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For sets 𝑥 and 𝑦 write (𝑥, 𝑦) = {{𝑥, 𝑦}, {𝑥}}.

Problem 1. Show that for all sets 𝑥, 𝑦, 𝑥′, 𝑦′ we have that (𝑥, 𝑦) = (𝑥′, 𝑦′) if and only if 𝑥 = 𝑥′

and 𝑦 = 𝑦′. (𝑥, 𝑦) is the ordered pair of 𝑥 and 𝑦.

𝑥× 𝑦 = {(𝑢, 𝑣) : 𝑢 ∈ 𝑥∧ 𝑣 ∈ 𝑦}, the Cartesian product of 𝑥 and 𝑦. Also, 𝑦𝑥 = {𝑓 : 𝑓 is a function
from 𝑦 to 𝑥}.

Problem 2. Show in ZFC that for all 𝑥 and 𝑦, 𝑥× 𝑦 exists. Show in ZFC that for all 𝑥 and 𝑦,
𝑦𝑥 exists. Which axioms from ZFC do you make use of in each case?

Problem 3. Let ZFC−Pair be ZFC without the pairing axiom. Show the pairing axiom in the
theory ZFC−Pair. Which axioms do you make use of for that?

Problem 4. Show in ZF that AC (the axiom of choice as defined in the lecture) is equivalent to
the following statement:

∀𝑥(∀𝑦 ∈ 𝑥 𝑦 ̸= ∅ → ∃ a function 𝑓 with dom(𝑓) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝑓(𝑦) ∈ 𝑦).

Problem 4. Show that there is a set 𝐴 of pairwise non-isomorphic linear orders on N such that
𝐴 ∼ R (i.e., there is a bijection from 𝐴 onto R).
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