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Abstract

We introduce the concept of an “ideal extender” as a system of
precipitous ideals in much the same way as classical extenders corre-
spond to systems of measures. We investigate the consistency strength
of having one or more cardinals which carry ideal extenders.

This paper is devoted to the analysis of various generic embeddings. In
the first section, we recapitulate the analysis of the relationship between
precipitous ideals and < κ-complete ultrafilters. In the second section we
define the concept of an “ideal extender” which we think is a natural coun-
terpart to precipitous ideals in the strong context. That is, ideal extenders
are to strong cardinals what precipitous ideals are to measurable cardinals,
and the standard forcing technique to produce such ideal extenders is the
same as in the case of precipitous ideals. It will be shown that the existence
of these ideal extenders correspond consistency–wise to strong cardinals. In
the third section we will discuss how to produce finitely many of such ideal
extenders simultaneously. In the forth and last section we use the techniques
developed in the previous sections to show that given ω supercompact car-
dinals, we can construct a model in which every ℵn, 0 < n < ω, is generically
strong.

∗The authors gratefully acknowledge financial support from the Deutsche Forschungs-
gemeinschaft (DFG), grant no. SCHI 484/3-1. This paper is based on Chapt. 4 of the
first author’s Ph.D. thesis which was submitted in 2010 with the second author as its
supervisor.
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1 In the case of a measurable

Let κ be a cardinal. The levy collapse of κ to ω1, col(ω,< κ), is the set of
all finite function p such that dom(p) ⊆ κ × ω and for all ⟨α,n⟩ ∈ dom(p)
p(⟨α,n⟩) < α. We say that p is stronger than q, p ⩽col(ω,<κ) q, if q ⊆ p.

Fact 1.1. If G is col(ω,< κ)-generic over V , V [G] ⊧ κ = ω1.

Let P = col(ω,< κ) and for ν < κ, we set

Pν = {p ∈ P;∀⟨α,n⟩ ∈ dom(p) α ⩾ ν} ,

similarly

Pν = col(ω,< ν) = {p ∈ P;∀⟨α,n⟩ ∈ dom(p) α < ν} .

It is easy to see that P is isomorphic to the product Pν ×Pν , for all ν.
Let κ be a measurable cardinal and U a normal < κ-complete ultrafilter

on κ. Let
π ∶ V →M = Ult(V,U)

be the ultrapower generated by U . We can split π(P) in P and π(P)κ.
Let G be P-generic over V and H be π(P)κ-generic over V [G]. Every
condition in q ∈ π(P)κ can be represented by a family ⟨qα;α < κ⟩ , that is
[⟨qα;α < κ⟩]U = q, where all the qα are in P. Moreover for U -almost all α
qα ∈ Pα, since [q] ∈ π(P)κ ⇐⇒ {α; qα ∈ Pα} ∈ U .

In V [G ×H] we can define a new V [G]-ultrafilter W by:

τG ∈W ⇐⇒ κ ∈ (π(τ))G×H .

Let Ẇ be the canonical name for W . For every p ∈ P and q ∈ π(P)κ,

⟨p, q⟩ ⊩ Ẋ ∈ Ẇ ⇐⇒ for U -measure one many α, p ∪ qα ⊩ α̌ ∈ Ẋ.

We will use this last remark to show that W is generic over V [G] for the
following forcing: Q = {X ∈ V [G];∀Y ∈ U Y ∩X ≠ ∅}, where X ⩽Q Y if and
only if X ⊆ Y . We already know that W is a V [G] ultrafilter, so we only have
to prove that it is generic. Suppose X = {Xi; i < θ} is a maximal antichain
in V [G] and for all i < θ, Xi ∉ W . Let Ẋ, Ẋi be names for X and Xi. Let
p ∈ G and q ∈H be such that:

⟨p, q⟩ ⊩ ∀i < θ Ẋi ∉ Ẇ

2



By the last remark q = [⟨qα;α < κ⟩]U and for each i there is a set Ai ∈ U
such that for all α ∈ Ai p ∪ qα ⊩ α ∉ Ẋi . Now let T = {α, qα ∈ G}. We first
prove that T ∩Xi ∉ Q. For each i < θ, if α ∈ T ∩Ai we have that qα ∈ G and
α ∉ Xi. Therefore T ∩Xi ∩Ai = ∅ but Ai ∈ U hence T ∩Xi ∉ Q. Thus T is
incompatible with all Xi. If we can prove that T ∈ Q we would have that
{Xi; i < θ} wasn’t a maximal antichain, a contradiction. Let Z ∈ U , we have
to prove that T ∩Z ≠ ∅. We want to show that qα ∈ G for some α ∈ Z. Let

E = {r ∈ P; r ⩽ qα for some α ∈ Z}

Let us show that E is dense. Take some p ∈ P and let β be the minimal such
that p ∈ Pβ. Now since Z is unbounded in κ there is a α ∈ Z ∖ β. But then,
p and qα have disjoint domains in a way that p ∪ qα ∈ P and thus r = p ∪ qα
is the strengthening of p that we were looking for. Thus E ∩ G ≠ ∅ and
T ∩Z ≠ ∅.

What we basically did is, starting with some embedding:

π ∶ V →M = Ult(V,G)

to lift up π to some
π̃ ∶ V [G]→M[G,H],

moreover if W is the ultrafilter derived from π̃, W is generic over V [G]
for the forcing Q. This case was easy, because the forcing adding G was
basically below κ, the critical point of π. But there are ways to lift up
embeddings even when forcing above of a large cardinal. Let us first show
a way to deal with it in the case of a measurable.

Lemma 1.2. Assume GCH. Let κ be measurable, Xκ the set of all cardinals
less or equal to κ and P the easton support iteration of col(ξ, ξ), the forcing
adding a cohen subset of ξ, for all ξ ∈Xκ. Let G be P-generic over V , then
in V [G], κ is still measurable.

Proof. Let U be an normal ultrafilter witnessing the measurability of κ.
Let

j ∶ V →M = Ult(V,U)

be the associated ultrapower map. j(P) is the easton support iteration of
col(ξ, ξ) for all ξ ∈ j(Xκ) = Xj(κ), let j(P)κ for the part of the forcing
starting after κ, that is j(P) = P ∗ Pκ. Let G be P-generic over V , since
(Hκ)V = (Hκ)M and P(κ)∩V = P(κ)∩M we have that G is P-generic over
M . If we can show that there is an G̃ ∈ V [G] such that G∗G̃ is j(P)-generic
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over M and j”G = G̃ ∩ ran(j), we will be able to lift the embedding j to an
embedding

̃ ∶ V [G]→M[G × G̃]

By the Factor Lemma [Jec03, Lemma 21.8 pp. 396] it suffices to define G̃
such that it is j(P)κ-generic over M[G].

By [Kan03, Proposition 5.7 (b)], 2κ ≤ (2κ)M < j(κ). Notice that for the
same reasons, we also have j(κ+) < (2κ)+ = κ++. Hence

cardV ({D ∈M,D is dense in j(P)κ}) = κ+ = 2κ

Every dense set of j(P)κ in M[G] is of the form j(f)(κ)G, where f is a
function from κ to V P. Let ⟨fi; i < κ+⟩ be an enumeration in V of functions
representing all open dense sets of j(P)κ in M[G]. There is an enumeration
with size κ+ since in V [G] there are at most κ+ many such dense sets and P
has the κ+-c.c. Since M is κ-closed each initial segment ⟨j(fi)(κ)G; i < α⟩ is
in M , for α < κ+. But j(P)κ is also κ-closed, hence ⋂i<α j(fi)(κ)G is a dense
set of j(P)κ in M . Now one can construct in V [G] a sequence ⟨pα;α < κ+⟩
with the following properties:

i. p0 = ⋃ j”(G ∩ col(κ,κ))

ii. pα < pβ for α < β

iii. pα ∈ ⋂i<α j(fi)(κ)G

Each element of the sequence is in M , and the sequence itself is in V [G].
Moreover j”G ⊆ G ∗ G̃. Now we can lift j by using the classical definition:

j(τG) = j(τ)G∗G̃ ⊣

for τ a P-name in V .

2 One ideally strong cardinal

2.1 The definition of ideal extenders

Definition 2.1. Let κ be a cardinal, λ > κ an ordinal and letX be a set. For
every finite subset a ofX let us fix one bijection between a and its cardinality.
We identify finite sets of ordinals with their increasing enumeration, finite
subsets of X with their previously fixed bijection.
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i. A ⟨κ,X⟩-system of filters is a set

F ⊆ {⟨a, x⟩ ∈ [X]<ω ×P([κ]<ω);x ⊆ [κ]a} ,

such that for all a ∈ [X]<ω, Fa = {x; ⟨a, x⟩ ∈ F} is a non trivial filter

that is Fa ≠ P([κ]a). We set supp(F ) = {a ∈ [X]<ω;Fa ≠ {X}}.

ii. Let F be a ⟨κ,X⟩-system of filters. Let a, b ∈ supp(F ), such that a ⊆ b.
Let s ∶ a → b be such that a(n) = b(s(n)). For a set x ∈ P([κ]a), we
define

xa,b = {⟨ui; i < b⟩ ∈ [κ]b; ⟨us(j); j < a⟩ ∈ x} .

For a function f ∶ [κ]a → V , we define fa,b ∶ [κ]b → V by

fa,b(⟨ui; i < b⟩) = f(⟨us(j); j < a⟩).

iii. A ⟨κ,X⟩-system of filters F is called compatible if for all a ⊆ b ∈
supp(F )

x ∈ Fa ⇐⇒ xa,b ∈ Fb.

iv. Let a ∈ [X]<ω and x ∈ [κ]a, we say that F ′ = span{F, ⟨a,X⟩} is the
span of F and ⟨a, x⟩ if it is the smallest compatible system of filters
such that F ⊆ F ′ and ⟨a, x⟩ ∈ F ′.

v. Let F be a ⟨κ,λ⟩-system of filters. The associated forcing PF consists
of all conditions p = F p, where F p is a compatible ⟨κ,λ⟩-system of
filters, supp(p) = supp(F p) ⊆ supp(F ) is finite and F p is generated by
one point x ∈ (Fa)+ for some a ∈ supp(p), i.e. F p is the span of F and
⟨a, x⟩. p ⩽P q if and only if supp(q) ⊆ supp(p) and for all a ∈ supp(q),
F qa ⊆ F pa , that is if F q ⊆ F p.

Let F be a compatible (κ,λ)-systems of filters and G be PF -generic
over V . Set ĖF = ⋃ Ġ, where Ġ is the canonical name for the generic filter.
Clearly ĖGF is a system of filters again. For any a ∈ [λ]<ω and X ∈ F+

a we
have that

A = {span{F, ⟨a,X⟩} , span{F, ⟨a, [κ]a ∖X⟩}}

is an antichain in PF . This shows that each ĖGF,a = (⋃ Ġ)a is an ultrafilter.

Moreover ĖF has the compatibility property. Let us now look how we can
translate the normal and ω-closed concept to this situation.
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Definition 2.2. Let κ, λ be as in the previous definition.

i. We call a ⟨κ,λ⟩-system of filters potentially normal if for every p ∈ PF ,

for every a ∈ supp(p) and for every f ∶ [κ]a → V if there is a j < a such
that

{u, f(u) ∈ uj} ∈ F pa ,

it follows that there is a dense set D below p such that for every p′ ∈D
there is a ξ ∈ supp(p′) with

{v, fa,a∪{ξ}(v) = vi} ∈ F p
′

a∪{ξ},

where i is such that s(i) = ξ, s being the enumeration of a ∪ {ξ}.

ii. We call a ⟨κ,λ⟩-system of filter precipitous if for all p ∈ PF and for all
systems ⟨⟨ps,Xs, as⟩; s ∈ <ωθ⟩ such that:

(a) p∅ = p,
(b) as ⊆ as⌢i for all i < θ,
(c) ps⌢i contains the span of ps and ⟨as⌢i,Xs⌢i⟩ for all i,

(d) {ps⌢i; i < θ} is a maximal antichain below ps,

there is an x ∈ ωθ and a τ ∶ ⋃s⊆x as → κ such that τ”as ∈ Xs for all
s ⊆ x.

Definition 2.3. Let κ < λ be ordinals. F is a ⟨κ,λ⟩-ideal extender if it is a
compatible and potentially normal ⟨κ,λ⟩-system of filters such that for each
a ∈ supp(F ), Fa is < κ-closed.

Let F be a compatible ⟨κ,λ⟩-systems of filters and G be PF -generic over
V . By compatibility and potential normality, we can see that ĖGF is a ⟨κ,λ⟩-
extender over V . Hence we can construct the formal ultrapower, regardless
of it being well-founded or not.

Lemma 2.4. Let F be a ⟨κ,λ⟩-ideal extender and G be PF -generic over V .
Let ϕ(u) be a formula in the language of set theory in one free variable u.
 Loś’s theorem holds for generic ultrapowers, that is Ult(V, ĖGF ) ⊧ ϕ([a, f])
if and only if

{α⃗ ∈ [κ]a;V ⊧ ϕ(f(α⃗))} ∈ ĖGF,a.
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Proof. We proceed by induction on the rank of the formula. For atomic
formulae this holds by definition. We only prove the lemma for the negation
and the existencial quantifier as the other cases are easy.

Let ϕ ≡ ¬ψ. It follows from the fact that each ĖGF is a system of ultra-

filters, that is if ⟨a, x⟩ ∉ ĖGF then ⟨a, [κ]a ∖ x⟩ ∈ ĖGF .
Let ϕ([c, g]) ≡ ∃vψ(v, [c, g]). We first show that:

Ult(V, ĖGF ) ⊧ ϕ([c, g]) Ô⇒ {α⃗ ∈ [κ]c;V ⊧ ϕ(g(α⃗))} ∈ ĖGF,c

Let [b, f] be such that ψ([b, f], [c, g]) holds. By induction hypothesis, there
is a ⟨b ∪ c, x⟩ ∈ G witnessing that ψ([b, f], [c, g]) is true, that is

x = {α⃗ ∈ [κ]b∪c;V ⊧ ψ(fb,b∪c(α⃗), gc,b∪c(α⃗))} ∈ ĖGF,b∪c.

Since ĖGF,b∪c is a filter, by a compatibility argument we can show that:

xb∪cc ⊆ {β⃗ ∈ [κ]c;V ⊧ ∃xψ(x, g(β⃗))} ∈ ĖGF,c.

Let us now prove the other direction, that is:

{α⃗ ∈ [κ]c;V ⊧ ϕ(g(α⃗))} ∈ ĖGF,c Ô⇒ Ult(V, ĖGF ) ⊧ ϕ([c, g]).

Let
y = {β⃗ ∈ [κ]c;V ⊧ ∃xψ(x, g(β⃗))} ∈ ĖGF,c,

and f the function that assigns to some β⃗ some set x such that

V ⊧ ψ(x, g(β⃗)),

if one exists and the empty set else. f gives a witness for the fact that
∃vψ(v, g(β⃗)) on a ĖGF,c measure one set. Thus by induction hypothesis

Ult(V, ĖGF ) ⊧ ψ([c, f], [c, g]). ⊣

Lemma 2.5. A ⟨κ,λ⟩-ideal extender is precipitous if and only if the generic
ultrapower given by any generic over the associated forcing is well-founded.

Proof. Suppose first that F is precipitous and that there is a condition
p ∈ PF such that p ⊩“ the ultrapower by ĖF is ill-founded”. That is there
is a system ⟨[ȧn, ḟn], n < ω⟩ such that

p ⊩ [ȧn, ḟn] > [ȧn+1, ḟn+1].
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Without loss of generality we can fix a system ⟨⟨ps,Xs, as⟩, s ∈ <ωθ⟩ with
p∅ = p such that {ps⌢i; i < θ} is a maximal antichain below ps and

ps ⊩ dom(ḟn) = X̌s ∈ Ėǎs ∧ ḟn = f̌s ∧ ǎs = ȧn.

By precipitousness we then have a x ∈ ωθ and a τ ∶ ⋃s⊆x as → κ such that
τ”as ∈Xs for all s ⊆ x. Since all conditions are below p,

px ↾n+1 ⊩ “[ȧn, ḟn] > [ȧn+1, ḟn+1]”.

Moreover
px ↾n+1 ⊩ “ dom(ḟn) = X̌x ↾n ∈ Ėǎx ↾n ∧ ǎx ↾n = ȧn”

and
px ↾n+1 ⊩ “ dom(ḟn+1) = X̌x ↾n+1 ∈ Ėǎx ↾n+1 ∧ ǎx ↾n+1 = ȧn+1”.

Thus τ”ax ↾n ∈ dom(f̌x ↾n) and fx ↾n(τ”ax ↾n) > fx ↾n+1(τ”ax ↾n+1), but this is
a descending sequence of ordinals in V , contradiction!

Suppose now that for every generic, the ultrapower is well-founded. Con-
sider the system T = ⟨⟨ps,Xs, as⟩; s ∈ <ωθ⟩ such that:

i. p∅ = p,

ii. as ⊆ as⌢i for all i < θ,

iii. ps⌢i contains the span of ps and ⟨as⌢i,Xs⌢i⟩ for all i,

iv. {ps⌢i; i < θ} is a maximal antichain below ps.

Let us show that x, τ exists such that τ ′′as ∈ Xs for s ⊆ x. Let G be a
generic filter such that p∅ ∈ G. Since for all n < ω the set {ps, lh(s) = n} is
a maximal antichain below p∅, there is one s such that ps ∈ G, let x be the
union of all such s, notice that x ∈ ωθ is well defined. Let π ∶ V → Ult(V,G)
be the ultrapower map. We write a

π(T )
s for the second components of the

condition at the s-node of π(T ), similarly for X
π(T )
s and p

π(T )
s . Let

τ ∶ ⋃
s⊆x

π(as)→ π(κ)

be defined as follows:

if ξ ∈ ⋃s⊆x π(as) then there is a s such that ξ ∈ π(as), since as is
finite there is a ξ ∈ as such that ξ = π(ξ), let τ(ξ) = ξ.
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Hence we have that:

Ult(V,G) ⊧ “τ ∶ ⋃
s⊆x

π(as)→ π(κ)”

and
τ”π(as) ∈ π(Xs) for all s ⊆ x.

By elementarity π(as) = aπ(T )
π(s) and π(Xs) =Xπ(T )

π(s) .

Let us argue why x and τ exists in Ult(V,G): let T be the tree of height
ω, with finite conditions searching1 for a x′ and a τ ′ such that

τ ′ ∶ ⋃s⊆x′ aπ(T )
s → π(κ) and τ ′”a

π(T )
s ∈Xπ(T )

s for all s ⊆ x′.

This tree is in V [G] as well as in Ult(V,G), setting x′ = π′′x we can see
that it is ill-founded in V [G], hence it is ill-founded in Ult(V,G). A branch
through the tree gives some x and τ with the above properties, hence

Ult(V,G) ⊧ “∃x∃τ such that τ ∶ ⋃s⊆x aπ(T )
s → π(κ) and τ”a

π(T )
s ∈

X
π(T )
s for all s ⊆ x”.

By elementarity

V ⊧ “∃x∃τ such that τ ∶ ⋃s⊆x as → κ and τ”as ∈Xs for all s ⊆ x”. ⊣

2.2 Forcing ideal extenders and ideally strong cardinals

Lemma 2.6. Let κ be α-strong in V , µ < κ some cardinal and let E be the
⟨κ,λ⟩-extender derived by the ultrapower map witnessing the α-strongness.
Let W = V [G] where G is col(µ,< κ)-generic over V . Set

F = {⟨a, x⟩;x ⊆ [κ]a and ∃y such that ⟨a, y⟩ ∈ E y ⊆ x}

then F is precipitous.

Proof. Let us first start with a simple general consideration that is useful
in many cases when considering ultrapowers and the Levy collapse:

Claim 1. Suppose V ⊧ “E is a (κ,λ)-extender”. Let π ∶ V →M = Ult(V,E)
be the associated ultrapower map. Then for each G col(µ,< κ)-generic over
V and each condition q ∈ col(µ,< π(κ))M such that q ↾ µ × κ ∈ G, there is
a M -generic G∗ such that {q} ∪G ⊆ G∗, moreover there is a canonical map
π̃ ∶ V [G]→M[G∗] such that π ⊆ π̃.

1we already constructed such a type of tree in ??
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Proof. Since (Hκ+)V = (Hκ+)M , G is also generic over M . In M[G] we
can look for a col(µ, ]κ,π(κ)[)-generic filter G̃ such that q ↾ µ×]κ,π(κ)[∈ G̃.
Let G∗ be the filter generated by G ∪ G̃, now we can define an embedding
π̃ ∶ V [G] → M[G∗] as follow: for every name τ ∈ V col(µ,<κ), let π̃(τG) =
(π(τ))G∗

. It is easy to check that π̃ is well defined and an embedding. ⊣

Let us now turn to F , we first want to prove that for each col(µ,< π(κ))-
generic over M filter G∗, we can construct an extender EG

∗
that extends F

such that the following diagram commutes:

V [G] π̃ //

j ''

M[G∗]

Ult(V [G],EG∗)
k

77

where j is the associated ultrapower map and k still needs to be defined and
G = G∗ ∩ col(µ,< κ). We define EG

∗
by:

⟨a, x⟩ ∈ EG∗ ⇐⇒ a ∈ π̃(x),

for a ∈ [λ]<ω and x ⊆ P([κ]a) and k by:

k([f, a]) = π̃(f)(a),

where a is as before and f ∶ κa → V [G]. It is easy to check that k is well
defined. Hence Ult(V,EG∗) is transitive.

Let us do a few remark similar to the case of a measurable before turning
to the genericity of EG

∗
. Each condition in col(µ,< π(κ)) can be split in

p ∈ col(µ,< κ) and a q ∈ col(µ, [κ,π(κ)[), moreover q can be represented in

the ultrapower by aq ∈ [λ]<ω and a function f q ∶ κaq → col(µ,< κ). Let s be
an enumeration of aq ∪ {κ} and i such that s(i) = κ, we have:

{ξ⃗; f q
aq ,aq∪{κ}(ξ⃗) ∈ col(µ, [ξi, κ[)} ∈ Eaq∪{κ}.

Let Ė be the canonical name for EG
∗
, a ∈ [κ]<λ and Ẋ ∈ V col(µ,<κ) some

set such that there are ⟨p, q⟩ ∈ P ∗ j(P)κ with

p ∪ q ⊩j(P) ⟨ǎ, Ẋ⟩ ∈ Ė.

By definition of π we then have:

p ∪ q ⊩j(P) ǎ ∈ π(Ẋ)2.

2notice that π(Ẋ) is a col(µ,π(κ)) name
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Setting ida ∶ [κ]a → [κ]a, this leeds to:

{ξ⃗;p ∪ f qaq ,a∪aq(ξ⃗) ⊩P idaa,a∪aq(ξ⃗) ∈ Ẋ} ∈ Ea∪aq .

Let GF = {p ∈ PF ;F p ⊆ EG∗}. We want to prove that GF is PF -generic over
V [G]. Let p ∈ G and q ∈ G∗ ↾ col(µ[κ,π(κ)[) such that

p ⊩ “Ȧ = {Ḟ i; i < θ} ⊆ PF is an antichain”

moreover for each i < θ, p ∪ q ⊩ “F i ⊈ EG∗
”. Let each Ḟ i be generated by

⟨ǎi, Ẋi⟩, we have
p ∪ q ⊩ “Ẋi ∉ Ėǎi”.

By the previous observation, we have sets Ai ∈ Eai∪aq such that for all

ξ⃗ ∈ Ai:
p ∪ f qaq ,ai∪aq(ξ⃗) ⊩ idaiai,ai∪aq(ξ⃗) ∉ Ẋi.

Let T = {ξ⃗; f q(ξ⃗) ∈ G} and let F ′ be the span of F and ⟨aq, T ⟩. We first
show that F ′ is a condition: for a Z ∈ Eaq , we have to show that Z ∩ T ≠ ∅.
Let

D = {r; r ⩽col(µ,<κ) qξ⃗ for some ξ⃗ ∈ Z} .

D is dense, since each condition has size less then µ, Z is unbounded and µ
is regular, therefore we can choose some qξ⃗ such that

sup(dom(r)) < min(dom(qξ⃗)).

Let r ∈ D ∩G, there is a ξ⃗ ∈ Z such that r ⩽col(µ,<κ) qξ⃗, thus ξ⃗ ∈ T , and we
have T ∩Z ≠ ∅. Let us now show that T ∩Xi ∉ F+, it suffices to prove that
there is a set X ∈ Eai∪aq such that

Taq ,ai∪aq ∩Xiai,ai∪aq ∩X = ∅.

Let ξ⃗ ∈ Ai. If ξ ∈ Taq ,ai∪aq , qξ ∈ G. Since

p ∪ f qaq ,ai∪aq(ξ⃗) ⊩ idaiai,ai∪aq(ξ⃗) ∉ Ẋi.

We have that ξ ∉ Xiai,ai∪aq , hence the Ai where the set we sought, and
⟨Xi; i < θ⟩ isn’t a maximal antichain, a contradiction!

Claim 2. Let G be col(µ,< κ)-generic over V . For each condition p ∈ PF ,
there is a G∗ col(µ,< π(κ))-generic that extends G, such that F p ⊆ EG∗

.

11



Proof. Let ṗ ∈ V be a name for a condition in PF . Fix τ ∈ V and
q ∈ col(µ,< κ) such that q ⊩ “F ṗ is the span of F̌ and ⟨ǎ, τ⟩”, for some finite
set of ordinals a ∈ [λ]<ω. Without loss of generality we can assume that
τ = {⟨p, ˇ⃗α⟩;p ⊩ ˇ⃗α ∈ τ}. We want to show that we can find a q′ < q ∈ col(µ,<
π(κ)) such that a ∈ π̃(τ), for every col(µ,< π(κ))-generic G∗ with q′ ∈ G∗.
Let

y = {α⃗;∃r < q⟨r, α⃗⟩ ∈ τ} .
Clearly, ⟨a, y⟩ has to be in E, else τ would be a null set in V [G]. Hence

a ∈ π(y) = π({α⃗;∃r < q⟨r, α⃗⟩ ∈ τ}) = {α⃗;∃r⟨r, α⃗⟩ ∈ π(τ)} .

This shows that there is a q′ ∈ col(µ,< π(κ)), q′ < q such that ⟨q′, a⟩ ∈
π(τ). Let G∗ be col(µ,< π(κ))-generic with q′ ∈ G∗, G∗ has the desired
properties. ⊣

Let us prove now that F is potentially normal and precipitous. Suppose
first that F is not precipitous, then there is a generic over PF such that
the associated ultrapower is ill-founded. This is then forced by a condition
p ∈ PF . By the previous result we can find G∗ col(µ,< π(κ))-generic such
that F p ⊆ EG∗

. Thus Ult(V [G],EG∗) should be ill-founded, a contradiction
since you can embed it in M[G∗]. Similarly suppose that F is not potentially

normal. Let p ∈ PF such that there is f ∶ [κ]a → V with

{u, f(u) ∈ uj} ∈ F pa
for some a ∈ supp(p), such that for no q ⩽PF p there is a ξ with a ∪ {ξ} ⊆
supp(q) and

{v, fa,a∪{ξ}(v) = vi} ∈ F qa∪{ξ}.

Let G∗ be col(µ,< π(κ))-generic such that F p ⊆ EG
∗
. EG

∗
is a normal

extender, since it is an extender derived from an embedding. Hence there is
a ξ such that

V [G∗] ⊧ A = {v, fa,a∪{ξ}(v) = vi} ∈ EG
∗

a∪{ξ}.

Let F p be generated by ⟨b, x⟩, and define

y = xb,b∪a∪{ξ} ∩Aa∪{ξ},b∪a∪{ξ}.

Let q ∈ PF be such that F q is the filter generated by ⟨b ∪ a ∪ {ξ} , y⟩. Then
q ⩽PF p and

{v, fa,a∪{ξ}(v) = vi} ∈ F qa∪{ξ},
a contradiction! ⊣
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Definition 2.7. Let κ be a regular cardinal. We call a regular cardinal κ
ideally strong if and only if for all A ⊆ OR, A ∈ V , there is some ⟨κ, ν⟩-ideal
extender E such that, whenever G is E-generic over V , A ∈ Ult(V,G)

Theorem 2.8. Let κ be a strong cardinal in V and λ be a cardinal. Let G
be col(λ,< κ)-generic over V . In V [G], κ is ideally strong.

Proof. Let A ⊆ V [G]. There is a name τ ∈ V for A. Let Ẽ be the extender
witnessing the strongness of κ with respect to τ . That is ̃ ∶ V → Ult(V, Ẽ)
is such that τ ∈ Ult(V, Ẽ).

Now let E be the ideal extender derived by Ẽ in V [G], as we have seen
previously if H is E-generic over V and j ∶ V [G] → Ult(V [G],H) is the
associated ultrapower, then j ↾ V = ̃. Moreover G ∈ Ult(V [G],H) thus we
have that A = τG ∈ Ult(V [G],H), which finishes the proof.

2.3 Iteration of ideal extenders

Let us now discuss the iteration of generic ultrapower by ideal extender.

Definition 2.9. A sequence:

⟨⟨Mi,Ei, πi,j ; i ⩽ j ⩽ θ⟩, ⟨Gi; i < θ⟩⟩

is a putative generic iteration of M (of length θ+1) if and only if the following
holds:

i. M0 =M ,

ii. for all i < θ Mi ⊧ “Ei is an ideal extender”,

iii. for all i < θ Gi is Ei-generic over Mi,

iv. for all i + 1 ⩽ θ Mi+1 = Ult(Mi,Gi) and πi,i+q is the associated generic
ultrapower,

v. for all i ⩽ j ⩽ k ⩽ θ πj,k ○ πi,j = πi,k,

vi. if λ < θ is a limit ordinal, then ⟨Mλ, πi,λ; i < λ⟩ is the direct limit of
the system ⟨Mi, πi,j ; i ⩽ j < λ⟩.

We call
⟨⟨Mi,Ei, πi,j ; i ⩽ j ⩽ θ⟩, ⟨Gi; i < θ⟩⟩

13



a generic iteration of M (of length θ + 1) if Mθ is well-founded. We call

⟨⟨Mi,Ei, πi,j ; i ⩽ j ⩽ θ⟩, ⟨Gi; i < θ⟩⟩

a putative generic iteration of ⟨M,E⟩ if the following additional clause holds
true:

vii. for all i + 1 < θ Ei+1 = πi,i+1(Ei).

Let E be an ideal extender. We say that G is E-generic if G is a PE-
generic filter.

Lemma 2.10. Let M be a countable transitive ZFC model and F be a pre-
cipitous ⟨κ,λ⟩-ideal extender over M . Let θ < sup{M ∩OR, ωV1 }. Then M
is < θ-iterable by F . That is every putative iteration of ⟨M,F ⟩ of length less
or equal to θ is an iteration.

Proof. This proof is an adaptation of Woodin’s proof to the current con-
text. By absoluteness if ⟨M,E⟩ is not generically θ + 1 iterable, it is not
generically θ+1 iterable in M col(ω,<δ) for some δ. Let ⟨κ0, η0, γ0⟩ be the least
tripe in the lexicographical order such that:

i. κ < ωM1 is regular in M ,

ii. η0 < κ0

iii. there is a δ and a putative iteration

⟨⟨Mi,Ei, πi,j ; i ⩽ j ⩽ γ0⟩, ⟨Gi; i < γ0⟩⟩

of ⟨HM
κ0

; ∈,E⟩ inside M col(ω,<δ) such that π0,γ0(η0) is ill-founded.

Since I is precipitous, γ0 has to be a limit ordinal, η0 has to be a limit
ordinal in any case. Let i∗ < γ0 and η∗ < πi∗,γ0(η0) be such that πi∗,γ0(η∗)
is ill-founded. Since κ0 is regular we can consider

⟨⟨Mi,Ei, πi,j ; i
∗ ⩽ i ⩽ j ⩽ γ0⟩, ⟨Gi; i∗ ⩽ i < γ0⟩⟩

as a putative iteration of H
Mi∗
π0,i∗(κ0)

By elementarity, ⟨π0,i∗(κ0), π0,i∗(η0), π0,i∗(γ0)⟩ is the least triple ⟨κ, η, γ⟩
such that condition i. to iii. holds with respect to Mi∗ .

However as showed before the triple ⟨π0,i∗(κ0), η∗, γ0 − i∗⟩ also fullfils i.
to iii. and is lexicographically smaller than ⟨π0,i∗(κ0), π0,i∗(η0), π0,i∗(γ0)⟩, a
contradiction! ⊣
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2.4 The consistency strength of one ideally strong cardinal

Lemma 2.11. Suppose ¬(0¶). Let κ be ideally strong in V , then κ is strong
in the core model.

Proof. Let K =KV be the core model below (0¶) as in [Jen]. Let λ ∈ OR.
We have to show that there is an embedding j ∶K →M such that K ∣λ ∈M .

Let λ ∈ OR, by the ideal strongness of κ, there is an ideal extender E
such that if G is E-generic over V :

K ∣λ ∈ Ult(V,G) =M.

Claim 1. In V [G], K iterates to KUlt(V,G) =KM =K∗.

j exists in V [G] and K = KV [G], hence by [Jen, §5.3 Lemma 5 p. 7] K∗ is
an iterate of K and j ↾K is the iteration map.

Claim 2. K ∣λ =K∗∣λ.

By the previous claim, we already know that K ∣ν =K∗∣ν, where ν is the
length of the first extender, F , of the iteration j. Since F was used in the
iteration, F ∉ K∗. Suppose K ∣λ ≠ K∗∣λ, then lh(F ) < λ. Since lh(F ) < λ,
F ∈ K ∣λ ⊆ M . By [Jen, §5.2 Lemma 2 p. 3] we have that ⟨K ∣ lh(F ), F ⟩ is
a generalized beaver for K∗ and hence Ult(K∗, F ) is well-founded. Let us
coiterate K∗ and Ult(K∗, F ):

K∗
iF
// Ult(K∗, F )

k

((
W

K∗
i

66

Since F ∈ M , we can apply [Jen, §5.3 Lemma 5 p. 7] to k ○ iF in M . We
get that k ○ iF = i and thus k = id, i = iF . This shows that F is on the
K∗-sequence, a contradiction!

Thus we can assume that lh(F ) ⩾ λ and so we have:

K ∣λ ⊲K∗.

Hence j ↾K ∶K →K∗ and K ∣λ ∈K∗, which finishes the proof. ⊣

Corollary 2.12. The existence of an ideally strong cardinal is equiconsis-
tent to the existence of a strong cardinal.
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3 More ideally strong cardinals

As we have seen in the last section, lifting existing embeddings after forcing
has been a very fruitful method to construct ideally strong cardinals. In
this section, the lifting of various embeddings will be our main concern,
especially when forcing “above” a large cardinal. In the last part we prove
that such generic embeddings implies the existence of strong cardinals in the
core model, giving a lower bound to our construction. Let us first put some
light on the problems that arise, when constructing more than one ideally
strong cardinal. The key problem is that, while forcing with so called “small
forcings” preserves large cardinal properties, forcing above a strong cardinal
κ will, in general, destroy its strongness, even if we don’t add a new subset
of κ.

Remark 3.1. Let κ be a strong cardinals and β > 2(2κ)+ , then in V col(β,β+)

κ is not necessarily β++V -strong anymore.

Proof. Let K = V be the minimal core model for one strong cardinal. Let
κ be strong in V and β as in the remark. Let E be an extender witnessing
the β++V -strongness of κ, and G a col(β,β+)-generic filter. Since G does not
add any ω-sequence, E is still an ω-closed extender in the forcing extension.
Let M be the ultrapower of V [G] by E and j the ultrapower map. Suppose
E is witnessing β++V -strongness in V [G]. Then G would be in HM

β++V
and

thus M believes that there is a col(γ, γ+K)-generic filter over K for some
cardinal γ ≤ j(κ), hence K believes that there is a col(γ, γ+K)-generic filter
over K for some cardinal γ ≤ κ, a contradiction! ⊣

3.1 Lifting of generic embeddings

With some more detailed analysis of the ultrapower by an extender we may
lift the original issue.

Lemma 3.2. Suppose GCH. Let κ be a strong cardinal and λ > κ a regular
cardinal such that 2<λ = λ. Let j ∶ V → M be an ultrapower by a ⟨κ,Vλ⟩-
extender witnessing the λ-strongness of κ. Then for every M -sequence of
ordinals λ < µi < νi < µi+1 < j(κ) for i < j(κ) such that M ⊧ “µi, νi are
regular cardinals”, there is a G ∈ V that is P-generic over M , where P is
the easton iteration of all col(µi,< νi)M .
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Proof. Remark that since each col(µi,< νi)M is λ-closed in M , so is P.
Since j is an ultrapower by a ⟨κ,Vλ⟩-extender3, we have that:

i. M is closed under sequence of length κ: κM ∩ V ⊆M ,

ii. Hλ ⊆M ,

iii. λ < j(κ) < λ+V .

Hence every dense set of P in M is of the form j(f)(a), for an f ∶ [Vκ]a → Vκ
and some a ∈ [V V

λ ]<ω ⊆ M . By GCH we can count in V all such f in a
sequence of order type κ+. Let

⟨fξ; ξ < κ+⟩

be such a sequence. Moreover V V
λ has cardinality λ in M as well as in V .

Using the fact that for any given ξ, j(fξ) ∈M , in M we can look at the set

Xξ = {j(fξ)(a); a ∈ Vλ ∧ j(fξ)(a) is a dense set in P} .

Since M believes that the forcing iteration is an iteration of levy collapses
of strong cardinals above λ, P is λ-closed in M . Now define the sequence pξ
for ξ < κ+ as follows

i. p0 be the empty condition,

ii. pξ+1 is a condition below pξ and below each element of Xξ,

iii. if ν < κ+ is a limit ordinal, let pν be some condition below each pξ for
ξ < ν.

The successor steps works in M because Xξ and pξ are both in M and
P is λ-closed. For the limit steps: we can define the sequence ⟨pξ; ξ < ν⟩ in
V . Since ν < κ+ and M is κ-closed, the sequence is in M as well. Hence by
the λ-closedness of P in M , there is a pν less than all the pξ in M .

Now the sequence ⟨pξ; ξ < κ+⟩ ⊆ M is definable in V , let G ∈ V be the
filter generated by all this points. G is P-generic over M . ⊣

Lemma 3.3. Let E be a ⟨κ,Vλ⟩-extender, where λ is such that κVλ ⊆ Vλ
and P a κ-distributive forcing. Let

j ∶ V →M = Ult(V,E)
3that is E ⊆ {⟨a, x⟩;a ∈ [Vλ]<ω and x ⊆ P([κ]a)} for more on this type of extender see

[MS89, p. 83 ff.]
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be the ultrapower map. Let G be P-generic over V , then j can be lifted to
an embedding

̃ ∶ V [G]→M[G′],

where G′ is the completion of j′′G in j(P).

Proof. Let E be as in the theorem and j ∶ V → M = Ult(V,E). We have
that M is closed under κ-sequences, that is κM ∩ V ⊆ M . Let P be a
κ-distributive forcing and G be P-generic over V . Let

G′ = {q ∈ j(P); ∃p ∈ G, j(p) ≤ q} .

We claim that G′ is already generic over M ! Let D = j(f)(a) be some dense
open set in M . This implies

{u ∈ [Vκ]a; f(u) is a dense open set of P} ∈ Ea

but then the set

A = {f(u); u ∈ [Vκ]a ∧ f(u) is a dense open set of P}

has only size κ. By κ-distributivity of P, ⋂A is still dense. Let p ∈ A ∩G,
we have that j(p) ∈D ∩G′. ⊣

Notice that this lemma alone does not give the the desired result since G
itself might not be in M[G′]. We want to combine this and the techniques
developed in the measurable case to get the desired result. Sadly for the
forcing we have in mind, using only strongness will not suffice. We will use
the concept of A-strongness to bypass this problem.

3.2 Forcing two ideally strong cardinals

Lemma 3.4. Let A be the class of all strong cardinal. Suppose V ⊧ “GCH,
κ is an A-strong cardinal, δ > κ is the only strong cardinal above κ”. Let
n ∶ OR → OR such that n(γ) = γ+ and let γµ denote the smallest strong
cardinal above µ. For γ strong, let Pγ be col(n(γ),< µγ), the levy collaps of
µγ to n(γ) and let P be the easton support iteration of all Pγ for γ strong
such that µγ exists. Let G be P-generic over V . In V [G], κ is strong.

Proof. We first follow the same strategy as in the measurable case. For
some set of ordinals I, let P ↾ I be the easton forcing iteration of Pγ for
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all γ ∈ I. Let G be P-generic over V , let λ > δ be a large enough regular
cardinal with κVλ ⊆ Vλ, we have to show that there is an embedding

̃ ∶ V [G]→ M̃

with the property that H
V [G]
λ ⊆M . Let E be an ⟨κ,Vλ⟩-extender witnessing

that κ is A-λ-strong in V. We want to lift up the embedding j ∶ V → M
associated to E.

Let us recall the cardinal arithmetic setting. We have that

λ < cardV (j(κ)) < cardV (j(δ)) < cardV ((2j(δ))M) < λ+V .

Moreover since we use Vλ to index the extender, the ultrapower is closed
under κ-sequences. Notice that since E is a witness that κ is A-λ-strong,
we have that P ⊆ j(P). Since G is P-generic over V and (Hλ)V = (Hλ)M ,
we thus have that G is PM ↾ κ = P-generic over M .

If we can show that there is an G̃ ∈ V [G] such that G∗G̃ is j(P)-generic
over M and j”G = G̃ ∩ ran(j), we will be able to lift the embedding j to an
embedding

̃ ∶ V [G]→M[G × G̃]

Let σP∗ be an MP-name for j(P) ↾ [δ, j(κ)[ and P∗ = σGP∗ . Let further σP∗∗

be a MP∗P∗-name for Pj(κ).
We want to find G∗, a P∗-generic filter over M[G] and G∗∗, a Pj(κ)-

generic filter over M[G × G∗]. That way using the factor lemma [Jec03,
Lemma 21.8 pp. 396], we will have that G×G∗ ×G∗∗ is a j(P)-generic filter
over M . In order to produce a P∗-generic filter, we’d like to use Lemma 3.2,
sadly we need a filter generic over M[G] rather than just M . Let us argue
why the proof still holds true.

Claim 1. There is a filter G∗ ∈ V [G] that is P∗-generic over M[G].

Proof. We want to run the very same argument as in Lemma 3.2. Let us
first show that M[G] is still closed under κ-sequences. Let τ be the name
for a κ-sequence in V [G]. Without loss of generality, we can assume that τ
is a nice name, that is, it is of the form

τ = {⟨⟨η, ξ⟩, q⟩; η < κ ∧ q ∈ Aη ∧ q ⊩ τ(η) = ξ} ,

where Aη is a maximal antichain. Since Aη ∈ Vλ, each Aη is in M . Since M
is closed under κ-sequences. the sequence of all Aη is in M as well and thus
τ is in M . Therefore M[G] is closed under κ-sequences from V [G]. Every
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dense set of P∗ in M is of the form j(f)(a)G, for an f ∶ [Vκ]a → V Pκ and
some a ∈ V V

λ = VM
λ , as j is the ultrapowermap generated by E. By GCH we

can count in V all such f in a sequence of order type κ+, ⟨fξ; ξ < κ+⟩. Also
remark that Vλ has cardinality λ in M[G] as well as in V [G]. Using the
fact that for any given ξ, j(fξ) ∈M , in M[G] we can look at the set

Xξ = {j(fξ)(a)G; a ∈ Vλ ∧ j(fξ)(a) is a P-name for a dense set in P∗} .

Since M[G] believes that the forcing iteration P∗ is an iteration of levy
collapses of strong cardinals above λ, P∗ is λ-closed in M . Now define the
sequence pξ for ξ < κ+ as follows

i. p0 be the empty condition,

ii. pξ+1 is a condition below pξ and below each element of Xξ,

iii. if ν < κ+ is a limit ordinal, let pν be some condition below each pξ for
ξ < ν.

The successor steps works in M[G] because Xξ and pξ are both in M[G]
and P is λ-closed, the limit steps works because they are definable sequences
in V [G] of length at most κ, hence by the κ-closedness of M[G] the se-
quences are also in M[G], hence by the λ-closedness of P in M[G], pν is
definable in M[G].

Now the sequence ⟨pξ; ξ < κ+⟩ ⊆ M is definable in V [G], let G∗ ∈ V [G]
be the filter generated by all this points. G∗ is P∗-generic over M[G]. ⊣

Let P∗∗ = σG×G∗

P∗∗ . Setting G′ and G′′ sucht that G′ = G∩Hκ and G′×G′′ =
G, we can see that we are already able to lift j to some j1 ∶ V [G′]→M[G′ ∗
G∗]. As in the last step, we won’t be able to directly use the appropriate
lemma, in this case Lemma 3.3. But with some small modification, the main
idea of the lemma carries on in our situation.

Notice that P is an iteration of successor length. Let τ ∈M be a name

for an open dense set of P∗∗. Hence there is a a ∈ [Vλ]<ω and a f ∶ [Vκ]a → V
such that τ = j(f)(a) and

X = {u ∈ [Vκ]a; f(u) is a P ↾ κ-name for an open dense set in Pκ} ∈ Ea

We have that {(f(u))G′
; u ∈X} is of cardinality κ hence the intersection of

all such sets
ḊG′ =⋂{(f(u))G′

; u ∈X}
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is still a dense set in V [G′], where Ḋ is a name such that there is a q ∈ G′

with
q ⊩ “Ḋ =⋂{(f(u)); u ∈X} and Ḋ is a dense set”.

Let σG
′ ∈ ḊG′ ∩G′′ and let p ∈ G′, p < q, with p ⊩ “σ ∈ Ḋ”.

We have that p = j(p) ⊩ “j(σ) ∈ τ”. Since p ∈ G′ ⊆ G∗G∗ it follows that
j(σ)G∗G∗ ∈ τG∗G∗

. As the iteration has an easton support, it is is bounded
below κ at stage larger or equal to κ. This shows that:

j(σ)G∗G∗ = j′′σG ∈ j′′G′′.

Thus G∗∗, the closure of j′′G′′ in M[G ∗ G∗], is a P∗∗-generic filter over
M[G ∗ G∗]. By the factor lemma G ∗ G∗ ∗ G∗∗ is j(P)-generic over M .
Setting G̃ = G∗∗G∗∗, we get the desired result by lifting j using the classical
definition:

j(τG) = j(τ)G∗G̃

for τ a P-name in V . ⊣

Corollary 3.5. Let A be the class of all strong cardinal. Suppose V ⊧
“GCH, κ is an A-strong cardinal, δ > κ is the only strong cardinal above κ”.
Then for every successor cardinal µ below the least strong cardinal, there is
a forcing Q such that, whenever G is Q-generic over V , κ and δ are ideally
strong in V [G], µ+V [G] = κ and n(κ)+V [G] = λ.

Proof. First apply P ↾ κ, where P is the forcing defined in the previous
lemma. From the point of view of λ this is a small forcing, hence if G′

is P ↾ κ-generic over V , λ is strong in V [G′]. Now we can just do the
levy collaps col(n(κ), λ). By results of the last section, λ is ideally strong
in V [G′,G′′], where G′′ is col(n(κ), λ)-generic over V [G′]. By the factor
lemma, this is the same as forcing in one time with P as defined in the last
lemma. Let G1 = G′ ×G′′. In V [G1], κ is still strong, hence we can force
with col(µ,< κ) for some regular cardinal µ. Let G2 be col(µ,< κ)-generic
over V [G1] and set G = G1 ×G2. In V [G] κ is ideally strong. Let us show
that λ remains ideally strong in V [G].

Remark that col(µ,< κ)∩V [G1] and col(µ,< κ)∩V are forcing equivalent.
Hence we can first force with col(µ,< κ) ∩ V and then force with P. In the
first extension V [G2], λ remains strong hence by the previous theorem λ is
ideally strong in V [G2,G1]. ⊣
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3.3 Forcing many generically strong cardinals

Definition 3.6. We say that a cardinal κ ∈ V is generically strong if for all
A ∈ V there is a forcing P such that, if G is P-generic over V , in V [G] there
is a definable embedding j ∶ V →M ⊆ V [G] with critical point κ and A ∈M .

Obviously if κ is ideally strong it is generically strong.

Lemma 3.7. Let κ,λ be two strong cardinals and µ, ν two successor cardi-
nals such that µ < κ < ν < λ . Let P = col(µ,< κ) × col(ν,< λ) and let G be
P-generic over V . In V [G] κ and λ are generically strong.

Proof. Let µ, ν, κ, λ and G be as in the theorem. After forcing with col(µ,<
κ), λ remains strong, hence by Theorem 2.8, λ is an ideally strong cardinal
in V [G]. Let X ∈ V [G] be some set. We only have to show that there
is a forcing P, such that if H is P-generic over V [G], there is a definable
embedding in V [G,H],

̃ ∶ V [G]→ M̃

such that G,X ∈ M̃ and cp(̃) = κ. Split G into Gκ col(µ,< κ)-generic over
V and Gνλ, col(ν,< λ) ∩ V -generic over V [Gκ].

Let τ be a P-name for X and let θ be a large enough regular cardinal
such that {τ} ∪ (2λ)+ ⊆ Hθ and κVθ ⊆ Vθ. Since κ is strong in V there is a
⟨κ,Vθ⟩-extender, say E, such that Hθ ⊆ Ult(V,E). Let

j ∶ V →M = Ult(V,E)

be the associated ultrapowermap. We have that θ < j(κ) < θ+V . By
Lemma 3.3, we know that we can lift j to ̄′ ∶ V [Gνλ]→M[Gjλ], where

Gjλ = {q ∈ col(j(ν), j(λ)) ∩M ; ∃p ∈ Gνλ q < j(p)}

is col(j(ν), j(λ))-generic over M .
Let Gθ+ be col(µ,< θ+)-generic over V , such that:

i. G ∈ V [Gθ+ ∩ col(µ,< λ+V )],

ii. Gκ = Gθ+ ∩ col(µ,< κ).

We can construct such an Gθ+ , because by [Fuc08, lemma 2.2] col(µ,< λ) ×
col(µ,λ) is forcing equivalent to col(µ,{λ}). Let Gθ+1 = Gθ+ ∩col(µ,< θ+1).
We first want to create a col(µ, ]θ, j(κ)[)M[Gθ+1]-generic filter over M , G1.

Claim 1. There is a Gj(κ) ∈ V [Gθ+1] such that:
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i. Gj(κ) is col(µ, j(κ)) generic over M ,

ii. Gj(κ) ∩ (col(µ,< θ))V = Gθ+1 ∩ (col(µ,< θ))V ,

iii. we can lift j to some:

j ⊆ ̄ ∶ V [Gκ]→M[Gj(κ)].

Proof. Remark that since HV
θ =HM

θ , we have that

col(µ,< θ + 1) ∩M = col(µ,< θ + 1) ∩ V

As M ⊆ V , we have that Gθ+1 is col(µ,< θ + 1)-generic over M as well.
Now look at col(µ, ]θ, j(κ)[) ∩M in V ; As M is κ-closed it is a < µ-closed
forcing in V . col(µ, ]θ, j(κ)[)∩M adds a surjective function from µ to θ. By
[Fuc08, lemma 2.2] it is forcing equivalent to col(µ,{θ}), hence we can define
a col(µ, ]θ, j(κ)[)∩M -generic filter G1 over V from Gθ+∩col(µ,{θ + 1}). But
since M ⊆ V , being a dense set is upward absolute between the two models,
hence G1 is also generic over M . Set

Gj(κ) = Gθ+1 ×G1.

By the product lemma, Gj(κ) is col(µ,< j(κ))∩M -generic over M . Remark
that, as j′′Gκ ⊆ Gj(κ), we can lift j to an embedding

̄ ∶ V [Gκ]→M[Gj(κ)]. ⊣

Remark that since col(j(ν), j(λ)) is < j(ν) closed, Gj(κ) is col(µ,< j(κ)∩M -

generic over V [Gjλ] as well. Hence by the product forcing theorem Gj(κ)×Gjλ
is col(µ,< j(κ)) ∩M × col(j(ν),< j(λ)) ∩M -generic over M .

Let ̃ ∶ V [G]→M[Gj(κ) ×Gjλ] be such that

j̃(τG) = j(τ)Gj(κ)×G
j
λ ,

where τ is a V P-name.

Claim 2. ̃ is a fully elementary embedding that lifts j.

Proof. Let ϕ be some formula such that V [G] ⊧ ϕ(τG) for some P-name
τ . There is a p ∈ G such that

p ⊩ ϕ(τ)

23



Hence by the elementarity of j:

j(p) ⊩ ϕ(j(τ))

But by construction j(p) ∈ Gj(κ) ×Gjλ and j(τ)Gj(κ)×G
j
λ = ̃(τG), hence

M[Gj(κ) ×Gjλ] ⊧ ϕ(̃(τ
G)).

Let x ∈ V then x = x̌G and thus ̃(x) = j(x̌)Gj(κ)×G
j
λ = j(x), as j(x̌) = ˇj(x).

Hence j ⊆ ̃. ⊣

Hence we can lift j to

̃ ∶ V [G]→M[Gj(κ) ×Gjλ]

on the other hand τ,G ∈ M[Gj(κ) × Gjλ]. As ̃ is definable from j, G and

Gj(κ)×Gjλ, it is definable in V [Gθ+]. Hence κ is generically strong in V [G].⊣

Notice that the proof actually showed:

Theorem 3.8. Let κ be strong in V and µ < κ some cardinal. Let G be
col(µ,< κ)-generic over V and P some < κ+-closed forcing in V . Let H be
P -generic over V [G]. Then κ is generically strong in V [G,H].

Proof. Let P, G and H be as in the lemma. Let θ be some large cardinal,
such that P ∈ Hθ and κVθ ⊆ Vθ. It suffices to prove that there is some
embedding

π ∶ V [G,H]→M,

such that HV
θ ⊆M . Let E be a ⟨κ,Vθ⟩-extender and j the associated ultra-

power. By Lemma 3.3, we can lift j to some

̄ ∶ V [H]→M[Hj],

where Hj is the M -closure of j′′H in M . The last proof showed that we can
then lift j to some

̃ ∶ V [G,H]→ V [Gj(κ),Hj],
where Gj(κ) is some col(µ, j(κ))-generic filter over M such that G = Gj(κ) ∩
col(µ,κ) and H ∈M[Gj(κ)]. ⊣

It is not hard to see that applying this theorem to the easton support
forcing product of the levy collapse of strong cardinals, we get the following
corollary:
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Corollary 3.9. A is a set of strong cardinals such that otp(A) < min(A),
and let f ∶ A → OR a function such that for all µ ∈ A, f(µ) is a successor
cardinal and for all µ < ν ∈ A µ < f(ν). Then there is a forcing P such that
if G is P-generic over V :

i. every f(µ) is a successor cardinal, moreover f(µ)+V [G] = µ

ii. every µ in A is generically strong in V [G].

Proof. Let A, f be as in the theorem and P the easton support forcing
product of all Qκ for κ ∈ A, where Qκ = col(f(κ),< κ). That is p ∈ P
if p ∈ Πκ∈AQκ and for all limit point λ of A, the set of i < λ such that
(p)i ≠ 1Qi is bounded in λ. For every κ ∈ A we can split the forcing P in
three pieces Pκ the easton support product of all Qi for i ∈ A ∩ κ, Qκ and
Pκ the easton support product of all Qi such that i ∈ A ∖ κ + 1. Notice that
Pκ is κ-closed. For every filter G, P-generic over V , let Gκ = G ∩ Pκ and
Gκ = G ∩ (Qκ ×Pκ). Pκ is a small forcing, hence κ is strong in V [Gκ], by
Theorem 3.8 κ is generically strong in V [Gκ,Gκ] = V [G]. ⊣

Giving one concrete example of such a function f :

Corollary 3.10. Suppose ZFC+ “there are ω strong cardinals” is consistent,
then so is ZFC+ “every ℵ2n+1 is generically strong for n ∈ ω”

3.4 The consistency strength of many generically strong car-
dinals

We have seen how to get many generically strong cardinals, starting with
the same amount of strong cardinals. Let us now answer the reverse ques-
tion, whether one gets the strong cardinals “back”. Let Ω be some large
measurable cardinal and µ0 a < Ω-complete ultrafilter on Ω. From now on
we will work in VΩ.

Theorem 3.11. Suppose there is no inner model with a Woodin cardinal.
Let κ be generically strong in V , then κ is strong in the core model.

Proof. Let K = KV be the core model as defined in [Ste96]. We work
towards contradiction.

Claim 1. Suppose κ is not strong in K, there is a θ such that for every
ν > θ either cp(EKν ) > θ or cp(EKν ) < κ.
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Proof. Let θ be smallest cardinal strictly larger than the Mitchell order
of κ. We claim that θ has already the desired properties. Suppose not and
let F be an extender on the K-sequence with critical point λ < θ and index
ν > θ. Let M = Ult(K∥ν,F ) and j be the associated ultrapower map. We
know that K ∣ν ⊧ “κ is λ-strong”, hence M ⊧ “κ is j(λ)-strong”. Let E
be some extender of the M sequence with critical point κ and index larger
than θ. Since θ is a cardinal, there must be cofinally many E-generators
below θ. Let µ be such a generator. Then E ↾ µ+1 has natural length µ+1,
hence by the initial segment condition either the completion of E is on the
M sequence or it is one ultrapower away. Since µ+ 1 is a successor ordinal,
the second case can not occur.Thus, we have that there is some µ+1 < γ < ν
such that EMγ is the trivial completion of E ↾ µ + 1. Since γ < ν we have

that EMγ = EKγ by coherency. Hence for every ν < θ we can find a γ > ν such
that Eγ has critical point κ and is on the K sequence, a contradiction to
the definition of θ! ⊣

Let θ be as in the claim. Since κ is generically strong, there is a forcing P
such that for every P-generic G over V , there is an embedding in V [G]

j ∶ V →M

with HV
θ+ ∈M . Let KM be the core model as computed in M . Notice that

KV =KV [G], we will drop the superscript and call it K in what follows.

Claim 2. KM is a universal weasel in V [G].

Proof. The same proof as ?? shows that KM is iterable in V [G]. The
set of fixed point of j is a club set in {α; cf(α) ≠ κ}, but since P has the
(2card(P))+V -c.c. for stationary many successor of some fixed point α of j,

we have that α+V = α+K ≤ j(α)+KM ≤ α+M ≤ α+V [G]. For all α larger than
(2card(P))+V , α+V = α+V [G]. Hence weak covering is true for some thick class
in KM , hence it is a universal weasel in V [G]. ⊣

We would like to coiterate K with KM , but then the following diagram
might not be commutative.

K
πTΛ

))
j

��

Q

KM
πQΛ

55
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By slightly modifying the iterations, we can get a common iterate in a
way that makes the triangle commutative. We will use a variation of the
technique from the proof of Lemma 7.13 of [Ste96]. By [Ste96, Lemma 8.3]
there is a universal weasel W such that K ∣θ ⊲W (in fact W witness that K ∣θ
is A0-sound), W has the hull property at all α and the definability property
at all α < θ. By [Ste96, Lemma 8.2], W is a simple iterate of K, actually the
iteration T0 from K to W is linear and only uses measures, that is extenders
with only one generator. Finally if πT0

0,∞ is the iteration map, by applying j

we get an iteration tree j(T ) on KM such that the whole commutes as in
the following diagram:

K
π
T0
0,∞

//

j
��

W

j
��

KM

π
T j

0
0,∞

// j(W )

We have that
Def(W ) = πT0

0,∞
′′K

and the iteration is above θ. We can lift that iteration via j to get an linear
iteration of KM . Since the class of fixed points of j is thick in W , Ω is thick
in j(W ) and

Def(j(W )) = j′′ Def(W ).
Let us coiterate W and j(W ) in V [G] and let T1 and U be the respective
trees of the coiteration. Since both W and j(W ) are universal weasel in
V [G] there is no drop on both side of the iteration. The coiteration might
not commute on the whole range, but it does commute on ran(πT0

0,∞) =
Def(W ) since all the elements of Def(W ) are definable with skolem terms
and parameters in a thick class of fix points, see ??. Hence if we set
T = T0

⌢T1 and Q = j(T0)⌢U

K
πT //

j

��

W

πT1
''

j

��

Q

KM

πj(T )
// j(W )

πU

77

This shows that K and KM iterate via ⟨T ,U⟩ to a common model Q
such that the iterations commute with j. Let πTΛ ∶ K → Q be the iteration
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map on the K side and πQΛ ∶ KM → Q the iteration map on the KM side,
where Λ is the length of the iteration.

Claim 3. There is no µ ≤ κ such that the coiteration uses extenders with
critical point µ on both side of the coiteration.

Proof. Suppose not an let E be the first extender with critical point µ ≤ κ
used on the W side and F the first extender with critical point µ used on
the j(W ) side. Notice that µ has the same subsets in every model. Let Γ
be a thick class of fixed points of πTΛ and πQΛ ○ j. Suppose lh(E) < lh(F ),
and let X ∈ Ea. Since W has the hull and definability property at all α < θ,
there are η⃗ ∈ Γ and a skolem term τ such that X = τW (η⃗). Hence

X = τ j(W )(η⃗) ∩ κa

Notice that we need to cut with κ just for the case µ = κ. As πTΛ (X) = τQ(η⃗)
and

πQΛ (X) = τQ(η⃗) ∩ πQΛ ○ j(κa).
Since cp(F ) ≤ κ and a ∈ [lh(F )]<ω, a ∈ [πQΛ ○ j(κ)]<ω. Thus we have the
following equivalence:

X ∈ Ea ⇐⇒ a ∈ πTΛ (X)
⇐⇒ a ∈ τQ(η⃗)

⇐⇒ a ∈ τQ(η⃗) ∩ πQΛ ○ j(κa)
⇐⇒ a ∈ πQΛ (X)
⇐⇒ X ∈ Fa

Hence E and F are compatible, a contradiction to ??! If lh(E) > lh(F ), we
can argue the very same way. ⊣

Claim 4. cp(πTΛ ) = κ and cp(πQΛ ) > κ.

Proof. By construction the iteration T0 is above κ, we claim that T1 does
not have critical points less than κ on the main branch. Suppose not, and let
µ be the smallest ordinal such that there is an extender with critical point
µ used in the coiteration. By commutativity, µ is the smallest on the j(W )
side as well. Hence both side would have use an extender with identical
critical point less than κ a contradiction to the previous claim! Thus the
critical point of πTΛ is at least κ. Since the diagram commutes and j has
critical point κ, πTΛ must have critical point κ as well. By the previous claim,
this implies that cp(πQΛ ) > κ. ⊣
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The last claim shows that P(κ) ∩K = P(κ) ∩KM , hence κ+K = κ+KM
.

Since K ∣θ ∈ M , we can coiterate K ∣θ with KM in M . The coiteration
coincide with the coiteration of K and KM in V . Let ∆ be the length of
the coiteration of K∥θ with KM .

Claim 5.

πT0,Λ ↾K∥θ = πT0,∆ ↾K∥θ,

that is the main branch of the coiteration of K∥θ with KM is an initial
segment of the main branch of the coiteration of K with KM .

Proof. Suppose not, then there is an extender E used on the main branch
of the K side of the coiteration with index higher than θ such that cp(E) < θ.
But by the properties of θ, this implies that cp(E) < κ. As E is on the main
branch, we would have cp(πTΛ ) < κ a contradiction to the previous claim! ⊣
This shows that πTΛ ↾ K ∣θ ∈ M . Hence the last model of the iteration
Q∣πQΛ (j(θ)) is in M as well and we can coiterate Q∣πQΛ (j(θ)) with KM in

M . Since Q∣πQΛ (j(θ)) is an iterate of KM , it does not move in the coiteration

and the KM side is simply the normal iteration to Q∣πQΛ (j(θ)). Hence we
have that j ↾ (KM ∣j(θ)) ∈M . Since the diagram commute, we can deduce
j ↾ P(κ) ∩K by

j(x) = y ⇐⇒ (πTΛ ↾K ∣θ)(x) = (πQΛ ↾KM ∣j(θ))(y).
Let α < θ and F be the extender of length α derived from j ↾ P(κ) ∩
K. F coheres with KM . We want to study the iterability of the phalanx
⟨KM ,Ult(KM , F ), lh(F )⟩.
Claim 6. The phalanx ⟨KM ,Ult(KM , F ), lh(F )⟩ is iterable.

Proof. The aim of the proof is to show that there is an embedding from
Ult(KM , F ) to some Q∗, where Q∗ is an iterate of KM beyond j(lh(F )).
Let us first construct Q∗ and then show that we can embed Ult(KM , F ) in
it. Let T j be the iteration on KM copied from T via j. We claim that at
each step we can factorize by taking an ultrapower with F :

K

j

��

πT0,ξ //

iKF

%%

πTη,Λ // Q

jΛ

��

iQF

$$
Ult(KM , F )

k0

yy

Ult(Q,F )
kΛ

zz
KM

πT
j

0,ξ //
πT

j

η,Λ // Q∗
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Figure 1: Copying T
The jξ ∶ MT

ξ → MT j
ξ ’s are the usual copy maps, hence we have that

whenever η ≤ ξ < lh(T ),

jξ ↾ lh(ETη ) = jη ↾ lh(ETη ).

By the previous claim we know that T is above κ. Moreover there are no
truncations in T and thus in T j . Hence for every X ∈ P(κ) ∩K,

πT0,ξ(X) ∩ κ =X.

Since j(κ) ⩾ lh(F ), the iteration T j is above lh(F ), hence if a ∈ [lh(F )]<ω
πT

j

ξ,η(a) = a. Using the commutativity of the diagram:

K
πT0,ξ

//

j

��

MT
ξ

jξ
��

KM

πT
j

0,ξ

//MT j
ξ

we have that:
jξ(πT0,ξ(X)) = πT j0,ξ(j(X)).

Thus for a ∈ [lh(F )]<ω and X ∈ P([κ]a) ∩K:

a ∈ jξ(X) ⇐⇒ a ∈ jξ(πT0,ξ(X)) ⇐⇒ πT
j

0,ξ(a) ∈ πT
j

0,ξ(j(X)) ⇐⇒ a ∈ j(X)

Hence the ⟨κ, lh(F )⟩-extender derived by jξ is nothing else than F and

thus we can factorize jξ by i
MT

ξ

F with some map kξ such that the diagram
below commutes:

MT
ξ

jξ

��

i
MTξ
F

%%
Ult(MT

ξ , F )
kξ

yy
MT j

ξ

Let iK
M

F ∶KM → Ult(KM , F ) and iQF ∶ Q→ Ult(Q,F ) be the ultrapower
maps. Then defining k ∶ Ult(KM , F )→ Ult(Q,F ) such that

iK
M

F (f)(a)↦ iQF (π
U
Λ(f) ↾ κ)(a),
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where a ∈ [lh(F )]<ω and f ∶ κa → KM , f ∈ KM . Let us show that this map
is an embedding. Let ϕ be a formula.

Ult(Q,F ) ⊧ ϕ(k(iKM

F (f)(a))) ⇐⇒ Ult(Q,F ) ⊧ ϕ(iQF (π
Q
Λ (f) ↾ κ)(a))

⇐⇒ {u;Q ⊧ ϕ(πUΛ(f)(u))} ∩ κ ∈ Fa
⇐⇒ πQΛ ({u;KM ⊧ ϕ(f(u))}) ∩ κ ∈ Fa)
⇐⇒ {u;KM ⊧ ϕ(f(u))} ∈ Fa
⇐⇒ Ult(KM , F ) ⊧ ϕ(iKM

F (f)(a))

The first equivalence holds by definition of k, the third because cp(πQΛ ) ⩾
κ, the second and fourth is  Loś theorem for ultrapower. Putting everything
together we get the following diagram:

K
j //

πTΛ

��

iKF
��

j

yy

KM

πQΛ

��

iK
M

F��
KM

πT
j

Λ

��

Ult(K,F )k0oo Ult(KM , F )

k

��

Q
jΛ

ww
iQF
��

Q∗ Ult(Q,F )
kΛ

oo

Figure 2: The complete diagram

Hence we can embed Ult(KM , F ) into Q∗ by kΛ ○ k. Since kΛ ○ k has
critical point strictly larger than lh(F ), the map

⟨id, kΛ ○ k⟩ ∶ ⟨KM ,Ult(KM , F ), lh(F )⟩→ ⟨KM ,Q∗, lh(F )⟩,

is an embedding as well. Moreover since T was above κ, we have that T j
the iteration from KM to Q∗ is above j(κ) > lh(F ). Thus we can embed
⟨KM ,Q∗, lh(F )⟩the following way:

(πT j , id) ∶ ⟨KM ,Q∗, lh(F )⟩→ ⟨Q∗,Q∗, lh(F )⟩.

⟨Q∗,Q∗, lh(F )⟩ is clearly iterable since Q∗ is an iterate of an universal
weasel. This finishes the proof of the claim. ⊣
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By [Ste96, Lemma 8.6 p. 77] this is, in fact equivalent to F being on the
KM sequence. Hence every initial segment of j ↾ P(κ) ∩K is on the KM

sequence. But this implies that κ is Shelah in KM , a contradiction! ⊣

Using Theorem 3.11 this gives us an immediate consistency strength
result:

Theorem 3.12. For i ≤ ω the following two theories are equiconsistent:

i. ZFC+“there are α generically strong cardinals, where α is less than the
least generically strong cardinal”

ii. ZFC+ “there are α strong cardinals, where α is less than the least
strong cardinal”

4 Supercompactness

In this section we want to show that we can apply some of the forcing tech-
niques developed to force generically strong cardinals from strong cardinals
to supercompact cardinals.

Definition 4.1. Let κ be a cardinal and γ some ordinal. κ is called γ-
supercompact if and only if there is an embedding j ∶ V → M such that
γM ∩ V ⊆M . κ is called supercompact if it is γ-supercompact for all γ.

Remark 4.2. Let κ be γ-supercompact and j ∶ V → M an embedding
witnessing the γ-supercompactness. For any cardinal ν < γ, j′′ν ∈M .

Theorem 4.3. Suppose ZFC+“there exist ω many supercompact cardinals”
is consistent, then so is ZFC+“each ℵn+1 is generically strong”.

Proof. Let κ0 = ω and ⟨κn+1; n ∈ ω⟩ be a monotone enumeration of all
supercompact cardinals. Let P be the easton support forcing iteration of
col(κn,< κn+1) for n ∈ ω. We want to show that if G is P-generic over V then
in V [G] every ℵn+1 is generically strong. Let κ = κn+1 be supercompact in V
and A ∈ V [G] be some subset of the ordinals. Let θ regular be bigger than

sup(A)P and 2µ, where µ = (2sup{κi; i<ω})+. Let j ∶ V →M be the embedding
witnessing the θ-supercompactness of κ. Let Gθ be col(ω,< θ++)-generic over
V such that G ∈ V [Gθ].
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It suffices to construct a G̃ with the properties that: j′′G ⊆ G̃ and G̃ is
j(P)-generic over M . We split the forcing j(P) in three parts:4

Pn =∏
i<n

col(κi, < κi+1), Qjn = col(κn,< j(κn+1)),

and finally
Pj,n = ∏

n<i<ω
col(j(κi),< j(κi+1)).

We will choose generics over V for P0 and col(κn,< µ), this is equivalent
to choosing generics over M since HV

θ ⊆ M . We will construct the generic
for Pj,n defining some master condition. Similarly we can split P in three
forcings P = Pn ∗Qn ∗Pn:

Pn =∏
i<n

col(κi,< κi+1),Qn = col(κn,< κ)

and
Pn = ∏

n<i<ω
col(κi,< κi+1).

Set Gn = G ∩ Pn. Looking at Q∗ = col(κn, sup{κn; n < ω}), by [Fuc08,
lemma 2.2] we have that (Qn ∗ Pn) × Q∗ and Q∗ are forcing equivalent,
hence there is a filter G∗, Q∗-generic over M , such that G ∈ M[Gn ×G∗].
Notice that G∗ is Q∗-generic over V as well. Using the general theory about
Levy collapse, as found in [Kan03, p.127 ff], there is a col(κn,< µ)-generic
filter over M , say G1, that is also generic over V with G∗ ∈M[Gn ×G1].

Hence there is a filter Gn ×G1, Pn ∗ col(κn,< µ)-generic over V and M ,
such that G ∈M[Gn,G1]. Let H∗ be col(κn, [µ, j(κ)[)∩M[Gn]-generic over
M[Gn,G1] and set Hn = G1×H∗, by the product lemma Hn is col(κn, j(κ))∩
M[Gn]-generic over M[Gn]. Notice that we can choose Hn ∈ V [Gθ], as all
forcings we saw so far are in Hθ+ and hence are in a countable model in
V [Gθ].

We now want to construct a generic filterGn, Pj,n-generic overM[Gn,Hn],
such that j′′(G ↾ Pn) ⊆ Gn. Remember that

Pj,n = ∏
n<i<ω

col(j(κi),< j(κi+1)).

and Pj,n = j(Pn).
Let us now work in M[Gn,Hn]. Since j was witnessing the θ compact-

ness of κ we have that j′′κi ∈ M for all i, moreover G is in M[Gn,Hn].
4in a slight abuse of notation, we use the symbol ∏ to denote the easton support

product
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Hence can compute qi = j′′(G ↾ col(κi, κi+1)) in M[Gn,Hn]. As qi has
size κi in M[Gn,Hn], it is a condition of col(j(κi),< j(κi+1)) for i > n.
Hence q̇ = ⟨q̌i; i < ω⟩ is a condition of the forcing Pj,n. Let Gn be Pj,n-
generic over M[Gn,Hn] with q̇ ∈ G2. As we have seen, we can lift j to
̃ ∶ V [G]→M[Gn,Hn,G

n].
A was in V [G] hence, by choice of θ, there is a nice name τ with τ ∈

Hθ, thus τ ∈ M and A ∈ M[Gn,Hn,G
n]. Remark again that P(Pj,n) ∩

M[Gn,Hn] is countable in V [Gθ] hence we can choose Gn ∈ V [Gθ], thus we
can define the embedding ̃ inside V [Gθ] and κ is generically strong. ⊣
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