Some Pathological Sets in Special Model of Set Theory

Mariam Beriashvili, Ralf Schindler

February 22, 2017

Abstract

We Produce a model of $\mathrm{ZF}+\mathrm{DC}$ in which there are Bernstein sets, Luzin sets, and Sierpinski sets, but there is no Vitali sets and hence no Hamel basis.

Definition.

- $B \subset \omega^{\omega}$ is called Bernstein iff $B \cap P \neq \emptyset \neq P \backslash B$ for all perfect $P \subset \omega^{\omega}$.
- Letting $E_{0} \subset\left(\omega^{\omega}\right)^{2}$ be the Vitali equivalence relation defined by $x \mathrm{E}_{0} y$ iff $\exists n_{0} \forall n \geq n_{0}, x(n)=y(n), V \subset \omega^{\omega}$ is called Vitali if V picks exactly one element from each E_{0} equvalence class, i.e. $\forall x \exists y \forall z\left(\left(z \mathrm{E}_{0} x \wedge z \in\right.\right.$ $V) \leftrightarrow z=y$)

Building upon [1], [3] proves that ZF + "there is a Bernstein set" does not yield a "Vitali set" $V^{\text {rec }}$ in the redefined sense that $V^{\text {rec }}$ picks exactly one element from each Turing degree. We here show that a slight variation of the argument of [1] amd [3] show that $\mathbf{Z F}+$ "there is a Bernstein set" does not yield a "Vitali set" in the original sense as defined above.

Theorem 1. $\mathbf{Z F}+$ "there is a Bernstein set" does not prove "there is a Vitali set".

Proof. Let G be a $C\left(\omega_{1}\right)$-generic over \mathbf{L}, where $\omega_{1}=\omega_{1}^{L}$ and $C\left(\omega_{1}\right)$ is the finite support product of ω_{1} Cohen forcing, cf. [2, p105].

For $\alpha<\omega_{1}$ let $\beta(\alpha)$ be the least $\beta>\omega, \beta>\alpha$ such that $L_{\beta} \models " \overline{\bar{\alpha}} \leq \aleph_{0}$ " and let $e_{\alpha}: \omega \leftrightarrow L_{\alpha}$ be the $L_{\beta(\alpha)}$-least bijection. Let $\mathrm{E}_{\alpha} \subset \omega \times \omega$ be such that $\left(\omega ; \mathrm{E}_{\alpha}\right) \cong{ }^{e_{\alpha}}\left(L_{\alpha} ; \in\right)$ and let g_{α} be the set of all $n<\omega$ such that there
are $\xi<\alpha, k, m<\omega$ with $e_{\alpha}(n)=(\xi, k, m)$ and $p(\xi)(k)=m$ for some $p \in G$. I.e., E_{α} is a canonical code for L_{α} and $g_{\alpha} \operatorname{codes} G \alpha$ relative to E_{α}. We may define $z_{\alpha}: \omega \rightarrow \omega$ by

$$
z_{\alpha}(2 l)= \begin{cases}1, & \text { iff }(l)_{0} \mathrm{E}_{\alpha}(l)_{1} \\ 0, & \text { iff }(l)_{0} E_{\alpha}(l)_{1} .\end{cases}
$$

and

$$
z_{\alpha}(2 l+1)= \begin{cases}1, & \text { iff } l \in g_{\alpha} \\ 0, & \text { iff } l \notin g_{\alpha}(l)_{1} .\end{cases}
$$

Here, $(l)_{0}$ and $(l)_{1}$ is the first and second component, resp., of l where construed as a pair of natural number, i.e., fixing a canonical $e: \omega \leftrightarrow \omega \times \omega$, $e(l)=\left((l)_{0},(l)_{1}\right)$.

Claim 1 For every $x \in \omega^{\omega} \cap L[G]$ there is some $\alpha<\omega_{1}$ such that $x \in L\left[z_{\alpha}\right]$.

Proof: Given x , there is some α with $x \in L_{\alpha}[G \alpha]$. But $L_{\alpha}[G \alpha] \in L\left[z_{\alpha}\right]$
Claim 2 Let $s \in C\left(\omega_{1}\right)$ be any condition. Let G^{S} be he collection of all $p \in C\left(\omega_{1}\right)$ for which there is a $q \in G$ with $\operatorname{dom}(p(\xi))=\operatorname{dom}(q(\zeta))$ for all $\xi<\omega_{1}$ and

$$
p(\xi)(k)= \begin{cases}s(\xi)(k), & \text { if } k \in \operatorname{dom}(s(\xi)) ; \\ q(\xi)(k), & \text { o.w. }\end{cases}
$$

Then G^{s} is $C\left(\omega_{1}\right)$-generic over L, and $L\left[G^{s}\right]=L[G]$. Also, $s \in G^{s}$. Proof: cf. [2]

Claim 3. Let $s \in C\left(\omega_{1}\right)$ be any condition. Let $\alpha<\omega_{1}$, let
$g_{\alpha}^{s}=\left\{n: \exists \xi<\alpha, \exists k, m<\omega\left[e_{\alpha}(n)=(\xi, k, m) \wedge p(\xi)(k)=m\right.\right.$ for some $\left.\left.p \in G^{s}\right]\right\}$
and let $z_{\alpha}^{s}: \omega \rightarrow \omega$ be defined by

$$
z_{\alpha}^{s}(2 l)= \begin{cases}1, & \text { iff }(l)_{0} \mathrm{E}_{\alpha}(l)_{1} \\ 0, & \text { iff }(l)_{0} \mathrm{E}_{\alpha}(l)_{1} .\end{cases}
$$

$$
z_{\alpha}^{s}(2 l+1)= \begin{cases}1, & \text { iff } l \in g_{\alpha}^{s} \\ 0, & \text { iff } l \notin g_{\alpha}^{s}\end{cases}
$$

(I.e., z_{α}^{s} is defined as z_{α} above except for using g_{α}^{s} instead of g_{α}) Then

$$
z_{\alpha}^{s} \mathrm{E}_{0} z_{\alpha}
$$

Proof: Immediate, as there are only finitely many pairs (ξ, k) such that there are $p \in G^{s}$ and $q \in G$ with $p(\xi)(k) \neq q(\xi)(k)$.

Definition. Let us write $d_{\alpha}=\left\{z: z \mathrm{E}_{0} z_{\alpha}\right\}$ for the E_{0}-equivalence class of z_{α}. By claim 3, $\left\{z_{\alpha}^{s}: s \in C\left(\omega_{1}\right)\right\} \subset d_{\alpha}$ and by Claim 1:

Claim1'. For every $x \in \omega^{\omega} \cap L[G]$ there is some $\alpha<\omega_{1}$ s.t. $x \in L[Z]$ for all $z \in d_{\alpha}$. Let us now consider the model

$$
N=H O D_{\omega^{\omega} \cap L[G] \cup\left\{\left(d_{\alpha}: \alpha<\omega_{1}\right\}\right.}^{L[G]}
$$

i.e. the class of all $X \in L[G]$ which inside $L[G]$ are hereditarily ordinal definable from parameters in $\left(\omega^{\omega} \cap L[G]\right) \cup\left\{\left(d_{\alpha}: \alpha<\omega_{1}\right)\right\}$, cf. [Sch. p. 86].

$$
N \models Z F
$$

Claim 4. $N \models \neg A C$, i.e., the axiom of choice fails in N, in fact: There is no well-ordering of the reals in N .

Proof: Suppose $L[G]$ has a well-ordering of its reals which is definable from $\vec{\alpha} \in O R, \vec{y} \in \omega^{\omega} \cap L[G]$ and ($d_{\alpha}: \alpha<\omega_{1}$). Let $\alpha<\omega_{1}$ be such that $\vec{y} \in L_{\alpha}[G \alpha]$. Let $\tilde{\alpha}>\alpha, \tilde{\alpha}<\omega_{1}$. Then $z_{\tilde{\alpha}}$ must be definable in $L[G]$ from $\vec{\alpha}, \gamma, \vec{y}$, and ($d_{\alpha}: \alpha<\omega_{1}$) for some ordinal γ. Let us assume w.l.o.g. that $\vec{y} \in \omega^{\omega} \cap L$; the argument in the general case is just a simple variant of the argument that is to come. There is a formula ϕ such that for all $k, m<\omega$, $\left.z_{\tilde{\alpha}}(k)=m\right)$ iff

$$
L[G] \models \phi\left(k, m, \vec{\alpha}, \gamma, \vec{y},\left(d_{\alpha}: \alpha<\omega_{1}\right)\right) .
$$

Let the formula ψ define $\left(d_{\alpha}: \alpha<\omega_{1}\right)$ from G over $L[G]$, i.e., $L[G] \equiv \forall \vec{d}\left(\vec{d}=\left(d_{\alpha}: \alpha<\omega_{1}\right) \leftrightarrow \psi(\vec{d}, \dot{G})\right)$. Hence $z_{\tilde{\alpha}}(k)=(m)$ iff

$$
L[G] \models "(k, m, \vec{\alpha}, \gamma, \vec{y}, \vec{d}), \quad \text { where } \quad \psi(\vec{d}, \dot{G}) "
$$

iff

$$
\exists p \in G_{L}^{C\left(\omega_{1}\right) "} \phi(\check{k}, \check{m}, \check{\vec{\alpha}}, \check{\gamma}, \check{\vec{y}}, \vec{d}), \quad \text { where } \quad \psi(\vec{d}, \dot{G}) "
$$

 where $\psi(\vec{d}, \dot{G})$. Using Claim 2, G^{s} is $C\left(\omega_{1}\right)$-generic over $L, s \in G^{s}$, and $L\left[G^{s}\right]=L[G]$. This gives that

$$
L\left[G^{s}\right]=L[G] \models " \neg \phi(k, m, \vec{\alpha}, \gamma, \vec{y}, \vec{d}), \quad \text { where } \quad \psi\left(\vec{d}, G^{s}\right) "
$$

. However, Claim 3 beys us that if $\psi\left(\vec{d}, G^{s}\right)$ holds true in $L[G]$, then in fact $\vec{d}=\left(d_{\alpha}: \alpha<\omega\right)$ and therefore $L[G] \models \neg \phi\left(k, m, \vec{\alpha}, \gamma, \vec{y},\left(d_{\alpha}: \alpha<\omega_{1}\right)\right)$. Contradiction!
We have shown that $z_{\tilde{\alpha}}(k)=m$ iff

$$
\exists p \in G p_{L}^{C\left(\omega_{1}\right) "} \phi(\check{k}, \check{m}, \check{\vec{\alpha}}, \check{\gamma}, \check{\vec{y}}, \vec{d}) ", \text { where } \psi(\vec{d}, \dot{G}) "
$$

iff

$$
1_{C\left(\omega_{1}\right) L}^{C\left(\omega_{1}\right)} " \phi(\check{k}, \check{m}, \check{\vec{\alpha}}, \check{\gamma}, \check{\vec{y}}, \vec{d}) "
$$

where $\psi(\vec{d}, \dot{G})$. But then $z_{\tilde{\alpha}} \in L$, cf. [Sch., p. 118]. However, $L\left[z_{\tilde{\alpha}}\right]$ contains a Cohen real over L. Contradiction! We have verified Claim 4.

Claim 5. $N \models$ "There is no Vitali Set".
Proof. Suppose there is some $V \in N$ such that $V \cap d_{\alpha}$ is singleton for each $\alpha<\omega_{1}$. There is then a sequence ($z_{\alpha}^{*}: \alpha<\omega_{1}$) in N such that $z_{\alpha}^{*} \in d_{\alpha}$ for every $\alpha<\omega_{1}$. Let $<_{\alpha}$ be the canonical well-ordering of $L\left[z_{\alpha}^{*}\right]$ as being defined inside $L\left[z_{\alpha}^{*}\right]$. For $x \in \omega^{\omega} \cap L[G]$ let $\alpha(x)$ be the least $\alpha<\omega_{1}$ such that $x \in L\left[z_{\alpha}^{*}\right]$. By claim $\grave{1}, \alpha(x)$ is always well-defined. We may then define a well-ordere $<$ of $\omega^{\omega} \cap N$ inside N as follows $x<y$ iff $\alpha(x)<\alpha(y)$ or $\alpha(x)=\alpha(y$.

Contradiction with Claim 4.
Claim 6. $N \models$ "There is a Bernstein Set".

Proof: Let $B=\left\{b \in \omega^{\omega}: \exists\right.$ even $\alpha\left[b \in L[z]\right.$ for all/some $z \in d_{\alpha+1} \wedge b \notin$ $L[z]$ for all/some $\left.\left.z \in d_{\alpha}\right]\right\}$ and ${ }^{\prime}=\left\{b \in \omega^{\omega}: \exists o d d \alpha[b \in L[z]\right.$ for all/some $z \in d_{\alpha+1} \wedge b \notin L[Z]$ forall/somez $\left.\in d_{\alpha}\right\}$, as being defined in N. Obviously, $B \cap B^{\prime}=\emptyset$. Let $P \subset \omega^{\omega}$ be a perfect set in N, say $P=[T]$ for some perfect tree $T, T \in L[z], z \in d_{\alpha}$, α even. We work in N. Pick $z^{*} \in d_{\alpha+1}$. We may easily find some $b \in \omega^{\omega}$ such that $L[T, b]=L\left[z^{*}\right]$. In particular, $b \in L\left[z^{*}\right]$. If $b \in L[z]$, then $L\left[z^{*}\right]=L[T, b] \subset L[z]$, which condracts $z^{*} \in d_{\alpha+1}$ and $z \in d_{\alpha}$. Hence $n \notin L\left[z^{\prime}\right]$ for any $z^{\prime} \in d_{\alpha}$. We have shown that $B \cap P \neq \emptyset$. Virtually the same argument shows that $B^{\prime} \cap P \neq \emptyset$. But then B is Bernstein.

We may verify that there are Luzin and Sierpinski sets in N.

Definition

- $L \subset \omega^{\omega}$ is called Luzini iff L is uncountable and $\overline{\overline{L \cap M}} \leq \aleph_{0}$ for every meager set.
- $S \subset \omega^{\omega}$ is called Sierpinski iff S is uncountable and $\overline{\overline{S \cap N}} \leq \aleph_{0}$ for all null set.

In what follows, we shall feel free using the above introduced notions. For each $\alpha<\omega_{1}$, let $\kappa(\alpha)<\omega_{1}$ be the least κ such that $L_{\kappa}[z] \models Z F C^{-}$for all/some $z \in d_{\alpha}$.

Lemma 1. $N \neq$ "There is a Sierpinski set".
Proof: Let us define a normal function $f: \omega_{1} \rightarrow \omega_{1}$ as follows, working entirely inside N. For $\alpha<\omega_{1}$, let H_{α} be the collection of all G_{δ} null sets which have a reale code in $L_{\kappa(\alpha)[z]}$ for some/all $z \in d_{\alpha}$. Notice that H is countable, so that $\bigcup H$ is a null set for all $\alpha<\omega_{1}$. Given $\alpha<\omega_{1}$, let $f(\alpha)$ be the least $\beta>\alpha$ such that there is some $x \in \omega^{\omega}$ such that for all/some $z \in d_{\beta}$ and for all/some $\bar{z} \in d_{\alpha}$:

$$
x \in L_{\kappa(\beta)} \backslash\left(L_{\kappa(\alpha)} \cup \bigcup H\right)
$$

For limit λ, let $f(\lambda)=\sup _{\alpha<\lambda} f(\alpha)$. We then let S be the collection of reals x such that for some $\alpha<\omega_{1}$ with β being $f(\alpha)$, i.e. $S=\left\{x \in \omega^{\omega}\right.$: $\exists \alpha<\omega_{1}\left[x \in L_{\kappa(f(\alpha))[z]} \backslash\left(L_{\kappa(\alpha)[z \cup \bigcup H)}\right.\right.$ for some/all $z \in d_{f(\alpha)}$ and $\left.\left.\left.\bar{z} \in d_{\alpha}\right]\right)\right\}$. It is easy to see that S is a Sierpinski set. Virtually the same proof shows:

Lemma 2. $N \models$ " There is a Luzini Set".

Proof: As the proof of the previous lemma, replacing H with the collection of all meager sets which have a real code in $L_{\kappa(\alpha)[z]}$, for some/all $z \in d_{\alpha}$. For the record, let us also state:

Lemma 3. $N \models$ "There is no Hamel basis".
This immediately follows from above mentioned results about Bernstein sets and Vitali sets together with the following.

Definition. Recall that a Hamel basis is a basis for R construed as a vector space over Q.

Lemma (Folklore). In $Z F C$, if there is a Hamel basis, then there is a Vitali Set.

Proof: Fix a Hamel basis B. For each x, there is a unique finite $b_{x} \subset B$ of leas size such that $\left.[x]_{\mathrm{E}_{0}} \subset<b_{x}\right\rangle$. Using a well-ordering of the finite sequences of rational, we may then for each $x \in \omega^{\omega}$ pick $y \in[x]_{E_{0}}$ such that if

$$
y=\sum \vec{r} b_{x}, \quad \vec{r} \in^{<\omega} Q,
$$

then \vec{r} is the least $\overrightarrow{r^{\prime}}$ such that $\sum \overrightarrow{r^{\prime}} \in[x] \mathrm{E}_{0}$. this gives a Vitali set.
We showed there are Bernstein, Luzini and Sierpinski sets in N, but no Vitali sets and no Hamel basis.

References

1. Nies, A., dl./dropboxusercontent.com/n/310127/Blog/Blog2012.pdf, p. 48
2. Schindler, R., Set Theory. Exploring independence and truth, SpringerVerlag, 2012
3. Wang, W., Wu, L., Yu, L., Cofinal maximal chains in the Turing degrees
