Open Problems

Problem 1. Determine the consistency strength of the statement " $u_2 = \omega_2$ ", where u_2 is the second uniform indiscernible.

<u>Best known bounds</u>: Con(there is a strong cardinal) \leq Con $(u_2 = \omega_2) \leq$

Con(there is a Woodin cardinal with a measurable above it)

<u>Remark</u>: The difficulty is that we don't know how to use the hypothesis $u_2 = \omega_2$ to build larger models, even if we were given a measurable to make sense of the core model K.

<u>Related Problem</u>: Determine the consistency strength of the statement "every real has a sharp + every subset of $\omega_1^{L(\mathbb{R})}$ in $L(\mathbb{R})$ is constructible from a real".

Problem 2. Assume PD. C_3 is the largest

countable Π_3^1 -set of reals. Is it true that $C_3 = \{ x \in M_2 \cap \mathbb{R} \mid x \text{ is }$

 Δ_3^1 – definable from a mastercode of M_2 ?

Known:

- $C_1 = \{x \mid x \text{ is } \Delta_1^1 \text{equivalent to a mastercode of } L\}$
- $C_2 = \mathbb{R} \cap L$
- The reals in C_3 are Turing cofinal in $C_4 = M_2 \cap \mathbb{R}$.

Problem 3. Working in ZFC, how large can $\Theta^{L(\mathbb{R})}$ be?

Known:

- $\omega_1^V < \Theta^{L(\mathbb{R})}$
- $\operatorname{Con}(\omega_2^V < \Theta^{L(\mathbb{R})})$ if e.g. $u_2 = \omega_2$

But what about $\omega_3^V < \Theta^{L(\mathbb{R})}$?

<u>Variant</u>: Assume there are arbitrarily large Woodin cardinals. Is it possible that there is a universally Baire well-ordering of ordertype ω_3^V ?

Problem 4. Assume AD^+ and assume that there is no iteration strategy for a countable mouse with a superstrong. Let $a \in \mathbb{R} \cap OD$. Does there exist a countable iterable mouse M such that $a \in M$?

<u>Remark</u>: If there is an iteration strategy Σ for a countable mouse with a superstrong then we work in an initial segment of the Wadge hierarchy $\langle_W \Sigma$.

<u>Known</u>: (Woodin) If we replace the hypothesis with "no iteration strategy for a countable mouse satisfying the $AD_{\mathbb{R}}$ – hypothesis" then the conclusion follows. This is the best result known.

Problem 5. Suppose $M_1^{\sharp}(x)$ exists for all sets x. K will be closed under the operation $x \mapsto M_1^{\sharp}(x)$ and any model closed under this operation will be Σ_3^1 - correct. Is $K \Sigma_4^1$ - correct under the hypotheses that $M_1^{\sharp}(x)$ exists for all x and that there is no inner model with 2 Woodins?

<u>Remark</u>: (Steel) Assume that K exists below a Woodin cardinal (e.g. ORD is measurable) and assume that there is a measurable and that there is no inner model with 1 Woodin. Then K is Σ_3^{1-} correct.

Conjectured improvement to Steel's Theorem: Assume that $\forall x(x^{\sharp} \text{ exists})$ and that there is no inner model with a Woodin. Is $K \Sigma_3^1$ - correct? There are partial results in this direction (Woodin and others).

Problem 6. Assume that $\forall x(M_1^{\sharp}(x) \text{ exists})$ and that there is a least Π_3^1 -singleton, z, that is not in the least inner model, N, closed under the operation $x \mapsto M_1^{\sharp}(x)$. Does N^{\sharp} exist and is $z \Delta_3^1$ - isomorphic to N^{\sharp} ?

<u>Remark</u>: This would give Σ_4^1 – correctness for K in the case that K doesn't go beyond N. The second clause in the above conclusion is an instance of problem 2.

Problem 7. a) Let M be a countable, transitive structure that is elementarily embeddable into some V_{α} . Is $M(\omega_1 + 1)$ - iterable?

b) (An instance of CBH) For every countable iteration tree on V of limit length such that every extender used is countably closed from the model from which it was taken, is there a cofinal well-founded branch? <u>Note</u>: Countably closed means that ${}^{\omega}\text{Ult}(V, E) \subseteq \text{Ult}(V, E)$.

Known:

- In any $L[\vec{E}]$ model UBH is true.
- (Woodin) If you drop countable closure then CBH (i.e. full–CBH) is false.
- **Problem 8.** Let $L[\vec{E}]$ be an extender model such that every countable structure elementarily embeddable into a level of the model is $(\omega_1 + 1)$ iterable (so that many forms of condensation hold). Characterize (in terms of large cardinal axioms) all successor cardinals $(\kappa^+)^{L[\vec{E}]}$ of $L[\vec{E}]$ such that

 $L[\vec{E}] \models (\text{every stationary subset } S \subseteq \kappa^+ \cap \operatorname{Cof}(\omega) \text{ reflects}).$

<u>Variant</u>: Characterize all $(\kappa^+)^{L[\vec{E}]}$ such that

 $L[\vec{E}] \models (\text{every stationary subset } S \subseteq \kappa^+ \cap \operatorname{Cof}(<\kappa) \text{ reflects}).$

Problem 9. What is the consistency strength of $\neg \Box_{\lambda}^{*}$ for some singular λ ?

Best upper bound known: $\exists \kappa (\kappa \text{ is } \kappa^{+\omega} - \text{ strongly compact})$

Contrast this with the best upper bound known for $\neg \square_{\aleph_{\omega}}^*$: there is a measurable subcompact.

Problem 10. Let $j: V \to M$ be elementary, assume ORD is measurable and assume there is no proper class inner model with a Woodin. Is $j \upharpoonright K$ an iteration map? <u>Known</u>: (Schindler) This is true if ${}^{\omega}M \subseteq M$.

Problem 11. a) Rate the consistency strength of the following statement: Let *I* be a simply definable σ-ideal. Then the statement "Every Σ₂¹
(projective) *I*-positive set has a Borel *I*-positive subset" holds in every generic extension.
b) Assume ¬0#. Is it possible to force over *V* a real *x* such that ℝ^{V[G]} ∩ *L*[*x*] is *I*-positive?
<u>Remark</u>: Here definable means simple, i.e., countable sets, Lebegue null sets, meager sets, and etc.

Problem 12. Prove that if V = W[r] for some real r, Vand W have the same cofinalities, $W \models CH$, and

 $V \models 2^{\aleph_0} = \aleph_2$, then there is an inner model

with \aleph_2 many measurables.

<u>Known</u>: (Shelah) Under the above hypothesis, there is an inner model with a measurable.

Problem 13. Investigate the following

ZFC-model: $HOD^{V[G]}$ where G is generic over V for $Coll(\omega, < ORD)$. In particular, Does CH hold in this model?

Problem 14. Assume 0-Pistol doesn't exist.

Suppose κ is Mahlo and $\Diamond_{\kappa}(Sing)$ fails.

a) Must κ be a measurable in K?

b) Suppose, in addition, that GCH holds below $\kappa.$

Is there an inner model with a strong cardinal?

c) Can GCH hold?

 $\underline{\text{Known}}$: (Woodin)

 $\mathrm{CON}(o(\kappa) = \kappa^{++} + \epsilon) \rightarrow$

 $\operatorname{CON}(``\kappa \text{ is Mahlo and } \Diamond_{\kappa} \text{ fails''}).$

<u>Known</u>: (Zeman) If κ is Mahlo and

 $\Diamond_{\kappa}(Sing)$ fails then for all $\lambda < \kappa$ there

is $\delta < \kappa$ such that $K \models o(\delta) > \lambda$.

- Problem 15. a) Assume there is no proper class inner model with a Woodin cardinal. Must there exist a "set-iterable" extender model which satisfies weak covering?
 b) Does CON("ZFC + NS_{ω1} is N₂-saturated") imply CON(ZFC + "there is a Woodin cardinal")?
- **Problem 16.** Let M be the minimal fully iterable extender model which satisfies "there is a Woodin cardinal κ which is a limit of Woodin cardinals". Let D be the derived model of M below κ . Does $D \models$ " θ is regular"?
- **Problem 17.** Determine the consistency strength of incompatible models of AD^+ (i.e. there are A and Bsuch that $L(A, \mathbb{R})$ and $L(B, \mathbb{R})$ satisfy AD^+ but $L(A, B, \mathbb{R}) \not\models AD$). <u>Known</u>: (Neeman and Woodin) Upper Bound: Woodin limit of Woodin cardinals. (Woodin) Lower Bound: $AD_{\mathbb{R}} + DC$.

Problem 18. Is

 $\operatorname{HOD}^{L(\mathbb{R})} \upharpoonright \theta$ a normal iterate of $M_{\omega} \upharpoonright \delta_0$ where δ_0 is the least Woodin of M_{ω} ? If not, is there a normal iterate Q of $\operatorname{HOD}^{L(\mathbb{R})}$ fixing θ such that $Q \upharpoonright \theta$ is a normal iterate of every countable iterate of $M_{\omega} \upharpoonright \delta_0$? <u>Known</u>: (Neeman) The answer to the first question is "almost" no.

Problem 19. Assume $V = L(\mathbb{R}) + AD$.

Let Γ be a Π_1^1 -like scaled point class (i.e., closed under $\forall^{\mathbb{R}}$ and non-self-dual). Let $\delta = \sup\{|<|:<$ is a pwo in $\Delta = \Gamma \cap \Gamma^{\smile}\}$. Then, is Γ closed under unions of length $< \delta$? <u>Known</u>: (Kechris-Martin) Known for Π_3^1 . (Jackson) Known for Π_{2n+5}^1 .

Problem 20. Is there an inner model M of

 $L[0^{\#}]$ such that $0^{\#} \notin M, 0^{\#} \in M[G]$, and $(M[G], \in G) \models$ ZFC, where G is P-generic over

M for some M-definable class-forcing?