A note on the reals of C^{*}

Ralf Schindler (Münster)

$C^{*}=L[A]$ where $A=\{\xi: \operatorname{cf}(\xi)=\omega\}$, i.e., C^{*} is the least inner model which knows which ordinals have countable cofinality, see [1].

We aim to get information about $\mathbb{R} \cap C^{*}$. Theorem 0.7 will generalize Theorem 0.1.

Question 1. Can we have $\left(2^{\aleph_{0}}\right)^{C^{*}}=\aleph_{2}^{V}$ in the presence of substantial large cardnals, e.g. supercompact cardinals?

Or just:
Question 2. Can we have $\mathbb{R} \cap C^{*}$ is not contained in a mouse in the presence of substantial large cardnals, e.g. supercompact cardinals?

Theorem 0.1 (Magidor, Sch, Woodin (?)) Assume MM. Then

$$
\mathbb{R} \cap C^{*}=\mathbb{R} \cap\left(C_{<\kappa}^{*}\right)^{M_{1}}
$$

where M_{1} is the least inner model with a Woodin cardinal and κ is any indiscernible for it (e.g. κ is an uncountable V-cardinal). In particular, $\mathbb{R} \cap C^{*} \subset M_{1}$.

Proof. " \Longrightarrow ": Let $x \in \mathbb{R} \cap C^{*}$. Then $x \in L_{\alpha}^{\prime}$, some $\alpha<\omega_{2}^{V}$. Pick $z \in \mathbb{R}$ s.t. $\left(\omega_{1}^{V}\right)^{+L[z]}>\alpha$. Let $j: M_{1}^{\#} \rightarrow N$ be a countable iteration of $M_{1}^{\#}$ such that z is generic over N for N 's extender algebra. Let $i: N \rightarrow P$ result from iterating N via its top measure and its images ω_{1}^{V} times. Then i lifts to $\hat{i}: N[z] \rightarrow P[z]$, so that $\left(\omega_{1}^{V}\right)^{+P} \geq\left(\omega_{1}^{V}\right)^{L[z]}>\alpha$. This implies that $x \in\left(C_{<\omega_{1}^{V}}^{*}\right)^{P}$, hence by pulling back via $i \circ j, x \in\left(C_{<\kappa}^{*}\right)^{M_{1}}$ for any M_{1}-indiscernible κ.
$" \Longrightarrow "$: Let $x \in\left(C_{<\kappa}^{*}\right)^{M_{1}}$ for an M_{1}-indiscernible κ. Let $i: M_{1}^{\#} \rightarrow P$ result from iterating $M_{1}^{\#}$ via its top measure and its images ω_{1}^{V} times. We get that $x \in \mathbb{R} \cap\left(C_{<\omega_{1}^{V}}^{*}\right)^{P} \subset C^{*}$.

Corollary 0.2 (Magidor) Assume MM. C^{*} doesn't have an inner model with a Woodin cardinal. (So it has core model.)

Proof. Deny. As C^{*} is closed under \#-s, C^{*} then has its version M of $M_{1}^{\#}$. By absoluteness, M is Π_{2}^{1} iterable in V, and hence

$$
\mathbb{R} \cap C^{*} \subset \mathbb{R} \cap M_{1} \subset \mathbb{R} \cap M
$$

But if $x \in \mathbb{R} \cap C^{*}$ codes M, then $x \notin M$. Contradiction!
We don't need $u_{2}=\aleph_{2}$ to verify the conclusion of Corollary 0.2 :
Theorem 0.3 (Magidor) Assume that there is a measurable cardinal, κ, above a Woodin cardinal, δ. Then $\mathbb{R} \cap C^{*} \subset C^{*} \mid u_{2}$. Consequently,

$$
\mathbb{R} \cap C^{*}=\mathbb{R} \cap\left(C_{<\kappa}^{*}\right)^{M_{1}}
$$

and C^{*} does not have an inner model with a Woodin cardinal.

Proof. Fix $x \in \mathbb{R} \cap C^{*}$, so that $x \in C^{*} \mid \omega_{2}$. Let $\sigma: M \rightarrow V_{\kappa+2}$, where M is countable and transitive and $\{x, \delta\} \subset \operatorname{ran}(\sigma)$. Let $j: M \rightarrow M^{*}$ be a generic iteration of length ω_{1} of M via the countable stationary tower $\mathbb{Q}_{<\sigma^{-1}(\delta)}$ in the sense of M and its images. We have that $j\left(\omega_{1}^{M}\right)=\omega_{1}^{V}$ and $x \in\left(C^{*}\right)^{M^{*}}\left|\omega_{2}^{M^{*}}=\left(C^{*}\right)^{V}\right| \omega_{2}^{M^{*}}$. By boundedness, $\omega_{2}^{M^{*}}<u_{2}$.

Question 3. Under $M M$ or the existence of a measurable cardinal above a Woodin cardinal, how does the core model of C^{*} look like? Is $K^{C^{*}}=C^{*}$?

The same proof as the one for Theorem 0.1 shows the following slightly more general result.

Theorem 0.4 (Magidor, Sch, Woodin (?)) Assume MM. Let M^{*} be the iterate of M_{1} obtained by iterating the least (total) measure of M_{1} and its images ω_{1}^{V} times. Then

$$
\mathrm{HC} \cap C^{*}=\mathrm{HC} \cap\left(C_{<\kappa}^{*}\right)^{M^{*}}
$$

for all indiscernibles for M^{*} (e.g. κ is a V-cardinal $\geq \aleph_{2}$).
The question concerning CH in C^{*} is therefore a question about M_{1}, as by Thm. 0.4 CH is true in C^{*} iff it is true in $\left(C_{<\kappa}^{*}\right)^{M_{1}}$ for any (all) M_{1}-indiscernible(s) κ. Another way to think of it is given by the following.

Theorem 0.5 Assume MM. For a cone of reals x,

$$
\mathbb{R} \cap C^{*}=\mathbb{R} \cap\left(C_{<\kappa}^{*}\right)^{L[x]},
$$

where κ is any x-indiscernible (e.g. κ is an uncountable V-cardinal).
Proof. Let z be any real. Let $j: M_{1} \rightarrow N$ be a countable iteration of M_{1} such that z is generic over N for N 's extender algebra. Let g be $\operatorname{Col}\left(\omega, \delta^{N}\right)$-generic over N such that $z \in N[g]$, and let $x \in N[g]$ be a real such that $N[g]=L[x]$ and $z \leq_{T} x$. Then $\mathbb{R} \cap C^{*}=\mathbb{R} \cap\left(C_{<\kappa}^{*}\right)^{M_{1}}=\mathbb{R} \cap\left(C_{<\kappa}^{*}\right)^{N}=\left(C_{<\kappa}^{*}\right)^{N[g]}=\left(C_{<\kappa}^{*}\right)^{L[x]}$ say for $\kappa=\omega_{1}^{V}$. There is hence a \leq_{T}-cofinal set of reals x satisfying the statement of the Thm. which implies that there is a cone of such x.

Theorem 0.6 Assume MM. For a cone of reals x,

$$
\mathrm{HC} \cap C^{*}=\mathrm{HC} \cap\left(C_{<\kappa}^{*}\right)^{L[x]},
$$

where κ is any uncountable x-indiscernible (e.g. κ is an V-cardinal $\geq \aleph_{2}$).
The following is a crude generalization of Theorem 0.1 , Theorem 0.8 gives some more information.

Theorem 0.7 Let M be an inner model of AD^{+}such that $\mathbb{R} \subset M$ and

$$
\Theta^{M} \geq \aleph_{2}^{V}
$$

Let P be a countable mouse with ω Woodins such that in $V^{\operatorname{Col}\left(\omega, 2^{\aleph_{0}}\right)}, M$ can be realized as a derived model of an iterate of P. Then $\mathbb{R} \cap C^{*} \subset P$. In particular, $\operatorname{Card}\left(\mathbb{R} \cap C^{*}\right)=\aleph_{0}$.

The hypothesis of Theorem 0.4 holds true e.g. if $M=L(\mathbb{R}), \Theta^{L(\mathbb{R})} \geq \aleph_{2}^{V}$, and $P=M_{\omega}^{\#}$, or M is the least inner model of $\mathrm{AD}_{\mathbb{R}}$ with $\mathbb{R} \subset M, \Theta^{M} \geq \aleph_{2}^{V}$, and $P=M_{\mathrm{adr}}^{\#}$, but it is much more general.

Proof of Theorem 0.7. Let η be the supremum of the relevant ω Woodin cardinals of P. Inside $V^{\operatorname{Col}\left(\omega, 2^{\aleph 0}\right)}$, let $i: P \rightarrow P^{*}$ be an iteration of P such that $i(\eta)=\omega_{1}^{V}$ and $P^{*}\left(\mathbb{R}^{V}\right)=M$.

Notice that if $\xi<\omega_{2}^{V} \leq \Theta^{M}$, then $\operatorname{cf}^{V}(\xi)=\omega \operatorname{iff}^{\operatorname{cf}^{M}}(\xi)=\omega$, so that, writing $\mathcal{D}(Q, \rho)$ for the derived model of \mathcal{Q} at ρ,

$$
\mathbb{R} \cap C^{*}=\mathbb{R} \cap\left(C^{*}\right)^{\mathcal{D}\left(P^{*}, i(\eta)\right)}=\mathbb{R} \cap\left(C^{*}\right)^{\mathcal{D}(P, \eta)} \subset P
$$

This finishes the proof.
Theorem 0.8 Suppose that for every $\xi<\omega_{2}^{V}$ there is some countable mouse P with a Woodin cardinal δ and some $\tau \in P^{\operatorname{Col}(\omega, \delta)}$ capturing some prewellordering R on \mathbb{R} with $\|R\| \geq \xi$. Then every real in C^{*} is in a mouse.

In the absence of $0^{\#}$, say, Question 1 has an easy answer, cf. Theorem 0.10. Theorems 0.9 and 0.10 compute the consistency strength of " $\left(2^{\aleph_{0}}\right)^{C^{*}}=\aleph_{2}^{V}$ " over ZFC.

Theorem 0.9 Suppose that $\left(2^{\aleph_{0}}\right)^{C^{*}}=\aleph_{2}^{V}$. Then \aleph_{2}^{V} is inaccessible in L.
Proof. Assume that $\eta^{+L}=\omega_{2}^{V}$. Let $A \subset \omega_{1}^{V}$ be such that

1. $\omega_{1}^{L[A]}=\omega_{1}^{V}$, and
2. $L[A] \models \operatorname{Card}(\eta)=\aleph_{1}$.

Let ξ be any ordinal with $\operatorname{cf}(\xi)=\omega$ in V, say $X \subset \xi$ is cofinal and has order type ω. By Jensen Covering, there is some $Y \subset \xi$ such that $Y \supset X, Y \in L$ and $\operatorname{otp}(Y)<\omega_{2}^{V}$. There is then some bijection $f: \omega_{1} \rightarrow Y$ inside $L[A]$, so that $f " \rho \supset X$ for some $\rho<\omega_{1}$. In other words, $\operatorname{cf}(\xi)=\omega$ in $L[A]$.

We have shown that $C^{*}=\left(C^{*}\right)^{L[A]}$. But $\mathbb{R} \cap L[A] \subset L_{\omega_{1}}[A]$ by condensation, so that $\left(2^{\aleph_{0}}\right)^{C^{*}}<\aleph_{2}^{V}$.

Theorem 0.10 (Kennedy, Magidor, Väänänen) Assume $V=L$ and κ is inaccessible. There is then a generic extension $V[G]$ of V such that $\omega_{1}^{V[G]}=\omega_{1}^{V}$ and

$$
\left(2^{\aleph_{0}}\right)^{\left(C^{*}\right)^{V[G]}}=\kappa=\aleph_{2}^{V[G]} .
$$

Proof. Working over L, we may define define a subproper iteration which adds κ Cohen subsets $\left\{x_{i}: i<\kappa\right\}$ of ω and arranges that in the extension,

$$
\operatorname{cf}\left(\aleph_{\omega \cdot i+n+5}^{L}\right)=\omega \Longleftrightarrow n \in x_{i} .
$$

Cf. Theorem 7.3 of [1].

References

[1] Kennedy, Magidor, Väänänen, Inner Models from Extended Logics. https://www.newton.ac.uk/files/preprints/ni16006.pdf

