SET THEORY COURSE WINTER TERM 2020-21, EXERCISE SHEET NO. 7, DEC 10, 2020

RALF SCHINDLER

Hand in by Dec 15, 2020.

Recall that $TC(\{x\})$ is the transitive closure of $\{x\}$, i.e., the \subset -minimal transitive set M with $x \in M$. For a cardinal κ , let

$$H_{\kappa} = \{x \colon \overline{\overline{TC(\{x\})}} < \kappa\}.$$

 H_{κ} is the collection of all sets which are *hereditarily smaller than* κ .

Problem 1. Show in ZFC that for every cardinal κ , H_{κ} is a set.

For a set A and a cardinal λ , let $[A]^{\lambda} = \{X \subset A \colon \overline{\overline{X}} = \lambda\}.$

Problem 2. Show that for all cardinals κ and λ , $\kappa^{\lambda} = \overline{[\kappa]^{\lambda}}$.

Problem 3. Show that for every ordinal α and for every regular cardinal λ there is some cardinal $\kappa > \alpha$ with $\aleph_{\kappa} = \kappa$ and $cf(\kappa) = \lambda$. Show that if κ is the least cardinal with $\aleph_{\kappa} = \kappa$, then $cf(\kappa) = \omega$.

Problem 4. Show that $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0} \cdot 2^{\aleph_1}$.

Problem 5. Let $\kappa \geq \omega_1$ be regular. Show that for every regular cardinal $\mu < \kappa$, $S_{\kappa}^{\mu} = \{\xi < \kappa : cf(\xi) = \mu\}$ is stationary.

Problem 6. Let $S \subset \omega_1$ be stationary, and let $\alpha < \omega_1$. Show that there is some closed $c \subset S$ with $otp(c) = \alpha + 1$.

Institut für mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

URL: http://wwwmath.uni-muenster.de/logik/Personen/rds