SET THEORY COURSE WINTER TERM 2020-21, EXERCISE SHEET NO. 1, NOV 03, 2020

RALF SCHINDLER

Hand in by Nov 08, 2020.

For sets $X, Y, X \sim Y$ was defined in the lecture.

Problem 1. For reals $a \leq b$ let $(a,b) = \{x \in \mathbb{R} : a < x < b\}$. Show that if a < b, then $(a,b) \sim \mathbb{R}$.

Problem 2. Show naively that the countable union of countable sets is countable, i.e., if $x = \bigcup_{n \in \mathbb{N}} x_n$ and every x_n is countable, then x is countable.

Problem 3. Show that there are countably many rational numbers (i.e., $\mathbb{Q} \sim \mathbb{N}$). Also show that there are only countably many algebraic real numbers. (A real number x is algebraic iff it is a solution to a non-zero polynomial with rational coefficients, otherwise x is called transcendental.) Conclude that there are uncountably many transcendental numbers.

Problem 4. Show that $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$. Here $\mathcal{P}(X)$ is the power set of X.

For a set A of reals, we let $A' = \{x \in \mathbb{R} : \forall a, b(a < x < b \to (a, b) \cap (A \setminus \{x\}) \neq \emptyset\}$ be the set of accumulation points of A. Define $A^0 = A$ and $A^{n+1} = (A^n)'$ for natural numbers n. Define $A^{\infty} = \bigcap_{n \in \mathbb{N}} A^n$. Also define $A^{\infty+(n+1)} = (A^{\infty+n})'$ for natural numbers n (where $\infty + 0 = \infty$).

Problem 5. Show that A' is always closed. Show that if A is closed, then $A' \subset A$. Construct closed sets A and B with A' = A and $B' \subsetneq B$. In fact, given $n \in \mathbb{N}$, construct a closed set A_n with $(A_n)^n \neq \emptyset$ and $(A_n)^{n+1} = \emptyset$. Construct a close set A with $A^n \neq \emptyset$ for all $n \in \mathbb{N}$, but $A^{\infty} = \emptyset$. Given $n \in \mathbb{N}$, construct a closed set B_n with $(B_n)^{\infty+n} \neq \emptyset$ and $(B_n)^{\infty+(n+1)} = \emptyset$.

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG, UNIVERSITÄT MÜNSTER, EINSTEINSTR. 62, 48149 MÜNSTER, GERMANY

URL: http://wwwmath.uni-muenster.de/logik/Personen/rds

²⁰¹⁰ Mathematics Subject Classification. Primary 03E45. Secondary 03E05.

Key words and phrases. diamond, square, constructibility, walks on ordinals, Kurepa tree, almost Souslin tree, proxy principle.