SET THEORY COURSE WINTER TERM 2020-21, EXERCISE SHEET NO. 8, JAN 14, 2021

RALF SCHINDLER

Hand in by Jan 18, 2021.

In what follows, let M be a countable transitive model of ZFC, let $\mathbb{P} \in M$ be a partial order, and let g be \mathbb{P} -generic over M.

Problem 1. Let $\tau^g \in M[g]$, where $\tau \in M^{\mathbb{P}}$. Construct some $\sigma \in M^{\mathbb{P}}$ such that $\sigma^g = \bigcup \tau^g$.

Problem 2. Let $h \subset \mathbb{P}$ be a filter. Show that the following are equivalent.

- (a) h is \mathbb{P} -generic over M.
- (b) For all $A \in M$, if $A \subset \mathbb{P}$ is a maximal antichain, then $g \cap h \neq \emptyset$.
- (c) For all $D \in M$, if $D \subset \mathbb{P}$ is predense, then $g \cap h \neq \emptyset$.

Problem 3. Let $c \in \mathbb{C}$ be \mathbb{C} -generic over M. Let $f : \omega_1^M \to 2$, $f \in M[c]$ be such that $f \upharpoonright \xi \in M$ for all $\xi < \omega_1^M$. Show that $f \in M$. (Hint. Let $f = \tau^g$. For each $\xi < \omega_1^M$, choose $p \in c$ and $f_{\xi} \in M$ with $p \Vdash \tau \upharpoonright \check{\xi} = \check{f}_{\xi}$.)

Problem 4. Let κ be a regular cardinal in M such that M thinks that \mathbb{P} has the κ -c.c. Let a be a set of ordinals in M[g] of size less than κ in M[g]. Show that there is some $b \in M$ of size less than κ in M such that $b \supset a$.

Problem 5. (A generalization of Problem 3.) Let κ be a regular cardinal in M, κ being bigger than the size of the forcing \mathbb{P} in M. Let A be a set of ordinals in M[g] such that $A \cap a \in M$ for all $a \in M$ such that a has size less than κ in M. Show that $A \in M$.

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG, UNIVERSITÄT MÜNSTER, EINSTEINSTR. 62, 48149 MÜNSTER, GERMANY

URL: http://wwwmath.uni-muenster.de/logik/Personen/rds