PROBLEM LIST. BERKELEY CONFERECE ON INNER MODEL **THEORY 2019**

1. (Schindler) Let a core model, K, be a fully iterable pure extender model satisfying (1) weak covering in that $\{\alpha < \text{ORD} | \alpha^{+K} = \alpha^{+}\}\$ is stationary and (2) for any fully iterable pure extender model N satisfying this form of weak covering there is an elementary embedding $j: K \to N$. (Aside: Can there be two of them? Must it (they) be rigid?) How many Woodin cardinals can K have? (I.e., what is consistent with ZFC in this regard?)

E.g. (a) 0 Woodins is possible, (b) 1 Woodin is possible: $K^{M_{sw}} = (\mathcal{M}_{\infty})^{M_{sw}}$, (c) exactly 2 is impossible: if $K \models$ "there are 2 Woodins," then $K \models$ "there is a strong cardinal which is a limit of Woodins," cf. Sargsyan-Schindler, "The number of Woodin cardinals in a core model,"

https://ivv5hpp.uni-muenster.de/u/rds/number_of_woodins.pdf

Moreover, there is a universe in which there is a K which has a strong cardinal that is a limit of Woodins, cf. Stefan Miedzianowski's PhD thesis.

What can a fully iterable pure extender model having the above form of weak covering look like?

- 2. (Wilson) Let δ be Woodin. Can the δ -c.c. property of the extender algebra be proved directly from $\langle V_{\delta}, V_{\delta+1}, \in \rangle \models \mathsf{SWVP}$? (SWVP being the semi-weak Vopenka principle.) "Directly" means without using elementary embeddings of models of set theory.
- 3. (Steel) (a) Does δ inaccessible $+ \mathbb{B}_{\delta}$ (the ω -generator version of the extender algebra) is δ -c.c. imply that δ is Woodin?

(Ketchersid-Zoble: Con(\mathbb{B}_{δ} is δ -c.c. + $V_{\delta}^{\#}$ exists) \Longrightarrow Con(ZFC + \exists a Woodin).)

- (b) Do you need $V_{\delta}^{\#}$ exists here?
- (c) What about the δ -generator version of the extender algebra?
- 4. (Trang) Assume there are arbitrarily large Woodins. Are the following equivalent?
 - (i) LSA-over-UB
- (ii) Sealing, i.e., for all generic g, $L(\mathsf{Hom}_{\infty}^{V[g]}) \cap \mathcal{P}(\mathbb{R}^{V[g]}) = \mathsf{Hom}_{\infty}^{V[g]}$, and $\forall g \, \forall h = g * l$ there is an elementary embedding $L(\mathsf{Hom}_{\infty}^{V[g]}) \to L(\mathsf{Hom}_{\infty}^{V[h]})$ (iii) Sealing (-1), i.e., for all generic g, $L(\mathsf{Hom}_{\infty}^{V[g]}) \cap \mathcal{P}(\mathbb{R}^{V[g]}) = \mathsf{Hom}_{\infty}^{V[g]}$ (iv) Sealing (-2), i.e., for all generic g, $L(\mathsf{Hom}_{\infty}^{V[g]}) \models$ "there is no ω_1 -sequence
- of pairwise distinct reals"

Reference: Sargsyan-Trang, "The exact consistency strangth of generic absoluteness for the universally Baire sets."

5. (Ben-Neria) Let U be an ultrafilter on a cardinal κ . Definition: $\mathcal{F} \subset U$ generates U iff $\mathcal{F} \subset U$ and for every $X \in U$ there is some $Y \in \mathcal{F}$ such that $Y \subset X$. What is the consistency strength of: κ is measurable, $2^{\kappa} \geq \kappa^{++}$, and $\exists U \ (U \text{ is a })$ κ -complete ultrafilter on κ and $\exists \mathcal{F} (|\mathcal{F}| = \kappa^+ \text{ and } \mathcal{F} \text{ generates } U))$?

Known: 1) Lower bound is $o(\kappa) \ge \kappa^{++}$ (because $\operatorname{Con}(\kappa \text{ measurable} + 2^{\kappa} = \kappa^{++}) \Longrightarrow \operatorname{Con}(o(\kappa) \ge \kappa^{++})$ by Gitik). Upper bound: $o(\kappa) = \lambda$, where $\lambda > \kappa$ and λ is weakly compact (reference: Ben-Neria-Garti, "Consistency results about cardinal characteristics above the continuum,"

https://arxiv.org/pdf/1905.06067.pdf

Rmk. For $\kappa = \omega$, there are theorems of Shelah.

Rmk. For $\kappa = \omega_1$, this is an old question of Kunen: Con(\exists a uniform ultrafilter on ω_1 generated by fewer than 2^{\aleph_1} sets)?

6. (Schlutzenberg) Let $M_1^{\#} \leq_T x$. Let κ be a cardinal of L[x]. What is the κ -mantle of L[x]? Definition: The κ -mantle is $\mathbb{M} = \bigcap \{W | \exists \mathbb{P} \in W (W \models |\mathbb{P}| < \kappa \land \exists g \mathbb{P}\text{-generic over } W \text{ such that } V = W[g])\}$.

In particular, for $\kappa = \aleph_{\omega}^{L[x]}$, let $M = \bigcap \{N|N \text{ is an iterate of } M_1 \text{ via a normal tree } \mathcal{T} \text{ in } L_{\kappa}[x]\}$, let $M_{\infty} = \text{ the direct limit of these } N$, and let * be the usual *-map. Then $M_{\infty}[*] \subset M$. But $M_{\infty}[*] \neq M$, since Prikry generics over M_{∞} exist in M. Question: $M \models \mathsf{ZFC}$?

Rmk. κ strong limit $\Longrightarrow \kappa$ -mantle $\models \mathsf{ZF}$ (Usuba). What about other κ 's? Rmk. $x, y \geq_T M_1^\# \Longrightarrow \mathsf{Th}(L[x]) \equiv \mathsf{Th}(L[y])$.

- 7. (Glazer) What is the consistency strength of ZFC + $\exists \kappa$ there is no OD-surjection of ${}^{\mathrm{cf}(\kappa)}\kappa$ onto κ^+ ?
 - (a) κ must be singular.
 - (b) Lower bound: one Woodin (K can't exist).
 - (c) Unknown whether it is consistent at all.
- (d) Can it be that κ is singular and there is no OD-injection from κ^+ into $^{\mathrm{cf}(\kappa)}\kappa$? Remark. Woodin's **HOD Conjecture** implies that this does not happen at any $\kappa >$ an extendible cardinal.

Known: From a supercompact + an inaccessible above get a model of $\mathsf{ZFC} + \kappa$ is a strong limit cardinal + $\forall A \subset \kappa \, (\kappa^+)^{\mathsf{HOD}_A} < \kappa^+$. Reference: Gitik + Merimovich, "Some applications of supercompact extender based forcings to HOD,"

http://www.math.tau.ac.il/ \sim gitik/somepapers.html Maybe related to \neg (c), (d)

8. (Ben-Neria) Suppose there is a singular λ such that λ^+ is ω -strongly measurable (means: $\exists \eta < \lambda^+((2^\eta)^{\mathsf{HOD}} < \lambda^+ \land \neg \exists$ a partition $\langle S_\alpha | \alpha < \eta \rangle$ of λ^+ into statonary sets such that $\langle S_\alpha | \alpha < \eta \rangle \in \mathsf{HOD}$). Is there an inner model with a Woodin? (Schindler: yes.) What is the consistency strength?

What is the consistency strength of $\exists \kappa \ (\kappa \text{ and } \kappa^+ \text{ are singular})$?

9. (Ben-Neria, Zeman) Suppose every $\langle S_n | n < \omega \rangle$ such that $S_n \subset \omega_{n+2} \cap \operatorname{cof}(\omega_1)$ and S_n 's stationary is mutually stationary. Must $\mathsf{AD}^{L(\mathbb{R})}$?

Rmk. Consistent from ω -many supercompacts (Ben-Neria)

Rmk. Known lower bound is PD. (Ben-Neria, Zeman, Adolf, Schindler, Steel)

10. (Adolf) Asume $(\omega_3, \omega_2) \Longrightarrow (\omega_2, \omega_1)$. Does mouse reflection hold?: Given a nice mouse operator on H_{ω_2} $(X \mapsto M_X, X \ge Y_0, X \in H_{\omega_2})$; does it extend to H_{ω_3} ?