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Abstract

We Produce a model of ZF+DC in which there are Bernstein sets,
Luzin sets, and Sierpinski sets, but there is no Vitali sets and hence
no Hamel basis.

Definition.

e B C w¥ is called Bernstein iff BN P # () # P\ B for all perfect
P Cw”.

e Letting Fy C (w*”)? be the Vitali equivalence relation defined by xEqy
iff IngVn > ng,x(n) = y(n), V.C w* is called Vitali if V' picks exactly
one element from each Eg equvalence class, i.e. Vo3yVz((zEpz A z €
V)< z=y)

Building upon [1], [3] proves that ZF + ”there is a Bernstein set” does
not yield a ”Vitali set” V"¢ in the redefined sense that V"¢ picks exactly
one element from each Turing degree. We here show that a slight variation
of the argument of [1] amd [3] show that ZF + "there is a Bernstein set”
does not yield a ”Vitali set” in the original sense as defined above.

Theorem 1. ZF + ”there is a Bernstein set” does not prove ”there is
a Vitali set”.

Proof . Let G be a C(wj)-generic over L, where w; = w and C(w;)
is the finite support product of w; Cohen forcing, cf. [2, pl105].

For av < wyq let B(c) be the least § > w, B > a such that Lg |="a < Ry”
and let e, : w <+ L, be the Lﬁ(a)—least bijection. Let E, C w X w be such
that (w;Eq) = (Lg; €) and let g, be the set of all n < w such that there



are £ < a, k,m < w with ey (n) = (£, k,m) and p(§)(k) = m for some p € G.
Le., F, is a canonical code for L, and g, codes Ga relative to E,. We may
define z, : w = w by

and

)1, iffl e ga;
a2l 1) = { 0, iff 1 ¢ ga(l):.

Here, (I)p and (1)1 is the first and second component, resp., of [ where
construed as a pair of natural number, i.e., fixing a canonical e : w <> w X w,

e(l) = (Do, (1)1)-

Claim 1 For every z € w® N L[G] there is some a < w; such that
x € L[zq].

Proof. Given x, there is some a with z € L, [Ga]. But Ly[Gal € L|z,]

Claim 2 Let s € C(w;) be any condition. Let G be he collection of all
p € C(wy) for which there is a ¢ € G with dom(p(§)) = dom(q(¢)) for all
¢ <wp and

9(€)(k), ow.

Then G* is C'(wy)-generic over L, and L|G®] = L|G]. Also, s € G*.
Proof: cf. [2]

p(&) (k) = { s(€)(k), if k € dom(s(€));

Claim 3. Let s € C'(w1) be any condition. Let o < wy, let
9o ={n:3¢ < a,Fk,m <wleq(n) = (& k,m)Ap(&)(k) =m for some p € G°]}

and let 2, : w — w be defined by



R 1, iffleg’;
ZJ%+1):{()1HZ¢;.

(Le., 25 is defined as z, above except for using g5 instead of g, )
Then
25 Eoza

Proof: Immediate, as there are only finitely many pairs (£, k) such
that there are p € G® and ¢ € G with p(&)(k) # q(&)(k).

Definition. Let us write dy, = {z : 2zEgz,} for the Eg-equivalence class
of zo. By claim 3, {2}, : s € C(w1)} C d, and by Claim 1:

Claiml’. For every x € w* N L[G| there is some o < w; s.t. = € L[Z]
for all z € d,. Let us now consider the model

L[G]
wYNL[GIU{(da:a<w1}

N=HOD
i.e. the class of all X € L[G| which inside L[G] are hereditarily ordinal
definable from parameters in (w* N L[G]) U{(dq : @ < w1)}, cf. [Sch. p. 86].

N ZF

Claim 4. N = —AC, i.e., the axiom of choice fails in N, in fact: There
is no well-ordering of the reals in N.

Proof: Suppose L[G] has a well-ordering of its reals which is definable
from @ € OR, ¥ € w* N L|G] and (dy : @ < wy). Let @ < wy be such that
¥ € Lo|Ga]. Let & > a,& < wi. Then z5 must be definable in L[G] from
a,~,y, and (dy : @ < wy) for some ordinal . Let us assume w.l.o.g. that
¥ € w¥ N L; the argument in the general case is just a simple variant of the
argument that is to come. There is a formula ¢ such that for all £, m < w,
Z&(k) = m) iff

L[G] ): ¢(kama 0_27’77377 (da o< wl))'



Let the formula ¢ define (do v < &;Q from G over L[G], i.e.,
LG EVd(d = (dg : @« < w1) +> ¥(d,G)). Hence z5(k) = (m) iff

—

LG &7 (k,m,d&,~,7,d), where (d,G)
iff

v =
)

dp e Gg(wl)”d)(k, m,a, 5,7, d) where @b(cz G)”

Suppose s € C(wi) is any condition such that sf(wl)”—‘¢(k,m, &',"y,yj,cf),

where ¢(d,G). Using Claim 2, G* is C(w1)-generic over L, s € G*, and
L[G?®] = L[G]. This gives that

L[G®] = L[G] £ "=¢(k,m,d,7,7,d), where (d,G*)"

. However, Claim 3 beys us that if 1(d, G*) holds true in L[G], then in fact
d = (dy : @ < w) and therefore L[G] = —¢(k,m, @7, 7, (do : @ < w1)).
Contradiction!

We have shown that z5(k) = m iff

—

Ip € Gp NV gk, 1, &, 7,7, d)” , wherew(d, G)”

iff
c b i 5 oo 5 Ry
Lo L7 ok, i, &, 5,37, d)
where o(d, G). But then z4 € L, cf. [Sch., p. 118]. However, L[za] contains
a Cohen real over L. Contradiction!
We have verified Claim 4.

Claim 5. N = "There is no Vitali Set”.

Proof. Suppose there is some V' € N such that V Nd, is singleton
for each @ < wy. There is then a sequence (2} : @ < w;) in N such that
2} € d, for every oo < wy. Let <, be the canonical well-ordering of L[z}] as
being defined inside L[z}]. For x € w* N L[G] let a(x) be the least o < wy
such that z € L[z%]. By claim 1, a(z) is always well-defined. We may then
define a well-ordere < of w* N N inside N as follows = < y iff a(z) < a(y)
or az) = a(y.)

Contradiction with Claim 4.

Claim 6. N |= "There is a Bernstein Set”.



Proof: Let B = {b € w* : Jeven a[b € L[z] for all/some z € do11Ab &
L[z] for all/some z € dy]} and " = {b € w*¥ : Joddalb € L]z| for all/some
z2 € dot1 Nb ¢ L[Z]forall/somez € d,}, as being defined in N. Obviously,
BN B =10. Let P C w¥ be a perfect set in N, say P = [T] for some perfect
tree T, T' € L[z],z € dy, o even. We work in N. Pick 2* € dyy1. We may
easily find some b € w* such that L[T,b] = L[z*]. In particular, b € L[z*]. If
b € L[z], then L[z*] = L[T, b] C L[z], which condracts z* € dy41 and z € d,.
Hence n ¢ L[Z'] for any 2z’ € d,. We have shown that BN P # (). Virtually
the same argument shows that B’ N P # (). But then B is Bernstein.

We may verify that there are Luzin and Sierpinski sets in N.

Definition

e L. C w¥ is called Luzini iff L is uncountable and L N M < Y for every
meager set.

e S C w" is called Sierpinski iff S is uncountable and S N N < Vg for all
null set.

In what follows, we shall feel free using the above introduced notions.
For each o < wy, let k() < wy be the least k such that L.[z] = ZFC~ for
all/some z € d,.

Lemma 1. N |= "There is a Sierpinski set”.

Proof: Let us define a normal function f : w; — w; as follows, working
entirely inside N. For a < wi, let H, be the collection of all Gg null sets
which have a reale code in Ly, for some/all z € d,. Notice that H is
countable, so that |J H is a null set for all o < wy. Given a < wy, let f(«)
be the least 8 > « such that there is some x € w* such that for all/some
z € dg and for all/some Z € d,:

v € Ly(s) \ (Lo VU H)

For limit A, let f(\) = sup,<y f(c). We then let S be the collection of
reals = such that for some a < w; with § being f(a), i.e. S ={z € w¥:
do < wiz € Lm(f(a))[z] \ (L/{(a)[ZUU H) for some/all z € df(a) and z € dq))}.
It is easy to see that S is a Sierpinski set. Virtually the same proof shows:

Lemma 2. N |= ” There is a Luzini Set”.



Proof: As the proof of the previous lemma, replacing H with the
collection of all meager sets which have a real code in L, 4)[.], for some/all
z € d,,. For the record, let us also state:

Lemma 3. N | ”There is no Hamel basis”.
This immediately follows from above mentioned results about Bernstein sets
and Vitali sets together with the following.

Definition. Recall that a Hamel basis is a basis for R construed as a
vector space over (.

Lemma (Folklore). In ZFC, if there is a Hamel basis, then there is a
Vitali Set.

Proof: Fix a Hamel basis B. For each x, there is a unique finite
by C B of leas size such that [z]p C< by >. Using a well-ordering of the
finite sequences of rational, we may then for each x € w* pick y € [z]g, such
that if

y:ZFbm FE<wQa

then 7 is the least v such that 377 € [z]g,- this gives a Vitali set.
We showed there are Bernstein, Luzini and Sierpinski sets in IV, but no
Vitali sets and no Hamel basis.
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