the context of
ADR. It is thanks to the use of ∞-Borel codes in our arguments that we can extend
them in the way presented here.

As an application of our results, we show:

Theorem 1.8. Assume AD
+ holds and either V = L(T, R) for some T ⊂ ORD,

or else V = L(P(R)). Then the countable-finite game CF (S) is undetermined for
all uncountable sets S.

This is a slightly amusing situation in that we have a family of games that are
obviously determined under choice, but are undetermined in the natural models of
determinacy.

Theorem 1.8 seems of independent interest, since it is still open whether, under
choice, player II has a winning 2-tactic in CF (R). Theorem 1.8 seems to indicate
that the answer to this question only depends on the cardinal c rather than on any
particular structural properties of the set of reals.

We also present detailed proofs of two additional results, not due to us. First,
directly related to our approach is Woodin’s theorem characterizing the ∞-Borel
sets:

Theorem 1.9 (Woodin). Assume ZF + DCR + µ is a fine σ-complete measure
on Pω1

(R). Then a set of reals A is ∞-Borel iff A ∈ L(S, R), for some S ⊂ ORD.

For models of AD
+ of the form L(T, R) for some T ⊂ ORD, Theorems 1.2 and

1.3 are in fact consequences of the assumptions of Theorem 1.9, this we establish
via an analysis of ∞-Borel codes by means of Vopěnka-like forcing.

In the models not covered by this case, ADR holds, and the results require two
additional consequences of determinacy due to Woodin, namely, that

V = OD((< Θ)ω),

and the uniqueness of supercompactness measures on Pω1
(γ) for γ < Θ. We omit

the proofs of these two facts.
Second, we also present a proof of the following result of Jackson:

Theorem 1.10 (Jackson). Assume ACω(R). Then there is a countable pairing
function, i.e, a map

F : [P(R)]≤ω → P(R)

satisfying:

(1) F (A) is independent of any particular way A is enumerated, and
(2) Each A ∈ A is Wadge-reducible to F (A).

It is because of Theorem 1.10 that our approach to Theorem 1.2 in the ADR

case is different from the approach when V = L(T, R) for some T ⊂ ORD.

1.2. Organization of the paper.
Section 2 provides the required general background to understand our results, and
includes a brief (and perhaps overdue) motivation for AD

+, a quick discussion of
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the known methods for obtaining natural models of determinacy, and a description
of Scheepers’s countable-finite game.

In Section 3 we state without proofs some specific consequences of AD+ that
our argument needs. We also prove Jackson’s Theorem 1.10.

In Section 4 we prove Woodin’s Theorem 1.9, and the dichotomy Theorem
1.4. The argument divides in a natural way into two cases, according to whether
V = L(T, R) for some T ⊂ ORD, or V = L(P(R)). In the latter case, we may also
assume ADR, that we use to derive the result from the former case. The argument
in the ADR case was suggested by Hugh Woodin. We also explain how to modify
the argument to derive our main result, Theorem 1.2, and sketch how to extend
the argument in Hjorth [13] to prove Theorem 1.3. The deduction of Corollary 1.7
from the argument of Theorem 1.3 is standard.

In Section 5 we analyze the countable-finite game CF (S) in ZF, and use the
dichotomy Theorem 1.4 to show that in models of AD

+ of the forms stated above,
the game is undetermined for all uncountable sets S. Since trivially player II has
a winning strategy if S is countable, this provides us with a complete analysis of
the game in natural models of AD

+. We have written this section in a way that
readers mainly interested in this result, can follow the argument without needing
to understand the proofs of our main results.

Finally, in Section 6 we close with some open problems.

1.3. Acknowledgments.
We want to thank Marion Scheepers, for introducing us to the countable-finite
game, which led us to the results in this paper; Steve Jackson, for allowing us to
include in Subsection 3.3 his construction of a pairing function; Matthew Foreman,
for making us aware of Foreman [7], which led us to improve Theorem 1.4 into
Theorem 1.2; and Hugh Woodin, for developing the beautiful theory of AD

+, for
his key insight regarding the dichotomy Theorem 1.4 in the ADR case, and for
allowing us to include a proof of Theorem 1.9.

2. Preliminaries

The purpose of this section is to provide preliminary definitions and back-
ground. In particular, we present a brief discussion of AD

+ in Subsection 2.2, of
two methods for obtaining models of determinacy in Subsection 2.3, and of the
countable-finite game in Subsection 2.5.

2.1. Basic notation.
ORD denotes the class of ordinals. Whenever we write S ⊂ ORD, it is understood
that S is a set. Given a set X , we endow Xω with the (Tychonoff’s) product
topology of ω copies of the discrete space X , so basic open sets have the form

[s] = {f ∈ Xω
: s ( f},

where s ∈ X<ω. This will always be the case, even if X is an ordinal or carries
some other natural topology.

R will always mean Baire space, ωω, that is homeomorphic to the set of irra-
tional numbers.

Definition 2.1. A tree T on a finite product
∏

i<n Xi (typically for us, n = 1
or 2) is a subset of (

∏
i<n Xi)

<ω that is closed under restrictions. It is customary

to identify T with a subset of
∏

i<n(X<ω
i ) such that:
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(1) Whenever (pi : i < n) ∈ T , then all pi, i < n, have the same length.
(2) T is closed under restrictions, in the following sense: If

p = (pi : i < n) ∈ T

and m is smaller than the common length of the pi, i < n, then

p ↾ m := (pi ↾ m : i < n) ∈ T.

If T is a tree on X × Y and x ∈ X<ω, then

Tx = {y ∈ Y <ω
: (x, y) ∈ T }

and if x ∈ Xω, then

Tx =
⋃

n

Tx↾n,

so Tx is a tree on Y .
We denote by [T ] the set of infinite branches through T and, if T is a tree on

X × Y , then

p[T ] = {f ∈ Xω
: ∃g ∈ Y ω

(
(f, g) ∈ [T ]

)
} = {f :Tf is ill-founded}.

As usual, an infinite branch through T is a function f : ω → T such that for
all n, f ↾ n ∈ T .

2.1.1. Games.
We deal with infinite games, all following a similar format: For some (fixed) set
X , two players I and II alternate making moves for ω many innings, with I moving
first. In each move, the corresponding player plays an element of X :

I x0 x2 . . .
II x1 x3

(Specific games may impose restrictions on what elements are allowed as the
play progresses.) This way both players collaborate to produce an element x =
〈x0, x1, x2, . . . 〉 of Xω.

Given A ⊆ Xω, we define the game aX(A) by following the format just de-
scribed, and declaring that player I wins iff x ∈ A.

A strategy is a function σ : X<ω → X . Player I follows the strategy σ iff each
move of I is dictated by σ and the previous moves of player II:

I σ(〈〉) σ(〈x0〉) σ(〈x0, x1〉)
II x0 x1 . . .

Similarly one defines when II follows σ. A strategy σ is winning for I in a game
a on X iff, for all x = 〈x0, x1, . . . 〉 ∈ Xω, player I wins the run

σ ∗ x

of the game, produced by I following σ against player II, who plays x bit by bit.
Similarly we define when σ is winning for II.

We say that a game is determined when there is a winning strategy for one of
the players. When the game is aX(A) for some A ⊆ Xω, it is customary to say
that A is determined.

Definition 2.2 (AD). In ZF, the axiom of determinacy, AD, is the state-
ment that all A ⊆ R are determined.
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A standard consequence of AD is the perfect set property for sets of reals: Any
A ⊆ R is either countable or contains a perfect subset. It follows that AD is
incompatible with the existence of a well-ordering of the reals and, in fact, with the
weaker statement ω1 � R, that ω1 injects (or embeds) into R.

Since determinacy contradicts the axiom of choice, it should be understood as
holding not in the universe V of all sets but rather in particular inner models, such
as L(R). When our results below assume, for example, that V = L(P(R)) and that
AD holds, this could then be understood as a result about all inner models M of
ZF that satisfy AD + V = L(P(R)).

2.2. AD
+.

At first the study of models of determinacy might appear to be a strange enterprise.
However, as the theory develops, it becomes clear that one is really studying the
properties of “definable” sets of reals. The notion of definability is inherently vague;
however, under appropriate large cardinal assumptions, any reasonable notion of “A
is a definable set of reals” is equivalent to “A is in an inner model of determinacy
containing all the reals.” Thus the study of properties of definable sets of reals
becomes the focus.

2.2.1. The theory AD
+.

AD+ is a strengthening of AD. The theory of models of AD+ is due to Woodin, see
for example Woodin [34, Section 9.1]. All unattributed results and definitions in
this section are either folklore, or can be safely attributed to Woodin.

The starting point for this study is the collection of Suslin sets.

Definition 2.3. A set A ⊆ Xω is κ-Suslin iff A = p[S] for some tree S on
X × κ.

A set A is co-κ-Suslin if Xω \ A is κ-Suslin and we say that A is Suslin/co-
Suslin if A is both κ-Suslin and co-κ-Suslin for some κ. That A is κ-Suslin is also
expressed by saying that A has a κ-(semi)-scale. In this paper, we have no use for
scales other than the incumbent Suslin representation, so we say no more about
them.

Let

Sλ = {A ⊆ R :A is λ-Suslin}.

Being Suslin is obviously one notion of being definable, and the classically studied
definable sets of reals are all Suslin assuming enough determinacy or large cardinals.
Actually, choice implies that all sets of reals are Suslin, so under choice one actually
studies which sets of reals are in Sλ for specific cardinals λ. Without choice, it is
not necessarily the case that all sets of reals are Suslin.

Definition 2.4. κ is a Suslin cardinal iff Sκ \
⋃

λ<κ Sλ 6= ∅.

For example, one can prove in ZF that the first two Suslin cardinals are ω and
ω1. Also, Sω = Σ

˜
1
1, the class of projections of closed subsets of R2; note that the

notion of Σ
˜

1
1 sets also makes sense for subsets of Rn for n > 1. Assuming some

determinacy, then Sω1
= Σ

˜
1
2, the class of projections of complements of Σ

˜
1
1 sets.

It is a classical theorem of Suslin that “A is Borel” is equivalent to “A is
ω-Suslin/co-Suslin.” Being Borel is a notion of definability which is obviously ex-
tendible by taking longer well-ordered unions. This leads to the notion of ∞-Borel
sets, that we describe carefully below, in § 2.2.3.
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For now, define “A is ∞-Borel with code (φ, S)” to mean that S ⊂ ORD, φ is
a formula in the language of set theory and, for any x ∈ R,

x ∈ A ⇐⇒ L[S, x] |= φ(S, x).

Clearly, if T witnesses that A is Suslin, then T also witnesses that A is ∞-Borel,
since

x ∈ A ⇐⇒ L[T, x] |= Tx is ill-founded.

There are multiple senses in which a code for A is easy to calculate from A, assuming
that A is ∞-Borel. One of these will be discussed later, see Theorem 3.4 and § 4.1.1,
and another is given by Theorem 2.5 below.

First, we need a couple of basic notions. Define

Θ = sup{| · |≤ : ≤ is a pre-well-ordering of a subset of R},

where | · |≤ is the rank of the pre-well-ordering ≤. Equivalently,

Θ = sup{α: ∃f : R −−→
onto

α}.

Suppose that A ⊆ Rn for some n ∈ ω, and define Σ
˜

1
1(A) as the smallest col-

lection of subsets of Rm with m varying in ω, that contains A and is closed under
integer quantification, finite unions and intersections, continuous reduction, and ex-
istential real quantification. As usual, define Π

˜
1
1(A) to be the class of complements

of Σ
˜

1
1(A) sets, Σ

˜
1
2(A) = ∃RΠ

˜
1
1(A), etc. Each of these classes has a canonical uni-

versal set U1
n(A). See Moschovakis [25] for notation, the definition of universality,

and this fact.
If ≤ is a pre-well-order of length γ, then we say that S ⊆ γ is Σ

˜
1
n(≤) in the

codes iff there is a real x such that for ξ ∈ γ,

ξ ∈ S ⇐⇒ ∃y
[
|y|≤ = ξ and U1

n(≤)(x, y)
]
.

The Moschovakis Coding Lemma, see Moschovakis [25], states that, under deter-
minacy, given any pre-well-order ≤ of R of length γ, any S ⊆ γ is Σ

˜
1
1(≤) in the

codes.
This yields that if M and N are transitive models of AD with the same reals, and

γ < min{ΘM , ΘN}, then P(γ)M = P(γ)N . We then have the following regarding
∞-Borel codes.

Theorem 2.5 (Woodin). Assume AD and that A is ∞-Borel. Then there is a
γ < Θ, a pre-well-order ≤ in Π

˜
1
2(A) of length γ, and a code S ⊆ γ for A. By the

coding Lemma, S is Σ
˜

1
1(≤) in the codes. So S is Σ

˜
1
3(A) in the codes. �

In particular, if M and N are transitive models of AD with RM = RN , and
A ∈ M is Suslin (or just ∞-Borel) in N , then A is ∞-Borel in M , although it need
not be the case that A is also Suslin in M .

The following is essentially contained in results of Kechris-Kleinberg-Moschova-
kis-Woodin [17], see also Jackson [14].

Theorem 2.6. Assume AD, and suppose that λ < Θ and that A ⊆ λω is
Suslin/co-Suslin. Then the game aλ(A) is determined. �

Suppose that M is a transitive model of AD, λ < ΘM , and f : λω → R is in M
and continuous. Let A be a set of reals in M , and consider the (A, f)-induced game
on λ, aλ(f−1[A]). Suppose moreover that there is a transitive model N of AD with
the same reals as M , and such that A is Suslin/co-Suslin in N . Then, by Theorem
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2.6, in N , aλ(f−1[A]) is determined and hence, by the Coding Lemma, this game
is determined in M , since the winning strategy can be viewed as a subset of λ.

Finally, recall that Suslin subsets R ⊆ R2 can be uniformized, see Moschovakis
[25], so that there is a partial function f : R → R such that whenever x ∈ R and
there is a y ∈ R with xRy then, in fact, x ∈ dom(f) and xRf(x).

Suppose that M is a transitive model of AD, and that R ⊆ R2 is a relation in
M such that for any x ∈ R there is a y ∈ R such that xRy. If there is a transitive
model N of AD, with the same reals as M , and such that R is Suslin in N , then
R is uniformizable in N . If f is a uniformizing function for R in N , then for any
real x0 ∈ N there is then a real x ∈ N coding the sequence 〈xn :n < ω〉 where
xn+1 = f(xn) for all n ∈ ω. Since M and N have the same reals, then x and
therefore 〈xn :n < ω〉 are in M . This shows that DCR holds in M (see § 2.2.2
below for the definition of DCR).

In summary, we have that if M is a transitive model of AD such that for each
A ∈ P(R)M , there is a transitive N such that:

(1) N models AD,
(2) N has the same reals as M and,
(3) in N , A is Suslin,

then the following hold in M :

• DCR.
• All sets of reals are ∞-Borel.
• For all ordinals λ < ΘM , all continuous functions f : λω → R, and all

A ⊆ R, the (A, f)-induced game on λ is determined.

This situation is axiomatized by AD+.

Definition 2.7 (Woodin). Over the base theory ZF, AD
+ is the conjunction

of

• DCR.
• All sets of reals are ∞-Borel.
• < Θ-ordinal determinacy, i.e., all (A, f)-induced games on ordinals λ < Θ

are determined, for any A ⊆ R and any continuous f : λω → R.

The following is a consequence of the preceding discussion.

Theorem 2.8. If M is a transitive model of ZF + AD such that every set of
reals in M is Suslin in some transitive model N of ZF + AD with the same reals,
then M |= AD

+. �

In fact, in Theorem 2.8, it suffices that M and N satisfy the restriction of ZF

to Σn sentences, for an appropriate sufficiently large value of n.

Remark 2.9. Suppose that M and N are transitive models of AD with the
same reals. Let θ = min{ΘM , ΘN}. Then, by the Coding Lemma,

( ⋃

γ<θ

P(γ)
)M

=
( ⋃

γ<θ

P(γ)
)N

.

In particular, if A ∈ M ∩ N is a set of reals, and A is κ-Suslin in N , for some
κ < ΘM , then A is κ-Suslin in M as well.

Recall that Wadge-reducibility of sets of reals is given by

A ≤W B
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iff there is a continuous function f : R → R such that A = f−1[B]. It is a basic
consequence of determinacy that ≤W is well-founded. We can then assign a rank
to each set of reals. The rank of ≤W itself is exactly Θ. Obviously, a continuous
reduction can be coded by a real. With M and N as above, we then have that if
A ∈ M ∩N is a set of reals, then |A|M≤W

= |A|N≤W
. It follows that if A is not Suslin

in M but it is Suslin in N , then P(R)M ( P(R)N and ΘM < ΘN .

A benefit of considering AD
+ rather than AD is that much of the fine analysis

of L(R) under the assumption of determinacy actually lifts to models of the form
L(P(R)) under the assumption of AD

+. Whether AD
+ actually goes beyond AD is

a delicate question, still open. We will briefly touch on this below.
2.2.2. DCR.

Recall that DCR, or DCω(R), is the statement that whenever R ⊆ R2 is such that
for any real x there is a y with xRy, then there is a function f : ω → R such that
for all n, f(n)Rf(n + 1). It is easy to see that this is equivalent to the claim that
any tree T on R with no end nodes has an infinite branch.

Two straightforward (and well-known) observations are worth making: First, in
ZF, assume that DCR holds and that T ⊂ ORD. Then DCR holds in L(T, R). Second,
if DCR holds in L(T, R) then, in fact, L(T, R) satisfies the axiom of dependent
choices, DC.

It is shown in Solovay [30] that for models satisfying V = L(P(R)) and in fact,
more generally, for models of V = OD(P(R)), if AD + DCR holds, then

cf(Θ) > ω =⇒ DC.

Under AD, there are interesting relationships and variations of DCR, due to the
existence of certain measures. Let D denote the set of Turing degrees. A set A ⊆ D

is a cone iff there is an a ∈ D such that

A = {b ∈ D : a ≤T b},

where ≤T denotes the relation of Turing reducibility. Define the Martin measure
µM on D, by

A ∈ µM ⇐⇒ A contains a Turing cone.

Martin proved that µM is a σ-complete measure on D. We have:

DC =⇒
∏

ORD/µM is well-founded =⇒
∏

ω1/µM is well-founded =⇒ DCR.

The first and second implications are trivial. Here is a quick sketch of the third:

Lemma 2.10 (Woodin). Over ZF, assume that µM is a measure, and that∏
ω1/µM is well-founded. Then DCR holds.

Proof. Let T be a tree on R. For d ∈ D, let Td be the tree T restricted to
nodes recursive in d. Td is in essence a tree on ω and, since DCω(ω) certainly holds,
Td is ill-founded iff Td has an infinite branch. If Td is ill-founded for any d, then
there is an infinite branch through T , so assume that all trees Td are well-founded.
For each ~x ∈ R<ω, we can define a partial function

h~x : D → ω1

by
h~x(d) = rkTd

(~x),



A TRICHOTOMY THEOREM IN NATURAL MODELS OF AD
+ 11

leaving h~x(d) undefined if ~x /∈ Td. Note that h~x(d) is defined for µM -a.e. degree d.
By assumption, [h~x]µM

is an ordinal α~x, and the map

~x 7→ α~x

ranks the original tree T and hence T is not a counterexample to DCR. �

Clearly, in this argument, the Turing degree measure could be replaced by any
σ-complete, fine measure µ on Pω1

(R) satisfying that
∏

ω1/µ is well-founded.
Under AD

+ − DCR we actually have the equivalence
∏

ORD/µM is well-founded ⇐⇒ DCR.

The left-hand side of this equivalence was part of Woodin’s original formalization
of AD

+.
There are models of AD

+ + cf(Θ) = ω. In these models, DC fails, so just the
well-foundedness of ultrapowers by fine measures on Pω1

(R) does not give DC.
2.2.3. ∞-Borel sets.

Essentially the ∞-Borel sets are the result of extending the usual Borel hierarchy
by allowing arbitrary well-ordered unions.

Work in ZF. Without choice it is better to work with “codes” for sets (descrip-
tions of their transfinite Borel construction) rather than with the sets themselves
(the output of such a construction), hence an ∞-Borel set is any set with an ∞-

Borel code. For example, it might be the case that for all α < γ, Aα is ∞-Borel,
but there is no sequence of codes cα and hence

⋃
α<γ Aα might not be ∞-Borel.

There are several equivalent definitions of ∞-Borel codes. For definiteness, we
present an official version, and then some variants, and leave it up to the reader to
check that the notions are equivalent, and even locally equivalent when required.

Definition 2.11. Fix a countable set of objects

N =
{
¬,

∨}
∪ {ṅ :n ∈ ω}

with N disjoint from ORD; e.g., ¬ = (0, 0),
∨

= (0, 1), and ṅ = (1, n) would
suffice. The ∞-Borel codes (BC) are defined recursively by: T ∈ BC iff one of the
following holds:

• T = 〈ṅ〉.
• T =

∨
α<κ Tα = {〈

∨
, α〉⌢s :α < κ and s ∈ Tα} where each Tα ∈ BC.

• T = ¬S = {〈¬〉⌢s : s ∈ S} where S ∈ BC.

Hence a code is essentially a well-founded tree on ORD∪N , and we will identify
∞-Borel codes with these trees without comment. Set

BCκ = BC ∩ {T :T is a well-founded tree of rank < κ}.

For κ a limit ordinal, BCκ is closed under finite joins. If cf(κ) > ω, then BCκ

is σ-closed and, if κ is regular, then BCκ is < κ-closed. Clearly for regular κ,
BCκ = BC ∩ H(κ).

Definition 2.12. A set of reals is ∞-Borel iff it is the interpretation of some
T ∈ BC. We denote this interpretation by AT , and define it by recursion as follows:

• Aṅ = {x ∈ R :x(n0) = n1}, where n ↔ (n0, n1) is a recursive bijection
between R and R2.

• A∨
α<κ

Tα
=

⋃
α<κ ATα

.
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• A¬T = R \ AT .

The predicates “T ∈ BC” and “x ∈ AT ” are Σ1 and absolute for any model of
KP+ Σ1-separation. (Just KP is not enough, since the code must be well-founded.)

Let B∞ denote the collection of ∞-Borel sets, and let Bκ be the subset of B∞

consisting of those sets with codes in BCκ. In particular, if ω1 is regular, then Bω1

is just the algebra of Borel sets.
The following gives a few alternate definitions for the ∞-Borel sets. The equiv-

alence of the first three is local in the sense that it is absolute to models of KP+Σ1-
separation. The equivalence with the fourth one is still reasonably local, certainly
absolute to models of ZF, and the definition itself can be formalized in any theory
strong enough to allow the definability of the satisfiability relation for the classes
L[S, x].

• A is ∞-Borel.
• There is a tree T on κ×ω such that A(x) iff player I has a winning strategy

in the game aT,x given by: Players I and II take turns playing ordinals
αi < κ so in the end they play out f ∈ κω. Player I wins iff (f, x) ∈ [T ].
Note that the game aT,x is closed for I and hence determined.

(In this case T is taken as the code and AT = {x : I has a winning
strategy in aT,x}.)

• There is a Σ1 formula φ (in the language of set theory, with two free
variables) and S ⊆ γ for some γ, such that

A(x) ⇐⇒ L[S, x] |= φ(S, x).

(Here (φ, S) is taken to be the code and A = Aφ,S is the set coded.)
• There is a formula φ and S ⊆ γ for some γ, such that

A(x) ⇐⇒ L[S, x] |= φ(S, x).

(Once again, (φ, S) is taken to be the code and A = Aφ,S is the set coded.)

It is thus natural to identify codes with sets of ordinals, and we will often do
so.

For example, as mentioned above, Suslin sets are ∞-Borel. On the other hand,
Suslin subsets of R × R can be uniformized, while in general there can be non-
uniformizable sets in a model of AD+, so it is not true that all ∞-Borel sets are
Suslin.

Under fairly mild assumptions, being ∞-Borel already entails many of the nice
regularity properties shared by the Borel sets. In particular, suppose that S is a
code witnessing that AS is ∞-Borel, and suppose that

|P(Pc) ∩ L[S]|V = ω,

where Pc = Add(ω, 1) is the Cohen poset (essentially ω<ω). Then AS has the

property of Baire. Similarly, if |P(PL) ∩ L[S]|V = ω, where PL = Ranω is random
forcing, then AS is Lebesgue measurable. In general, if ωV

1 is inaccessible in L[S],
then AS has all the usual regularity properties.

Note that Theorem 1.9 provides us, over the base theory ZF+DCR+“there is a
fine measure on Pω1

(R),” with yet another equivalence for the notion of ∞-Borel;
however, we know of no reasonable sense in which this version would be local as
the previous ones.
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2.2.4. Ordinal determinacy.
AD states that all games on ω are determined. One may wonder whether it is
consistent with ZF that, more generally, all games on ordinals are determined.
This is not the case; in fact, it is well-known that there is an undetermined game
on ω1.

To see this, consider two cases. If AD fails, we are done, and there is in fact
an undetermined game on ω. If AD holds, then ω1 6� R. Consider the game where
player I begins by playing some α < ω1, and player II plays bit by bit a real coding
ω + α. Since any countable ordinal can be coded by a real, it is clear that player I
cannot have a winning strategy. Were this game determined, player II would have
a winning strategy σ. But it is straightforward to define from σ an uncountable
injective sequence of reals, and we reach a contradiction.

It follows that some care is needed in the way the payoff of ordinal games is
chosen if we want them to be determined, and this is why < Θ-determinacy is
stated as above.

Note that ordinal determinacy indeed implies determinacy, so AD
+ strengthens

AD. One consequence of ordinal determinacy that we will use is the following:

Theorem 2.13 (Woodin). Assume AD
+. Then, for every Suslin cardinal κ,

there is a unique normal fine measure µκ on Pω1
(κ). In particular, µκ ∈ OD. �

If κ is below the supremum of the Suslin cardinals, this follows from Woo-
din [33], where games on ordinals are simulated by real games, in particular,
giving the result under ADR (which is the case that interests us). For the AD+

result, Woodin’s argument must be integrated with the generic coding techniques
in Kechris-Woodin [19] to produce ordinal games that are determined under AD+.
The result is that the supercompactness measure coincides with the weak club filter,
where S ⊆ Pω1

(κ) a is weak club iff
⋃

S = κ and, whenever σ0 ⊆ σ1 ⊆ · · · are in
S, then

⋃
i∈ω σi ∈ S.

Let κ be a Suslin cardinal. For any γ < κ, define µγ = πκ,γ(µκ) where

πκ,γ : Pω1
(κ) → Pω1

(γ)

is defined by σ 7→ σ ∩ γ. This gives a canonical sequence of ω1-supercompactness
measures on all γ less than the supremum of the Suslin cardinals.

2.2.5. ADR.
Over ZF, ADR is the assertion that for all A ⊆ Rω, the game aR(A) is determined.

DCR is an obvious consequence of ADR, and Woodin has shown that ADR

yields that all sets of reals are ∞-Borel. However, as far as we know, the only
proof of ADR =⇒ AD+ uses an argument of Becker [2] for getting scales from
uniformization, and Becker’s proof uses DC. The minimal model of ADR does
not satisfy DC, but does satisfy AD+; this requires a different argument basically
analysing the strength of the least place where AD + ¬AD+ could hold. Woodin
has shown from ADR + AD+ that all sets are Suslin, without appeal to Becker’s
argument. At the moment, the lack of a proof (not assuming DC) that ADR =⇒
AD

+, and hence that ADR =⇒ all sets are Suslin , seems to be a weakness in the
theory. To make results easy to state, from here on ADR will mean ADR + AD+.

Let
κ∞ = sup{κ :κ is a Suslin cardinal}.

Assuming AD,
κ∞ = Θ ⇐⇒ all sets of reals are Suslin.
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Theorem 2.14 (Steel, Woodin). The following hold in ZF:

(1) AD + DCR implies that the Suslin cardinals are closed below κ∞.
(2) ADR is equivalent to AD + κ∞ = Θ.
(3) AD+ is equivalent to AD + DCR together with “the Suslin cardinals are

closed below Θ.” �

(For a sketch of the proof, see Ketchersid [20].)
Thus, at least in the presence of DCR, if there is a model of AD + ¬AD

+, then
in this model κ∞ < Θ and κ∞ is not a Suslin cardinal. The main open problem in
the theory of AD is whether AD does in fact (over ZF) imply AD

+.
2.2.6. L(R).

It is not immediate even that L(R) |= AD → AD
+. This is the content of the

following results:

Theorem 2.15 (Kechris [18]). Assume V = L(R) |= ZF+AD. Then DCR (and
therefore DC) holds. �

As mentioned previously, in the context of choice, it is automatic that DC holds
in L(R), regardless of whether AD does. Woodin has found a new proof of Kechris’s
result using his celebrated derived model theorem, stated in Subsection 2.3.

The basic fine structure for L(R) yields that, working in L(R), if Γ(x) is the
lightface pointclass consisting of all sets of reals Σ1-definable from x, then Γ(x) =
Σ2

1(x), the collection of all sets A of reals such that

y ∈ A ⇐⇒ ∃B ⊆ R φ(B, x, y)

for some Π1
2 formula φ. As usual, Π2

1(x) is the collection of complements of Σ2
1(x)

sets, and ∆2
1(x) is the collection of sets that are both Σ2

1(x) and Π2
1(x).

Solovay’s basis theorem, see Moschovakis [25], goes further to assert that the
witnessing set can in fact be chosen to be ∆2

1(x), that is,

x ∈ A ⇐⇒ ∃B ∈ ∆2
1(x) φ(B, x).

In Martin-Steel [23], it is shown that, under AD, Σ
L(R)
1 has the scale property.

For us, this means that every set in Σ
L(R)
1 is Suslin. Combining these two results

gives that any Σ
L(R)
1 fact about a real x has a Suslin/co-Suslin witness.

Let n be as in the paragraph following Theorem 2.8. The theory ZFn resulting
from only considering those axioms of ZF that are at most Σn sentences, is finitely
axiomatizable.

Suppose L(R) failed to satisfy AD+. Then the following Σ
L(R)
1 statement holds:

∃M
[
R ⊆ M and M |= ZFn + ¬AD

+
]
.

By the basis theorem together with the Martin-Steel result, the witness M can
be coded by a Suslin/co-Suslin set. Thus M ⊂ L(R) are two transitive models of
ZFn+AD with the same reals, and one can check that each set of reals in M is Suslin
in L(R). It follows from Theorem 2.8 that M |= AD+ and this is a contradiction.
This proves:

Corollary 2.16. L(R) |= AD → AD
+. �

Two results that hold for L(R) whose appropriate generalizations are relevant
to our results are the fact that in L(R) every set is ordinal definable from a real,
and the following:
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Theorem 2.17 (Woodin). L(R) |= ∃S ⊆ Θ (HOD = L[S]). �

The set S as in Theorem 2.17 is obtained by a version of Vopěnka forcing due

to Woodin that can add R to HOD
L(R). Variants of this forcing are very useful

at different points during the development of the AD
+ theory, the general version

being:

Theorem 2.18 (Woodin). Suppose that AD
+ holds and that V = L(P(R)).

Then there is S ⊆ Θ such that HOD = L[S]. �

S can be taken to code the Σ1-theory of Θ in L(P(R)). If V = L(T, R) for
some set T ⊂ ORD, then S can be obtained by a generalization of the version of
Vopěnka forcing hinted at above. The stronger statement that P(R) ⊂ L(S, R) is
false in general. For example, it implies that ADR fails, as claimed in Woodin [34,
Theorem 9.22].

2.3. Obtaining models of AD
+.

Here we briefly discuss two methods by which (transitive, proper class) models of
AD

+ (that contain al the reals) can be obtained; this illustrates that there is a wide
class of natural models to which our results apply:

2.3.1. The derived model theorem.
The best understood models of AD

+ come from a construction due to Woodin, the
derived model theorem. In a precise sense, this is our only source of natural models
of AD

+.
The derived model theorem carries two parts, first obtaining models of determi-

nacy from Woodin cardinals, and second recovering models of choice with Woodin
cardinals from models of determinacy. Although the full result remains unpub-
lished, proofs of a weaker version can be found in Steel [31, 32] and Koellner-
Woodin [21].

Theorem 2.19 (Woodin). (ZFC) Suppose δ is a limit of Woodin cardinals. Let
V (R∗) be a symmetric extension of V for Coll(ω, < δ), so

R∗ =
⋃

α<δ

RV [G↾α]

for some Coll(ω, < δ)-generic G over V . Then:

(1) R∗ = RV (R∗), V (R∗) 6|= AC, and V (R∗) |= DC iff δ is regular.
(2) Define

Γ = {A ⊆ R∗
:A ∈ V (R∗) and L(A, R∗) |= AD

+ }.

Then L(Γ, R∗) |= AD
+. �

Notice that
L(Γ, R∗) |= V = L(P(R))

and that, in particular, the theorem implies Γ 6= ∅.

Remark 2.20. If δ as above is singular, then R∗ ( RV [G].

It is the fact that the theorem admits a converse that makes it the optimal
result of its kind, in the sense that it captures all the L(P(R))-models of AD

+:

Theorem 2.21 (Woodin). Suppose V = L(P(R)) + AD
+. There exists P such

that, if G is P-generic over V then, in V [G], one can define an inner model N |=
ZFC such that:
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(1) ωV
1 is limit of Woodin cardinals in N .

(2) N(RV ) is a symmetric extension of N for Coll(ω, < ωV
1 ).

(3) V = N(RV ). �

Remark 2.22. N is not an inner model of V . If it were, every real of V would
be in a set-generic extension of a (fixed) inner model of V by a forcing of size < ωV

1 .
AD prevents this from happening, as it is a standard consequence of determinacy
that any subset of ω1 is constructible from a real.

The point here is that to be a symmetric extension is first order, as the follow-
ing well-known result of Woodin indicates (see Bagaria-Woodin [1] or Di Prisco-
Todorčević [4] for a proof):

Lemma 2.23 (Woodin). Suppose N |= ZFC, let δ be a strong limit cardinal of
N , and let σ ⊆ R. Then N(σ) is a symmetric extension of N for Coll(ω, < δ) iff

(1) Whenever x, y ∈ σ, then R ∩ N [x, y] ⊆ σ,
(2) Whenever x ∈ σ, then x is P-generic over N for some P ∈ N such that

|P|N < δ, and

(3) supx∈σ ω
N [x]
1 = δ. �

Let us again emphasize that all the models obtained using the construction
described in the derived model theorem satisfy V = L(P(R)), and they also satisfy
AD

+.
2.3.2. Homogeneous trees.

The second method we want to mention is via homogeneously Suslin representations
in the presence of large cardinals. We briefly recall the required definitions. The
key notion of homogeneous tree was isolated independently by Kechris and Martin
from careful examination of Martin’s proof of Π

˜
1
1-determinacy from a measurable

cardinal.

Definition 2.24. Let 1 ≤ n ≤ m < ω. For X a set and A ⊆ Xm, let

A ↾ n := { u ↾ n :u ∈ A }.

Let κ be a cardinal, and let µ and ν be measures on κn and κm, respectively. We
say that µ and ν are compatible iff

∀A ⊆ κm (A ∈ ν ⇒ A ↾ n ∈ µ)

or, equivalently, iff B ∈ µ ⇒ { u ∈ κm
: u ↾ n ∈ B } ∈ ν.

Definition 2.25. Let T be a tree on ω × κ. We say that 〈µu :u ∈ ω<ω 〉 is a
homogeneity system for T iff

(1) For each u ∈ ω<ω, µu is an ω1-complete ultrafilter on Tu (i.e., Tu ∈ µu),
(2) For each u ⊑ v ∈ ω<ω, µu and µv are compatible, and
(3) For any x ∈ R, if x ∈ p[T ] and Ai ∈ µx↾i for all i < ω, then there is

f : ω → κ such that ∀i (f ↾ i ∈ Ai).

We say that T is a homogeneous tree just in case it admits a homogeneity
system, and we say it is κ-homogeneous iff it admits a homogeneity system

〈
µu : u ∈ ω<ω

〉

where each µu is κ-complete.
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Note that if µ is a homogeneity system for T and x /∈ p[T ] then, setting Ai =
Tx↾i, there is no f such that ∀i (f ↾ i ∈ Ai). Thus, item 3 of Definition 2.25 gives a
characterization of membership in p[T ].

The key fact relating determinacy and the notion of homogeneous trees is the
following:

Theorem 2.26 (Martin). If A = p[T ] for some homogeneous tree T , then
aω(A) is determined. �

Definition 2.27. A set A ⊆ R is homogeneously Suslin iff there is a ho-
mogeneous tree T such that A = p[T ].

A is κ-homogeneously Suslin (or κ-homogeneous) iff it is the projection
of a κ-homogeneous tree.

A is ∞-homogeneous iff it is κ-homogeneous for all κ.

For example, Π
˜

1
1-sets are homogeneously Suslin: For any measurable κ and any

Π
˜

1
1-set A, there is a κ-homogeneous tree T on ω × κ with A = p[T ].

All the proofs of determinacy from large cardinals have actually shown that
the pointclasses in question are not just determined, but consist of homogeneously
Suslin sets. Under large cardinal hypotheses, the ∞-homogeneous sets are closed
under nice operations. For example:

Theorem 2.28 (Martin-Steel [24]). Let δ be a Woodin cardinal. Suppose that
A ⊆ R2 is δ+-homogeneous and

B = ∃R¬A := {x :∃y ((x, y) /∈ A)}.

Then B is κ-homogeneous for all κ < δ. �

This allows us to identify, from enough large cardinals, nice pointclasses Γ ⊆
P(R) such that

L(Γ, R) |= AD.

In fact, although this is not a straightforward adaptation of the sketch presented
for L(R), the arguments establishing that sets in Γ are (sufficiently) homogeneous
also allow one to show that L(Γ, R) |= AD

+.
Notice that, once again,

L(Γ, R) |= V = L(P(R)).

A posteriori, it follows that these models arise by applying the derived model the-
orem to a suitable forcing extension of an inner model of V .

2.4. Canonical models of AD
+.

AD+ is essentially about sets of reals; in particular, if AD+ holds, then it holds in
L(P(R)). We informally say that models of this form are natural and note that,
for investigating global consequences of AD+, these are indeed the natural inner
models to concentrate on.

There are however, other canonical inner models of AD+, typically of the form
L(P(R))[X ] for various nice X . Niceness here means that the models satisfy an
appropriate version of condensation. For example, L(R)[µ] where µ a fine measure
on Pω1

(R) which is moreover normal in the sense of Solovay [30]; or L(R)[E ] for E a
coherent sequence of extenders. We will not consider these more general structures
in this paper.
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As explained in the previous subsection, the best known methods of producing
models of determinacy actually give us models of AD

+ + V = L(P(R)). Of course,
not all known models of AD

+ have a nice canonical form, but they are typically
obtained from these models, for example, by going to a forcing extension, as in
Woodin’s example in Kechris [18] of a model of AD

+ + ¬ACω obtained by forcing
over L(R).

Woodin has shown that any model of AD
+ of the form L(P(R)) either satisfies

V = L(T, R) for some set T ⊂ ORD, or else it is a model of ADR; a precise statement
will be given in Theorem 3.1 below. This may help explain the hypothesis in the
statement of our results in Subsection 1.1.

2.5. The game CF (S).
Scheepers [26] introduced the countable-finite game around 1991. It is a perfect
information, ω-length, two-player game relative to a set S. We denote it by CF (S).

I O0 O1 . . .
II T0 T1

At move n, player I plays On, a countable subset of S, and player II responds
with Tn, a finite subset of S.

Player II wins iff
⋃

n On ⊆
⋃

n Tn.
Obviously, under choice, player II has a winning strategy. Scheepers [26, 27]

investigates what happens when the notion of strategy is replaced with the more
restrictive notion of k-tactic for some k < ω: As opposed to strategies, that receive
as input the whole sequence of moves made by the opponent, in a k-tactic, only the
previous k moves of the opponent are considered.

Tactics being much more restrictive, additional conditions are then imposed on
the players:

• Player I must play increasing sets: O0 ( O1 ( . . . .
• Player II wins iff

⋃
n On =

⋃
n Tn.

This setting is not completely understood yet. In ZFC:

• Player I does not have a winning strategy, and therefore no winning k-
tactic for any k.

• Player II does not have a winning 1-tactic for any infinite S. (Scheepers
[27])

• Player II has a winning 2-tactic for S if |S| < ℵω. (Koszmider [22])
• Under reasonably mild assumptions (namely, that all singular cardinals

κ of cofinality ω are strong limit cardinals and carry a very weak square
sequence in the sense of Foreman-Magidor [8]), player II has a winning
2-tactic for any S. (Koszmider [22])

• It is still open whether (in ZFC) player II has a winning 2-tactic for
CF (ℵω) or for CF (R).

In view of the open problems just mentioned, it is natural to consider the
countable-finite game in the absence of choice, to help clarify whether AC really
plays a role in these problems.

This was our original motivation for showing the dichotomy Theorem 1.4, so
that we could deduce Theorem 1.8 explaining that in natural models of determinacy,
the game CF (S) is undetermined for all uncountable sets S.
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3. AD+

We work in ZF for the remainder of the paper. In this section we state without
proof some consequences of AD

+ that we require.

3.1. Natural models of AD
+.

To help explain the hypothesis of Theorems 1.1–1.3, we recall the following result.
Given a set T ⊂ ORD, the T -degree measure µT is defined as follows: First,

say that a ≤µT
b for a, b ∈ R iff a ∈ L[T, b], and let the µT -degree of a be the set of

all b such that a ≤µT
b ≤µT

a.
Letting DµT

denote the set of µT degrees, we define cones and the measure
µT just as they where defined for the set D of Turing degrees in § 2.2.2. The same
proof showing that, under determinacy, µM is a measure on D gives us that µT is
a measure on DµT

for all T ⊂ ORD.

Theorem 3.1 (Woodin). Assume AD
+ +V = L(P(R)) and suppose that κ∞ <

Θ. Let T ⊆ (ω×κ∞)<ω be a tree witnessing that κ∞ is Suslin. Then V = L(T ∗, R)
where T ∗ =

∏
x T/µT . �

This immediately gives us, via Theorem 2.14:

Corollary 3.2 (Woodin). Assume AD
+ + V = L(P(R)). Then either V is a

model of ADR, or else V = L(T, R) for some T ⊂ ORD. �

On the other hand, no model of the form L(T, R) for T ⊂ ORD can be a model
of ADR.

Ultrapowers by large degree notions, as in the theorem above, will be essential
towards establishing our result in the L(T, R) case. For models of ADR, a different
argument is required, and the following result is essential to our approach:

Theorem 3.3 (Woodin). Assume ADR + V = L(P(R)). Then

V = OD((< Θ)ω),

where (< Θ)ω =
⋃

γ<Θ γω. �

3.2. Closeness of codes to sets.
There are a couple of ways in which ∞-Borel codes are “close” to the sets they code.
One way is expressed by Theorem 2.5 above. More relevant to us is the following:

Theorem 3.4 (Woodin). Assume AD
+ + V = L(P(R)). Let T ⊂ ORD and let

A ⊆ R be ODT . Then A has an ODT ∞-Borel code. �

Just as an example of how determinacy can be separated from its structural
consequences, the preceding theorem essentially is proved by showing:

Theorem 3.5 (Woodin). Suppose that V = L(P(γ)) |= ZF + DC and that µ
is a fine measure on Pω1

(P(γ)) in V . Then, for all T ⊂ ORD and A ⊆ R, if
A ∈ ODT,µ, then A is ∞-Borel and has an ∞-Borel code in HODT,µ. �

Fact 3.6. Under AD, there is an OD measure on Pω1
(P(γ)) for all γ < Θ. �

As a corollary, if AD+ holds, V = L(P(γ)) for γ < Θ, and A ∈ ODT ∩ P(R),
then A has an ODT ∞-Borel code.

This almost gives Theorem 3.4 since, assuming AD
+ + V = L(P(R)), we have

V = L(
⋃

γ<Θ P(γ)).
On the other hand, note that Theorem 3.4 is not immediate from Theorem 1.9,

even if V = L(S, R).
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3.3. A countable pairing function on the Wadge degrees.
Our original approach to the dichotomy Theorem 1.2 required the additional as-
sumption that cf(Θ) > ω. Both when trying to generalize this approach to the
case cf(Θ) = ω, and while establishing Theorem 1.8 on the countable-finite game
in general, an issue we had to face was whether countable choice for finite sets of
reals could fail in a model of ADR.

That this is not the case follows from the existence of a pairing function. Steve
Jackson found (in ZF) an example of such a function. Although this is no longer
relevant to our argument, we believe the result is interesting in its own right. Below
is Jackson’s construction.

Theorem 3.7 (Jackson). In ZF, there is a function

F : P(R) × P(R) → P(R)

satisfying:

(1) F (A, B) = F (B, A) for all pairs (A, B), and
(2) Both A and B Wadge-reduce to F (A, B).

Proof. If A = B, simply set F (A, B) = A. If A ⊆ B or B ⊆ A, set F (A, B) =
(0 ∗ S) ∪ (1 ∗ T ) where S is the smaller of A, B, and T is the larger. Here, 0 ∗ S =
{0⌢a : a ∈ S} and similarly for 1 ∗ T .

If A \ B and B \ A are both non-empty, we proceed as follows:
Let X(A, B) ⊆ RZ be defined by saying that, if f : Z → R, then f ∈ X(A, B)

iff there is an i such that f(i) ∈ A \ B (or B \ A) and, for each j, f(j) ∈ A if
|j − i| is even, and f(j) ∈ B if |j − i| is odd (and reverse the roles of A, B here if
f(i) ∈ B \ A).

The set X(A, B) is an invariant set (with respect to the shift action of Z on
RZ), and X(A, B) = X(B, A). (Thus the points of A \ B and B \ A have to occur
at places of different parity; while points of A ∩ B can occur anywhere.)

Given X(A, B), we can compute A (and also B) as follows: Fix z ∈ A \ B.
Then x ∈ A iff

∃f ∈ X(A, B)∃i ∃j (f(i) = z and f(j) = x and |j − i| is even).

This shows that A is Σ
˜

1
1(X(A, B)). If we replace X(A, B) with X ′(A, B), the Σ1

1-
jump of X(A, B), then A is Wadge reducible to X(A, B). Finally, we use that there
is a Borel bijection between RZ and R, and define F (A, B) as the image of X ′(A, B)
under this map. �

As pointed out by Jackson, essentially the same argument shows the following;
recall that ACω(R) is a straightforward consequence of determinacy, so Theorem
3.8 applies in models of AD:

Theorem 3.8 (Jackson). Assuming ZF + ACω(R), there is a countable pairing
function.

Proof. Let 〈Ai : i ∈ ω〉 be a sequence of distinct sets of reals. Call f ∈ (R×2)ω

n-honest iff, whenever f(i) = (x, k), then

k = 1 ⇐⇒ x ∈ An,

so f is n-honest iff it is a countable approximation to the characteristic function of
An. Let

B = {f : ∃n (f is n-honest)}.
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Clearly, B does not depend on the ordering of the sets Ai.
Let 〈xi : i ∈ ω〉 be a sequence of elements of

⋃
n An such that for each i 6= j,

there is k with xk ∈ Ai△Aj . That there is such a sequence of reals follows from
ACω(R).

Let gn(2k) = (xk, 1) if xk ∈ An and gn(2k) = (xk, 0) otherwise. Then:

• gn is the even part of an n-honest function,
• gn cannot be the even part of a j-honest function for j 6= n,
• x ∈ An ⇔ ∃f ∈ B

(
f ⊃ gn and ∃k (gn(k) = (x, 1))

)
.

This shows that An is Σ
˜

1
1 in B. �

As a consequence, it follows that for no λ < Θ there is a sequence

〈Aγ : γ < λ〉

such that each Aγ is a countable subset of P(R) and
⋃

γ<λ Aγ is cofinal in the
Wadge degrees. This is trivial when Θ is regular, but does not seem to be when Θ
is singular. Essentially because of this obstacle, the argument for Theorem 1.2 in
the ADR case is different from the argument in the V = L(T, R) case.

4. The dichotomy theorem

Our goal is to establish the dichotomy Theorem 1.4. Our argument utilizes
ideas originally due to H. Woodin.

Before we begin, a few words are in order about the way the result came to be.
We first proved the dichotomy for models where V = L(T, R) for T ⊂ ORD, and
for models of ADR of the form L(P(R)) where cf(Θ) > ω. For the general case,
we only succeeded in showing the undeterminacy of the games CF (S), the main
additional tool in the ADR case being Theorem 3.3. A key suggestion of Woodin
allowed the argument for the dichotomy to be extended to this case as well. The
new idea was the weaving together of different well-orderings using the uniqueness
of the supercompactness measures for Pω1

(γ) as γ varies below Θ.

4.1. The L(T, R) case.
We work throughout under the base theory

(BT) ZF + DCR + µ is a fine σ-complete measure on Pω1
(R).

It follows from DCR that L(T, R) |= DC for all T ⊂ ORD. So, when working inside
models of the form L(T, R), we may freely use DC. In particular, ultrapowers of
well-founded models are well-founded. Below, whenever we refer to L(T, R), HODS ,
etc., we will tacitly assume that T, S ⊂ ORD.

For any X ∈ L(T, R), there is an r ∈ R such that X ∈ OD
L(T,R)
T,r . For α ∈ ORD,

and ϕ a formula, let Xϕ,α consist of those elements x of X such that, in L(T, R),
for some real t, x is the unique v such that ϕ(v, T, r, α, t). If |R| ≤ |Xϕ,α|, then we
are done, so suppose |R| � |Xϕ,α| for all ϕ and α.

Define a map from R onto Xϕ,α ∪ {∅} by setting xt to be the OD
L(T,R)
T,r -least

element of X definable from T, r, α, and t, via ϕ, if such an element exists, and
otherwise xt = ∅. Let

t Eϕ,α t′ ⇐⇒ xt = xt′ ,

so Eϕ,α is an OD
L(T,R)
T,r equivalence relation on R. Clearly, the map

φ : R/Eϕ,α
1-1
−−→
onto

Xϕ,α ∪ {∅}
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sending the class of t ∈ R to xt, is OD
L(T,R)
T,r . Thus if we show that R/Eϕ,α ⊂

ODT,r,µ, then it follows that
Xϕ,α ⊂ ODT,r,µ.

Consequently, X ⊂ ODT,r,µ and so, clearly, X is well-orderable.

Definition 4.1. An equivalence relation E on R in thin iff R 6� R/E. Other-
wise, E is thick.

The theorem we prove is:

Theorem 4.2. Assume BT, and suppose that E is an OD
L(T,R)
T,r thin equivalence

relation. Then R/E ⊂ ODT,r,µ.

4.1.1. The extent of ∞-Borel sets.
The proof goes through an analysis of ∞-Borel sets.

Here we show that, assuming BT, every A ⊆ R in L(S, R) is ∞-Borel. To show
this, it suffices to show that the ∞-Borel sets are closed under ∃R. Once this has
been established, the result follows by induction over the levels Lα(S, R) and, for
each such level, by induction in the complexity of the definitions of new sets of
reals.

Remark 4.3. It is clear that, in L(S, R), every set comes with a description of
how to build that set using well-ordered unions, negations, and the quantifier “∃R”.

That every A ⊆ R in L(S, R) actually admits an ODS,µ ∞-Borel code requires
an additional argument, since it is not clear that ∞-Borel sets are closed under
well-ordered unions, due to an inability to uniformly pick codes. We omit this
additional argument since it would take us too far from our intended goal.

There are in general many descriptions attached to a single set, but the point
is that to each description for a set of reals we can attach an ∞-Borel code so long
as we have a way to pass from an ∞-Borel code for AS to one for ∃RAS .

Notice that we are not claiming that L(S, R) thinks that every set is ∞-Borel;
in particular, ∃RS (see below) might not be in L(S, R). One would need µ to be in
L(S, R) to get that all sets in L(S, R) admit ∞-Borel codes in L(S, R). This is the
case under AD where µ = µM is Martin’s measure.

We now explain how to pass from an ∞-Borel code S for A to an ∞-Borel code
for ∃RAS which we call ∃RS. The map S 7→ ∃RS is ODS,µ.

If µS = πS(µ) where πS : Pω1
(R) → Pω1

(R) is defined by

πS(σ) = R ∩ L(S, σ),

then µS is a fine measure. That R ∩ L(S, σ) is countable is a consequence of the
following discussion, since σ ∈ L[S, x] for some real x.

Let κ = ωV
1 , and note that κ is measurable in V since, defining π : Pω1

(R) → ω1

by
σ 7→ sup

x∈σ
ωck

1 (x),

then ν = π(µ) is a σ-complete (hence κ-complete) measure on κ. It is clear that ν
is non-principal, so κ is indeed measurable.

The fact that κ is measurable in V yields that κ is (strongly) Mahlo in every
inner model of choice. To see this, let N be any class of ordinals coding the
membership relation of a well-ordered transitive model of choice. Clearly,

HODN,ν ⊆ HODN,µ,
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and κ is measurable in HODN,ν. Since this is a model of choice, and N ⊂ HODN,ν,

the model N̂ coded by N satisfies N̂ |= κ is Mahlo.
Now let

S = {γ < κ : γ is N̂ -inaccessible},

and note that if S is N̂ -non-stationary, then S /∈ ν. In particular, each πS(σ) is
countable, as claimed.

For any σ ∈ Pω1
(R), let

Hσ
S = HOD

L(S,σ)
S ,

and let κσ
S be the least inaccessible δ of Hσ

S such that δ ≥ ΘL(S,σ). Define ∼σ
S on

the set BC
σ
S of ∞-Borel codes of Hσ

S , as follows: For T, T ′ ∈ BC
σ
S , set

T ∼σ
S T ′ ⇐⇒ (AT = AT ′)L(S,σ).

Let

Qσ
S = BC

σ
S/ ∼σ

S .

Qσ
S is like the Vopěnka algebra of L(S, σ), except that OD ∞-Borel sets are used

in place of OD subsets of R. This is made clear by the following lemma whose easy
proof we leave to the reader:

Lemma 4.4. For x ∈ L(S, σ), let

Gσ
S(x) = {b ∈ Qσ

S :x ∈ (Ab)L(S,σ)}.

Then Gσ
S(x) is Hσ

S -generic, and

Hσ
S [x] = Hσ

S [Gσ
S(x)].

Moreover, for any b ∈ Qσ
S with b 6= 0Qσ

S
, there is x ∈ L(S, σ) with b ∈ Gσ

S(x). �

For κ a cardinal of Hσ
S , let BC

σ
κ,S denote the set BCκ in the sense of Hσ

S . Now
set

Q̄σ
S = BC

σ
κσ

S
,S/ ∼σ

S .

In Hσ
S , Q̄σ

S is κσ
S-cc (in fact, ΘL(S,σ)-cc) since, otherwise, there would be a sequence

〈bα :α < κσ
S〉 of non-zero and incompatible elements in Q̄σ

S . But then, in L(S, σ),

〈Abα
:α < κσ

S〉 would give a pre-well-order of RL(S,σ) of length ≥ ΘL(S,σ).
Since κσ

S is regular, Q̄σ
S is κσ

S-cc and κσ
S-complete, and therefore Q̄σ

S is complete.
So Q̄σ

S = Qσ
S and we may identify Qσ

S with a subset of κσ
S in Hσ

S .
Since κσ

S is inaccessible and Qσ
S is κσ

S-cc, we have a canonical enumeration

Dσ
S = 〈Dσ

S,α :α < κσ
S〉

of maximal antichains of Qσ
S in Hσ

S . In fact, we enumerate every sequence

〈Tγ : γ < α〉

from BC
σ
κσ

S
,S that becomes such an antichain upon moding out by ∼σ

S .

Again, Dσ
S can be coded in a canonical way by a subset of κσ

S in Hσ
S . Let bσ

S

be the “minimal” element of BC
σ
κσ

S
,S such that bσ

S ∼σ
S S, and define Sσ as

∧

α<κσ
S

∧

T,T ′∈Dσ
S,α

¬(T ∧ T ′) ∧ bσ
S ∧

∧

α<κσ
S

∨
Dσ

S,α.

Modulo ∼σ
S , Sσ is just bσ

S , but before passing to the quotient, we have:
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Lemma 4.5. For any real x (anywhere)

x ∈ ASσ ⇐⇒ x is Hσ
S -generic over Qσ

S and Hσ
S [x] |= x ∈ AS .

Proof. Suppose x ∈ ASσ , and define

Gσ
S(x) = {b ∈ Qσ

S : ∃α ∃T ∈ Dσ
S,α(x ∈ T and b ∼σ

S T )}.

Clearly, Gσ
S (x) meets every antichain of Qσ

S in Hσ
S . If T, T ′ ∈ Gσ

S(x), then T, T ′

are compatible in Qσ
S , since otherwise there is some α with T, T ′ in Dσ

S,α, but

Sσ explicitly precludes x from being in two distinct elements of Dσ
S . So Gσ

S(x) is
Hσ

S -generic.

Now, (Hσ
S )Qσ

S |= “ẋ ∈ Abσ
S

⇐⇒ ẋ ∈ AS” since this holds for all x ∈ L(S, σ). It
follows that

Hσ
S [x] |= “x ∈ Abσ

S
⇐⇒ x ∈ AS”

and, by choice of Sσ, Hσ
S [x] |= x ∈ Abσ

S
and thus Hσ

S [x] |= x ∈ AS . This finishes
the left-to-right direction. The converse is easier. �

So, whereas Abσ
S

only needs to agree with AS on reals of L(S, σ), Sσ has a very
strong agreement with AS , extending even to reals in outer models of V .

We are now in a position to establish Woodin’s Theorem 1.9 that, arguing in
BT, A is ∞-Borel iff A ∈ L(S, R), for some S ⊂ ORD. This follows immediately
from the following:

Lemma 4.6. Assume BT and let S ⊂ ORD be an ∞-Borel code for a subset of
R2. Then there is a canonical ∞-Borel code ∃RS such that

∃y
(
(x, y) ∈ AS

)
⇐⇒ x ∈ A∃RS .

Proof. The point is that

∃y
(
(x, y) ∈ AS

)
⇐⇒ for µ-a.e. σ,

(
Hσ

S [x]
)Coll(ω,κσ

S)
|= ∃y ASσ (x, y).

In the right-to-left direction, fix in V a Coll(ω, κσ
S)-generic g over Hσ

S [x] such that

Hσ
S [x][g] |= ∃y

(
(x, y) ∈ ASσ

)
.

Since (x, y) ∈ ASσ , then Hσ
S [x, y] |= (x, y) ∈ AS , by the previous lemma. So

(x, y) ∈ AS and hence ∃y
(
(x, y) ∈ AS

)
.

For the left-to-right direction, just fix y so that AS(x, y), and take any σ with
x, y ∈ σ. Then (x, y) is Qσ

S-generic over Hσ
S , and hence satisfies Sσ. It is a Σ1

1(x, b)
statement about any real coding Sσ that there is a real y such that (x, y) ∈ ASσ .
Thus there is such a real in Hσ

S [x][g] for any g enumerating Sσ.
It should be noted that we do not need to use all of Hσ

S above. Instead, we
could work with L[Sσ], that is (letting ∀∗µ abbreviate “for µ-a.e.”)

∃y
(
(x, y) ∈ AS

)
⇐⇒ ∀∗µσ, L[Sσ, x]Coll(ω,κσ

S) |= ∃y
(
(x, y) ∈ ASσ

)
.

Set

L[S∞, x] =
∏

σ

L[Sσ, x]/µ.

Then

∃y
(
(x, y) ∈ AS

)
⇐⇒ L[S∞, x] |= ∃y

(
(x, y) ∈ AS∞

)
⇐⇒ L[S∞, x] |= ϕ(S∞, x),

so (ϕ, S∞) “is” the ∞-Borel code ∃RS. �
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Notice that we actually showed that from a description dA of how to build a
set of reals in L(S, R) we can canonically pass to an ∞-Borel code SdA

associated

to that description. A and dA are in L(S, R), and in fact OD
L(S,R)
S,t , while SdA

is in
V , and in fact ODS,t,µ. This clearly generalizes so that, given a sequence of sets of

reals ~A = 〈Aα :α < γ〉 ∈ L(S, R) and an associated description d ~A
∈ OD

L(S,R)
S,t , we

produce a corresponding sequence ~S of ∞-Borel codes, with ~S ∈ ODS,t,µ.

Remark 4.7. This argument should illustrate the general technique behind
our approach and, really, behind many applications of determinacy that rely on
∞-Borel sets. Namely, the “localization” of ∞-Borel sets we established allows one
to argue about them as if they were actually Borel sets, and then lift the results via
absoluteness. The proofs of Theorems 1.2–1.4 are further illustrations of this idea.

4.1.2. The first dichotomy.

Theorem 4.8. Assume BT. Then, for every X ∈ L(T, R), if |R| � |X |, then
X ⊂ ODT,t,µ for some t ∈ R.

For X ∈ L(T, R), X is OD
L(T,R)
T,t for some t ∈ R. The conclusion of Theorem

4.8 could be strengthened to X ∈ ODT,t,µ for any t ∈ R such that X ∈ OD
L(T,R)
T,t .

First, we make a useful reduction to equivalence relations on reals. For X ∈

OD
L(T,R)
T,t and α ∈ ORD, let Xα be the collection of elements of X definable in

L(T, R) from α and a real. Take γ so that X =
⋃

α<γ Xα. To each Xα we can canon-

ically associate an equivalence relation Eα on R and a bijection φα : R/Eα
1-1
−−→
onto

Xα

with φα, Eα ∈ OD
L(T,R)
T,t . We have that 〈Eα :α < γ〉 is an OD

L(T,R)
T,t -sequence of

sets of reals and so, by the comment at the end of § 4.1.1, we get a sequence
~S = 〈Sα :α < γ〉 of ∞-Borel codes with ~S ∈ ODT,t,µ.

Theorem 4.9. Assume BT. If E is a thin ∞-Borel equivalence relation with
code S, then R/E ⊂ ODS,µ.

This will complete the argument: If |R| � Xα for all α, then R/Eα ⊂ ODSα,µ ⊆
ODT,t,µ. So Xα ⊂ ODT,t,µ for all α < γ and hence X ⊂ ODT,t,µ, as claimed.

Proof. Fix an ∞-Borel code S for a thin equivalence relation E. We will

use the previously established notation: Hσ
S = HOD

L(S,σ)
S , Qσ

S, etc. Let H∞
S be

the ultrapower of Hσ
S and, similarly, define Q∞

S , B∞, etc. It is clear, using  Loś’s
theorem, that the following hold:

• Every real in V is Q∞
S -generic over H∞

S , since

∀∗µσ (x is Qσ
S-generic over Hσ

S ).

• Similarly, for T, T ′ ∈ Q∞
S ,

T ∼∞
S T ′ ⇐⇒ (AT = AT ′)V ,

so Q∞
S is a subalgebra of B∞.

Write b∞S for the ultrapower of the codes bσ
S, Eb∞

S
for Ab∞

S
, and define

W∞
S = {p ∈ Q∞

S : (p, p) 

H∞

S

Q∞

S
×Q∞

S
ṙ0 Eb∞

S
ṙ1}.
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If W∞
S is dense, then every x ∈ R is in Ap for some p ∈ W∞

S , and clearly |Ap/E| = 1.
We say that p captures the E-class x/E if |Ap/E| = 1 and Ap ∩ x/E 6= ∅. By our
assumption on W∞

S , all E-classes are captured, and we can define

φS : R/E → Q∞
S ⊆ κ∞

S

by letting φS(x/E) be the least member of Q∞
s that captures x/E. This is clearly

ODS,µ.
If W∞

S is not dense then, by  Loś’s theorem, we can find a µ-measure one set of
σ on which this fact is true of W σ

S . Fix σ and p ∈ Qσ
S such that (writing ESσ for

ASσ)

∀p′ ≤Qσ
S

p ∃p0, p1 ≤Qσ
S

p′ Hσ
S |= “(p0, p1) 
 ṙ0 �ESσ ṙ1.”

We can enumerate (in V ) the dense subsets of Qσ
S in Hσ

S , and use the above to
build a tree of conditions ps, s ∈ 2<ω, so that for each f ∈ 2ω, Gf = {pf↾i : i ∈ ω}
generates a generic filter for Hσ

S with corresponding real rf (in V ) such that

Hσ
S [rf , rf ′ ] |= rf �ESσ r′f .

Recall that E = AS , and Sσ has the property that ESσ = E on reals Qσ
S-generic

over Hσ
S . Thus we have that rf �E rf ′ for f, f ′ ∈ 2ω with f 6= f ′. This shows that

E is not thin. �

4.2. The main theorem for L(T, R).
Now we indicate how to generalize Theorem 4.8 to obtain Theorem 1.2 when V =
L(T, R) for T ⊂ ORD. As in the proof of Theorem 4.8, we reduce to the case of an
∞-Borel code S whose interpretation ≤S= AS is a pre-partial ordering on R, and
one needs only modify the definition of W∞

S . The relevant set becomes

W∞
S = {p ∈ Q∞

S : (p, p) 

H∞

S

Q∞

S
×Q∞

S
ṙ0 ≤b∞

S
ṙ1 or ṙ1 ≤b∞

S
ṙ0},

where ≤b∞
S

= Ab∞
S

. If W∞
S is not dense, just as before, we can find a copy of 2ω

consisting of ≤S-pairwise incomparable elements. If the set is dense, then Ap is a
pre-chain for p ∈ W∞

S , and every x ∈ R is in Ap for some such p.

4.3. The ADR case.
Assume AD+ and V = L(P(R)) yet V 6= L(T, R) for any T ⊂ ORD. We begin by
explaining how to obtain Theorem 1.4. As mentioned previously, the argument in
this case was suggested by Woodin.

Given X , find some γ < Θ and s0 ∈ γω such that X ∈ ODs0
. This is possible,

by Theorem 3.3.
The key idea is to define, for σ ∈ [< Θ]ω,

Xσ,α = {a ∈ X :∃t ∈ R (a is definable from σ, s0, α, t)}.

The reason for relativizing to σ will become apparent soon. Notice that if σ ⊆ τ
and a ∈ ODσ,s0,t for some t, then there is t′ ∈ R so that a ∈ ODτ,s0,t′ .

Let Eσ,α be the equivalence relation on R induced by Xσ,α. If any Eσ,α is thick,
then we are done. Otherwise, uniformly in α, there is an ODσ,s0

∞-Borel code Sσ,α

for Eσ,α and a corresponding φσ,α : R/Eσ,α → γα inducing Eσ,α.
In particular (by the argument for the previous case) Xσ,α ⊂ ODσ,s0

and thus
Xσ ⊂ ODσ,s0

, where Xσ =
⋃

α Xσ,α. Let <σ be the ODσ,s0
well-order of Xσ.

For each ξ < Θ let Xξ =
⋃

σ∈Pω1
(ξ) Xσ, and notice that Xξ ⊆ Xξ′ whenever

ξ < ξ′.
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Woodin’s main observation here is that the supercompactness measures can be
used to uniformly well-order the sets Xξ and hence to obtain a well-order of X .
Namely, set

a <ξ a′ ⇐⇒ ∀∗µξ
σ [a <σ a′].

This shows that Xξ ⊂ ODs0
and hence X ⊂ ODs0

. So X is well-orderable.
This argument can be easily modified so we also obtain Theorem 1.2. Namely,

from the previous subsection, we can assume each ≤↾ Xξ is a well-ordered union
of pre-chains; this is uniform in ξ, and just as before we use the supercompactness
measures to obtain that ≤ itself is a well-ordered union of pre-chains.

4.4. The E0-dichotomy.
Finally, we very briefly sketch how to prove Theorem 1.3. The argument in Hjorth
[13] greatly resembles the construction in Harrington-Kechris-Louveau [9] and the
proof above, and we only indicate the required additions, and leave the details to
the interested reader. For a more general result, see Caicedo-Ketchersid [3].

Assume AD
+ and that V = L(T, R) for some T ⊂ ORD, or else V = L(P(R)).

Let (X,≤) be a partially ordered set. First, the techniques above and Theorem
2.5 of Hjorth [13] generalize straightforwardly to give us that, if X is a quotient of
2ω by an equivalence relation E, then either there is an injection of 2ω/E0 into X
whose image consists of pairwise ≤-incomparable elements, or else for some α there
is a sequence

(Aβ :β < α)

such that for any x, y ∈ R,

[x]E ≤ [y]E ⇐⇒ ∀β < α (x ∈ Aβ → y ∈ Aβ).

For this, just vary slightly the definition of A(JfKµ) in page 1202 of Hjorth [13].
For example, using notation as in Hjorth [13], in L(R), we would now set A(JfKµ)
as the set of those y for which there is an x0 such that (letting ≤T denote Turing

reducibility) for all x ≥T x0, letting A be the f(x)-th OD
L[S,x]
S subset of (2ω)L[S,x],

then for all ρ, if [ρ]E ≥ [y]E , if [ρ]E ∩ L[S, x] 6= ∅, then [ρ]E ∩ A 6= ∅. This
straightforwardly generalizes to the L(T, R) setting, under BT.

A similar adjustment is then needed in the definition of the embedding of E0

into E to ensure that points in the range are ≤-incomparable.
(See also Foreman [7] for a proof from ADR under a slightly stronger assump-

tion; this approach can be transformed into a proof from AD
+ of Foreman’s result,

by using the AD
+-version of Solovay’s basis theorem mentioned in page 14. Other

proofs are also possible.)
Using this, Theorem 1.3 follows immediately, first for models of the form

L(T, R), just as in Theorem 2.6 of Hjorth [13], and then for models of ADR us-
ing the ‘weaving together’ technique from the previous subsection.

5. The countable-finite game in natural models of AD
+

In this section we work in ZF and prove Theorem 1.8. We are interested in the
countable-finite game in the absence of choice; here are some obvious observations:

Fact 5.1 (ZF). Player II has a winning strategy in CF (S) whenever S is
countable or Dedekind-finite.
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Proof. This is obvious if S is countable. Recall that S is Dedekind-finite iff
ω 6� S. It follows that if S is Dedekind-finite, then each move of player I must be
a finite set. �

Fact 5.2 (ZF). Assume every uncountable set admits an uncountable linearly
orderable subset.

Given a set S, player I has a winning strategy in CF (S) iff some uncountable
subset of S is the countable union of countable sets.

Proof. Suppose first that S admits an uncountable subset that can be written
as a countable union of countable sets. We may as well assume that S itself admits
such a representation, and that S is linearly orderable. It suffices to show that any
countable union of finite subsets of S is countable. For this, let < linearly order S,
and let (Sn :n ∈ ω) be a sequence of finite subsets of S. We may as well assume
they are pairwise disjoint. We can then enumerate their union S∗ =

⋃
n Sn by

listing the elements of each Sn in the order given by <, and listing the elements of
Sn before those of Sm whenever n < m. This gives an ordering of S∗ in order type
at most ω.

Conversely, suppose any countable union of countable subsets of S is countable,
and let F be a strategy for player I. Define a sequence (Cn)n∈ω of subsets of S as
follows:

• C0 = F (〈〉),
• For n > 0, Cn =

⋃
{xi : i<n}⊆

⋃
i<n

Ci
F (〈{xi} : i < n〉).

By induction, each Cn is countable, and therefore so is
⋃

n Cn. Using an enu-
meration of this last set, it is straightforward for player II to win a run of CF (S)
(by playing singletons) against player I following F . It follows that F is not winning
for player I. �

From the argument above, we see that it is consistent that player I has a winning
strategy in CF (S) for some S. For example, player I has a winning strategy in
CF (ω1) whenever cf(ω1) = ω, and in CF (R) in the model of Feferman-Levy [6],
where R is a countable union of countable sets.

From now on, assume that AD
+ holds and that V = L(T, R) for some T ⊂ ORD,

or V = L(P(R)). The dichotomy Theorem 1.4 immediately gives the basis theorem
for cardinalities, Corollary 1.5.

It follows that there are no infinite Dedekind-finite sets, and that (since ω1 is
regular) any countable union of countable sets is countable.

By Fact 5.2, we now have:

Corollary 5.3. Assume that AD
+ holds and that V = L(T, R) for some

T ⊂ ORD, or V = L(P(R)). Then, for no set S, player I has a winning strategy in
CF (S). �

It remains to study when player II has a winning strategy in CF (S). We may
assume that S is uncountable, and analyze the two possibilities ω1 � S and R � S
separately.

Lemma 5.4 (ZF). Assume ω1 6� R. If ω1 � S, then player II has no winning
strategy in CF (S).

Recall that AD implies that ω1 6� R.



A TRICHOTOMY THEOREM IN NATURAL MODELS OF AD
+ 29

Proof. From a winning strategy F for player II, we can find enumerations
of all countable ordinals: Without loss, ω1 ⊆ S. Consider the run of the game
where player I plays α, α + 1, α + 2, . . . . Then α is covered by the finite subsets of
α that player II plays by turns following F , and these finite sets provide us with
an enumeration of α in order type ω. But it is trivial to turn such a sequence of
enumerations into an injective ω1-sequence of reals. �

Lemma 5.5 (ZF). Assume ACω(R) and that there is a fine measure on Pω1
(R).

If R � S then player II has no winning strategy in CF (S).

AD implies both that ACω(R) holds, and that there is such a measure; the
latter can be obtained, for example, by lifting either Solovay’s club measure on ω1,
or Martin’s cone measure on the Turing degrees.

Proof. We may assume S = R. Assume player II has a winning strategy F .
Fix a fine measure µ on Pω1

(R). We find a µ-measure one set C such that player
II always plays the same (following F ) for any valid play of player I using members
of C. Since C is uncountable, this shows that player I can defeat F , contradiction.

Notice that we can identify Pω(R) with R. Using the σ-completeness of µ, there
is a measure 1 set A0 and a fixed finite set T0 such that for all σ ∈ A0, F (〈σ〉) = T0.
To see this, notice that (identifying T0 with a real) for each i ∈ ω there is a unique
ji ∈ ω and a measure 1 set Ai

0 such that if σ ∈ Ai
0 then F (σ)(i) = ji, and we can

set A0 =
⋂

i Ai
0.

Similarly, there is a measure 1 set A1 ⊆ A0 and a fixed finite set T1 such that
for all σ, σ′ ∈ A1 with σ′ ⊇ σ, F (〈σ, σ′〉) = T1.

Continue this way to define sets A0, A1, . . . and finite sets T0, T1, . . . . Let
A =

⋂
i Ai. Then A has measure 1. In particular,

⋃
A is uncountable. However,

for any σ0 ⊆ σ1 ⊆ . . . with all the σi in A, F (〈σ0, . . . , σi〉) = Ti. Since
⋃

i Ti

is countable, we can find r, σ with r ∈ σ, σ ∈ A, r /∈
⋃

i Ti, and from this it
is straightforward to construct a run of CF (R) where player I defeats player II
following F , and so F was not winning after all. �

From the basis theorem, Corollary 1.5, we now have:

Corollary 5.6. Assume that AD
+ holds and that V = L(T, R) for some

T ⊂ ORD, or V = L(P(R)). Then, for no uncountable set S, player II has a
winning strategy in CF (S). �

Combining this with Corollary 5.3, Theorem 1.8 follows immediately.

6. Questions

Recall that the main step of the proof of the dichotomy Theorem 1.2 consists of
passing from an ∞-Borel code S to a local version Sσ that correctly computes AS

on suitable inner models Nσ that satisfy choice and, moreover, this computation is
preserved by passing to forcing extensions of Nσ.

Question 6.1. Does our analysis extend to models of the form L(P(R))[X ]
for sets X that satisfy some appropriate form of condensation, so that Theorem 1.2
holds for these models as well?

Vaguely, the point is that condensation might provide enough absoluteness of
the structure so that the process of passing to countable structures and then taking
an ultrapower produces the appropriate ∞-Borel codes.
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In a different direction, one can ask:

Question 6.2. To what extent can we recover the local bounds on the wit-
nessing ordinals known previously in particular cases of Theorems 1.2–1.4?

For example, it is not too difficult to combine our analysis with known tech-
niques, to see that, as in Harrington-Marker-Shelah [10], a thin Borel partial order
is a countable union of chains, or that quotients of R by projective equivalence
relations can be well-ordered in type less than δ

˜
1
n for an appropriate n, as shown

in Harrington-Sami [11]. But it seems that, in general, the passing to ultrapowers
blows up the bounds beyond their expected values. What we are asking, then, is
for a quantitative difference between κ-Borel sets and κ-Suslin sets, expressed in
terms of some cardinal associated to κ.

Let c = |R|. Under determinacy, ω1 + c is an immediate successor of c. It is
a known consequence of ADR (probably going back to Ditzen [5]) that |2ω/E0| is
also an immediate successor of c; in fact, any cardinal strictly below |2ω/E0| injects
into c. We have proved this result under AD

+, see Caicedo-Ketchersid [3].
Let

S1 =
{
a ∈ Pω1

(ω1) : sup(a) = ω
L[a]
1

}
.

In Woodin [35] it is shown, under ZF+DC+ADR, that |S1| is yet another immediate
successor of c.

On the other hand, in ZF + AD
+ + ¬ADR, Woodin [35] shows that there is

at least one cardinal intermediate between c and |S1|, and there is also at least
one cardinal intermediate between c and c · ω1 incomparable with ω1. We have
shown that this cardinal turns out to be an immediate successor of c, but we do not
know of a complete classification of immediate successors of c under our working
assumptions, or whether this is even possible.

Question 6.3. Is it possible to classify, under AD
+ + V = L(P(R)), the im-

mediate successors of |R|?
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