SET THEORY COURSE WINTER TERM 2020-21, EXERCISE SHEET NO. 2, NOV 05, 2020

RALF SCHINDLER

Hand in by Nov 10, 2020.

Let A, B sets of natural numbers. We say that A and B are almost disjoint iff $A \cap B$ is finite. A collection $D \subset \mathcal{P}(\mathbb{N})$ is called almost disjoint iff A is infinite for every $A \in D$ and A and B are almost disjoint for all $A, B \in D, A \neq B$. A collection $D \subset \mathcal{P}(\mathbb{N})$ is called maximal almost disjoint (m.a.d.) iff D is almost disjoint and no $D^{\prime} \supset D, D^{\prime} \subset \mathcal{P}(\mathbb{N})$, is still almost disjoint.

Problem 1. Show that there is a m.a.d. collection $D \subset \mathcal{P}(\mathbb{N})$ with only one element, in fact for every positive $n \in \mathbb{N}$ there is a m.a.d. collection $D \subset \mathcal{P}(\mathbb{N})$ with exactly n elements. Show that there is a countable collection $D \subset \mathcal{P}(\mathbb{N})$ such that A is infinite for every $A \in D$ and A and B are disjoint (!) for all $A, B \in D, A \neq B$. Show that no disjoint countable collection $D \subset \mathcal{P}(\mathbb{N})$ is m.a.d.

Let $\{0,1\}^{*}$ denote the set of all finite 0 -1-sequences, and let $\{0,1\}^{\infty}$ denote the set of all infinite 0 -1-sequences.

Problem 2. Show that $\{0,1\}^{*} \sim \mathbb{N}$. Make use of the set

$$
\left\{\{x \upharpoonright\{0, \ldots, n-1\}: n \in \mathbb{N}\}: x \in\{0,1\}^{\infty}\right\}
$$

to conclude that there is a m.a.d. collection $D \subset \mathcal{P}(\mathbb{N})$ with $D \sim \mathbb{R}$.
Problem 3. Show that for every $\epsilon>0$ there is a dense open set $\mathcal{O} \subset \mathbb{R}$ such that $\mu(\mathcal{O}) \leq \epsilon$. Conclude that there are $A, B \subset \mathbb{R}$ such that A is meager, B is null, and $A \cup B=\mathbb{R}$.

For $a, b \in \mathbb{R}$ let

$$
[a, b]^{\frac{2}{3}}=\left[a, \frac{2}{3} a+\frac{1}{3} b\right] \cup\left[\frac{1}{3} a+\frac{2}{3} b, b\right],
$$

and for $a_{0}<b_{0}<a_{1}<b_{1}<\ldots<a_{i}<b_{i}$ write

$$
\left(\left[a_{0}, b_{0}\right] \cup \ldots \cup\left[a_{i}, b_{i}\right]\right)^{\frac{2}{3}}=\left[a_{0}, b_{0}\right]^{\frac{2}{3}} \cup \ldots \cup\left[a_{i}, b_{i}\right]^{\frac{2}{3}} .
$$

Finally, for $a<b$ write $[a, b]_{0}=[a, b],[a, b]_{n+1}=\left([a, b]_{n}\right)^{\frac{2}{3}}$ for $n \in \mathbb{N}$, and

$$
[a, b]_{\infty}=\bigcap_{n \in \mathbb{N}}[a, b]_{n}
$$

$[0,1]_{\infty}$ is called Cantor's discontinuum.
Problem 4. Show that $[0,1]_{\infty}$ is perfect, nowhere dense, and null.
Institut für mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

URL: http://wwwmath.uni-muenster.de/logik/Personen/rds

