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Abstract

We Produce a model of ZF+DC in which there are Bernstein sets,
Luzin sets, and Sierpinski sets, but there is no Vitali sets and hence
no Hamel basis.

Definition.

• B ⊂ ωω is called Bernstein iff B ∩ P 6= ∅ 6= P \ B for all perfect
P ⊂ ωω.

• Letting E0 ⊂ (ωω)2 be the Vitali equivalence relation defined by xE0y
iff ∃n0∀n ≥ n0, x(n) = y(n), V ⊂ ωω is called Vitali if V picks exactly
one element from each E0 equvalence class, i.e. ∀x∃y∀z((zE0x ∧ z ∈
V )↔ z = y)

Building upon [1], [3] proves that ZF + ”there is a Bernstein set” does
not yield a ”Vitali set” V rec in the redefined sense that V rec picks exactly
one element from each Turing degree. We here show that a slight variation
of the argument of [1] amd [3] show that ZF + ”there is a Bernstein set”
does not yield a ”Vitali set” in the original sense as defined above.

Theorem 1. ZF + ”there is a Bernstein set” does not prove ”there is
a Vitali set”.

Proof . Let G be a C(ω1)-generic over L, where ω1 = ωL1 and C(ω1)
is the finite support product of ω1 Cohen forcing, cf. [2, p105].

For α < ω1 let β(α) be the least β > ω, β > α such that Lβ |= ”α ≤ ℵ0”
and let eα : ω ↔ Lα be the Lβ(α)-least bijection. Let Eα ⊂ ω × ω be such
that (ω;Eα) ∼=eα (Lα;∈) and let gα be the set of all n < ω such that there
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are ξ < α, k,m < ω with eα(n) = (ξ, k,m) and p(ξ)(k) = m for some p ∈ G.
I.e., Eα is a canonical code for Lα and gα codes Gα relative to Eα. We may
define zα : ω → ω by

zα(2l) =

{
1, iff (l)0Eα(l)1;
0, iff (l)0 6 Eα(l)1.

and

zα(2l + 1) =

{
1, iff l ∈ gα;
0, iff l 6∈ gα(l)1.

.
Here, (l)0 and (l)1 is the first and second component, resp., of l where

construed as a pair of natural number, i.e., fixing a canonical e : ω ↔ ω×ω,
e(l) = ((l)0, (l)1).

Claim 1 For every x ∈ ωω ∩ L[G] there is some α < ω1 such that
x ∈ L[zα].

Proof: Given x, there is some α with x ∈ Lα[Gα]. But Lα[Gα] ∈ L[zα]

Claim 2 Let s ∈ C(ω1) be any condition. Let GS be he collection of all
p ∈ C(ω1) for which there is a q ∈ G with dom(p(ξ)) = dom(q(ζ)) for all
ξ < ω1 and

p(ξ)(k) =

{
s(ξ)(k), if k ∈ dom(s(ξ));
q(ξ)(k), o.w.

Then Gs is C(ω1)-generic over L, and L[Gs] = L[G]. Also, s ∈ Gs.
Proof: cf. [2]

Claim 3. Let s ∈ C(ω1) be any condition. Let α < ω1, let

gsα = {n : ∃ξ < α, ∃k,m < ω[eα(n) = (ξ, k,m)∧p(ξ)(k) = m for some p ∈ Gs]}

and let zsα : ω → ω be defined by

zsα(2l) =

{
1, iff (l)0Eα(l)1;
0, iff (l)0 6 Eα(l)1.
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zsα(2l + 1) =

{
1, iff l ∈ gsα;
0, iff l 6∈ gsα.

(I.e., zsα is defined as zα above except for using gsα instead of gα)
Then

zsαE0zα

.

Proof: Immediate, as there are only finitely many pairs (ξ, k) such
that there are p ∈ Gs and q ∈ G with p(ξ)(k) 6= q(ξ)(k).

Definition. Let us write dα = {z : zE0zα} for the E0-equivalence class
of zα. By claim 3, {zsα : s ∈ C(ω1)} ⊂ dα and by Claim 1:

Claim1′. For every x ∈ ωω ∩ L[G] there is some α < ω1 s.t. x ∈ L[Z]
for all z ∈ dα. Let us now consider the model

N = HOD
L[G]
ωω∩L[G]∪{(dα:α<ω1}

i.e. the class of all X ∈ L[G] which inside L[G] are hereditarily ordinal
definable from parameters in (ωω ∩L[G])∪{(dα : α < ω1)}, cf. [Sch. p. 86].

N |= ZF

.
Claim 4. N |= ¬AC, i.e., the axiom of choice fails in N , in fact: There

is no well-ordering of the reals in N.

Proof: Suppose L[G] has a well-ordering of its reals which is definable
from ~α ∈ OR, ~y ∈ ωω ∩ L[G] and (dα : α < ω1). Let α < ω1 be such that
~y ∈ Lα[Gα]. Let α̃ > α,α̃ < ω1. Then zα̃ must be definable in L[G] from
~α, γ, ~y, and (dα : α < ω1) for some ordinal γ. Let us assume w.l.o.g. that
~y ∈ ωω ∩ L; the argument in the general case is just a simple variant of the
argument that is to come. There is a formula φ such that for all k,m < ω,
zα̃(k) = m) iff

L[G] |= φ(k,m, ~α, γ, ~y, (dα : α < ω1)).
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Let the formula ψ define (dα : α < ω1) from G over L[G], i.e.,
L[G] |= ∀~d(~d = (dα : α < ω1)↔ ψ(~d, Ġ)). Hence zα̃(k) = (m) iff

L[G] |= ”(k,m, ~α, γ, ~y, ~d), where ψ(~d, Ġ)”

iff
∃p ∈ GC(ω1)

L ”φ(ǩ, m̌, ~̌α, γ̌, ~̌y, ~d), where ψ(~d, Ġ)”

Suppose s ∈ C(ω1) is any condition such that s
C(ω1)
L ”¬φ(ǩ, m̌, ~̌α, γ̌, ~̌y, ~d),

where ψ(~d, Ġ). Using Claim 2, Gs is C(ω1)-generic over L, s ∈ Gs, and
L[Gs] = L[G]. This gives that

L[Gs] = L[G] |= ”¬φ(k,m, ~α, γ, ~y, ~d), where ψ(~d,Gs)”

. However, Claim 3 beys us that if ψ(~d,Gs) holds true in L[G], then in fact
~d = (dα : α < ω) and therefore L[G] |= ¬φ(k,m, ~α, γ, ~y, (dα : α < ω1)).
Contradiction!
We have shown that zα̃(k) = m iff

∃p ∈ GpC(ω1)
L ”φ(ǩ, m̌, ~̌α, γ̌, ~̌y, ~d)”, whereψ(~d, Ġ)”

iff
1
C(ω1)
C(ω1)L”φ(ǩ, m̌, ~̌α, γ̌, ~̌y, ~d)”

where ψ(~d, Ġ). But then zα̃ ∈ L, cf. [Sch., p. 118]. However, L[zα̃] contains
a Cohen real over L. Contradiction!
We have verified Claim 4.

Claim 5. N |= ”There is no Vitali Set”.

Proof. Suppose there is some V ∈ N such that V ∩ dα is singleton
for each α < ω1. There is then a sequence (z∗α : α < ω1) in N such that
z∗α ∈ dα for every α < ω1. Let <α be the canonical well-ordering of L[z∗α] as
being defined inside L[z∗α]. For x ∈ ωω ∩ L[G] let α(x) be the least α < ω1

such that x ∈ L[z∗α]. By claim 1̀, α(x) is always well-defined. We may then
define a well-ordere < of ωω ∩N inside N as follows x < y iff α(x) < α(y)
or α(x) = α(y.)

Contradiction with Claim 4.

Claim 6. N |= ”There is a Bernstein Set”.
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Proof: Let B = {b ∈ ωω : ∃ even α[b ∈ L[z] for all/some z ∈ dα+1∧b 6∈
L[z] for all/some z ∈ dα]} and ′ = {b ∈ ωω : ∃oddα[b ∈ L[z] for all/some
z ∈ dα+1 ∧ b /∈ L[Z]forall/somez ∈ dα}, as being defined in N . Obviously,
B ∩B′ = ∅. Let P ⊂ ωω be a perfect set in N , say P = [T ] for some perfect
tree T , T ∈ L[z], z ∈ dα, α even. We work in N . Pick z∗ ∈ dα+1. We may
easily find some b ∈ ωω such that L[T, b] = L[z∗]. In particular, b ∈ L[z∗]. If
b ∈ L[z], then L[z∗] = L[T, b] ⊂ L[z], which condracts z∗ ∈ dα+1 and z ∈ dα.
Hence n /∈ L[z′] for any z′ ∈ dα. We have shown that B ∩ P 6= ∅. Virtually
the same argument shows that B′ ∩ P 6= ∅. But then B is Bernstein.

We may verify that there are Luzin and Sierpinski sets in N .

Definition

• L ⊂ ωω is called Luzini iff L is uncountable and L ∩M ≤ ℵ0 for every
meager set.

• S ⊂ ωω is called Sierpinski iff S is uncountable and S ∩N ≤ ℵ0 for all
null set.

In what follows, we shall feel free using the above introduced notions.
For each α < ω1, let κ(α) < ω1 be the least κ such that Lκ[z] |= ZFC− for
all/some z ∈ dα.

Lemma 1. N |= ”There is a Sierpinski set”.

Proof: Let us define a normal function f : ω1 → ω1 as follows, working
entirely inside N . For α < ω1, let Hα be the collection of all Gδ null sets
which have a reale code in Lκ(α)[z] for some/all z ∈ dα. Notice that H is
countable, so that

⋃
H is a null set for all α < ω1. Given α < ω1, let f(α)

be the least β > α such that there is some x ∈ ωω such that for all/some
z ∈ dβ and for all/some z̄ ∈ dα:

x ∈ Lκ(β) \ (Lκ(α) ∪
⋃
H)

For limit λ, let f(λ) = supα<λ f(α). We then let S be the collection of
reals x such that for some α < ω1 with β being f(α), i.e. S = {x ∈ ωω :
∃α < ω1[x ∈ Lκ(f(α))[z] \ (Lκ(α)[z̄∪

⋃
H) for some/all z ∈ df(α) and z̄ ∈ dα])}.

It is easy to see that S is a Sierpinski set. Virtually the same proof shows:

Lemma 2. N |= ” There is a Luzini Set”.
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Proof: As the proof of the previous lemma, replacing H with the
collection of all meager sets which have a real code in Lκ(α)[z], for some/all
z ∈ dα. For the record, let us also state:

Lemma 3. N |= ”There is no Hamel basis”.
This immediately follows from above mentioned results about Bernstein sets
and Vitali sets together with the following.

Definition. Recall that a Hamel basis is a basis for R construed as a
vector space over Q.

Lemma (Folklore). In ZFC, if there is a Hamel basis, then there is a
Vitali Set.

Proof: Fix a Hamel basis B. For each x, there is a unique finite
bx ⊂ B of leas size such that [x]E0

⊂< bx >. Using a well-ordering of the
finite sequences of rational, we may then for each x ∈ ωω pick y ∈ [x]E0 such
that if

y =
∑

~r bx, ~r ∈<ω Q,

then ~r is the least ~r′ such that
∑ ~r′ ∈ [x]E0

. this gives a Vitali set.
We showed there are Bernstein, Luzini and Sierpinski sets in N , but no

Vitali sets and no Hamel basis.

References

1. Nies, A., dl./dropboxusercontent.com/n/310127/Blog/Blog2012.pdf, p.48

2. Schindler, R., Set Theory. Exploring independence and truth, Springer-
Verlag, 2012

3. Wang, W., Wu, L., Yu, L., Cofinal maximal chains in the Turing
degrees

6


