YET ANOTHER CHARACTERIZATION OF REMARKABLE CARDINALS

RALF SCHINDLER

The current note was written on Nov 29, 2017.

1. Remarkable games

We present a characterization of remarkable cardinals in terms of the existence of winning strategies in a class of Ehrenfeucht-Fraïssé-like games. This is in the spirit of [1, section 4].

Let κ be an infinite cardinal. We consider two two-player games.

The first one will be denoted by G_{κ}^1 :

Rules: $\alpha > \kappa, \ \lambda < \beta < \kappa, \ \{x_0, x_1, \ldots\} \subset V_{\beta}, \ \{y_0, y_1, \ldots\} \subset V_{\alpha}, \ x_k \in V_{\lambda} \Longrightarrow y_k =$ x_k , and for every formula φ in the language of set theory and for all $k < \omega$,

$$V_{\beta} \models \varphi(\lambda, x_0, \dots, x_{k-1}) \iff V_{\alpha} \models \varphi(\kappa, y_0, \dots, y_{k-1}).$$

II wins a run of G^1_{κ} if she is not the first one to break any rule.

The second one will be denoted by G_{κ}^{crit} :

Rules: $\alpha > \kappa$, $\lambda < \beta < \kappa$, $X_0 \subset X_1 \subset \ldots \subset V_\beta$, $j_0 \subset j_1 \subset \ldots$, and for all $k < \omega$: $\operatorname{Card}(X_k) \leq \lambda, \ j_k \colon X_k \to V_{\alpha}, \ j_k \upharpoonright X_k \cap V_{\lambda} = \operatorname{id}, \ \operatorname{and} \ \operatorname{for \ every \ formula} \ \varphi \ \operatorname{in \ the}$ language of set theory, for all $n < \omega$, and for all $x_0, \ldots x_n \in X_k$,

$$V_{\beta} \models \varphi(\lambda, x_0, \dots, x_n) \Longleftrightarrow V_{\alpha} \models \varphi(\kappa, j_k(x_0), \dots, j_k(x_n)).$$

II wins a run of G_{κ}^{crit} if she is not the first one to break any rule. Both games G_{κ}^{1} and G_{κ}^{crit} are open, hence determined by the Gale-Stewart Theorem.

Proposition 1.1. Let κ be a cardinal. The following are equivalent.

(1) κ is remarkable.

- (2) II has a winning strategy in G_{κ}^1 .
- (3) II has a winning strategy in G_{κ}^{crit} .

Proof. (3) implies (2) is trivial.

Let's show (2) implies (1). Assume (2), and let σ be a winning strategy for player II, and suppose that G is $\operatorname{Coll}(\omega, < \kappa)$ -generic over V. Let $\alpha > \kappa$, and let λ and β be σ 's 1st reply in a play where I's 1st move is α . In V[G], we fix an enumeration $\{b_i \mid i < \omega\}$ of V_{β} . Notice that, in V[G], σ is still a winning strategy for player II, because the game is closed and there are no new finite sets in V[G]. So, by playing according to σ against the moves b_n of player I given by this fixed enumeration, player II is easily seen to produce an elementary embedding $j: V_\beta \to V_\alpha, j \in V[G]$, $\operatorname{crit}(j) = \lambda$, and $j(\lambda) = \kappa$. We verified (1).

Next, we show (1) implies (3). Let $\alpha > \kappa$. We may without loss of generality assume that $cf(\alpha) > \kappa$, so that ${}^{\kappa}V_{\alpha} \subset V_{\alpha}$. Again suppose that G is $Coll(\omega, < \kappa)$ generic over V. Then there are $\lambda < \beta < \kappa$ such that in V[G] there is an elementary embedding $j^+: V_{\beta+1} \to V_{\alpha+1}$ such that $crit(j) = \lambda$ and $j(\lambda) = \kappa$. By elementarity we will have that $V_{\beta+1}$ knows that $cf(\beta) > \lambda$, so that setting $j = j^+ \upharpoonright V_{\beta}, j : V_{\beta} \to V_{\alpha}$ is an elementary embedding such that $crit(j) = \lambda, j(\lambda) = \kappa$, and ${}^{\lambda}V_{\beta} \cap V \subset V_{\beta}$.

Let τ be a Coll($\omega, \langle \kappa \rangle$ -name for j. Let $p \in G$, $p \Vdash ``\tau$ is an elementary embedding from \check{V}_{β} to \check{V}_{α} such that $\operatorname{crit}(\tau) = \check{\lambda}$ and $\tau(\check{\lambda}) = \check{\kappa}$. Let us look at the following auxiliary game $G_{\kappa}^{\operatorname{aux}}$, played in V:

Rules: $X_0 \subset X_1 \subset \ldots \subset V_{\beta}, p \ge p_0 \ge p_1 \ldots$, and for all $k < \omega$: $p_k \Vdash \tau \upharpoonright \check{X}_k = \check{j}_k$.

It is easy to see that II has winning strategy in G_{κ}^{aux} . Suppose II plays X_k in a play of G_{κ}^{aux} in her k^{th} move where all the rules are obeyed so far. Write $q = p_{k-1}$ if k > 0 and q = p if k = 0. Let G' be $Coll(\omega, < \kappa)$ -generic over V such that $q \in G'$. Write $j' = \tau^{G'}$. We have that $j' \upharpoonright X_k \in V$ by the Kunen argument: if $f : \lambda \to X_k$ is surjective, $f \in V$, then $f \in V_\beta$ and for all $\xi < \lambda$, $j'(f(\xi)) = j'(f)(\xi)$. There is then some $q' \leq q$ such that $q' \Vdash \tau \upharpoonright \check{X}_k = (j' \upharpoonright X_k)$, and we may let II reply to X_k by playing a pair p_k, j_k in a way that she keeps obeying the rules.

But any strategy σ^* for II in G_{κ}^{aux} easily yields a strategy for II in the original game G_{κ}^{crit} for a play where I's 1st move is α and II's 1st reply is λ, β , and II then follows σ^* but hides her side moves p_0, p_1, \ldots

References

 Bagaria, J., Gitman, V., and Schindler, R., Generic Vopěnka's Principle, Remarkable cardinals, and the weak Proper Forcing Axiom. Archive for Mathematical Logic, Volume 56, Issue 1-2, 2017, pp. 1-20.

(R. Schindler) Institut für mathematische Logik und Grundlagenforschung, Fachbereich Mathematik und Informatik, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

E-mail address: rds@wwu.de

URL: http://wwwmath.uni-muenster.de/u/rds/