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Basic definitions and results The Sacks model

“Paradoxical” sets of reals

Definition
Let A ⊆ R uncountable. We say that A is

a Vitali set if A is the range of a selector for the equivalence relation ∼V defined
over R× R by x ∼V y ⇐⇒ x− y ∈ Q;

a Sierpiński set if for every N ∈ N -the ideal of all null sets with respect to
Lebesgue measure on R- we have |A ∩N | ≤ ℵ0;
a Luzin set if for every M ∈M -the ideal of all meager sets- we have
|A ∩M | ≤ ℵ0;
a Bernstein set if for every perfect set P ⊆ R we have A ∩ P 6= ∅ and
(R rA) ∩ P 6= ∅;
a Hamel basis if A is a basis of R when construed as a vector space over Q;
a Burstin basis if A is a Hamel basis which intersects every perfect set.

Let A ⊆ R× R. We say that A is

a Mazurkiewicz set iff |A ∩ `| = 2 for every straight line ` ⊂ R× R.
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Basic definitions and results The Sacks model

Folklore and classical results

Suppose V |= ZF and suppose that a Hamel basis H exists. Then there is a Vitali
set.

Luzin (1914) and Sierpiński (1924): Assume V is a model of ZFC + CH. Then
there are Λ and S in V such that Λ is a Luzin set and S is a Sierpiński set.

Suppose V |= ZF. Every Burstin basis is a Bernstein set.

Suppose V |= ZF. There is then a perfect set of reals which is linearly
independent. Hence if V |= ZFC, there is then a Hamel basis which contains a
perfect set (and is thus no Burstin basis).

Burstin (1916): Assume V |= ZFC. Then there is a Burstin basis B.

Mazurkiewicz (1914): Assume V |= ZFC. Then there is a Mazurkiewicz set M .
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Basic definitions and results The Sacks model

“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of
a well-ordering of R (or, ZF plus there is a well-ordering of R of order type ω1 in the
case of Luzin and Sierpiński sets).

Question
Can we have those “paradoxical” sets of reals in the absence of a well-ordering of R?

Recall the Cohen-Halpern-Lévy model: Let g be C(ω)-generic over L (C(ω) being the
finite support product of ω Cohen forcings), and let A = {cn : n < ω} be the set of
Cohen reals added by g.

H = HOD
L[g]
A∪{A}.

Theorem (D. Pinkus and K. Prikry, S. Feferman, 1975)
In the Cohen-Halpern-Lévy model H, in which A is an infinite set of reals with no
(infinite) countable subset (i.e., ACω(R) fails), there is a Luzin set as well as a Vitali
set.



Basic definitions and results The Sacks model

“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of
a well-ordering of R (or, ZF plus there is a well-ordering of R of order type ω1 in the
case of Luzin and Sierpiński sets).

Question
Can we have those “paradoxical” sets of reals in the absence of a well-ordering of R?

Recall the Cohen-Halpern-Lévy model: Let g be C(ω)-generic over L (C(ω) being the
finite support product of ω Cohen forcings), and let A = {cn : n < ω} be the set of
Cohen reals added by g.

H = HOD
L[g]
A∪{A}.

Theorem (D. Pinkus and K. Prikry, S. Feferman, 1975)
In the Cohen-Halpern-Lévy model H, in which A is an infinite set of reals with no
(infinite) countable subset (i.e., ACω(R) fails), there is a Luzin set as well as a Vitali
set.



Basic definitions and results The Sacks model

“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of
a well-ordering of R (or, ZF plus there is a well-ordering of R of order type ω1 in the
case of Luzin and Sierpiński sets).

Question
Can we have those “paradoxical” sets of reals in the absence of a well-ordering of R?

Recall the Cohen-Halpern-Lévy model: Let g be C(ω)-generic over L (C(ω) being the
finite support product of ω Cohen forcings), and let A = {cn : n < ω} be the set of
Cohen reals added by g.

H = HOD
L[g]
A∪{A}.

Theorem (D. Pinkus and K. Prikry, S. Feferman, 1975)
In the Cohen-Halpern-Lévy model H, in which A is an infinite set of reals with no
(infinite) countable subset (i.e., ACω(R) fails), there is a Luzin set as well as a Vitali
set.



Basic definitions and results The Sacks model

“Paradoxical” sets and well-ordering the reals

All these classical constructions may be obtained by assuming ZF plus the existence of
a well-ordering of R (or, ZF plus there is a well-ordering of R of order type ω1 in the
case of Luzin and Sierpiński sets).

Question
Can we have those “paradoxical” sets of reals in the absence of a well-ordering of R?

Recall the Cohen-Halpern-Lévy model: Let g be C(ω)-generic over L (C(ω) being the
finite support product of ω Cohen forcings), and let A = {cn : n < ω} be the set of
Cohen reals added by g.

H = HOD
L[g]
A∪{A}.

Theorem (D. Pinkus and K. Prikry, S. Feferman, 1975)
In the Cohen-Halpern-Lévy model H, in which A is an infinite set of reals with no
(infinite) countable subset (i.e., ACω(R) fails), there is a Luzin set as well as a Vitali
set.



Basic definitions and results The Sacks model

“Paradoxical” sets and well-ordering the reals

Question (D. Pincus and K. Prikry, 1975)
“We would be interested in knowing whether a Hamel basis for R over Q (the
rationals) exists in H or in any other model in which R cannot be well ordered.”

Question (variant 1 of Pinkus-Prikry)
Is the existence of a Hamel basis (or, the simultaneous existence of all of those
“paradoxical” sets of reals) compatible with ZF plus the negation of ACω(R)?

Question (variant 2 of Pinkus-Prikry)
Is the existence of a Hamel basis (or, the simultaneous existence of all of those
“paradoxical” sets of reals) compatible with ZF plus DC plus the non-existence of a
well-order of R?

Theorem (A. Blass, 1984)
In ZF, if every vector space has a basis, then the Axiom of Choice holds true.
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Basic definitions and results The Sacks model

Burstin bases and non-ACω(R)

Theorem (Beriashvili, Sch., Wu and Yu, 2018)
In the Cohen-Halpern-Lévy model H there is a Hamel basis and a Bernstein set (but
there are no Sierpiński sets).

In H, there is also a Hamel basis which contains a perfect set.

A result of Groszek-Slaman (1998), see below, may be used to show that in H, there
is also a Burstin basis.

I don’t know if there is a Mazurkiewicz set in H.
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Burstin bases and non-ACω(R)

Let H∗ be the following variant of the Cohen-Halpern-Lévy model: Let h be
S(ω)-generic over L (S(ω) being the finite support product of ω Sacks forcings). Let
B = {dn : n < ω} be the set of Sacks reals added by h.

H∗ = HOD
L[h]
B∪{B}.

Theorem
In H∗ there is Sierpiński set, a Luzin set, a Hamel basis which contains a perfect set,
as well as a Burstin basis.

Again, I don’t know if there is a Mazurkiewicz set in H∗.

By replacing Sacks forcing S above by a refinement of Sacks forcing which is due to
Jensen, one obtains a model H∗∗ of ZF plus non-ACω(R) plus there is ∆1

3 Sierpiński
set, a ∆1

3 Luzin set, a ∆1
3 Hamel basis which contains a perfect set, as well as a ∆1

3
Burstin basis.
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Burstin bases in ZF plus DC plus “no w.o. of R”

Theorem (Brendle, Castiblanco, Sch., Wu, Yu)
There is a model W of ZF + DC such that in W the reals cannot be well-ordered and
W contains Luzin as well as Sierpiński sets and also a Burstin basis.
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Luzin and Sierpiǹski sets in the Sacks model

Lemma (Folklore)
Let P be a forcing notion satisfying the Sacks property and let G be a P-generic filter
over V . Then:

(1) For every null set N ⊆ ωω in V [G] there is a Gδ-null set N̄ ⊆ ωω coded in V
such that N ⊆ N̄ .

(2) Similarly, for every meager set M ⊆ ωω in V [G], there is a meager set M̄ ⊆ ωω
coded in V such that M ⊆ M̄ .

Corollary
If P has the Sacks property, then P preserves Luzin and Sierpiński sets.
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(a) L(R∗) |= ZF plus DC plus “there is no w.o. of the reals,”

(b) there is a Luzin set as well as a Sierpiński set in L(R∗), but
(c) there is no Vitali set (and hence no Hamel basis) in L(R∗).
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Adding generically a Burstin set

First try. We define a partial order P0
B adding a generic Burstin basis.

Definition
We say p ∈ P0

B if and only if p is a countable linearly independent set of reals.

We say p ≤P0
B
q iff p ⊇ q

Let b be P0
B-generic over L(R∗). Then B =

⋃
b is a Hamel basis in L(R∗)[b].

Problem: L(R∗)[b] |= ZFC plus CH.
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Adding generically a Burstin set

Second try. We define a partial order PB adding a generic Burstin basis.

Definition
We say p ∈ PB if and only if there exists x ∈ R such that

(1) p ∈ L[x] and

(2) L[x] |= “p is a Burstin set."

We say p ≤PB q iff p ⊇ q

Notice that PB 6= ∅. However the extendability of PB is not obvious.

Extendability: If p ∈ PB is such that L[x] |= “p is a Burstin basis” and if
y ∈ RL[x,y] r L[x], then there is some q ≤PB p such that q is a Burstin basis in
RL[x,y].
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The Marczewski ideal and new generic reals

Definition (Marczewski)
A set X ⊆ R is in s0 if and only if for every perfect set P there is a perfect subset
Q ⊆ P with Q ∩X = ∅.

s0 is an σ-ideal which does not contain any perfect set.

Theorem (M. Groszek, T. Slaman, 1998)
Let W ⊆ V be an inner model such that W |= CH. If R ∩ V \W 6= ∅, then

V |= R ∩W ∈ s0

Corollary
Let x, y be reals such that y /∈ L[x], and let {z0, z1, . . . } ∈ L[x, y] ∩ [R]ω . Then

span((R ∩ L[x]) ∪ {z0, z1, . . . }) ∈ s0L[x,y]
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Extendability of PB

Corollary
Let b ∈ L[x] be linearly independent, x ∈ R. Let y ∈ R \ L[x]. There is then some
p ⊃ b, p ∈ L[x, y] such that

L[x, y] |= “p is a Burstin basis.”

Lemma
L(R∗) thinks that:

(a) (Extendability) If p ∈ PB is such that L[x] |= “p is a Burstin basis” and if
y ∈ RL[x,y] r L[x], then there is some q ≤PB p such that q is a Burstin basis in
RL[x,y].

(b) PB is ω-closed.

By these arguments, if in the definition of PB be replace “Burstin” by “Hamel,” then
the generic added over L(R∗) will still automatically be a Burstin basis. But there is a
variant of PB which does add a Hamel basis over L(R∗) which is not a Burstin basis.
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Finally, let’s get a Mazurkiewicz set.

Definition
We say p ∈ PM if and only if there exists x ∈ R such that

(1) p ∈ L[x] and

(2) L[x] |= “p is a Mazurkiewicz set."

We say p ≤PM q iff p ⊇ q
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Summary:

Theorem (Beriashvili, Brendle, Castiblanco, Sch., Wu, Yu)
Let s be S(ω1)-generic over L, and let R∗ = R ∩L[s]. Let (b,m) be PB × PM generic
over L(R∗). Then R∗ = R ∩ L(R) and

(a) L(R)[b,m] |= ZF plus DC,

(b) there is no well-ordering of the reals in L(R)[b,m],

(c) L(R)[b,m] |= “there is a Luzin set as well as a Sierpiński set,”

(d) L(R)[b,m] |=
⋃
b is a Burstin basis, and

(e) L(R)[b,m] |=
⋃
m is a Mazurkiewicz set.
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Per molts anys, Joan!
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