SET THEORY COURSE WINTER TERM 2020-21, EXERCISE SHEET NO. 4, NOV 16, 2020

RALF SCHINDLER

Hand in by Nov 24, 2020.

Let A be any set. We say that $S \subset \mathcal{P}(A)$ is a *chain* iff for all $B, C \in S, B \subset C$ or $C \subset B$. We say that $P \subset \mathcal{P}(A)$ is *inductive* iff for all chains $S \subset P, \bigcup P \in P$. We say that $P \subset \mathcal{P}(A)$ is of *finite character* iff for all $B \subset A, B \in P$ iff every finite subset of B is in P.

Problem 1. Show in ZF that the following statements are equivalent.

- (a) AC, the axiom of choice.
- (b) If A is a set, and $P \subset \mathcal{P}(A)$ is a nonempty inductive set, then there is some $B \in P$ such that no $B' \supseteq B$ is also in P.
- (c) If A is a set, and $P \subset \mathcal{P}(A)$ is a nonempty set of finite character, then there is some $B \in P$ such that no $B' \supseteq B$ is also in P.
- (d) If A is a set, then there is some well-ordering of A.

If you're more ambitious, show the equivalence in Z.

Let (a, \leq) be an ordered set, where \leq is linear. We call a dense with no endpoints iff for all x, $y \in a$ with x < y there are $z, u, v \in a$ such that z < x < u < y < v. \mathbb{Q} , equipped with the natural order, is dense without endpoints.

Problem 2. Show that if (a, \leq) , (a', \leq') are dense linear orders with no endpoints, where both a and a' are countable, then

$$(a, \leq) \cong (a', \leq')$$

[Hint. Construct an isomorphismus in a back and forth fashion.] Show that this becomes false if e.g. $a \sim \mathbb{R} \sim a'$.

Problem 3. Show in ZF that for every set A there is some well-ordered set (a, \leq) such that there is no injection $f: a \to A$. [Hint. Consider the set of all well-orderings of subsets of A.]

Institut für mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

 $\mathit{URL}: \texttt{http://wwwmath.uni-muenster.de/logik/Personen/rds}$