SET THEORY COURSE WINTER TERM 2020-21, EXERCISE SHEET NO. 2, NOV 05, 2020

RALF SCHINDLER

Hand in by Nov 10, 2020.

Let A, B sets of natural numbers. We say that A and B are almost disjoint iff $A \cap B$ is finite. A collection $D \subset \mathcal{P}(\mathbb{N})$ is called almost disjoint iff A is infinite for every $A \in D$ and A and B are almost disjoint for all $A, B \in D, A \neq B$. A collection $D \subset \mathcal{P}(\mathbb{N})$ is called maximal almost disjoint (m.a.d.) iff D is almost disjoint and no $D' \supset D, D' \subset \mathcal{P}(\mathbb{N})$, is still almost disjoint.

Problem 1. Show that there is a m.a.d. collection $D \subset \mathcal{P}(\mathbb{N})$ with only *one* element, in fact for every positive $n \in \mathbb{N}$ there is a m.a.d. collection $D \subset \mathcal{P}(\mathbb{N})$ with exactly n elements. Show that there is a countable collection $D \subset \mathcal{P}(\mathbb{N})$ such that A is infinite for every $A \in D$ and A and B are disjoint (!) for all $A, B \in D, A \neq B$. Show that no disjoint countable collection $D \subset \mathcal{P}(\mathbb{N})$ is m.a.d.

Let $\{0,1\}^*$ denote the set of all finite 0-1-sequences, and let $\{0,1\}^\infty$ denote the set of all infinite 0-1-sequences.

Problem 2. Show that $\{0,1\}^* \sim \mathbb{N}$. Make use of the set

$$\{\{x \upharpoonright \{0,\ldots,n-1\} \colon n \in \mathbb{N}\} \colon x \in \{0,1\}^{\infty}\}$$

to conclude that there is a m.a.d. collection $D \subset \mathcal{P}(\mathbb{N})$ with $D \sim \mathbb{R}$.

Problem 3. Show that for every $\epsilon > 0$ there is a dense open set $\mathcal{O} \subset \mathbb{R}$ such that $\mu(\mathcal{O}) \leq \epsilon$. Conclude that there are $A, B \subset \mathbb{R}$ such that A is meager, B is null, and $A \cup B = \mathbb{R}$.

For $a, b \in \mathbb{R}$ let

$$[a,b]^{\frac{2}{3}} = [a,\frac{2}{3}a + \frac{1}{3}b] \cup [\frac{1}{3}a + \frac{2}{3}b,b],$$

and for $a_0 < b_0 < a_1 < b_1 < \ldots < a_i < b_i$ write

$$([a_0, b_0] \cup \ldots \cup [a_i, b_i])^{\frac{1}{3}} = [a_0, b_0]^{\frac{1}{3}} \cup \ldots \cup [a_i, b_i]^{\frac{1}{3}}.$$

Finally, for a < b write $[a, b]_0 = [a, b], [a, b]_{n+1} = ([a, b]_n)^{\frac{2}{3}}$ for $n \in \mathbb{N}$, and

$$[a,b]_{\infty} = \bigcap_{n \in \mathbb{N}} [a,b]_n.$$

 $[0,1]_{\infty}$ is called Cantor's discontinuum.

Problem 4. Show that $[0,1]_{\infty}$ is perfect, nowhere dense, and null.

Institut für mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

URL: http://wwwmath.uni-muenster.de/logik/Personen/rds