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Abstract

Assume the existence of sufficent large cardinals. Let Mswn be the
minimal iterable proper class L[E] model satisfying “there are o < ko <
... < 0n_1 < Kn—1 such that the §; are Woodin cardinals and the x; are
strong cardinals”. Let M = Mgw2. We identify an inner model ”I/QM of M,
which is a proper class model satisfying “there are 2 Woodin cardinals”,
and is iterable both in V' and in M, and closed under its own iteration
strategy. The construction also yields significant information about the
extent to which M knows its own iteration strategy. We characterize
the universe of %3 as the mantle and the least ground of M, and as
HODMIC! for G C Coll(w, \) being M-generic with A sufficiently large.
These results correspond to facts already known for Mgy1, and the proofs
are an elaboration of those, but there are substantial new issues and new
methods used to handle them. ' 2
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1 Introduction

The first generation of canonical inner models for large cardinals are those of
the form M = L[E] (or L,[E]) where E is a sequence of (partial) measures or
extenders with various nice properties. The second generation are those of the
form M = L[E, Y] (or Ly[E, X)), with E as before, but ¥ is a (partial) iteration
strategy for M. We refer to the former as mice or extender models, and the latter
as strategy mice or strategic extender models. Strategy mice arise naturally
as HODs of determinacy models, and this phenomenon has been extensively
studied. (The universe of) a strategy mouse ¥ sv was also found in [%] to be
the mantle of and a certain HOD associated to the mouse My, = Mgy (the
“minimal” proper class mouse with a strong cardinal above a Woodin cardinal).
While mice with Woodin cardinals (and which model ZFC, for example) can
only compute restricted fragments of their own iteration strategies, strategy
mice can be fully self-iterable.

One can contemplate the relationship between the two hierarchies; a key
issue is the consistency strength of large cardinals when exhibited in the respec-
tive models: how do large cardinal hypotheses in (fully iterable) mice compare
in consistency strength to those in (fully iterable) strategy mice, particularly for
strategy mice which are closed under their own strategy? Continuing the line of
investigation of [3], the present paper derives® the existence of a fully iterable
proper class strategy mouse ¥ = L[E, 3], closed under its strategy, and contain-
ing two Woodin cardinals, from the existence and full iterability of the mouse
MY, ... This is the least active mouse N such that letting x = crit(F) where F
is the active extender of N, then N|x E“There are ordinals dy < kg < d1 < K1
such that each §; is a Woodin cardinal and each k; is a strong cardinal”. Let-
ting Mgwsw be the proper class model left behind after iterating F' out of the
universe, the strategy mouse ¥ will be an inner model of Myysw. (We also ob-
tain Silver indiscernibles for ¥.) The analysis also shows that Mysw computes
substantial fragments of its own iteration strategy, thereby contributing to the
investigation of self-iterability in mice as in [12], but here beyond the tame level.

Now recall that if W is a model of ZFC, then P C W is a ground of W iff
P is also a model of ZFC and there is some poset P € P and some g which
is (P,P)-generic with W = P[g]. (Note this implies that P is transitive in the
sense of W and contains all of the ordinals of W; by the Woodin/Laver ground
definability result [2], [6], P is also definable from parameters over W.) The
intersection of all grounds of W is called the mantle MW of W. Recall W is
called a bedrock iff W has no non-trivial grounds, or equivalently, W = MW .
See [2] and [25] for more general background on these topics not specific to inner
model theory.

3Disclaimer: The “proofs” (and some definitions) presented here are not quite complete,
because their full exposition depends on an integration, omitted here, of the method of -
translation (see [1]) with the techniques we develop. The integration itself is a straightforward
matter of combining the two things. But because *-translation itself is already quite detailed,
its inclusion would have added significantly to the length of the paper. It will be covered
instead in [16].



The reason that mice modelling ZFC + Woodin cardinals do not compute
their own iteration strategies is connected with the fact that they have proper
(set-)grounds. The standard examples of such grounds arise from Woodin’s
genericity iterations. This phenomenon has led to inner model theoretic geology,
which has proven to be an exciting and fruitful area of set theory. Its program
is to analyze the collection of grounds and the mantle of given canonical inner
models. See [3] and [8], which address exactly this kind of problem, and are
precursors to the current work. See also [15], parts of which were motivated
by the current work. The theme uncovered in these works is roughly that the
mantle of a (sufficiently canonical) mouse tends to itself be a mouse or a strategy
mouse, and hence can be analyzed in high detail.

The paper [3] proves that if M = L[E] is a tame proper class mouse with a
Woodin cardinal but no strong cardinal, and some further technical assumptions
hold, then the mantle of M is itself a mouse, but is not a ground of L[E]; see
[3, §3.4] and specifically [3, Theorem 3.33]. As an example, the mantle of M;
(the minimal proper class mouse with one Woodin cardinal) is the model left
behind after iterating the unique measure on the least measurable of M7 out of
the universe, and note this model has no measurable cardinals. The situation
is entirely different if L[E] has a strong cardinal.

Let My,™ denote the minimal active mouse N such that letting s = crit(F)
where F' is the active extender of N, then N|x F“there is a strong cardinal
above a Woodin cardinal”, and suppose this mouse is fully iterable (for all set-
sized trees). Let Mgywsw be the proper class mouse left by iterating F out of
the universe. It is shown in [8] that there are only set many grounds of Mgy
and that the mantle of My, is itself a ground of My, and hence a bedrock.
There is therefore some analogy here between Mg, and V in the presence of an
extendible cardinal; see [26, Theorem 1.3]. The mantle of M, however, also
has an interesting structural analysis, as it is the universe of the strategy mouse
¥ Msw mentioned earlier. It is, moreover, a canonical “least” inner model which
has a Woodin cardinal and knows how to fully iterate itself; see [3, Lemma 2.20].

In personal communication with the second author [27], W. Hugh Woodin
expressed suspicion that the mantle of any proper class mouse L[E] with a strong
cardinal above a Woodin cardinal might perhaps contain non-trivial strategy
information at its least Woodin cardinal and not at any larger Woodin.

A reasonable candidate for testing this suspicion and for extending the anal-
ysis of [8] is the big brother of My, namely M = Mgysw, introduced above,
and studied in this paper. We will show that the strategy mouse # also
introduced above, has universe the mantle of M, and so in fact, this mantle
contains two Woodins together with non-trivial (and is closed under) strategy
information for both of them. There is therefore a stronger analogy between
hod mice (see [7]) and mantles of extender models L[E] than was previously
expected. This universe is also a ground of M, and hence is a bedrock. We will
also show that #™ has universe the eventual generic HOD of M; that is, its uni-
verse is HODMIS) whenever A is a sufficiently large ordinal and G C Coll(w, A)
is M-generic.

In some more detail, we will first isolate the first Varsovian model ¥; = ;M



of M and show that ] is a ground of M, contains exactly two Woodin cardinals
and a strong above them, and knows how to iterate itself fully for trees based on
its least Woodin. This model is at first constructed in the form of “L{M ., %],
very much like in the construction of [3], which also mirrors Woodin’s analysis
of HOD*[*%] We then show that this model admits a stratification as a fine
structural strategy premouse. The indexing used for the stratification is new,
and this indexing is important in the overall analysis we give. It is moreover
determined in a very strong sense by the hierarchy of M — the extender sequence
of 77 is in fact given by simply restricting the extenders on the sequence of M
above a certain point, some of which correspond to strategy. We then go on to
isolate the second Varsovian model ¥5 = ¥ of M, which will be constructed
inside ¥7 (so %2 C ¥ C M), using an elaboration of the construction of ¥#; in
M. We then analyze the model and compute an iteration strategy for it, and
establish the remaining facts mentioned above: the universe of %5 is the mantle
and eventual generic HOD of M, ¥ contains exactly two Woodin cardinals
and knows fully how to iterate itself. We also show that the universe of 7} is
the kg-mantle of M, where K is the least strong of M. The overall picture and
process is expected to generalize to n < w iterations (working in the appropriate
starting mouse) and beyond.

The reader who is familiar with [7], for example, will encounter a lot of par-
allels between our analysis and the theory of hod mice; a key difference, though,
is that our treatment is purely combinatorial and “inner model theoretic”, using
no descriptive set theory. Familiarity with [8] certainly helps, since the current
paper is in large part an extension of that one, and some arguments covered
in [8] are omitted here. But the reader who is reasonably familiar with inner
model theory in general should be able to refer to [3] as needed.

The paper is organized as follows. There are some preliminaries and notation
listed at the end of this section. In §2, we present the general method of assigning
the (first) Varsovian model #“I¥l to an extender model L[E], and prove key
facts about it, under certain hypotheses. In §3, we describe some key properties
of Mgwsw and its iteration strategy, which will be essential throughout. In §4,
the first Varsovian model ¥; of M, and its iteration strategy ¥y, , are defined
and analyzed. This analysis is centered around the stratification of 77 as a
strategy premouse. We also give natural characterizations of the universe of ;.
In §5, we identify 75, also stratifying it as a strategy premouse. We show that
¥ has two Woodin cardinals, is fully iterable, and is closed under its iteration
strategy. We expect that the hypothesis used to construct such a model is in
some sense optimal. We finally show in §5.8 that the universe of 75 is the mantle
of M and is HODMIC! for sufficiently large collapse generics G.

The work presented here was started by the first two authors, extending
their [3]. In the early stages, significant progress was made, but without a full
development of the level-by-level fine structural correspondence presented in
this paper between the models M = Mgysw, #1 and 7#5; such a correspondence
was considered to some extent, but then put aside in favour of other methods.
During this time, the first author developed an approach to computing the man-



tle of M which does not use the level-by-level correspondence, but this has not
been published. Later, the second author returned to the level-by-level corre-
spondence, and developed some of the main ideas in its connection. Following
this, in September 2017, the second and third authors then began discussing
this approach. Over the next few months, building on what had already been
established, they (mostly) completed the analysis via this approach, leading to
the current presentation (some details being added over time somewhat later).
Some of the evolution of ideas was documented by the second author’s talks at
the 4th Miinster conference on inner model theory, July 17-Aug 01, 2017, and
at the 1st Girona conference on inner model theory, July 16-27, 2018, and in
the handwritten notes [10].

The early development, worked out by the first two authors, directly yielded
parts of the present paper, as well as precursors to some other parts. Some
version of probably the most central concept in the paper, the strategy mouse
hierarchy used in Definition 4.39 (which is also a precursor of Definition 5.39),
is due to the first two authors, as is §4.7; the setup for the first direct limit
system in §§4.1,4.3,4.4 is much as in [3] and is basically due to them, although
the approach used in §4.2 for computing short tree strategy, and some other uses
of normalization, are due to the 3rd author. The 2nd author is responsible for
the majority of §2, including Definition 2.11, for the computation of HOD?[G]
in Theorem 4.28 via extending Lemma 4.24 (and the idea to consider HOD),
and the modified P-construction (Definition 5.4). The 2nd and 3rd authors
jointly established Lemma 5.8, the construction of the second direct limit system
in §5.2, and the strategy mouse hierarchy used in Definition 5.39 (adapting
4.39). The (self-)iterability of ¥, and 73 is also mostly due to the 2nd and 3rd
authors, integrating some of the earlier work of the first two. The 3rd author is
responsible for Lemma 4.24, that ¥} C M[*], Lemmas 2.10, 4.41, 4.81, 4.84,
5.68, 5.72, Definitions 4.79, 5.67, §§4.10, 4.11, 5.1.2, 5.1.3, 5.8, and the original
version of §4.8.

1.1 Notation and Background

General: Given structures P,Q, |P| denotes the universe of P, and P = @
means |P] = |Q].

Premice: All premice in the paper are Jensen-indexed (A-indexed). Given
premouse N = (U,E, F) with universe U, internal extender sequence E and
active extender F, we write |[N| = U, EN = E, F¥ = F, and EYy =E" F.
Write NPY = (U,E, ) for its passivization, N||a for the initial segment P of
N with OR” = a (inclusive of active extender) and N|a = (N||a)PY. Write
Ih(F) = ORY. Given premice M, N, we write M < N iff M = N||a for some
a < ORN, and M <N iff M < N but N € M. Given also m,n < w such
that M is m-sound and N is n-sound, we write (M, m) < (N,n) iff M I N
and if M = N then m < n, and write (M, m) < (N,n) iff (M, m) < (N, n) but
(N,n) & (M,m). For n < ORY, we say n is a cutpoint of N iff for all E € EY,
if crit(E) < n then 1h(E) < n, and a strong cutpoint iff for all E € EY, if



crit(E) < n then Ih(E) < 5. For £ < § € ORY, Bé\fg denotes the J-generator
extender algebra at ¢, with axioms induced by extenders E € E with v(E)
inaccessible in N and ¢ < crit(E). And BY = Bé\,’o-

Hulls: In general, Hull (X) denotes the structure whose universe is the
collection of elements of M, definable over M from parameters in X, with
definitions of “kind ¢”, and whose predicates are just the restrictions of those of
M. Here “kind t” depends on context, but the main example is that if M is a
premouse, then the universe of Hull%l(X ) is the collection of all y € M such
that for some r3,, ;1 formula ¢ and ¥ € X<, y is the unique z € M such that
M E o(z,&). When it makes sense, cHull}? (X) denotes the transitive collapse
of Hullﬁ_l(X ) (including the collapses of predicates).

Ultrapowers: Let E be an extender over N. Write i% : N — Ult(N, E) for
the ultrapower map, and zg" — Ult,, (N, E) for the degree-n ultrapower and
associated map. Write kg = crit(E) for the critical point of E, Ag = A(F) =
ig(kg), and §(F) for the measure space of F; in particular, if E is short then
§(E) = crit(F) + 1.

Iteration trees: A fine structural iteration tree 7 consists of tree order
<T | tree-predecessor function a + 1 predT(oz + 1), model-dropping node-set
27 C 1h(T), model-or-degree-dropping node-set Qg;g C 1h(T), models M| and
degrees deg! (for o < Ih(T)), extenders ET € E, (M) and model pre-images
M;L < Mg— where 8 = predT(a + 1) (for a4+ 1 < Ih(7)), and here MZH =
Ultq(M:T,, E]) where d = deg”, and if « <7 S and (o, B]7NZ7T = 0, iteration
maps izﬂ s MT — Mg7 and if « is also a successor ordinal, zzg s MET M[;r
(Note we are only indicating notation above; the definition of iteration tree has
more demands.)

Let N be an n-sound premouse, where n < w, and 7 a fine structural
iteration tree. Recall that 7 is n-mazimal on N iff (i) (MJ,deg]) = (N,n),
(i) Ih(ET) < lh(EZ;) for a+1 < f+1 < In(T), (iii) pred” (a+1) is the least 3
such that crit(E]) < )\(Eg), and (iv) (M;L,degz;rl) is the lex-largest (P, p)
such that (MBTth(Eg),O) < (P,p) < (Mg,degg) and crit(E]) < pl’. We say
T is normal if it is n-maximal for some n. For § an N-cardinal, we say T is
based on N|¢ iff for all & +1 < Ih(T), if [0,a]7 does not drop in model then
Ih(ET) < i, (). We say T is above k iff crit(ET) > & for all a4+ 1 < 1h(7),
and strictly above r iff crit(E]) > & for all a + 1 < 1h(T).

P-construction: Given a premouse M and N € M, M (N), or just Z(N)
if M is understood, denotes the P-construction as computed in M over base
set N. In [12, §1], this model would be denoted P(M,N,—). If T is a limit
length iteration tree, 2 (T) abbreviates 2V (M (T)), and if T is the trivial
tree (that is, uses no extenders) then 2V (T) denotes N. (The latter notation
is just convenient when we set up indices for the direct limit systems, as then
the trivial tree 7 on M indexes the base of the system computed in M.)

Remark 1.1. For our overall purposes Jensen indexing for premice is natural.
However, genericity iterations are essential, which are somewhat cumbersome
with Jensen indexing and Jensen iteration rules (as for n-mazimality above).



The process for this is described in [22, Theorem 5.8]. We f also use genericity
inflation, sketched in §4.2, and minimal genericity inflation, see [141, §5.2%**].)

2 Ground generation

In this section we shall present an abstract version of the construction of a
Varsovian model ¥ derived from a given inner model M (satisfying the require-
ments below), and prove that ¥ is a ground of M. It will take some time to
lay out the required hypotheses ((ugl)—(ug24)); we will also collect some facts

along the way.
Fix M, (d, <), (Pp: p € d) such that

(ugl) M is a proper class transitive model of ZFC,
(ug2) (d, =) € M is a directed partial order,

(ug3) (Pp: p € d) is an indexed system of transitive proper class inner models of
M which is an M-class; that is, each P, is a transitive proper class inner
model of M, and {(p,z): p € d Az € P,} is an M-class. *

Suppose that in V' there is a system (mpq: p,q € d Ap =< ¢) such that:
(ugd) mpg: Pp — Py is elementary whenever p < g,
(ugh) the maps are commuting; that is, w4, o Ty = Ty, for p < ¢ < r.

Let
@ext: (<Ppp€d>’<’ﬂ'pqp,q€d/\qu>)

be the directed system (the ext stands for external). Define the direct limit
(model and maps)

(Mﬁét77rpoo: pE d) = dir lim 2. (1)
Suppose
ug 1s welllounded; we take 1t transitive.
6) Mt is wellfounded ke i -

Note that the system 2°* is not assumed to be an M-class, hence neither M.
But suppose that 2°%¢ is “covered” by an M-class, in the sense that there is an
M-class (dT, =) (we use the same symbol =, since there will be no possibility
of confusion) such that:

(ug?) d* Cd x ([OR]<*\0) and =< is a directed partial order on d¥,

(ug8) if (p,s),(q,t) € dT then (p,s) < (q,t) iff p<gand s Ct

4In practice, M and all Pp, p € d, will be (pure or strategic) premice, hence inner models
constructed from a distinguished (class sized) predicate, in which case our definability hy-
pothesis is supposed to mean that the collection of predicates constructing the Pp, p € d, is
definable over M.



(ug9) if (p,t) € d™ and 0 # s C ¢ then (p,s) € dT,
(ugl0) if (p,s) €d', g € dand p < ¢, then (¢,s) € d*.

Further, there is a system

2 = ((HL: (p,s) €d™) , (Tpsgr: (0,5), (¢,;1) €dT A(p,5) 2 (q,1)))  (2)
such that:
(ugll) 2 is an M-class,
5

(ugl2) for all (p,s) € d*, HP is an elementary substructure of Q¥ = P,| max(s),

(ugl3) for all (p,s),(g,s) € d* with p < ¢, the map mp, 45 : H? — HZ is elemen-
tary,

(ugld) for all (p,t) € d™ and s C t, we have H? <, HY, and the map
Tps.pt : HY — HY
is the inclusion map (hence ¥¢-elementary),
(uglb) the maps mps g commute, in that Ty, © Tps gt = Tps.rus

Note if (p, 5), (¢,t) € d* and (p,s) =< (¢,t), then (p,s) < (¢,5) = (g, 1), so by
(ugl3), (ugld), (uglh),

_ . P q
Tps,qt = Tgs,qt © Tps,qs * H{ — Hy

is Mo-elementary and has the same graph as has m,, s, and in particular, the
graph is independent of ¢. And note that mps 45 € Tpt g+ Whenever s C ¢ and
(p,t) € dT and p < q € d, because here (p,s) € d* and

Tpt,qt © Tps,pt = Tps,qt = Tgs,qt © Tps,qs;
but mps pe and mes ¢ are just inclusion maps.

Definition 2.1. Given « € OR and p € d, say « is p-stable iff mp,(a) = « for
all ¢ € d with p < ¢q. Say s € [OR]<¥ is p-stable iff « is p-stable for each « € s.
Call (p, s) € d¥ trueiff s is p-stable and for all ¢,r € d with p < g < r, we have

Tgs,rs — Tqr I Hg -

Lemma 2.2. For each s € [OR|<“\{0}, there is p € d such that s is p-stable.

The proof is standard, using the wellfoundedness of M. Assume further:

(ugl6) for all s € [OR]<“\{0}, there is p € d with (p,s) € d* and (p, s) true.

5Here if Pp is a (possibly strategy) premouse, then this is precisely defined, and is passive
(strategy) premouse; in general P, should be stratified in an OR-indexed increasing chain of
So-elementary substructures and Q% should be the proper level of that hierarchy indexed at
max(s).



(ugl7) for all p € d and z € P, there exists s such that (p,s) € dt, (p, s) is true
and xz € H?.

Define the direct limit (Moo, Tps oo (p, ) € dT) = dir lim 2.
Lemma 2.3. M, = ME' is M-definable.

Proof. Our assumptions immediately give that M, is M-definable. Consider
the equality. We proceed as in the proof of [3, Lemma 2.4] or the first few claims
in [19]; the last few properties listed above been abstracted from those proofs.
We will define a map x: Mo, — M and show that x is the identity.

Let (p,s) € d¥ and x € H?. By (ugl0) and (ugl6), we may fix ¢ such that
(p,s) = (gq,s) and (g, s) is true. Define

X(Tps,00(T)) = Tg,00 © Tps,qs (T)-

By commutativity and truth (trueness), this does not depend on the choice
of g, so x is well-defined. Note that x is Yp-elementary and cofinal, hence
fully elementary, by [4, Theorem IL.1, p. 54; Remark I1.2, p. 55]. If p € d
and x € P,, then by (ugl7) there is s with (p,s) true and x € H?. Hence
Tp,oo(Z) = X(Tps,00(x)) € ran(x). So x is surjective, so x = id. O

Given p € d, write C, = {¢ € d: p < ¢}, and given (p,s) € d*, write
Cip,s) = {(q,t) € d: (p,s) = (¢,t)}. Call aset C C d a cone iff C, C C for some
ped,and ¢’ Cd" a cone iff Cg, ) C C’ for some (p,s) € dF.

Lemma 2.4. We have:
1. There is a cone C C d such that mpe(p) = p for all p,q € C with p < q.

2. There is a cone C' C d* such that p € HP and mps q(p) = p for all
(p,s), (g, t) € C" with (p,s) < (q,t), and

Proof. Let s = {p,p+ 1} and (using (ugl6)) let p € d be such that (p,s) € d*
and (p, s) is true (hence s is p-stable). Then C, and C, ;) work. O

Note that part 2 of the previous lemma is understood by M. Using this, we
can define the associated *-map OR — OR. For a € OR write

P* = 7Tps7oo(p)’ (3)

where (p, s) is any element of any cone C’ witnessing part 2 of the lemma. Note
this is well-defined, and x* is a class of M.

Lemma 2.5. Let p € OR, and C,C’ be cones witnessing Lemma 2.4. Then:
1. p* = mpeo(p) for all p € C,
2. p € H? and p* = mps oo(p) for all (p,s) € ',

3. p* = min{mp(p): p € d}.
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Proof. Parts 1 and 2 follow directly from Lemma 2.4 and the fact that the
function y defined in the proof of Lemma 2.3 is the identity.

Part 3: Let C C d witness Lemma 2.4. Let p € d. Then there is ¢ € C with
p = q. Therefore mpe(p) > p, SO Tpoo(p) > Tyoo(p), which suffices. O

There is another important characterization of p — p*, given some further
properties. Assume:

(ugl8) There is a unique <-minimal py € d. Moreover, M = Pp, and mp,4(po) = ¢
for each ¢ € d.

S0 Tpoq : M — Py for all ¢ € d, and mpyoo : M — M. The next hypotheses
guarantee a homogeneity property of the system, in that each P, may equally

serve as a base. Let 97» = m, ,(2), MEr = Tpop(Moo), etc, for p € d.5 Let
¢p =d,Ndand ¢ =d}f Nd*. Suppose:

(ugl9) Forall p € d, ¢, is dense in (d,,, <) and dense in (d, <), and <, [¢, = =[¢p,

P
(ug20) For all p € d and all (q, s), (r,t) € c;; with (g, s) < (r,t), we have (P,)Pr =
P, and (Hg)PP = H? and (ﬂQS’Tt)PP = Tgs,rt-

(ug21) For all s € [OR]<“\{(} there is p € d with (p, s) true and (p,s) € c;f.
Using these properties, it is now straightforward to deduce:
Lemma 2.6. For each p € d, we have:
1. c; is dense in (d;, =p) and dense in (d*, =), and =, [c;‘ ==, Fc;,".
2. The direct limit ./\/lfé” of 9Pr is just M , and the associated *-map *"»
is just %, 50 Tpop(Moo) = Moo and mp,,(x) = *.

Definition 2.7. For p € d and s,t € [OR]<*\0, say (p, s,t) is embedding-good
iff (p,t) € d¥, Tps.oo € HY and mps gt (Tps,00) = Tgs,c0 for all g € Cp. -

Note that embedding-good is an M-class.
Lemma 2.8.
1. If (p, s) is as in (ug21) then (g, s) is true and (q,s) € d*Nd; for allq € C,p.

2. For each s € [OR]<“\0 there is p € d such that for each q € C,, we have
(¢,s) true and (q,s) € d* Nd;, and for each x € P, there is t € [OR]<*
such that (q,t) is true and z € H} and (q, s,t) is embedding-good.

6Note that we write mpop(2), not mpyp(2°*4); of the course the latter does not make sense.
We know Mt = Moo, but M5S> is of course computed in Moo as the direct limit of
9Moo | At this stage it is not relevant whether there is some external system of elementary
embeddings associated with 2o analogous to 2°**.
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Proof. Part 1: We have (g, s) € d* and (g, s) true because (p, s) € d* and (p, s)
is true, and (g, s) € d(‘l“ because (p,s) € d;f and m,y4((p, s)) = (¢, s) by (ugll)
and because s is p-stable.

Part 2: Fix p € d with (p, s) true and (p,s) € d* Nd} (using (ug2l)). Let
q € Cp. By part 1 and (ugl8)—(ug20), (Trs,00)"" = Trs,c0 for all 7 € C,. Since
mgr(s) = s for such r, we get 7y (Tgs,00) = Trs,00- Let & € Py. Using (ugl7), let
t € [OR]<¥ such that (¢,t) € d" is true and @, 745,00 € H{. Then ¢, ¢ works. [

Let ¢ be the class of all embedding-good tuples. Define M~ = 7y, (2)
and MM~ = 75, (My,). Working in M, define mo, : Mo, — MM~ by

Moo = U Tpt 00 (Mps,00)-
(p,s,t)€Y

Lemma 2.9. 7y, : My, — M= is elementary and 7. (p) = p* for p € OR.
Moreover, Tp,q(Too) = Too for all g € d.

Proof. The well-definedness and elementarity of 7, is left to the reader. Fix
p € OR. Let (p,s) € d* with p € rg(mps ), taking p as in Lemma 2.8 part
2 with respect to s. Note we may assume that m,,(p) = p for all ¢ € C,. Let
Tps,00(p) = p. Let t € [OR]<“\{0} be such that (p,t) is true, p, p, Tps,c0 € Hf
and (p, s,t) is embedding-good. Then

*

p = 7Tpoo(p)
= Fpt,oo(ﬂ'ps,oo(ﬁ))
= Tpt,co Wps,oo)(ﬂ'pt,oo(/j))

= Too(p).
The “moreover” clause is as in Lemma 2.6. O
We now define the associated Varsovian model ¥ as
YV = LMo, Too]- (4)

So by Lemmas 2.6 and 2.9, ¥ is a class of P, for all p € d, and m,,,(¥) = 7.
Let 7Moo = m, (¥), so ¥M= is defined over M, just as ¥ over M. So
letting 72> = Ty 00 (Moo ),

y Moo = LM xlt=].
Lemma 2.10. 7., extends uniquely to an elementary
nl ¥ -y M

such that 7% (1) = 7= (and 75 (Ms) = Too(Moo) = M=), Moreover,
7wt is ¥ -definable from M, Too.

o0
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Proof. Since every element of ¥ is definable over ¥ from M., T and some
ordinal, it suffices to see that for all formulas ¢ and ordinals «, we have

Y E oMo, Too, ) = Y Mo £ oMM gMe 7 (a)).
But ¥ F (Moo, Too, ) iff
PpE YV E p(Meoo, Too, )"

for each p € d. Taking p such that « is p-stable, and then applying 7y,
note that the latter holds iff M, satisfies the corresponding formula regarding
Too(@); that is, iff

P M= (M=, mid> moo (). O

o0

It therefore makes sense to define, for any z € M,

" = Too (), (5)
and for x € ¥,
o't =nd (x); (6)

that is, * and 7, denote the same function, as do *+ and 7.

We next formulate a few more assumptions which ensure that certain sets are
generic over ¥. Let § € OR and B € M. Let 6, = mp,p(d) and doo = Tpyoo(9),
etc. Assume:

(ug22) M E“ is regular and B is a d-cc complete Boolean algebra”, and
(ug23) ¥ F“oo is regular and By is doo-cC”.

Now work in . Let £ be the infinitary propositional language, with propo-
sitional symbols P for each ordinal £, generated by closing under under negation
and under conjunctions and disjunctions of length < 0o (50 if (Ya)qcg € Ly
where 6 < 0o, then A, _p¢q and \/_, @ are also in £,,). (Note £ is a proper
class of 7.)

Working in any outer universe of ¥, given a set B of ordinals, the satisfaction
relation B F ¢ for ¢ € L, is defined recursively as usual; that is, B F P iff
§€ B, BF —piff BFY ¢; BF N\ ,.g¢a iff B F ¢, for all a < 0; and
BFE\/ g @a iff BE ¢, for some a < 6.

Fix some By-name 7, € P, for a set of ordinals, for some p € d, and let
T; = Tpq(Tp) for ¢ € Cp, and Too = Tpoo (7p).-

Definition 2.11. Work in ¥". Let LL be the poset whose conditions are formulas
i € L such that there is p € B, such that

P H-]Q:f “Too F @* 17,
and with ordering ¢ < ¢ iff for every p € B, we have

P H_ﬁf:c “ro E (‘P*+ = w*Jr)”. -
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Although L is proper class, it is easy to see that this is equivalent to a set
forcing. Note here that since ¢ € ¥, ©*T is well-defined and

o't € Y M= C Mo,

and the forcing assertions above make sense, as 7., € M, is a B,,-name and

©**, Y*t € M. Note that by modding out by the equivalence relation
prRY = <<y,

we get a forcing-equivalent poset defined as follows:

Definition 2.12. Work in 7. Let L. C B, be the forcing whose conditions are
those Boolean values in B, of the form

||LL7_OO ': SD*J’_” | |]§:§oa

where ¢ € L, excluding the 0-condition of B, and with ordering induced by
B. B

Note that the forcing I depends on the name 7..; if we want to make this
explicit, we will write L(7).

Lemma 2.13. ¥ £ “L has the §,.-c.c.”

Proof. Since ¥ F“Bo has the doo-cc” (by (ug23)), this is an immediate conse-
quence of Definition 2.12. O

Lemma 2.14. Let A € M be a set of ordinals and p; € d and suppose that for
all g € Cp, there is g € M such that g is (Py,B,)-generic and (14)y = A.” Then
the filter

Ga={peL|AF ¢}

or equivalently, if using Definition 2.12 to define L, the filter
Ga= {H “Too F ™75t ‘ pELNAF 90}7

is (¥, L)-generic, and A € ¥'[G 4] (so note ¥ [A] = ¥ [G 4]).

Proof. Easily, G4 is a filter. We verify genericity, and then clearly A € ¥[G4].
Let (¢a) g € 7 be a maximal antichain of L. We must see G4 meets (0a) 4
or equivalently, that A F ¢, for some a. Supposing otherwise, A E 1) where

Y= /\ TPas
a<6

and by Lemma 2.13, 6 < 04, s0 ¢ € L.

"In our applications, where M will be a (pure or strategic) premouse, A will typically be
a canonical code for M|y, and the name 7, will provide a canonical translation of the pair
(Pql, g) into M |p, where g is the generic filter.
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For each ¢ € Cp,,, we have ¥ C P,, so L € P,, and by hypothesis there is a
(Pg,Bgy)-generic g € M with (14), = A, so

Ip € By [plrg? “rg F 97, (7)

Considering the definition of 7%, note that we may take ¢ € C, such that

oo

Tgoo (V) = L (1) = ¥*T, so that (7) implies
Ip € B [p Mg “7oc E 7],

so 1) € L. But the elementarity of 71 easily gives that 1 L ¢, for every a < 6,
SO (Pa)qcp is MOt a maximal antichain. Contradiction! O

Finally, suppose:

(ug24) For every ordinal p with cardM(V#M) = u, there is a set A’ € P(u)M
coding V#M, and there is p; € d such that u is p;-stable, and there is
a By, -name 7, € P, such that the hypotheses of Lemma 2.14 hold for

/ /
A yP1s T, -

So under these assumptions for a given u, A, TI/) ,» the conclusion of Lemma
2.14 holds with respect to L(7.,). Assumption (ug24) basically says that the

Pp form a system of grounds for M in a “uniform” manner.

Definition 2.15. For M, etc, as above, we say that 2, 2T provide uniform
grounds for M iff conditions (ugl)—(ug24) hold. —

Theorem 2.16. Under the uniform grounds assumptions, ¥ is a ground of M,
via a forcing P such that M E“P has cardinality < 2%~” and ¥ E“P is dso-cc”.
Therefore §, is a regular cardinal in M.

However, M, is not a ground of M.

Proof. We have that every set (of ordinals) in M is generic over ¥ for some
L(7.,) € Bs. Since there are only set-many such forcings, ¥ is in fact a ground
of M for some such (7., ). Moreover, this forcing is doo-cc in ¥, by [11, Theorem
2.2], we can find a forcing P € ¥ as desired.

The “therefore” clause now follows (recall do is a regular cardinal of 7).

Now #Me is a ground of M, (since ¥ is a ground of M). Suppose M,
is a ground of M. Then 7™M is also a ground of M. But M defines 7 : ¥ —
Mo which is then a non-trivial elementary embedding between two grounds
of M, contradicting [5, Theorem 8]. O

When we produce instances of uniform grounds later, we will actually know
more: we will have V:S/:"" = V(i/o and 0. Woodin in ¥ (hence also in M, so
0 Woodin in M, which will be an assumption), and B C §, so L C J,, so some
L(7..) will be a P as above, but in fact of cardinality o, in ¥ and hence also

in M.
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3 The model M.y

In this section introduce the mouse Mysw We will be analyzing, and establish
some of its basic properties, as well as some of those of its iteration strategy.

Definition 3.1. Let ¢sysw be the statement, in the passive premouse language,
asserting “There are ordinals dy < kg < §; < k1 with §; Woodin and x; strong
for i < 1, as witnessed by E”. Let M# be the least active mouse such that
M# |y E gwsw Where p = crit(F]W‘?&).8 Then Mgysw denotes the proper class
model left behind by iterating FM* out of the universe. Note p,(M#) =
p1(M#) = w, p{w# =) and M# is w-sound. We assume throughout that M7#
exists and is (w, OR, OR)-iterable.” We usually write M = Mysy-

Let X denote the (w, OR)-iteration strategy (that is, for w-maximal, hence
normal, trees, of set length) for M which is induced by the unique (w, OR)-
strategy Y4 for M#. Let I' = Y%K denote the optimal-(w, OR, OR)-strategy
for M which is induced by ¥ via the normalization process of [14] (see Fact 3.4
below, especially item (X1) there). =

Certain aspects of normalization, used to define I' = X5t from %, will be
used in the paper. The main features we need are the properties of ¥ men-
tioned in Fact 3.4 below, which can be black-boxed. Some of the details of the
normalization process will also come up to some extent later on, but the reader
unfamiliar with those details should still be able to follow most of the arguments
in the paper.

Remark 3.2. M knows enough of ¥ that M|w is definable over the universe of
M (without parameters). Therefore by [20, Theorem 1.1], EM is definable over
the universe of M without parameters. Thus, when we talk about definability
over M, it does not matter whether we are given EM as a predicate or not.

However, if ¢ is M-generic, then HOD™ 9] can differ from HOD]]EWM[g], for example.

Definition 3.3. If T is a stack on M via ', then I  denotes the tail stacks

strategy for N induced by T, i.e. F7-N(ﬁ) =T(T " U). Also ¥z v denotes the
normal part of 'z . Actually by what follows below, we can and usually do
write I'y and X . —

Recall that T' = 25K is the strategy for stacks induced by 3.
Fact 3.4. We have:

(X1) ¥ is the unique (w, OR)-strategy for M, so satisfies both strong hull con-
densation and minimal hull condensation, and therefore by [1]:

— every iterate of M via I is also an iterate via X,

8By [18], Woodinness and strength is automatically witnessed by EM#, as a consequence
of iterability, but we will also consider premice N E tgwsw which need not be iterable.

9We could probably just work with (w,w; + 1)-iterability. By [22, Theorems 9.1, 9.3],
because M# is w-sound and projects to w, (w,w; + 1)-iterability for M# implies (w,w1,w; +
1)*-iterability, and similarly, (w, OR)-iterability for M# implies (w, OR, OR)-iterability.
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— if G is V-generic then ©,T" extend canonically to V[G], with the
same properties there; with an abuse of notation, we continue to
write ¥, T = Y5 for these extensions, or may write XV or TVIC]
to emphasize the distinction.

(X2) T is fully positional, in that whenever T, U are two stacks via T’ with the
same last model N, then Ff’ N = FZ]’ N irrespective of drops. However,
positionality will only be relevant in the non-dropping case.

(X3) T is commuting, i.e., if 7 U and T~V are non-dropping stacks via T'
with a common last model, then i =iV ; see [11, ***Theorem 10.4].

(X4) For all T via T, with last model N, Yz n has minimal hull condensation

and I'z \ = (85 N )2 see [14, ***Theorem 10.2].1° Thus, every iterate
of N viaT'z  is also an iterate via Xz \, in a unique manner,

(X5) If T,U are via X, of successor length, with non-dropping final branches,
P=MJ and Q = MY, n € ORY, o =T (n) = i#(n) and Ply’ = Qlnf
then Y 7 and Xy ppu agree with one another in their action on trees
V based on P|n'. See [11, ***Theorem 10.5].11

Remark 3.5. Very strong hull condensation ([23]) implies minimal hull con-
densation ([14]), which implies minimal inflation condensation ([14]). For the
normalization process of [14], minimal inflation condensation is sufficient, but
for the generic absoluteness results, minimal hull condensation is used.

Definition 3.6. We say that a stack T on M is correct if it is via I'. We say
that N is a X-iterate of M iff there is a correct stack 7 on M with last model
N = M. By the properties above, we may in fact take 7 via X (hence normal),
and note that this 7 is uniquely determined by N (and X); we write Ty = T .
A Y-iterate is a dropping iterate iff b7 drops, and otherwise is non-dropping.
Let N be a non-dropping Y-iterate. Then a ¥ y-iterate is similarly an iterate
of N via ¥y (equivalently, via I'y).'? If P is a non-dropping ¥ y-iterate, let
inp : N = P be the iteration map (via Xy). Given § < ORN7 we say that V
is 0-sound iff, letting 7 = Ty, we have N = HuHN(5 Urg(iT)); equivalently,
v(ET) <6 for all a +1 < 1h(7). =

Definition 3.7. Let #M denote the class of critical points of the linear iteration
of FM” which produces M. For N as above, let N =iy 5 “sM. -

Definition 3.8 (Mgysw-like). A premouse N is Myysw-like iff N is proper class
and satisfies a certain finite sub-theory T of the theory of M, including ©sywsw =+ “I
have no active proper segment R such that Rlcrit(F®) F tysw”. We will not

10In order to define (E7=1N)S“k, one also needs that IV is n-standard, where n = degz;, but

this follows from the fact that M is O-standard, by [14, ***Remark 2.2].
HThe precise version of this fact might be simplified by the fact that M is below superstrong.
12We don’t need to iterate dropping iterates of M further.
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spell T' out exactly, but the reader should add statements to it as needed to
make certain arguments work. For an Mgysw-like model N, write

5V = the least Woodin cardinal of N

k{’ = the least strong cardinal of N
N
ro = (kg )T

5 = the least Woodin cardinal of N above x{’

k¥ = the least strong cardinal of N above &}
N
Ry = (k)Y
If N = M, then we may suppress the superscript N, so dp = 6(])”, etc. -

Fact 3.9. Let N be a non-dropping Y-iterate of M and T = Ty. Let § =
8(T) = supy i1 <in(ry Y(EL). Then § < k)Y < min(.#Y) and # N is the unique
club class of indiscernibles I such that N = HulllY (I U §), or alternatively such
that N = Hulld (I U kD).

The following two lemmas are instances of branch condensation (see [7]) and
are simple variants of [8, Lemma 2.1]; we fill in a couple of key points which
were omitted from that proof, however.

Lemma 3.10 (Branch condensation A). Let Uy be a successor length tree on
M, via %, based on M|§}, with b non-dropping. Let T,U be on N = M40,
via ¥, based on N|§Y, with T of limit length and U successor with b non-
dropping. Let G be V-generic. Let b,k € V|[G] where b is a non-dropping
T -cofinal branch and - y

kM6 — MY |6y
is elementary with k oi] C 4. . Then b= Xn(T).

Proof. Because X extends to V[G], with corresponding properties there (cf. Fact
3.4(X1)), we may assume G = (). Let ¢ = Xn(T). Let P, = M, and P. = M.

Suppose first §(T) < 5(1)3b. Then there is a Q-structure Q' < P, for §(7), and
because 0(7) is a cardinal of Py, M(7) has no Woodin cardinals, so 6(7) is a
strong cutpoint of )’. Because we have k, Q' is iterable.

If ¢ is non-dropping and §(7) = §3° then we can compare Q' versus P, for a
contradiction. So in any case, @ = Q(T,¢) exists. Since M (7T) has no Woodins,
0(T) is also a strong cutpoint of @, so we can compare and get QQ = @', so b = c.

Now suppose §(T) = 55”. Then we can argue as in the proof of [8, Lemma
2.1]; however, we fill in a seemingly key point: We extend k to

kTP, — MY

with k* o4 =Y asin [3]. Now P, = P. (this was not mentioned in [5]); for
P, is iterable and is 65 *-sound, and likewise for P., but both are models of “I
am Mgysw ' , SO comparison gives P, = P.. And because P, = P, and ibT, zz fix
all sufficiently large indiscernibles, we can indeed conclude that i[[X =il X,
where

X =Hull™ (I¥)n oYY,

18



where IV is the class of N-indiscernibles. So by the Zipper Lemma, we get
b=c. O

There is also a version at d;. We won’t directly use this, but will use a
variant, which will use a similar proof:

Lemma 3.11 (Branch condensation B). Let Uy be successor length on M, via
¥, based on M|§M | with 6“0 non-dropping. Let T,U be on N = MY°, via Yy,
based on N |6, with T of limit length and above k™ , U successor length with
b non-dropping. Let G be V-generic. Let b,k € V[G] where b is a non-dropping
T -cofinal branch and

T u
ke Moy — MY s
is elementary with k oi] =44 _. Then b= Xy(T).

Proof. Again we may assume b,k € V. Let a € b“o be least with either a+1 =
Ih(Up) or ko(MYe) < crit(iUy,). Let N = MYo. So kf = k{’ and N is x{-sound
and m: N — N where m = i49_ and crit(r) > k{’. Let P, = M, ¢ = Xn(T)

and P, = MT. If 6(T) < 61* then let Q, < P, be the Q-structure for §(7); this
exists because 6f is the least Woodin of N above x), and T is above xj®
Otherwise let Q, = P,. This time, Q) can have extenders F overlapping §(7),
but only with crit(E) = x{’. Let Q. < P. be likewise.

Define phalanxes P = (N, (), Qp, 6(T)) and Q = ((N, £'), Qc, 5(T)). We
claim B, Q are iterable.!® Given this, we can compare 90,9, and because N
is x)-sound and Qy, Q. are §(T)-sound, we get Q, = Q., so if b # c then
P,=Qp=Q.= P, and 6{3 ®* = §(T), and we reach a contradiction like before.

Define phalanxes 8 = (N, x)'), P,,6(T)) and Q = ((N,s)'), P, 6(T)). It
suffices to see 9B, Q are iterable, because then we can reduce trees on P to trees
on P, using 7 : N — N, and likewise Q to Q.

But £ is iterable because ¢ = X(7). For B, we have k* : P, — MY defined
as before (note that the same definition still works in case §(7) < 5{3;0 ). So B,
is iterable. But i] : N — P, with crit(i] ) > x{Y. So we can lift trees on P to

trees on P, using the maps (i ,id). So % is iterable. O

4 The first Varsovian model 7,

We begin by identifying a natural direct limit system, giving uniform grounds
for M = Mgysw, in the sense Definition 2.15 in §2, hence yielding a Varsovian
model, which we denote #; (we will later define a second Varsovian model %5).
The direct limit system will be defined analogously to that of [3, §2]. The
main difference is in the increased large cardinal level. A smaller difference, one
of approach, is that we use normalization, which means that we can focus on
normal trees, instead of stacks.

13The notation indicates that we start iterating the phalanx with extenders of index > ¢(7),
and extenders with critical point ko apply to N.
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4.1 The models for the system

Definition 4.1. Let 7 be a limit length normal tree on M, based on M|§}%,
via X1 Let b = X(T). We say that T is short iff either b drops or §(7) <

igy(601) = 5Mb ; otherwise T is mazimal. Let Xg, be the restriction of ¥ to
short trees.

If P is a non-dropping >-iterate of M and 7T is limit length normal on P
and based on P|§f, we define short/mazimal for T analogously, and % P,sh 1S
the restriction of ¥ p to short trees. =

Definition 4.2. Let U consist of all iteration trees Y € M|kg on M, such that
either U is trivial, or

(a) U is based on M|dg, via Xy, (hence is w-maximal),

(b) U is maximal,
and for some strong cutpoint n < ko of M, writing § = §(U) and R = M (U),
() h@l) =™ =4,
(d) U is definable from parameters over M|d,
(e) M]|d is R-generic for B,
(f) P

f =det PM(R) is proper class;'® 16 hence P is a ground of M via BE,
and in fact P[M|§] = M. We write here also M (U) = P. a
The proof of [8, Lemma 2.2] or the first few claims in [19] give:

Lemma 4.3. Let U € U, b = S(U) and P = 2™ (U). Then MY = P, M =
IF and ig;) [FM =

We have U C M by definition, but because of the requirement that &/ € U
be via Xg, (hence via X), it is not immediate that U € M. But we show in
the next section that it is, and that U is rich, with the following properties:
The restriction of X, to M is known to M, and whenever P = 2M () for
some U € U, the restriction of X pg, to M is known to M (and moreover, these
are preserved by ipp). Pseudo-genericity iterations can be formed using these
strategies to produce trees in U. Any two such models P;, P, can be pseudo-
compared with these strategies. Moreover, every maximal tree 7 € M|ko via
Ysn is “absorbed” by some X € U.

4.2 The short tree strategy >, for M

We now show that M is closed under Yg, and g, [M is a class of M, and that
the same also holds with M|[g| replacing M, for any M-generic g (where g need
not be in V); in fact when g = ) the class can be taken lightface.

14Recall ¥ is the (0, OR)-strategy (that is, for w-maximal, hence normal, trees) for M.
15Recall the notation 2M from §1.1.
16Recall § is Woodin in P, as witnessed by Ef, and V(;P is the universe of R.
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Let T be via ¥ of limit length, and b = X(7). Suppose we want to compute
b. Since X has strong hull condensation, it suffices to find a tree X via ¥ and
T-cofinal branch b’ and a tree embedding IT: 7~ % — X, for then ' = b.

Suppose also T € M]Jg] and is based on M|dy. Working in M[g] we want
to (i) determine whether 7 is short, and (ii) if short, compute Xg, (7). If it
happens that T incorporates, in an appropriate manner, a genericity iteration
for making EM generic, then we will be able to use P-constructions (combined
with x-translation, discussed below) to achieve both of these goals. In the
general case, we use the method of (genericity) inflation to reduce T to a tree X
which does incorporate such a genericity iteration (see [22, §5.2], which adapts
methods for tame mice from [12, §1]). We give here a sketch of the relevant
methods from [22], restricted to our context; but the reader should consult [22]
for details.

Suppose also that g is M-generic for some P € VQM ,and T € VeM[g]. If
0 < Ko let U = M; otherwise let E € EM be M-total with crit(E) = ko and
VM C U = Ult(M,E) (so < \(E) = k). Let n be a strong cutpoint of U
with @ < n < kY. Following [22], let X be the genericity inflation (explained
further below) of T for making U|0(X) generic for the §(X)-generator extender
algebra, incorporating an initial linear iteration which moves the least measur-
able of M(X) beyond 7, and incorporating linear iterations past *-translations
of Q-structures.!” The *-translation is due to Steel, Neeman, Closson; see [1],
together with an amendment in [16]. The #-translations of Q-structures are
segments of U which compute the Q-structures which guide branch choices for
X.

Here is a sketch of the relevant material from [22]. We define X[(« + 1) by
induction on a. Suppose we have X' [(a+ 1) defined, but have not yet succeeded
in finding ¥(7). We will have an ordinal 1, < OR(M_Y) defined, and possibly
have an ordinal 5, < 1Ih(7) and a lifting map

0ot M |IWE]) = MZY||na

defined. (At a = 0 we have Sy = 0 and 7y = Ih(E] ) and ¢ = id.) We set
EY = FMIne  unless there is an extender G € EMa with Ih(G) < 14 such
that either (i) G induces an extender algebra axiom which is not satisfied by
EY, and G satisfies some further conditions as explained in [22]'® or (ii) G is
a measure to be used for one of the linear iterations mentioned above.!® We
say EY is either copied from T (when lh(EY) = n, and (B4,04) are defined)
or is inflationary (otherwise). The stages a for which (84,04) is not defined
correspond to a drop in model in X, below the image of the relevant extender
from 7T, and arise because of the nature of genericity iteration with Jensen
indexing. Let v = predX(a +1). If EY is copied then 8441 = B4 + 1 is defined,

17The technique of inserting linear iterations past Q-structures comes from [17], where there
are details of such a construction given.

181t suffices that v is inaccessible in Mfma, but one must also consider other extenders,
including partial ones, because of the nature of genericity iteration with Jensen indexing.

19The linear iterations need to be set up appropriately, to ensure that the process does not
last too long; similar details are dealt with in the comparison arguments in [17].
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and o441 is the restriction of a map given by the Shift Lemma applied to o,
and another map 7 (whose domain is M EQTH; we have not specified 7 here). If
EY is inflationary then B,41 is defined just in case 3, is defined and E is total
over MVXHnW, and in this case Bat1 = By and oaq1 =Y 0 0.

Now consider a limit stage A. The first thing to do is either compute ¢ =
S(XTN) (f A < (nT)Y), or declare X, T maximal (if A = (p7)V). Let § =
O(XTA). If M(X[A) is a Q-structure for itself then b is trivial, and arguing as in
[17] shows that in this case, A < (7)Y (the argument is mostly standard, but
some variant details arise, which are discussed there). So suppose otherwise.
Then A = § and X[ is definable from parameters over (U|d)[g]. This is because
n < 8, T € (Uln)[g], the process for determining 7,, EX is locally definable,
and the x-translations of Q-structures used to compute the branches of XA
are all proper segments of U|J, because of the linear iterations past these -
translations. Moreover, U|J is generic for the d-generator extender algebra of
M(XTA).

From now on, let us assume that g = () for simplicity; since 7 is a strong cut-
point of U, the general case only involves shifting to Ulg]. Let ¢ = Z(X'[§). Let
Q = Q(X19,c), considering X as a tree on M#. (Maybe X4 is not short.) Then
Q@ could have extenders overlapping 6. But the x-translation Q* of (Q, X'[J) is
a premouse extending U0 and having no overlaps of §, and in fact, either (i)
§ < (n™)Y and X' |6 is short and Q* < U, or (ii) A = (n*)Y and X[\ is maximal
and Q* = U#. So U can see which of case (i) and (ii) we are in, and in case (i),
compute Q*, @, ¢ (as Q* is the unique segment of U whose inverse *-translation
is well-defined and terminates with a Q-structure for M (X [A), which is then Q).
Moreover, the branch c is determined by the x-translation Q* of a Q-structure,
as promised earlier.

Suppose A < (n7)Y. So we have computed ¢ = (X)) in U[g]. By [22], this
determines either (i) some Sy < 1h(7) (and possibly a oy as before), in which
case we continue the process; or (ii) a 7-cofinal branch b and a tree embedding

IH:7" b= X"¢c

with b mapped cofinally into ¢, and b is encoded into ¢, in such a manner that
Ulg] can compute b,II from (7, X, ¢c).

Now suppose that the process reaches X of length (p™)V. So & is maximal
and Q* = U#. Let ¢ = X(X) and b = (7). So i*(6}) = 6(X[\) = (n)V.
Again by [22], there is a tree embedding

I:7"b—=X"¢

which maps b cofinally in ¢, and since 7, X are based on M|§}!, then T is
maximal. Also in this case, considering 7, X’ as trees on M, instead of on M#,
we get that Mt = 2Y(X) (the P-construction of U above M(X), which is the
analogue of the inverse #-translation of U in this case), so if U = M (and still
g=0) then X € U.

This completes the sketch. For further details the reader should refer to [22],
augmented by [1], [16] and [20].
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Definition 4.4. For a non-dropping Y-iterate P of M, Xpg, (the short tree
strategy for P) denotes the restriction of X p to short trees. Also, ¥p sr denotes

the (0-maximal) strategy for P|§¢ induced by % (including maximal trees) and
X p|s5P sh denotes its restriction to short trees. .

Note that by Fact 3.4(X5), the notations 2pjsp and Xpjsp o, are unambigu-

ous; that is, if P # @ are both non-dropping -iterates of M with P|6f = Q|5(5Q,
then ¥ p agrees with X in terms of their action on trees based on P|§. Of
course X pp is equivalent to Xp|se o, except that the two strategies have differ-
ent base models. This is useful notationally below, where we can refer directly
to P|6{ but maybe not to P.

We summarize the main results of this section in the following two lemmas:

Lemma 4.5. Let g be M-generic. Then:
1. M]|g] is closed under Xgy.

2. EM | ¥,,IM([g] and dom(3g,[M[g]) are classes of M[g], definable over
M]g] (as a coarse structure) from the parameter M|(AT*)M where g C
M|\, uniformly in .

3. If g = () then these are in fact lightface classes of the universe | M | of M.

4. Therefore U is lightface M-definable, as is (2™ (U )>u cy (recall 2N (U) =
N if U is the trivial tree on N ),

5. For each non-dropping Y-iterate P of M with P = P|6f € M, M is closed
under Xp o, and ¥p o, [M is definable over M from P, uniformly in P.
Therefore the function

S:Pw—Xp M,

with domain the class of all such P € M, is lightface M-definable.

6. The corresponding facts hold after replacing M by N and X¢, by XN sn
and U by UV, for any non-dropping Y-iterate N of M. Moreover,

iMN(Emsh M) = XNl N,

and with S from part 5, ipn(S) has the corresponding domain in N, and
ZMN(S)(P) = Zp,sh FN for each P € dOHl(ZMN(S))

Proof. By the previous discussion, M|g] is closed under 3g,. Moreover,
Yen[M[g] and dom(Zg, [M|g])

are definable over M[g] from the predicate EM. But the universe | M| of M is
definable over M|g] from M|(AT«)M by Woodin-Laver [6], [25]. By [20], EM is
definable over | M| from M [wM, but the latter is (w,w; + 1)-iterable in | M|
(via 3gp), and is therefore definable without parameters there (which is relevant
to the case that g = (). Part 5 is a straightforward adaptation; in fact, note
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that trees via Xp o, normalize to trees via Yg,. Part 6 is also straightforward,
using the uniformity of the process.?° O

Lemma 4.6. Let g be M-generic for P and T € M|g] be a limit length normal
tree on M which is based on M|5}! and via ©. If T € M|kg let U = M, and
otherwise let E € EM be M-total with crit(E) = k¢ and

Pec V¥ CU =Ult(M,E)

andT € VQM[g]. Let b = %(T). Letn be a strong cutpoint of U with § <n < k§.
Then there is X = X7, € Ulg| C M|g] such that:

(1) X is a limit length tree on U (but is equivalent to one on M), based on
M|83, via Xy (hence w-maximal); let ¢ = X(X) and § = §(X),

(2) 6 < (nh)Y,

. . M(x
(3) Ul6 is M(X)-generic for B )

(4) IfT is maximal then X is maximal, 5(1,\45( =6=(n")Y and M¥ = 2Y(X).

(5) Suppose T is short. Then X is short and n < §(X) < (n*)Y, and there
is R<U|(nT)Y which computes the Q-structure Q(X,c) via inverse *-
translation above M (X).

(6) There is a tree embedding 11 : T~ b — X ¢, and b,II can be computed
locally from (T, X,c) (hence if T, X are short then b € Ulg]).

(7) If T € M|ko (soU = M) and T is maximal then X € U.
Definition 4.7. We may also express the situation of the preceding lemma by
saying that T ~ b is absorbed by X ~ ¢, or T is absorbed by X. .
4.3 The first direct limit system

4.3.1 The external direct limit system 2t

We now define a system of uniform grounds for M. In the notation of §2, we
use index set

d={M|6o} U{M(U) | U € U is non-trivial}.

For p € d, the associated model is P, = 2M(p). Of course d and U are
essentially equivalent. By Lemma 4.5, (d,(Pp),c,) is lightface M-definable.

Write # = {P, | p € d}.

20However, working inside N, if 7 on N\éé\’ is maximal and we minimally inflate 7 to
produce X, and build the proper class model 2~ (M (X)) by P-construction, and ¢ = X (X),
then it need not be that M = 2N (M (X)). But in this case, M and 2V (M (X)) will still
compare to a common model above §(X'). Related issues will be discussed further in §4.11.
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We now define the partial order < on d, and maps m,,. Let 7,4 € U and
P=2M(T) and Q = 2M(U). Set

M(T) 2 M(U) < Q is a X p-iterate of P.

We also define the order < on .% by P < Q iff M(T) < M(U). The associated
embedding 77y Mm@ is just the iteration map ipg. We remark that if P # Q
then the tree witnessing that P < @ is of the form V™ Xp(V), with V via Zp g
and V € M, but Xp(V) ¢ M.2! We write Tpg for V" Xp(V), and Tpgsh = V.
While ipg is not amenable to M (if non-identity), we do have:

Lemma 4.8. < is a directed partial order, is lightface M-definable, and the
associated embeddings commute: if P X Q < R then igr ©ipgQ = ipR.

Proof Sketch. For the definability, note that P < @ iff the pseudo-comparison
of P,Q, using Xpg, to iterate P,?? yields a limit length tree 7 on P with
M(T) = Q|68 (so Q does not move in the pseudo-comparison).

The fact that < is a partial order, and the commutativity, follows from the
properties of 5% in Fact 3.4.

For directedness, given P,Q € .%, witnessed by trees 7,U € U, form a si-
multaneous pseudo-comparison and EM-genericity iteration of P, Q in M, using
Y psh, 2Q,sh, producing trees V, W respectively, and R € .# with P,Q <X R;
note that if we normalize the stack (7,V), or the stack (U, W), we get the same
normal tree X € U; here R = 2M(X). O

Now define 2" = (P,Q,ipg: P = Q € .#). By the lemma, 2°* is a direct
limit system with properties (ugl), (ug2), (ug3), (ug4), (ugh). Note that (ugl8)
holds, with pg = M|dp. Define the direct limit model and maps

(MEF (ipoo: P € F)) = dirlim 2. 9)

Notice that even though .# is a definable collection of classes in M, this system
is not “in” M, as the maps iyp (when non-identity) are not amenable to M.
As usual, Mt is wellfounded, giving (ug6).

Definition 4.9. For P € .%, let 7¥ be the canonical class ]B%(I;p—name for M,
0

that is, 77 is the name for the class “premouse” N such that N|&{" is given
by the extender algebra generic, and EN [[§F, 00) is given by extending E via
the usual extension to small generic extensions (equivalently, EN [[65 ,00) agrees
with EP[[§", 00) on the ordinals). (Of course, for some generics, this might not
actually yield a premouse, but with g the generic for adding M|df’, we have
(r7), = M.) Note that i p(7M) = 7. 4

Lemma 4.10. (ugl9) holds: for each P € .7, ¢’ = dnd” is dense in (FT,<F)
and dense in (Z, <), and <P el = <P,

21 M cannot have an elementary embedding P — Q, because P, Q are both grounds of M
and by [5]. Therefore Xp(V) ¢ M. V is determined by P,Q,Xpqn (in fact, just by P, Q,
because all the relevant Q-structures are segments of Q), so V € M.

220r just reading Q-structures from segments of @ to compute branches.
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Proof. Let P € #. The fact that <F|cF’ = <[c” is by Lemma 4.5 part 6. So

let Q € #F and R € .. We must find some S € F¥N.Z with Q,R < S. Let o

be some BJPP -name such that o, = R. Let n be a strong cutpoint of P such that
0

6 < n and Q\(;OQ, o € P|n. Let py € IB%(I;P be the Boolean value of the statement
0

“rP is an Myysw-like premouse and o € & " Then working in P, we can form
a tree 7 on P by Boolean-valued comparison of P, ) and all interpretations of o
below p1, with EF-genericity and Boolean-valued 77-genericity iteration folded
in, and using the short tree strategies to iterate. (The Boolean-valued genericity
iteration means that we use extenders E under the usual circumstances as for
genericity iteration, and given that there is some pr condition forcing that F

0
induces an axiom false for 77.) For each limit A < ()P, if M(T])) is not a
Q-structure for itself then §(7[A) = A and T|\ is definable from parameters
over P|\, because (i) the segments of 77 are determined level-by-level by EF
above 6%, and (ii) for all limits ¢ < A, the Q-structures guiding branch choice
at stage £ do not overlap 6(71¢), and (iii) the Q-structures Q¢ of all trees
at stage & are identical, and hence Q¢ < M (7 [A); this means that we can use
P-construction to compute Q-structures, and obtain an iterate in .# N FF.
(For (ii), suppose ¢ is least such that a Q-structure overlaps §(7[£). Then
there are fatal drops passed before stage £. This has to originally arise from a
disagreement between the extender sequences of some projecting structures, as
opposed to extenders used for genericity iteration purposes (as the latter are only
used when they are sufficiently total; cf. the process in [22]). But then we can
find some mutual generics witnessing this disagreement, and because the short
tree strategies extend to generic extensions (because 77 is forced Myysy-like),
and given the fatal drop, these strategies suffice to complete the comparison
between the conflicting projecting structures in the generic extension, which
leads to the usual contradiction. Because Q¢ does not overlap 6(7[¢), note that
no extenders in E% of length > §(7[¢) will be used for genericity iteration
purposes.) O

4.3.2 The internal direct limit system 2

Definition 4.11. Work in M. Given P € .Z and s € [OR]<“\{0}, say P is
weakly s-iterable iff for all Q € F with P < Q, letting 7 = Tpgsh, there is
A € OR such that Coll(w, \) forces the existence of a T-cofinal branch b such
that

if (s) = s and i} (P|max(s)) = Q| max(s) (10)

(in particular, s is in the wellfounded part of MbT) We say that P is s-iterable
iff every Q € % with P < @Q is weakly s-iterable.
Given an s-iterable P, define

AP = sup(Hull?1m2x) (=) 0 61,

HEP = gun?1maxe) (4 Py s7).
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(Note that the hulls here are uncollapsed. Recall that P| max(s) = (P|| max(s))P"
is passive by definition.) Given also a t-iterable @ with s C ¢ and P < @, define

TPs,Qt - H;D — HtQ

as the common restriction of iteration maps ibT for b witnessing the weak s-
iterability requirement (10). 2* (Those restrictions agree pairwise by the Zipper
Lemma.) Say that P is strongly s-iterable iff P is s-iterable and whenever
Q,Re Z and P <@ < R (hence P < R), then

TTPs,Rs — TQs,Rs © TPs,Qs-

Let F+ = {(P,s) | P € . and P is strongly s-iterable}, and similarly let
dt = {(P|6f,s) | (P,s) € ZT}. The order < on d¥ is now determined by
(ug8): for (P,s),(Q,t) € dt, we have (P,s) = (Q,t) iff P < Q and s C t.
Define the order < on .#* in the same manner. Clearly

(P; 3) j (Q7t) j (R7 U) - TPs,Ru — TQt,Ru © TPs,Qt-

Define the system 2 = (HE,H?,’ITP&QtZ (P,s) = (Q,t) e FT).
Given P € .% and s € [OR]<¥, recall that s is P-stable iff mpg(s) = s for
every ) € .# with P < Q. -

Remark 4.12. Even though it is superfluous, we note that s-iterability actu-
ally implies strong s-iterability. This follows from calculations in [14]. For let
T = Tpgsh, U = Ugrsh and X = Xpgrgn. Say that a T-cofinal branch is 7-
good iff M}/ is §(T) + 1-wellfounded and ] (62") = 6(T); likewise for the other
trees. Then the X-good branches d correspond exactly to pairs (b, ¢) such that
b is T-good and c is U-good; and moreover, the corresponding iteration maps
[68 then commute (see [14, ***Theorem 10.8]). Let b be T-good and witness
weak s-iterability. Let 7’ be the 0-maximal tree on P|max(s) given by 7. So
M = Ultg(P| max(s), E] ), where EJ is the branch extender. By a conden-
sation argument due to J. Steel, M;] < M|, and since i] (max(s)) = max(s),
clearly OR(M;") = max(s), so M = Q|max(s), and similarly i] (s~) = s~.
Likewise for ¢ being U-good and witnessing weak s-iterability, and 0-maximal
tree U’ on Q| max(s). Let d = dp . be the corresponding branch, and X’ the
0-maximal tree on P|max(s). Then we get My = MY = R|max(s), and
i¥'(s7) = 4 (i] (s7)) = s, and commutativity in general. But note that
these embeddings agree with the covering direct limit maps (consider the natu-
ral factor map M, — M| max(s)), and therefore we get strong s-iterability.

The following is proved by the usual arguments (recall that since M is
wellfounded, for all s € [OR]<%, there is P € .# such that s is P-stable):
Lemma 4.13. We have:

23Notice that mps,@t does not depend on ¢, because mps g: and mps s have the same
graph. In [g8], the notation for the analogous map, Tpgs does not mention ¢.
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(a) if P € .Z and s € [OR]<¥“\{0} and s is P-stable, then (P,s) € #* and
(P, s) is true (see Definition 2.1).

(b) (ZFT,=) is directed — for

(
(P,s) = (R,u) and (Q,t) <

P s), (Q,t) € F7T there is (R,u) € FT with
(R,u) (note u = s Ut suffices).
(

(¢) Therefore properties (ug?), (ug8), (ug9), (ugl0), (ugl6) hold.

The following properties follow directly from the definitions; note that strong
s-iterability is used for (uglh):
Lemma 4.14. 2 is lightface M -definable, and properties (ugll), (ugl12), (ugl3),
(ugl4), (uglh) hold.

For the following, recall .# % from Definition 3.7:

Lemma 4.15. For each P € %, {a} is P-stable for every a € M = gF.
Therefore property (ugl7) holds, as witnessed by some s € [#M]<%.

Proof. The proof is standard, but we give a reminder. By Fact 3.9, P =
HullP(ﬂP Uéf). By Lemma 4.3, myp|#™M = id, so ST = #M and we
have {a}-stability for each a € M. Now let z € P. By these facts, we can
fix s € [#M]<% such that z € Hull”! ™) (§ U {s~}). But we can also arrange
that yF is as large below 6 as desired. It follows we can get z € HY, and by

S

Lemma 4.13, this works. O

We now have enough properties from §2 to define (working in M) the direct

limit
(Moo, Tps.o: (Pys) € FT) = dirlim 2, (11)

and the x-map, and Lemmas 2.3 and 2.5 hold, so in particular, y : My, — Mt
is the identity and My, = M. Property (ug20) is straightforward (the main
point is that if P € . and Q € d¥ Nd then 775 = 2P(Q) = 2M(Q), because
EFP,EM agree above 63’). For property (ug2l), given s, note that any P € .#
such that s is P-stable works.

So far we have verified (ugl)—(ug2l). For the remaining properties we use
§ =6 and B = JB% (the dp-generator extender algebra of M at dp). This
immediately secures (ug22). Recall we defined 7 in Definition 4.9, and 6, =
7fMoo(é()) = 5(-)/\400
Lemma 4.16. We have:

1. For each M-stable o € OR and each P € %, letting 77 [a = ipp (7™ @)
and g be the P-generic filter for Bépp given by M|6F, then (t¥]a), = M|a.
0

Moreover, M = P[g] = P[M|6{].
2. Property (ug24) holds.
3. k) is the least measurable cardinal of M.

4. ,%E)"M = oo
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Proof. Part 1 is already clear, and part 2 is an easy consequence. Part 3 is also
clear. Part 4 is by the proof of [3, Lemma 2.7(b)].2 O

Lemma 4.17. Let E € EM be M-total with crit(E) = ko and let N = ip(Mayo).
We have:

1. Mo = M and so iy [IM =id = [ IM.

2. N is a 6 -sound ¥ p__ -iterate of M.

3 N — gU(ME)

4. iMoo : Moo — N is the X -iteration map.
Proof. We delay the proof until Lemma 4.57, which is more general.? O
Lemma 4.18. The following are true.

(a) The restriction of ¥ pq_ to trees in M and based on M|deo, is lightface
definable over M.

(b) Let A € OR and g be in some generic extension of V, and be P-generic
over M for some P € M|\. Let ¥y,  be the restriction of ¥Xp, to trees
in M(g] and based on M |0~. Then ¥y is definable over the universe
of M([g] from the parameter x = M|(A\T%)M  uniformly in .2

Proof. The short tree strategy for M, is computed just like for M, and the
definability is like in 4.5. The computation of branches at maximal stages is
just like [8, Lemma 2.9(a),(b)], supplemented by Lemmas 3.10 and 4.17, and for
the definability, use the definability of EM from z in M[g] (see 4.5). Here is a
sketch for g = ). Let E € EM be M-total, with crit(E) = kg and T € M|\(E) a
maximal tree on M|d. Let U = Ult(M, E). By Lemma 4.17, N = ig(M)
is a 56\/—sound iterate of M, and @],‘3/1 Mg : Moo — N is the correct iteration
map. Now let P = M(T). Then U F“P is a maximal Sg,-iterate of M|§}”, and
therefore U E“N |5{)\[ is a maximal ¥ pgy-iterate of P”, considering statements
satisfied by M regarding such iterates. But U is correct about this. Let S be
the tree on P leading to A/ \56\[ . Working in a generic extension of M, find a
T-cofinal branch b and S-cofinal branch ¢ such that ¥ [(Meo|doo) = iS 0 i],
and then verify that b = ¥ (7)), using Lemma 3.10.%7 O

24 Actually, an easy cardinality calculation shows that doo < HO+M, and we will show directly

later that doo is Woodin in ¥#; and ¥7 is a ground of M via a forcing which has the doo-cc
in ¥, and hence d~ is regular in M, so d0 = /@SFM, without using the proof of [3, Lemma
2.7(b)].

251t is fine to read 4.53-4.57 at this point, which covers what is needed.

261f g ¢ V, we are extending ¥ and X5*K canonically to V[g] as in Fact 3.4(X1).

27There is an alternate proof which uses properties of normalization and is more direct.
Let W™ d be the tree leading from My to N (with final branch d). We have W,d € M by
Lemma 4.17. But W (of limit length) is the normalization of the stack (7,S) (the trees in
the first given proof). Letting b, ¢ be the correct branches through 7,8 € M, d determines
(together with 7, S, W) the pair (b, c) uniquely via normalization.
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Remark 4.19. The strategy X, also has minimal hull condensation, so we
get the canonical stacks strategy (X )" induced by Y., which agrees
with the tail strategy Thq = (25%) ¢, by Fact 3.4. Tt is easily definable from
Y m.., and for stacks based on M |ds, we only need the normal strategy for
trees based there. So M[g] can also compute the restriction of (X )5 = Tpy_,
to stacks based on M |doo, which are in M|[g].

Note that we have now verified all of the requirements for uniform grounds,
excluding (ug23). This will be established later in Lemma 4.30.

4.4 The first Varsovian model as M [#]

In §2 we defined the elementary maps 7o, : Mo — MM= and 7t : 7 —
¥ Mo We now want to show that Mé\g‘“’ is an iterate of My, and 7, is a
correct iteration map. We also want to generalize this to other iterates of M,
but in general one must be a little careful.

Definition 4.20. Given an Mgyy-like premouse N, let 2%V and MY be defined
over N just as how 2, M, are defined over M. If N is a correct iterate of
Mgywsw, also define (MX*) n (the external direct limit) relative to N, as for M:
given a maximal tree 7 € UV (considered as a tree on N), let b = Sy (T)
and M7 = M/, and let (M) x be the direct limit of these models My
under the iteration maps (by Lemma 4.5, and in particular its part 6, these
trees 7 are indeed according to Yy).** If in fact M7 = 2y (the model
indexed by M(T) in the covering system 2%V) for each such 7, then define
vt MY — (M) g as in §2. +

Lemma 4.21. Let N be a §}Y -sound, non-dropping correct iterate of M. Then

My = 2PN(M(T)) for each T € UN, ML = (MEY)y and X = id, and ML
N

is a (56\4 > -sound, non-dropping correct iterate of both M and N.

Proof. The proof is just like for M, using the §}¥-soundness of N (and resulting
N

55> -soundness of M) as a substitute for the fact that M = Hull (#M), to
see that the models of 2% really are iterates of N. O

We will see later, however, that if N is a Y-iterate of M which is s} -sound

but non-§{¥-sound, then (M) £ MY so we need a little more care in this
case.

By the lemma, MM~ = (M), is an iterate of M,. Now recall that
Too : Moo — M= is the union of all Tyt o0 (Tps,00) for embedding-good tuples
(p, s,t), and that moo () = z*, and if p € OR then

Too(p) = o = min({meo(p): N € F}) = mpacelp): (12)

where (P, s) € .7 is any pair with p € s and p < max(s). As usual we have:

28These models can in general be distinct from the models 731]\\/;(7—> computed by N via
P-construction, which is why the care mentioned above is needed.
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Lemma 4.22. 7y, : Mo, — M= is the iteration map according to ¥ .

Similarly, let N be as in Lemma 4.21 (so MY a (56\4‘1’\]"—sound correct iterate,
and likewise ./\/lé\gi) Let ©¥ = iyn(7oo). Then X is the iteration map
MY — Mé\gé\i according to ¥y -

Write N = M. As in [3], since the tree from N to ML is based on N[5},
Too @ N = ML is determined by m = 7o [(N[6)') (as 7o is the ultrapower
map by the extender derived from =), which is in turn determined by the pair

(oo féév,/\/lévo|(5(j)w]"v°). Since M&Mé\/& € N, it follows that
L[Moov*] = L[MOO77TOO] = L[MOO77TOO f5<>o]

Moreover, 7o is definable over this universe from the predicate N = M, (given
N, we can recover MY and the maximal tree 7 leading from N to ML, but in

L[N, 7], there is a unique T-cofinal branch b with M, = MY ; but i} = 7).

Definition 4.23. The first Varsovian model of M (cf. (4)) is the structure
Moo [#] = (LMoo, %], Moo, *); (13)

that is, Mso[*] has universe L[M, %] and predicates My, and x. —

(By the preceding comments, it would suffice to just have the predicate
M, but we include * for convenience.) Later we will introduce a second
presentation ¥ of M[x], constructed from a different predicate (but giving
the same universe). However, the two predicates will be inter-definable over
that universe.

Before we introduce that presentation, we first develop some properties of
Mo[*] using the presentation above. We may at times blur the distinction
between the universe L[M ., *| and the structure M, [x], but for definability
issues over M [*], we can by default use (M, %) as a predicate.

4.5 HOD}

Up until this point, the paper has covered material which is mostly a direct adap-
tation from that of [8]. But in this section we begin to see some new features.
In [8] it is shown that the Varsovian model has universe that of HOD=19],
where g C Coll(w, < k) is Myy-generic, for x the strong cardinal of My, . In this
section we will establish an analogue of this fact.

Let G be (M, Coll(w, < ko))-generic. Note that if HOD™I is the universe
of Muo[#], then it would follow as in [3] that M [#] is closed under maximal
branches according to ¥ a¢_ (those branches are in M by 4.18, and have length
of uncountable cofinality in M[G], and hence are unique there). Thus, such a
fact is at least useful in verifying that the first Varsovian model can iterate its
own least Woodin cardinal, which one would like to prove.

Also, in order to proceed to the next step of the mantle analysis, one might
want to consider iteration trees on M [*], based on M, [#]|6M (we will show
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that 6™ is Woodin in M [#]). But because M [*] is built from the somewhat
cumbersome combination of M, and *, the nature of its large cardinals above
66\4"" (and so far also below there, though that is resolved by standard methods)
is somewhat unclear, as is its fine structure.

Now if we are to expect M [#] to be closed under ¥ rq__, a possible goal is to
find a presentation of it as a strategy mouse, built from extenders and strategy
for ¥ pq__, with a fine structural hierarchy; with this target in mind, we write %3
for the desired model of this form (whatever its eventual presentation might be).
The first two authors considered various candidates for such a presentation, with
one possibility being a construction by level-by-level correspondence between ¥,
and M, via a modified kind of P-construction. This P-construction would result
from restricting the extenders of M to segments of 77, starting above some point
0 not too far above kg. (An early candidate was 6 = (k7)™ but the second
and third authors later reduced this to an optimal starting point, which we use.)
Of course standard P-constructions build a ground of the outer model, and this
feature was expected, via a Bukowsky-style forcing as in [8]. Here we use the
forcing I from §2, which was eventually isolated by the second author. But
note that a new feature in this P-construction would be that some extenders
(those extenders E with crit(E) = kg) overlap the forcing L. This would cause
a problem with a standard P-construction (where the base forcing is produced
by genericity iteration). But such extenders E yield strategy information, via
the process in the proof of 4.18 (whereas those with crit(E) > k¢ would be as
usual). So it appears that one might construct #; with such a P-construction,
with extenders E having crit(E) = kg corresponding to strategy information,
to be added fine structurally to the relevant segment of #;. This could then
lead to a model closed under ¥ for trees based on 0., as is desired. The
model 7] should also inherit iterability for itself, from the iterability of M, in a
manner similar to standard P-constructions.

A first basic question is whether the model #; constructed as above will end
up € Mo[*]. We now make the key observation which shows that it does. A
useful first step is to restrict one’s attention to the action of the extenders on
the ordinals; this will be enough for the P-construction. For the purpose of the
next lemma, let us write

FY., ={(v,a,8) € OR® | v >k}, E) #0, and E})/ (o) = 8}, (14)

where, since we are using Jensen indexing, the M-extender EM in (14) is an
elementary embedding j : M|ut™!¥ — M|v where p = crit(EM), so (FYL ), =
gl

In the following lemma, recall that for definability over M [*], we by default
have the predicate (M, %) available for free:

Lemma 4.24. FY_ s lightface definable over M [x].

Proof. Let (v, a, ) € OR® with v > kg. We claim that (v, a, 8) € Ry iff

F # 0 and F(a*) = 8* where F = FM=Il"",
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which suffices. This equivalence holds as for every P € .%, we have FFII"|OR =
FMII¥1OR, since v > crit(FM””) > ko and P results from a P-construction of
M above some point below kg. O

One can now proceed directly with the P-construction, using (Moo |/@§M°° % [(56\4"")
and IB‘é”KO to define it. But we postpone this, and first establish some other char-
acterizations of the universe of M [*].

The proof of the preceding lemma can be extended to show that M[*]

has universe HOD?[G], for a certain collection & of premice in M[G], and G as
above. Thus, we use HODg here in place of the use of HOD in [8]. We describe
how this works next. What follows is slightly related to some methods from
[17]; also cf. 4.34.

Definition 4.25. Let L[E] be a premouse, and let p be a strong cutpoint of L[E].
If g is Col(w, p)-generic over L[E], then every extender E, from E with v > pu
(and hence crit(E,) > p) lifts canonically to an extender EY over (L[E]|v)[g].
Let us write E9 = (EJ), . . Then L[E][g] gets reorganized as a premouse over
(L[E]||w, g) with extender sequence E9; so L[E|[g] = LIE9](L[E]||u, g)-

Let L[Eq], L[E1] be proper class premice and p € OR. Write

Ey ~* Eq

iff 4 is a strong cutpoint in both L[Eg] and L[E;] and there are gg, g1 with
g; being Col(w, p)-generic over L[E;] and L,iu[Eollgo] = Lytw[Ei][g1] and
(Ep)90 = (E1)9. So “Eq ~* E;” expresses the fact that above u, Ey and
E; are intertranslatable: for every v > pu, (Eo), = (E1)9 N L[Eo]|v, and vice
versa. Write

Ey ~<* E;

iff there is some ji < p with Eg ~# E;. Both ~* and ~<# are equivalence
relations.
Let L[E] be a proper class premouse, let p be inaccessible in L[E], and let

H be Col(w, < p)-generic over L[E]. We denote by 5]EL EIHT the collection of all
E' such that E'|u € L[E][H] and L[E][H] E“E' ~<¢ E”. 4

Remark 4.26. Note that if E' € é”EL[E] H) then
(i) There are i < p and generics g, ¢’ € L[E][H]| witnessing that E ~# E.

(ii) E’is 3;-definable inside L[E][H] from the set parameter E’|fi and the class
parameter E, uniformly in E’, fi.

(iii) Thereis H' which is Col(w, < p)-generic over L[E'|, with L[E'|[H'] = L[E|[H].

For any such H’, we have (g’EL[E] (H] éaé,[El][H,].

(iv) éo]EL[E] ] is definable over L[E][H] from E, g, uniformly in E, u, H.
(v) é‘}EL EIH] 55 definable over L[E|[H] from E/, u, for all E' € éa]EL[]EMH], uni-
formly in E, u, H,E'.
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Fix now G C Col(w, < ko) which is M-generic. We write & = &LEMIC],
The following is now immediate.
Lemma 4.27. If N = L[E'] € %, then there is G’ which is Col(w, < kg)-generic
over N such that N[G'] = M|G], and for any such G’, we have 5EL,[]E e = g,
Theorem 4.28. We have:
i) Mo|*| (including its predicates) is definable over M|G] from the param-
(1) [+] ( g its p p
eter &, and

.. . M[G
(if) Moo [*] has universe HOD ¢ e,

Remark 4.29. This leaves the question: is HOD™[ the universe of Mo [*]?

Proof. We first verify (i). Write E = EM. Say that E' is Mysw-like iff L[E] is
Mawsw-like. Fix an Mgywsw-like E' € &. We claim that M, and * are defined
over L[E'] in the same manner as over M, which suffices. For the systems .% L[E']
and .Z M have cofinally many points in common, which easily suffices. To see this
fact, use a Boolean-valued comparison argument as in the last part of the proof
of [8, Claim 2.11] (comparison with simultaneous genericity iteration, against
L[E"] for various Mgysw-like E” € é"EL,[E/MG/]). Because “Mgywsw-like” includes
short-tree iterability, etc, we can indeed form this iteration successfully.

Part (ii): By (i), Moo[] C HODgM[G]. We now prove the converse. Let A
be a set of ordinals, ¢ a formula, a € OR such that for every £ € OR,

e A= M[GIEF ¢, a,é&).
So for every E' € & and G’ with L[E'][G'] = M[G], and every £ € OR, we have
§ € 4= LENC]F ol 0. &)

(since é"]EL,[E/HG/] = &, by Remark 4.26).

Given an Muysw-like E/, write &LET for the natural Coll(w, < Iig [E ])—name
for @‘OEL,[E el (for G’ the Coll(w, < mg[]E ])-generic filter; cf. the remarks on the
uniform definability of éaEI? [E1E] above).

Let £ € OR. Pick N = L[E'] € .% with * = myam (€) and o = my g (@),
and let G’ be as in Lemma 4.27 for N. Then

EeAd = M[GlEypE o, é&)
= NGF 6 a6
— ”_gol(w,<rco) cp(f, a, (g?N)

e IF(/J\?)TEUJKKOMW) 90(5*7 d*’ gMOO)

Therefore A € M [%]. O
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4.6 Uniform grounds

Recall that 0o, = 6™ is the least Woodin of M. The following lemma
completes the proof that the first direct limit system for M provides uniform
grounds (§2):

Lemma 4.30. We have:
() V= =V
(b) s is (the least) Woodin in M s[*].

(c) Property (ug23) of uniform grounds holds for 1, doc; that is, 71 F 0
is regular and B, is do-cc”. Moreover, ¥ F ‘B, is a complete Boolean
algebra”.

Proof. (a): The usual considerations show that x [ n € My, for every < d0.
Combined with the proof of Theorem 4.28, this suffices. (Cf. [8, Claim 2.12
(b)])

(b): By the proof of [8, Theorem 2.19] or of [19, Claim 13].

(c): Property (ug23) holds because 0o is Woodin in M [#] and By, is the
extender algebra. The “moreover” clause follows from this and (a). O

So by Theorem 2.16, M, [*] is a ground for M, and in fact as in its proof,
there is some M-stable p € OR such that M|u is (Mo[*],L)-generic, where
L =L(p*), and Moo [*][M|u] = M. We will actually refine this result in Lemma
4.38.

We can immediately deduce the following corollary, which however will be
extended in Lemma 4.46:

Corollary 4.31. For all maximal trees T € Mo[*] via X rq__, based on Mo |00,
we have b = ¥y (T) € Mo[*], and b is the unique T -cofinal branch in M [*].

Proof. By Lemma 4.18, b € M. And by Lemma 4.16, §, is regular in M and in
MIG], whenever G C Coll(w, < kg) is M-generic. Therefore M[G] contains no

other T-cofinal branch. Since M [#] is the universe of HODg[G] (with notation
as in Theorem 4.28), and T € M [#], it follows that b € M [#] also. O
4.7 The structure Q

Let U = EM> be the least total measure on the M. -sequence with critical
point )", Fix a natural tree 7 € UMMo<il) with §(T) = kg™ and which
makes Mo |rg M generic, after iterating the least measurable out to x}">.
As T lives on ./\/loo|66\/l°°7 we may and shall construe 7 as a tree on M, rather
than on ult(Meo; U). If b= X (T), then

UMD (M(T)) = M]
and §(7) = w{b(éé\/[m). Also,
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Let us write

L=7ngb [ oot (16)
By Corollary 4.31, ¢ € Mo[*]. Hence
Q = (Moclrg™=;0) (17)

is an amenable structure and is an element of M [*].
Lemma 4.32 (Soundness of Q). Q = Hull®(s).

Proof. Let
o: Q= (M;7) = X = Hull®() < Q.
As v = {(&m): €< o= An =16}, 5" C X, so that o | 63"~ = id and
oo|5M°° a4 M. Let T be defined over M as T was defined over M |63
The tree T is on M which lives on MOO|5 >, but we may and shall construe
T as a tree on M, and as such T is accordmg to X,

Let b= X (T). By branch condensatlon Lemma 3. 10 b is the pullback of
b via 0. We will have that 7 = 71' Al (5M and there is a canonical elementary
embedding B

G: M; - M]
defined by -
5(m) 5(f)(a)) = 7d,(F)(o(a)),
where f € My and a € [OR N M]<*. We will have that M(T) = dom(o) N
dom(é) and o and & agree on this common part of their domains.

If B (T) is a total extender from the M(T)-sequence, then by the elemen-
tarity of o, M satisfies all the axioms of the extender algebra of M(T) given by
E, (T) Mo |61 satisfies all the axioms of the extender algebra of M(T)
given by E;\Et;;’ We may conclude that M is generic over MT If g is the

associated generic over /\/l and g that over MbT, then 6“g = 0“g C g, and
hence we may lift & to an elementary embedding

& MT [M] = M [Moo|rg™=] = ult(Mo; U),

defined by ¢*(79) = (6(7))9.

But notice that 65" U {crit(U)} C ran(6*), so that by the §;">-soundness
of My and by the choice of U as a measure, 6* must be the identity, and
therefore so is o. O

Corollary 4.33.
(a) kg™ has size )" inside Mo |[¥].

(b) A =

Proof. (a) follows from Lemma 4.32 together with (17). (b) is then immediate
by /<;++M Card™e. O

This corollary should be compared with Lemma 4.41, to come.
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4.8 The ko-mantle of M

We now give another characterization of the universe of Mo,[#], though no
results outside of this subsection actually depend on it.

The following definitions are essentially taken from [20], though the notation
and terminology is different. If W is an inner model and A is a cardinal of W,
then W C W is a A ground of W iff W is an inner model of W and there is
some poset P € W which has size A in W and some g which is P-generic over
W such that W = W{g]. W is called a < \ ground of W iff there is some A < A
such that W is a X ground of W. The < A mantle of W is the intersection of
all < A grounds of W. We write M‘;V)\ for the < A-mantle of W.

The main result of this subsection is that M [*] has universe M : see 4.36.

<Ko’
The following fact and its proof are similar to parts of [20, ***Lemmas 5.11 and
5.16] and [17, ***Lemma 5.2]; in particular, we make use of the condensation

stacks from [20].
Let p < ko be a cardinal strong cutpoint of M, and = u™. Let g be
Coll(w, p)-generic over M. Let Wﬁ[g] denote the set of all N € M[g] such that:

— N is a premouse of ordinal height 7,
— N has a largest cardinal A < 7, and A is a strong cutpoint of N,
— MJg] E“N is fully iterable above \”

there is a proper class premouse N’ with NaN’ and M g] FYEN ~<n EM7

Note that because of the restriction on EN' above 1, we don’t actually need to

quantify over proper classes here, and clearly @A]\//[I[g l'is definable over M [g] from
the class M. We now refine this fact:

Lemma 4.34. Let g be Coll(w, u)-generic over M. Then (i) 3211\\/[/[[9] is definable
over M|[g] from no parameters, uniformly in p,g. Further, (ii) for all N, N’ as

in the definition of ﬁﬁ[g], N’ is definable over M|g] from the parameter N,
uniformly in p, g, N, N'.

Proof. Note that n = w{VI[g] and HCMU is the universe of (M|n)lg]. Now
working in M[g], let &’ be the set of all premice N of height 7 such that for
some h,

— N has a largest cardinal, A\, which is a strong cutpoint of N,
— N is fully iterable above A,
— h is Coll(w, A)-generic over N and N[h] has universe HC,

the condensation stack (N[h])™ above N[h] (relativized as a premouse over
(N|X, h)) is well-defined, hence is proper class with universe V.29

29Recall we are working in M(g], so “V” refers to M[g] here. Because we relativize over
(N|X, k), N[h] plays the role that P|lwf plays in the unrelativized condensation stack for a
premouse P.
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For N € &', we write AN for the largest cardinal of N, and with h as
above, we consider N[h] as an (N|AY,h)-premouse. Now £’ # (), and in
fact M|n € &', as witnessed by g. For by [20], the condensation stack above
(Mn)[g], as computed in MJg], is just M[g] (arranged as a premouse over
(Mlu,g)).

We will show that Wﬂj\j[g] = ', which gives part (i). The first direction is
basically as in [17, Lemma 5.2 part 1]:

CLAM 1. @ﬁ”g] Cc .

Proof. Let N € 391\1\2[[9], as witnessed by N'. Everything is clear enough except
for the fact that, in M|g|, the condensation stack N[h]* is well-defined. But
N'[h] has universe that of M|g], and there is @ < 7 such that N'[h] is iterable
above a (in V), and we can take a here such that N|a projects to AN. By
this iterability, N'[h], when considered as an (N|a,h)-premouse, therefore is
just the condensation stack above N[h]. But N’[h]|n = N[h] is also iterable
in M[g] (above AV; that is, as an (N|AY,h)-premouse). So N[h| satisfies all
standard condensation facts (as an (N|AY, h)-premouse). So we can argue as
in the proof of [17, Lemma 5.2 part 1] to see that N'[h], when considered as an
(N|AN, h)-premouse, is also the condensation stack above N|[h], as computed in
M]g], as desired. O

CLAIM 2. Let N € &', witnessed by h. Then there is a such that p, AV <
a < nand M[g]/|la and N[h]||a have the same universe, with largest cardinal

wi\/f[gma < «, and the two structures M|g]||a and NJ[h]||a are inter-definable

from parameters and project < wi\/[[g]”a.

Proof. We basically follow the proof of [20, Lemma 5.11***]. Let M’ be M|g]
arranged as a premouse over (M|u, g), and N’ be the condensation stack over
N[h] as computed in M|g].

So M’, N’ both have universe M|g], and in particular, n = wM = WM and
(Has) M = (Hao,)NV'. We first find o/ < wi’¥ such that M’||o’ and N'||o’ have
the same universe and are inter-definable from parameters (and some more).
Define (M, Ny,),, ., as follows. Let My = M’||n and Ny = N'[|n. Now given
My, Ny, let N,,11 be the least S < N’ such that N,, <S <N’ and M,, € S and
p2 =n. Define M, , symmetrically.

Let M = stack,, <, M, and N = stack, <, N,. Note that M, N have the same
universe U, which has largest cardinal n, and therefore M<aM' and NN’ (that
is, M'||ORY and N’||ORY are both passive, as 7 is a strong cutpoint of M’, N').
Note that M is definable from the parameter My over U; in fact, M is the Jensen
stack above My there; cf. [20]. Tt follows that M is XY ({My}). Likewise for
N and Np. Using this, note that also (M,, N,,) is XY ({(Mo, No)}), and so
pif = p = 1.

Now as in [20], we can find § < 1 and = € U such that u, \N < 7 and the
hulls Hull (7 U {z}) and HullY (7 U {z}) have the same elements, and letting

n<w
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M, N be the transitive collapses and 7 : M — Mando: N — N the uncollapse
maps (so M, N have the same universe U and 7, the same graphs), and such
that My, No € rg(m) and crit(nr) = 7 and 7 () = n and M, N are 1-sound with
pM =05 = pl¥, s0o M aM’ and N < N'. Note that the ZY({Ny}) definition of
N reflects down to a £V ({Ny}) definition of N, where m(Ng) = Ny. Likewise

vice versa. Therefore M, N have the same universe and are inter-definable from
parameters. So letting « = OR™ = ORY, we are done. O

Cram 3. 2" C 219,

Proof. Let N, h,a be as in Claim 2. Then note that « is a strong cutpoint of
M and of N and of the condensation stack N[h]* above N[h] (as an (N|\Y, h)-
premouse, as computed in M[g]). So the iterability of M|n and N above «
(in M[g]) implies that (EM)J9 = (EY)" for each v > a. Thus, the extender
sequences of M|n and N are intertranslatable (modulo a generic) above a. So
by a proof almost identical to [17, ***Lemma 5.2 part 1], N[h|T and M|g] (as

an (M|u, g)-premouse) have the same extender sequence above . Now let N

. + N[t
be the result of the P-construction of N[h]T above N. Because n = w)

this works fine structurally, giving a proper class premouse N extending N.
But since N[h]T and M|g] agree above a, it follows that EN™ ~<7 EM_ So

)

NeZ. O

This proves part (i). For (ii), working in M|g], given N € @%[g] =,
we first define the condensation stack N[h]*T above N[h], and then the P-
construction N of N[h]T above N, which gives the desired N'. O

Lemma 4.35. .7 is dense in the < kg-grounds of M, so (.7 = MY, .

Proof. Let 1 < kg be a regular cardinal strong cutpoint of M, and let W be a
< p~ground of M, via a generic filter k (so W[k] = M). Let g be (M, Coll(w, i))-
generic and h be (W, Coll(w, y1))-generic, with W[h] = M[g]. Let W be the
model produced by the P-construction of M over (H,+)". By Lemma 4.34,
WCw " and W is definable from parameters over W. And Wisa ground of M;
in fact W[k] 2 M, as M|(u+)M is definable over (H,+)™ = (H,+)" [k] from
the parameter M|u, via the Jensen stack.?’

Now working in WN/, we can compute some N € % by forming a Boolean-
valued comparison/genericity iteration above (u*)W, to compute N5}, and
then using P-construction to compute the rest of N. O

Theorem 4.36. M [+] has universe (). = MY,

<Ko*

Proof. We already know Myo[x] € (.F = MY, by Lemma 4.35.

301t follows by the standard forcing argument that W is the actually the universe of W.
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Let us verify MY, C My [#].3! Let U € EM be the order 0 total measure
on kg. Let
j: M — M =Ul(M,U)

be the ultrapower map. For P € .7, iy p(U) = UN P € E is the order 0 total
measure on kg in P. Let j© : P — Ult(P, iy p(U)) be the ultrapower map. Note
JIOR = jPTOR. Let Uy = iproo(U) and joo : Moo — M = Ult(Myo, Uso)
be the ultrapower map.

Arguing much as in the proof of Lemma 4.24, j [ OR is definable over
Moo[#]: for all n,§ € OR and P € .#, we have

n=7&) <= n=35") <= n" =jx(&).

(For the second equivalence, just take P such that n, & are P-stable.)
Now let X € MQ/IHO be a set of ordinals. By the preceding paragraph,

J I'sup(X) € Mool#]. (18)
By elementarity, j(X) € Miwjl(m)). It is straightforward to verify that M.  is

the direct limit of a system .%’ of uniform grounds of M’ in much the same way
as M, is the direct limit of the system .%# of uniform grounds of M; here the
models P’ € %' are exactly those of the form P’ = Ult(P,ipp(U)) for some
P e %#. So by Theorem 2.16,

Q= M [+

is a < j(ko)-ground of M’. So j(X) € @, but note Q@ C My[#], so j(X) €
Mo [*], but then using line (18) we get X € M [%], since

a€ X = jla) € j(X). O

4.9 The first Varsovian model as the strategy mouse 7#;

We will now give another presentation of M [*], as a strategy mouse ¥] in a
fine structural hierarchy (71[|v), cog, as sketched at the beginning of §4.5. To
motivate this, first notice the following.

A routine first observation is:

Lemma 4.37. Let P be an active (Jensen indexed) premouse. Then FT is
¥ -definable over (PPV, F¥[OR), uniformly in P.

We remark that it is important here that we have the universe and (internal)
extender sequence EF of P available.

Let L = LM~[(kg) for the poset of Definition 2.11, for adding generic
subset of kg.

31The original argument used for the proof that MQ/IKO C Mo [#], found by the 3rd author,
was slightly different; that argument is sketched for the analogous result Corollary 5.80. The
2nd author then adapted that one to yield the one presented here. In either form, the argument
is related to Usuba’s ZFC proof of the fact that if x is extendible then M, = M. Related

arguments have since been used by the second author in [9] and the third author in [21], [15].
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Lemma 4.38. M|xg is L-generic over Moo [*] and Moo[*][M|ro] = M.

Proof. Since we have verified the properties for uniform grounds, that M|k is
L-generic over M [#] follows from §2. We aim to show that Mo [*][M|ko] = M
by performing a “P-construction.”

We identify the sequence (M |v, M||v), .o inside Moo[*][M]ro], from the
parameter M|k and classes M, *, as follows. We start with M|ko given. Fix
v with k9 < v € OR. The sequence (M||3),_, determines M|v. By Lemma
4.24, M [*] knows whether EM £ (), and if EM # (), knows EM | OR, uniformly
in v (definably from M, *). But from the pair (M|v, E¥OR) we can compute
EM | also uniformly in v, by Lemma 4.37. O

Definition 4.39. We now define a class structure %7, structured analogously
to a premouse, built from a sequence E”1 = <EZ/1>D COR of extenders. However,
some of the extenders will be (properly) long, and will not cohere the sequence.
We write #1||v and #1|v with the usual meaning. For those segments #;||v
active with long extenders, some of the premouse axioms will fail (in particular,
coherence).?? Write 471 = g Mo,

The map oo : Moo — MM (see (5) and the preceding discussion) is an
iteration map. We define (recursively on v):

EMoe if v <"
EJt =4 Moo | (Moold™) if v =97 (19)
EY 1 (%lv) if v > 97

(We will verify in Lemma 4.42 that this definition makes sense; in particular,
that EM «(#1|v) C #i|v when v > 4”1.) Let us also write

E" = {(nz,y):E) #0and y =EJ ()}, (20)
E" v = {(@,z,y) €eE": 0 <v). (21)

We define the structure
¥ = (L[E"]; €,E™).

Like with M [#], when we discuss definability or write an equation with ¥, or
some similar structure, then we refer to the structure itself, not just its universe
| #1] = L[E”]. In particular, definability over #; has the class predicate E”
available by default, just like for premice. (But when no confusion can arise,
such as with expressions like “z € #1” or “z C #7”, we really mean “x € |#1]”
or “r C |#]”, etc.)

Write e’ = IE;V;I, so ¢”1 is the least (properly) long extender of E”, which
is just the extender induced by . —

32The segments #1||v where v = 7”1 or [v > 4”1 and crit(EM) = ko] do not satisty the
usual premouse axioms with respect to their active extender.
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Definition 4.40 (Fine structure of #7). The fine structural concepts (r¥,,4+1,
Pnt1, Pnt1, (n + 1)-solidity, etc, for n < w) are defined for segments P < ¥,
and also for PPV, just as for standard premice with Jensen indexing below
superstrong: %7 = 2P (without any constant symbols in the fine structural
language), which determines everything else via the usual recursion. b

We will show that all segments of #; are well-defined, sound, and establish
a fine structural correspondence between segments of ¥ and segments of M,
above a certain starting point. The first non-trivial instance of these facts is
given by 4.38 together with the next lemma; it uses techniques reminiscent of
those in [20]. It results in a tighter bound on HBFMOC = ~”1 than that given by

Corollary 4.33.
Lemma 4.41. Let ¥ = 7;||y7”* (so ¥ has ¢”' active). Then:

(a) L is ¥1-definable over ¥ .

(b) ¥ is isomorphic to a structure which is definable without parameters over
M|r™.

(c) ¥ is sound, with pwi = pf = 0o and Pi’; =9

(d) OR” < &0, where & is the least & > kg™ such that M|¢ is admissible.
Therefore ¥;||v is passive for every v € (y”1, &).

Proof. Part (a) follows from an inspection of §2.

Part (b): Let 7" be like F7T, but consisting of pairs (P, s) such that there
is P' with (P',s) € Z% and P = P'|sg™ and s C k™. (Let the associated
ordering, models and embeddings be the corresponding ones of .Z*.) Let M,
be the direct limit of ?Jr, and * the associated x-map. Let

T: My — Moo|(ﬁjg/l°°)+M°°

be the natural map determined by how F ' sits within F+. Noting that F
is definable over M|rg M it suffices to see that & is the identity.
Fix s € [#M]<¢ with s # (. For P € Z, let KT be the transitive collapse
of
HP = Hull?1max() (5= y k1)

)

and let 7 : K¥ — HT be the uncollapse map, and 57 = ¢ U {OR(KT)} where
P(t) =s.

We claim that mprp(5™) = 5™, and therefore (P|rd™,57) € 7" For this,
note marp (s, ko) = (8, ko), so Tarp(3M) = 5F. But M is a small (of size < ro)
forcing extension of P, which implies H™ N OR = H” N OR, so 5 = M as
required.

So write 5 for the common value of 5. One can now use the argument of
the proof of Lemma 2.3 (which showed that the natural map x : ML — M
is the identity), but replacing the use of s there with 5. It follows that ¢ = id.
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Part (c): Since ¥ € Mo[#], it suffices that ¥ = Hull? (6,0).3% Let a <

A = OR”’; we want to see that v € Hully(éoo). Fix a non-empty s € [#M]<«
and N € .Z such that o € rg(nmns,0). Let § be as above. As before, §is N-
stable, and note that o € rg(mns,00) (because a < HSFM, if Tns,00(@) = v then
TN3,00(@) = @). But then, as desired, we have

a € HullM=ax(5)" (57)* U 5) € Hull (6x0).
Part (d) follows from (b) and the definition of E”* above 7”1. O

The levels of #] correspond tightly to the levels of M, as follows.
Lemma 4.42. Let g = gy, be the (M [*],1L)-generic determined by M |kq.
(so M [#][g] = M ). For every v € OR we have:

1. #|v and #1||v are in M [#],

2. #|v and ¥ ||v are sound,

3. Suppose v > £,.3* Then

(a) L € #|v and g is (#1|v,L)-generic,

(b) (Alw)lg] = M,

(©) All)lg] =" Mllw,

(d) if EM # ) and crit(EM) > kg then #;||v satisfies the usual premouse

axioms with respect to its active predicate (with Jensen indexing; in
particular, E)" is an extender over ¥i|v), and

(e) if E =EM # () and crit(E) = ko then E/* is a long (d., v)-extender
over M, and

Ult( <>0|6007E7/1) = iE (M <><>|(S )= Mgolt(ME)li%((SOO)
is a lightface proper class of ¥i|v, uniformly in v.

Remark 4.43. Here the notation =" is the usual one in this context, meaning
that (i) the two structures have the same universe, (ii) for each a € [, v) (or
[€0,v]), EZt = EM[(#1|a) (which is already true by definition), and conversely,
if crit(EYM) > ko then EM is the canonical small forcing extension of EY* to M |a
and if crit(EM) = ko then EM is determined by EM[OR = E”1[OR and M|« as
usual for a premouse, and (iii) the structures #;|v and M|v (or ¥1||v and M||v)
have corresponding fine structure in the manner usual for P-constructions as in
[12], with matching projecta and parameters, etc.

33Let Q be the structure defined in §4.7. We already know Q = Hulllg(é), but it seems that
the branch through the genericity tree involved there might not be computable from *. So
the soundness of ¥ is not an obvious corollary.

34 Also, M\G(I)V[ and 71||y”1 are “generically equivalent in the codes”, and letting

£:00"60) = (771, )
be the unique surjective order-preserving map, then M|a = M||a are likewise equivalent with
1| f(a) = 71| f(a) for all a € dom(f), but we will not need this.
35The notation is explained in 4.43.
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Proof. The lemma holds for v < 4”1 directly by definition, for v = v”1 by 4.41.
For v < v < & it is a straightforward consequence: we have #1||€y € Moo[#]
since A € M[#], and therefore #;||v cannot project < d.. Note that 4”1 €
Hullflly([i)), just because 7 ||y”" is the least segment with an active extender of

its kind. Using 4.41, therefore y”* +1 C Hullf/llu(éoo). If v < w-~”" then we

therefore get #1|v C Hullf/lly(éoo)7 and hence #1|v is sound. If instead wAyt <v

then note that (¥7|v)[g] has universe that of M|v, and the Eéwly forcing relation
is AT (lightface, as 4”1 € Hull]'"(0)). But M|y = Hull}'V(x™ + 1),
and since all of the ¥y facts witnessing this get forced, it follows that #1|v =
Hull]"” (65), so #|v is sound.

For v > & we discuss parts 1 and 3(d),(e); for the rest one mostly uses
standard calculations as for P-constructions. Suppose we have established that
(MV)g] =F My € Muo[*], and EM # 0, so E)* = EM[(#|v) # 0. We
already know that E/1[OR € M.[*] (by Lemma 4.24). We must verify that
E”t € My [#] (and uniformly so), and hence 7 ||[v € My.[#], and that #;||v has
the right properties.

Suppose ko < crit(EM). Then E/' is an extender over #;|v satisfying the
usual requirements for premice, by the usual proof (using induction and that
My is a small forcing extension of #;|v). It follows that E)? can be computed
from the pair (#;|v,E/1[OR), as usual. But % |v is in Mu.[*] by induction.

Now suppose that kg = crit(EM). Then E = E? is a (long) (6, v)-extender
over Moo|000, but this time E does not cohere ¥;|v. In order to compute the
full £ from EJOR, one also needs the target model

U = Ult(Mo |00, E) = MUEOLED)),
By 4.41, this is computed by the local covering system of M|v (as defined in
that proof, but over M|v, not M|(kg™)). But since #|v =* M|v and the
forcing I € #1|A where X is the largest cardinal of ¥ |v, and Mo |0 € #1|A,
there is a canonical definition of U over ¥} |v (uniform in all such v). That is,
although we don’t have the full M|v directly available, the agreement between
EM and E”* ensures that the short tree strategy for M is computed almost
like when we do have M|v: Given a strong cutpoint 7 of #;|v with s <
v, let G be (¥1|v, Coll(w,7))-generic. Then (#1|v)[G] can be arranged as a
premouse over (¥1||y,G), and note that we can also take G such that there is
an (M, Coll(w, 7))-generic G’ such that (M|v)[G'] =* (#1|v)[G] (with (M ||y, G")
equivalent intercomputable with (#1||y, G)). Therefore we can use (¥1|v)[G] to
compute short tree strategy for M|doo in the same manner we use (M|v)[G']
(working above ), and by homogeneity, this computation restricted to trees
in ¥1|v is independent of the choice of G. The computation of maximal trees
(above 7) is similarly absolute, and note that the P-constructions determined
by these trees also agree between M|v and ¥]|v. The system computed in ¥ |v
is also easily dense in that of M|v. Therefore ¥#;|v computes MEJ“M’EHV, as
desired.36 O

36Note that the foregoing proof did not use Lemmas 4.17 or 4.18, which we are yet to actually
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Lemma 4.44. M [*] and ¥; (as defined in 4.23 and 4.39) have the same
universe.

Proof. We have ¥ C Mo[#] by Lemma 4.42 part 1.
Let us show M [] C ¥1. Write L = LZ;}{{. By 4.42 part 3, L € ¥4, and since
1 C Muolx], therefore g = gpyjga is L-generic over both Mo [+] and 71. But
then as in the proof of Lemma 4.38, ¥4 [g] has universe | M | (as does M [*][g])-
Now let € Moo[#] be a set of ordinals. We show that z € ¥]. Let 7 be an
L-name in ¥#] such that x = 79. Let p € g be such that p IFH/‘MOO[*] T=2z. Itis
easy to see that then
z={¢plHy er}en.

So the two models have the same universe. O
The preceding fact will be refined later in Lemma 4.47.

Remark 4.45. We may also reorganize ¥; as a strategy premouse, by rep-
resenting the information contained in the long extenders in E”* differently.
These extenders are easily seen to be intertranslatable with fragments of ¥ __
for trees based on M |dso. Namely, let us define a sequence (F/1: v € OR) as
follows. Except for those v where E* is long, we set F/1 = E1. If E/* is long,
then F/* = ¥ (T), where 7T is the normal tree on M, leading from M |6o0
to iM (Muo|doo). Then easily, Lemma 4.42 holds also after replacing E”* with
F”1, and E”*|F”" are level-by-level intertranslatable. So L[F”1] = #7.37

Lemma 4.46. We have:

(a) The restriction of ¥ pq_ to trees in ¥; and based on Muo|deo, Is lightface
definable over ¥; (so by Lemma 4.47 below, it is also lightface definable
over Muo[#]).

(b) Let g be in some set generic extension of V' and be set-generic over #;. Let
¥\ be the restriction of ¥ rq, to trees in #1[g] and based on Moo -
Then Yy, is definable over the universe of ¥1[g] from the predicate ¥;.%3

Proof. This is much like the proof of Lemma 4.18 (whose complete proof will rely
on Lemma 4.57, still to come), although now we don’t have M itself available.
The computation of short tree strategy is as in the proof of Lemma 4.42 part
3(e). The computation of branches at maximal stages is like in the proof of
Lemma 4.18. O

. Ult(MEM), . .
prove; it does not matter here whether Moot( v )|z/ is a correct iterate of Moolééw‘x’. But

in any case, we could have proved those lemmas at the point they appeared in the text.
3THowever, it is not clear whether #] can be arranged as a strategy mouse in one of the more

traditional hierarchies, like those used for HOD mice, or the least (tree) branch hierarchy.
38Regarding trees ¢ V, cf. Footnote 26.
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To summarize, we have isolated several representations of the universe of 77,
indicating that 77 is a natural object:
¥, = L[E”"] (Definition 4.39)
L[F"1] (Remark 4.45)
Moo [#] (see (13), Lemma 4.44)
HODg[G] (Lemma 4.28)
ﬂ F =the < ko mantle of M (Proposition 4.36)

1

I

I

4.10 Varsovian strategy premice

In this section we will introduce an axiomatization for premice in the hierarchy
of ¥1. But first, we refine Lemma 4.44 as follows:

Lemma 4.47.
1. Ult(#, ") = ¥Me=.
2. ¥ is a lightface class of Mo[%],
3. Muo[*] is a lightface class of 1.

Proof. Part 2: Argue as in the proof of Lemma 4.42, using again Lemma 4.24.
Part 1: Let e = ¢”1. We have MM = Ult(Mo, e) and oo : Moo — MM
is the ultrapower map, so e C 7. By Lemma 2.10, 7, extends elementarily to

Tt Moo[] = M= [xM=],
so considering how ¥ is defined over Mo [¥], and ¥M> over MMoe [xMoe],
T W — M
is also elementary. Since V{:j"" = 57;1, it follows that e is also derived from
. Let ¥/ = Ult(#,e) and j* : #3 — ¥’ be the ultrapower map and k* :
¥ — ¥Me the factor map, so kT o jT = 7L . Since mo C 7k and 74 is the

ultrapower map, we have k™ [OR = id (and jT|OR C 7). So in fact kT = id
and ¥’ = y;Me 39

39Here is a slightly alternate argument. We have Mé\.floc = Ult(Moo,€) and 7o is the
ultrapower map. Let N[e/] = Ult(Musle],e) and j : Moo[e] — N[e'] be the ultrapower map.
Then as before, in fact N = M2J%° and meo C j = 7. Moreover, by considering some fixed
indiscernibles,

e =7l (e) = U Too (€]ar)

a<boo
is the correct extender of the iteration map Mé‘.f‘w — (MOO)MQQOO, Now 71 and Muo|e]
have the same universe, and ¥] is defined over M [e] via the procedure mentioned for part
2 of the lemma. So Ult(#,e) is defined over M2 [¢/] in the same manner. But ¢/ agrees
with *Moe | so this definition actually yields 7/1M°°.
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Part 3: It suffices to define M, and *[6M°° But *[5M°° is just the active
extender of #;||y”*. To define M, we first have MOOH/V? = % |7”*. But
¥ M= is a lightface class of #; by part 1. And EMe | Mg, 00) is determined
by M||kg Moo and B [(77/1M°° ,00), since the two sequences agree over the
ordinals. O

Definition 4.48. For an Mgyqy-like N, MY 5N M [¥]Y and ¥4V denote the
lightface N-classes defined over N just as the corresponding classes are defined
over M. B )

Also given an ]\/[swSW like N and N < N with /{gN < ORY, we define 7/1N

NICST40) — Nl + @), where 7 = 7%

Noting that this definition is level-by-level, we similarly define “i/N (k) whenever
N is Myysw-small and & is an inaccessible limit of cutpomts and Woodins of N
and k < ORY, level-by-level (starting by defining ”1/1 . as 71||y” is defined
(in the codes) over M|xg™). We will often suppress the x from the notation,
writing just "//11\7. —|

by recursion on OR” by setting A

We now want to axiomatize structures in the hierarchy of 7] to some extent:

Definition 4.49. A base Vsp is an amenable transitive structure ¥ = (Pao, F')
such that in some forcing extension there is P such that:

1. P, P, are premice which model ZFC™ and are Mgysw-small; that is, they
have no active segments which satisfy “There are kg < 01 < k1 with 0
Woodin and kg, k1 strong”.

2. P has a least Woodin cardinal 6 and a largest cardinal x{’ > 6", and x{’

is inaccessible in P and a limit of cutpoints of P; likewise for P, (55 o Iiég S

3. ORY = 6 kP is the least measurable of Py, and #F = cHull] (65=),
4. MEP= (defined over Py, like Moo|y”t is defined over M|xg™) is well-
Poo
defined, and has least measurable x> and least Woodin 56\/1 =" = OR>,
Poo
5. Mfom|6(/)vl°° is obtained by iterating P.,|60>, via a normal tree T of
MP
length 6, > ,

6. F'is a cofinal ¥;-elementary (hence fully elementary, by ZFC™) embedding
Pool6t= — ME=|67"

and there is a T-cofinal branch b such that F C i] , and i] (57=) = 5,
(so b is intercomputable with F', and note that by amenability of ¥, F' is
amenable to P, and hence so is b),

7. p7 = 6= and p! = 0 and 6] is Woodin in J(€;(¥)), as witnessed by
Efe,
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8. Pis (J(€1(¥)),L”)-generic, where L” is defined over 7 as L above was
defined over 7 |[y”1. .

Remark 4.50. Let C' = &;(¥) and 7 : C — ¥ be the core map. Then
rg(m) = Hull]> (55> U F5t>). (22)

For we have pi’/ = (55‘” and p" = 0 by hypothesis. So D is clear, and C is
because for each a < 65) < Fla is in the hull on the right, by calculations like
with the Zipper Lemma.

Now because 62> is Woodin in (€ (%)), and in particular regular, we have

that €1 () is sound with S = 647, and in particular Véjpsl(y)) =VEe

0 56>
Note also that L is (lightface) E;Vllh% , and we use the natural ¥, definition
above to define L”, so L” = L&(*), Moreover, like for L, L” is a sub-algebra
of the extender algebra of Py, at 62> and J(€1(¥)) E“L” is a 6)>-cc complete
Boolean algebra”.

The definition is actually specified by an (infinite) first-order theory satisfied
by ¥, modulo the wellfoundedness of ¥'. (The theory needs to be infinite
because of the assertion of Woodinness in J(€;(¥)) in condition 7.) To see
this, observe that the (generic) existence of P is first-order: Working in ¥/,
we can say that there is some condition of L.”" forcing over €;(%) that the
generic object is a premouse P such that the conditions above hold (and by the
preceding discussion, all relevant antichains are in Py.); a small subtlety here
is that we need to refer to F' and the hull in (22) in order to talk about €, (%)
and assert that it is isomorphic to #*; note that we can just talk about the
relevant theories to assert this. (We don’t demand that M= be wellfounded,
but only what was asserted above, which gives that it is wellfounded through

Moo
dy = +1.)
Unsound base Vsps naturally arise from iterating sound ones.

Definition 4.51. A Varsovian strategy premouse (Vsp) is a structure
V= (I, E,F)
for some sequence E of extenders, where either ¥ is a premouse, or:
1. @« < OR and 7 is an amenable acceptable J-structure,

2. ¥ has a least Woodin cardinal 6], and an initial segment #'||y which is
a base Vsp,

3. 6] <, s0 6] is the least Woodin of 7||y,
4. if F # 0 and v < OR” then either:

(a) ¥ satisfies the premouse axioms (for Jensen indexing) with respect
to F', and v < crit(F), or

(b) We have:
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i. 7P = (JEE,0)F ZFC,

ii. 7 has largest cardinal u, which is inaccessible in ¥ and a limit
of cutpoints of ¥ (where cutpoint is with regard to all kinds of
extenders),

iii. N = M;’/Opv is well-defined, and satisfies the axioms of a pre-
mouse (but is possibly illfounded) with a Woodin cardinal 56\/ ,
and is (OR” 4 1)-wellfounded with & = OR”,

iv. N |6{)\/ is a proper class of ¥P¥ and has least measurable p,

v. Fis a cofinal ¥i-elementary embedding F : #[67 — N6,

vi. N|&) is pseudo-normal iterate of #|d] , via tree 7, and there is
a T-cofinal branch b such that F' C ibT (hence b is amenable to
¥ and inter-definable with F' over ¥PV),

5. each proper segment of ¥ is a sound Vsp (defining Vsp recursively), where
the fine structural language for base Vsps and segments as in 4b is just
that with symbols for €,E, F,

6. some p € L” = L7117 forces that the generic object is a premouse N of
height 6] with 7~ = #||, and there is an extension of N to a premouse
N7 such that ¥~ = ¥ (and note then that N is level-by-level definable
over ¥'[N], via inverse P-construction).

We write v =~ above (if 7 is not a premouse). =

Definition 4.52. A Vsp ¥ is ¥ -like iff it is proper class and in some set-generic
extension, ¥ = ¥ for some Mygw-like premouse N. (Note this is first-order
over ¥.)

When talking about the extenders E € E]’r/, for a Vsp ¥, we say that E is
short if ¥||Ih(E) satisfies the usual premouse axioms with respect to E, and
long otherwise; likewise for the corresponding segments. So ¥ ||’y7/ is the least
long segment.

We write Mo, = 71 | 0. Let ¥ be #i-like. We define ¥ | 0 analogously
(first-order over ¥ as in the proof of Lemma 4.47 part 3). In fact, let us define
¥ | 0 more generally, including the case that 7 is illfounded, but satisfies
the first order properties of a ¥#;-like structure. Also if N is a premouse, let
N [ 0= N. We write ¥~ for (the premouse) ¥|57. (So ¥~ = Mu|63">=.)
We write A” for the strategy for ¥ | 0 (for trees based on # ) defined over ¥
just as the corresponding restriction of ¥ is defined over 7, via the proof
of Lemma 4.46.

We write #; = ¥ (Moo, %) = ¥ (Moo, ¥[000) = ¥ (Moo, e”). Given a pair
(N, +") or (N, *'[§) or (N, e) where N is Mysw-like and the pair has similar first-
order properties as does (Mo, *¥) o (Moo, ¥[ds0) OF (Moo, e”?) respectively, we
define ¥ (N, *) or ¥ (N,«'[§) or ¥ (N,e) analogously (via the proof of Lemma
4.47 part 2). 4
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4.11 The action of M-iteration on M

We now aim to extend Lemma 4.46, analyzing the nature of MY for iterates
N of M, and the partial iterability of MY in N.

Lemma 4.53. Let N be any non-dropping %-iterate of M. Let P € FN . Let

P =cHull” (65 u.#N).

Then Pisa 50?—sound non-dropping Y-iterate of M, ]5|5ﬁ = P|6f", and letting
7 : P — P be the uncollapse map, then n“#F = #N 40

Proof. We have P|oY = MO[T|6(]JV[Z for some tree T via X, where [0, a7 does
not drop; this is because the Q-structures used to guide the short tree strategy
computing P are correct. But P|§F = P|§f and P is an iterable, 62'-sound,
Miwsw-like premouse, and with o above minimal, comparison gives P = M.

Finally note that . = 714 #N is a club class of generating indiscernibles for
P,so & =9F. O

Definition 4.54. Let N be a non-dropping ¥-iterate of M. Define (MEH) n
as the direct limit of the iterates P, for P € # (the notation P as in Lemma
4.53). (Cf. Definition 4.20.) For P € #¥ let npp : P — P be the uncollapse
map and

HP = Hull] (6§ U #N) = rg(npp).

Suppose further that N is x)-sound. Let o € OR and P € V. We say
that a is (P,.ZN)-stable iff whenever P < Q € .Z ", we have o € H? and
TG © ipg © ﬂgllj(a) = a. a

The definition of stability above is more complicated than the version for
M, because it can be that P < Q € .#" but @ is not actually an iterate of P
(although Q[6S is an iterate of P|6L).

Lemma 4.55. Let N be a non-dropping X-iterate of M. Then:
1. P = (M%) is a 6’-sound non-dropping -iterate of M.
2. MY 6N = P|sf.
3. If M|k}! < N then My.|00 € N and P is a ¥y -iterate of M.

Proof. Part 1 is immediate from the definitions. Part 2 follows from Lemma
4.53, since infinitely many indiscernibles are fixed by the iteration maps. For
part 3, note that because M|k}’ < N and N is a non-dropping iterate, in fact
M|/§§M AN, 30 Mo|0s € N, and then it is an easy consequence of part 1. O

Lemma 4.56. Let N be a x{’-sound non-dropping Y-iterate of M. Then:

1. Foreach P < Q € YV, we have H* NOR C HY N OR.

40But if N is not Jé\j—sound then P is not a X y-iterate of N.
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2. For each a € OR there is P € ¥ such that « is (P, #Z™)-stable.

Proof. Part 1: We in fact that HX NOR = HullY (65’ U.#N) (which immediately
gives HP C H®). This is just by extender algebra genericity and definability of
P\ over N|6E.

Part 2: Since N is x{'-sound, we can fix s € N and B < ki’ and a term
t such that a = t" (s, 8). Then taking P € .#V with 3 < 6f’, we get a € H.
Now since (Mi?)N is wellfounded, it suffices to see that

Taq ©ipg o Tpp(a) 2 a

whenever P < Q € N and a € HY. Solet s € jN with o € HSP. Then
WPS,QS(OC) > a whenever P <X ) € ,?N, because M satisfies the same about
iyin(s) (because whenever R < S € FM S is actually an iterate of R, and
these iterates are dp-sound, etc). But note that

Tps,qs(Q) = Tgq 0 ipg © Thp(a)

(because any generic branch witnessing the definition of 73, ,, must move the
relevant theory of indiscernibles and elements < 7P correctly, since these agree
appropriately between P, P and @, Q). This gives the desired conclusion. O

The following lemma is proved like a similar fact in [15], integrated with part
of the argument for [8, Lemma 2.9]:

Lemma 4.57. Let N be a k' -sound non-dropping ¥-iterate of M and N’ a
x{ -sound non-dropping ¥ y-iterate of N. Let N be the 6} -core of N. Then:

1. Mo = M and iy [IM =id = [ IM,
2. M = N and NN = id,
3 MY =iyn(Mo) = (M) is a (Séwi—sound Y y-iterate of N.
4. If Nk} <« N’ then
(a) MY isa ¥ my -iterate of ML, and
(b) inn' MK is just the ¥ my -iteration map MY — ./\/lévo/.
5. If N # N then MY is not a ¥ y-iterate of N.

Proof. Part 1: We have S Mo~ =iy, “M and M, is 6é\/l°°—sound. Suppose
k € M is least such that ipraq (k) > K, fix a tuple £ € #Me>~ and a term
t and o < 63" such that x = tM=(R,a), and note we may assume that
K\k € M\ (k + 1) by shifting this part up, but since Nk C &M and M, is
a lightface M-class, this gives a contradiction.

Part 3: Note that Lemma 4.55 applies. Like in §2, we will define an ele-
mentary x : MY — (M%Y)y and show that y = id. We can cover 2V by
with indices of the form (P,u) with u € [#N]<¥. For given any (Q,s) € 2V,
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by Lemma 4.56, we can fix P € Z% such that s is (P,.#")-stable (see Defi-
nition 4.54) and Q = P, and with 6/’ large enough that there is u € [.#V]<
such that s € HE  which suffices. Because of this covering, we can define
X : MY — (M) g in the natural way; i.e. for each such (P,u) and z € HY,
set X (T 00 (2)) = ipmy (71';113(35)); note we have u, z € rg(npp). It is now easy
to see that MY = (MY y and y = id.

Part 2: By part 1 and since iy n“IM = N, we get «V [N =id. And
by part 3 and its proof, MY = Hullf/lg(ééwg’ U+« 7N)). Since MY is also
a lightface N-class, .# " are model theoretic indiscernibles for ML . Therefore
IME = N,

Part 4: 4a is an easy consequence of the fact that MY and MY are §2-
and 6Y -sound respectively. For 4b, we argue partly like in [, Lemma 2.9(a)],
but somewhat differently.*! So, note that by the preceding parts, Mg is indeed
an iterate of MY, and iy [fMi = ngMg’ LﬂMch, S0 it just remains to see
that

. MN 3 N
INN[0y % = dpqy py [0

N N

So let a < (5(?4"". Let s € [#M%]<% = [#N]<¥ be such that o < A Fix
P e N with some @ < 7! such that 73, (@) = a. Note that MY is a
¥ p-iterate of P and

i (6) = a. (23)
Now

iNN’(a) = ﬂ-g’s’,oo(o_[)

where P’ = iyn/(P) € ZFN and s’ = iyni(s) € #N'_ But then with the map
x defined as earlier, but for N’ instead of NV,

’

i (@) = X781 10 (@) = g g (T (@) = g (@) = gy par (@),

using that x = id, P’ = P, & < crit(mp7p,), and line (23).
Part 5: If N # N then N is not §}¥ "-sound, but then any non-dropping iterate
O of N is non 6§-sound, so O # (M=) y = MY, O

Note that with the preceding lemma, we have completed the proofs of Lem-
mas 4.17, 4.18 and 4.46.

4.12 TIterability of #;

In this subsection we will define a normal iteration strategy ¥, for #; in V.
We will first define and analyze the action of ¥, for trees based on M|d0o-

41 Moreover, the proof of [3, Lemma 2.9(a)] has a bug: with notation as there, it talks about
iteration maps ;) N+ and Tn= (M), With the implication that j(Moo) is in fact an

iterate of j(IN), but this is not true, as j(IN) is not 58(N>-sound, whereas j(Mo) is 63(M°°>-
sound.
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4.12.1 Tree translation from M to #;

The iteration strategy for #; will be tightly connected to that for M, as we
describe now. But first the basic notion under consideration:

Definition 4.58. Let N be a #-like Vsp. A 0-maximal iteration tree T on N
of length A > 1 is a system

(<7—a <MO¢7 mOé>a<A ’ <E0¢>a+l<)\)

with the usual properties, except that when E, is a long extender (which is
allowed), then pred” (o + 1) is the least 8 < « such that [0, 8]7 does not drop

MT
and &, © < Ih(E]).
We say that T is short-normal iff T uses no long extenders.
Tteration strategies and iterability for N are now defined in the obvious
manner. —

Definition 4.59. A short-normal tree on a ¥;-like Vsp ¥ is a 0-maximal tree
that uses no long extenders. Note that a short-normal tree is of the form 7~ S,
where T is based on 7|5, and either

(i) [T has limit length or b7 drops] and S = (), or

-
(ii) 7 has successor length, b7 does not drop and S is above 5(])\4 <
Say that 7,S are the lower, upper components respectively. b

Definition 4.60. Let N be Mgy, -like. An iteration tree 7 on ¥V is %N -
translatable iff:
1. 7 is O-maximal, and

2. kMa < In(ET) for all @+ 1 < In(T) such that [0,a]r N 27T =0.

-
Remark 4.61. Under 0-maximality, condition 2 holds iff nar My < lh(E;]r ) for
n = 0 and for all limits 7 such that n + 1 < 1h(7) and [0,1]7 N 27 = () and

ig;,(mév) = 6(Tn). This follows easily from the fact that 1h(E]) < lh(Eg—) for

a < f (using Jensen indexing).

Definition 4.62. Let N be Myyow-like. Let 7 on N be %N—translatable. The
#N -translation of T is the 0-maximal tree & on #;" such that:

1. Ih(Y) = 1h(T) and U, T have the same tree, drop and degree structure,
2. 1h(EY) = Ih(ET) for all a + 1 < In(7T). H

Remark 4.63. Let N be Myysw-like. Let 7 be a tree on N and let o <1
€+ 1 <+ 8 be such that [0, a]7 does not drop, e +1 € 27, predT(s +1) =«

o/
and n(TM" < crit(E]). Note that

T .
’@(J)FMG <y =MD < o crit(E7)
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. T +MT . M; T
where ¢ is the least M, |, *-admissible. Note here that 7; " = 71(My)

-
is the set-sized model ¥ such that ¥||y = 7/1M“ [y and above v, EY is the

level-by-level translation of E (Mg) Note that because 7 < OR%(M;’)7 Mg

. MT . .
is a /<;3_ @ -cc forcing extension of %(MBT)

Lemma 4.64. Let T on N be ”I/lN -translatable, where N is Mgyew-like. Then:

1. The ¥{N-translation U of T exists and is unique.

2. MY = “I/lM;r and deg? = deg] and vMs < OR(MY) for all a < 1h(T).

[e3%

3. igﬂ = iZ:B [MY for all & <1 B such that (a, 3] does not drop.

*T
4. MU =M for all a + 1 < Th(T).

«
50U =i IMY for all a+ 1 < 1h(T).

Proof. This is partly via the usual translation of iteration trees between models
and P-constructions thereof. However, there is a new feature here, when a+1 <
Ih(7) and is such that [0, + 1]7 does not drop and letting 8 = predT(a +1),
then crit(E]) = k = no(MﬂT), so consider this situation.

Then EY is long with space § = 50(M}34) = /igMﬁT, and EY = EI[(Mg\é)
and [0, 8]y, does not drop, and Mg’ = %(Mg) Let (a, f) be such that f € Mg—
and a € [v(ET)]<¥ and

folsllel = MY =M.

We need some (b, g) with g € M};{ and b € [Ih(EY)]<% such that a C b and

[ (u) = g(u) for (ET),-measure one many u. We may assume rg(f) C OR.
If rg(f) C 6, the existence of (b, g) is just because EY is the restriction of

E7 . and this restriction is cofinal in 1h(E7). In general we will reduce to this

case.
Now Mg— is a d-cc forcing extension of MY, so rg(f) C X for some X € MY,

where X has cardinality < § in Mé’ Let n be the ordertype of X, so n < 9, let
7: X — 1 be the collapse, and let f =70 f. So f € Mg and rg(f) C 4, so we
get a corresponding pair (b,g), with g € Mé” Letting g = 7104, then g € Mé’
and (b, g) works. O

4.12.2 Trees based on M |0

We now transfer trees on M, based on M |00, to trees on #5.

Definition 4.65. Write X, v for the normal strategy for M, for trees

based on 7", induced by ¥,.. We use analogous notation ¥y |, more
generally. Let W, v denote the putative normal strategy for trees on %]

based on #;”, induced by ¥ Moo V" This makes sense by Lemma 4.30. —
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Remark 4.66. Let U be a putative tree on 77, based on #;, via v, v Let

a < 1h(U). Suppose [0, ]y does not drop. Then MY | 0 = ¥ (M), and if
MY is wellfounded then it is #;-like. If instead [0, a]y; drops, note that it drops
below the image of (53/1 and MY is a premouse (note that it is wellfounded in
this case), so MY | 0 = MY.

Definition 4.67. Let # be a Vsp. Then A” denotes the partial putative
strategy for 7|6]  determined by the long extenders of #. That is, A” (7) = b
iff 7€, T ison 7[6], ¥ E“T is via £q,”, and either

— Y E“T is short and b = X4, (7)”, or

— ¥ E“T is maximal” and there is a long E € E; (¥) such that T € ¥|\(E)
and b is computed via factoring through ¢ as in Footnote 27, where c is

the cofinal branch through the tree from 7|6 to j(#|6]) determined by
j = §YmeE) 4
=ip )

The following lemma, which is the main point of this subsubsection, is the
analogue of [8, Lemma 2.17] and [19, Claim 12].

Lemma 4.68. V., ¥ yields wellfounded models. Moreover, let T be on M,
via ¥, -, and let U be the corresponding tree on ¥ (so via \117/1’7/17). Let

To: M — MY | 0C MY
be the natural copy map (where mg = id). Then:
— [0, a7 drops iff [0, ]y drops.
~ If[0,a]7 drops then M] = MY = MY | 0.
— If [0, a]7 does not drop then M] = MY | 0 and MY = ¥ (M ,¢) where
T
0:MT — M-EL s the Yy -iteration map, and in fact, AMS C LN N|sY
where N = M.
~ Ty = id; therefore, i C i¥.

Proof. We include the proof, mostly following that of [19]. Let T,U be as above,
of length a + 1. The interesting case is the non-dropping one, so consider this.
Let P = M and Py, = MZE. Let ipm__p, ipp., and ip_p, be the iteration
maps. We have
My, = Hull'= (551> U g M=),

likewise for P, Py, (maybe .#7 # gMe but s~ = 7P =i, pegMe=),
We have
P.=7Flocyr.

The analogue of the following claim was used in the proof of [19, Claim 12],
where it was implicitly asserted but the proof not explicitly given. We give the
proof here. It is just a slight generalization of the proofs of [19, Claims 8-10]
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(or see [8, Lemma 2.15]), the main conclusion of which is that if j : M — M
is the iteration map, then

Moo N HullM=F(rg(5)) = HullM= (rg(j)) = rg(j).

CraiM. We have:

>'(P

(i) Px N Hull7~! ](rg(iMocpoo)) =rg(imp,.) and
(ii) P NHull™=(rg(ipp_)) = rg(irp. ).

Proof. Consider (i). Fix a € OR and s € [#M>=]<\{(} and § < §7"'> and a
term ¢ such that

a= tPoo[*P](iMum (s7,B))

and 3 < yM=. We need to see a € rg(ipm._p. ). It suffices to see xF(a) €
rg(im., P, ), by arguments in [19]. But this holds just as in [19], except that we
have a fixed term u such that for each N € & 7F,

o =u"(ipon (s, 8)-
This suffices. Part (ii) is analogous. O

Let P = cHull™ " l(rg(ipp_)) and Mo = cHull™" I(rg(in_p_)), let
i;Poo and iXAMPm the uncollapse maps, and i/J(/looP = (i,tpm)*l o iLPoo. By the
claim, iMooP Q iLOOP'

Also, *¥ C h where h: Py, — ./\/lopgo is the iteration map. Letting

iNop () =ipp () = =186,

it easily follows that * and *” agree with the iteration maps My, — (M)

and P — P, respectively. Therefore //\;l\:o = Moo [#].

Let E be the (56\4“’ , 08 )-extender derived from i p, or equivalently from
ixloo p» also equivalently the [0, a]7-branch extender of 7. So (recalling U/ is the
corresponding tree on Mo [#])

MY = Ult(Myo[%], E)

and i = ig’lc"’[*]. We also have P = M| = Ult(Mu, E) and ipq_p = i, . Let
7 : MY — P be the natural factor map, i.e.

m(ia (@) =iy, p(f)(a)

whenever f € My [+] and a € [6{]<“. Then 7 is surjective, because if @ € OR
then there is f € My, and a € [6F]<% such that iy p(f)(a) = a, and since
imop C ity p, therefore il p(f)(a) = a = m(a). So in fact MY = P and
7 =id, so ¥ =i}, p, s0 il C Y, and letting 7, : M/ — (MY | 0) be the

natural copy map, then 7, C 7 = id.
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It just remains to see that AMe C $p (still with P = M. First consider
the case that for some correct normal above-kg tree V on M and E = EY, we
have crit(E) = x¢ and E is M-total, and P = MY where U = Ult(M, F). Here

by Lemma 4.57, MY is indeed a 66\4g°—sound iterate of M, and i [ M is just
the iteration map. Moreover, by Lemma 4.64, ¥V = ig(71) is the corresponding
iterate of ;. But now the calculations that work for A”* (the proof of Lemma
4.46, using Lemma 4.57) also work for A

Now consider the general case. We will reduce this to the special case above
via Lemma 3.10. Let E € EM be M-total with crit(F) = kg, and & the least
Woodin of M|Ih(F) such that kg < J. Form a genericity iteration at &, above
ko, making P|6} etc generic. Let E be the eventual image of F. Then E is as
in the previous case; let U = Ult(M, E) and let MY . Recall P = MY is an
iterate of 77, and note #{U is the corresponding iterate of ﬁ; let k: P — %
be the iteration map. Let S be such that ﬁ| B is active with a long extender
G, B = k(B), and G’ = F*''1#'. Note that k is continuous at 6t and B (as
cof’(B) = 6F). Let j: P — Ult(P,G) and j' : MY — Ult(MY,G’) be the
ultrapower maps. Let 7 be the length S tree from P to Ult(P,G) and T’ the
length A’ tree from MY to Ult(MY, G’); note that by first order considerations,
these exist, and G determines a T-cofinal branch b such that M, = Ult(P, G)
and j = i/, and likewise for G’, 77,0, MY, 5'. We know that 7'~V is via DV
by the previous case. Note also that 7 is via ¥p, because the Q-structure for
each TTA (for limit A < ) does not overlap §(7 [A), and is embedded into the
Q-structure for 7'[k(A). But

ko jI(PIog) = j' o kI(P|5y)
and j(60) = B and j/(6%) = B’. So by Lemma 3.10, b = X p(T), as desired. O

Definition 4.69. Given a non-dropping W, 4,,17—iterate YV oof 11, let Wy o
be induced by ¥y just as \I/n,/hn,/lf is induced by ¢ (this makes sense by
Lemma 4.68). -

4.12.3 Condensation properties for full normalization

The strategy Xy, (together with ¥7) will have the properties required for ex-
tending to a strategy for stacks with full normalization. We now lay out the
properties of ¥ needed for this. Recall the notions n-standard, (n+1)-relevantly
condensing and (n + 1)-sub-condensing from [14, ***Definition 2.1]. We adapt
these in an obvious manner to Vsps.

Definition 4.70. Let m < w and let ¥ be an (m + 1)-sound Vsp. We say that
¥ is (m + 1)-relevantly condensing iff either ¥ is a premouse which is (m + 1)-
relevantly condensing, or ¥ is a sound base Vsp, or v* < OR” and ¥ satisfies
the requirements of (m + 1)-relevantly condensing from [14, Definition 2.1] for
7: P — ¥ such that P is an (m + 1)-sound Vsp, v < OR” and crit(r) > 6]
(so crit(m) > ~v”). Likewise for (m + 1)-sub-condensing.
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For n < w, a Vsp 7 is n-standard iff ¥ is n-sound and either ¥ is an n-
standard premouse, or ¥ is a base Vsp and #PV is w-standard, or v” < OR”
and ¥ is (m + 1)-relevantly condensing for each m < n, and every M < ¥ is
(m + 1)-relevantly-condensing and (m + 1)-sub-condensing for each m < w.

A Vsp is w-standard iff n-standard for each n < w. —

Lemma 4.71. ¥} is w-standard. (Thus, we take ¥;-like to include w-standard.)

Proof. Let a >~” and P be a Vsp and 7 : P — ¥|a be an embedding as in the
definition of (m + 1)-relevantly- or (m + 1)-sub-condensing. We want to know
that P <% . But note that there is a premouse N such that M|xi™ < N and
#N = P and 7 extends to 7+ : N — M|a, which also satisfies the conditions
of (m + 1)-relevantly- or (m + 1)-sub-condensing, respectively. So N < M, so
Pav. O

Remark 4.72. Let ¥ be ¥;-like. Then as for premice, if T is a O-maximal tree
on ¥ then M is deg! -standard (see [11, ***Remark 2.2]).

4.12.4 Short-normal trees on 7]

Recall that short-normal trees on #;-like Vsps were defined in Definition 4.59.

Definition 4.73. Let ¥ be a (possibly dropping, putative) iterate of ¥4, via a
short-normal tree 7~ S with lower and upper components 7,S. We say that ¥
is good iff T is via \Ily/hn,,; and if b7 does not drop then ¥ is wellfounded and for
every long F € Ef, M;Vo“h(E) = N|66V for some Xy ¢-iterate N of ¥ | 0, and
E is the corresponding iteration map. Say that a (partial) iteration strategy ¥
is good iff all putative iterates via ¥ are good. .

Note we have already shown that ., v is good. We now want to extend
v, v to a good short-normal 0-maximal strategy Wy, for #;. So we start
by setting ¥, v C Uy,. As an easy next step, we deal with trees based on

A

Definition 4.74. Write ¥, _» for the putative strategy ¥ for 1, for short-
normal O-maximal trees based on 7 ||y”1, as follows:

1. \Ily/hy/l_ C V¥, and

2. given T via v, R of successor length a+1, where [0, a]7 does not drop,

il
and given a putative 0-maximal tree U on M | |7MI , which is above 5(})\4 o
then 7 ~U is via W iff there is a tree &’ on M| | 0, via Y M7 0, With the

same extenders and tree order as U. -
MTH,YJWZ: MT .
Note here that by Lemma 4.41, p; © = J, *, a strong cutpoint of

(MZH’yMaT)PV, so T U is indeed a putative 0-maximal tree on 3.

98



Lemma 4.75. V., v is a short-normal 0-maximal strategy (hence yields well-
founded models). Moreover, let T~ U and U’ be as in Definition 4.74, with
U # 0. Then:

1. MY = M7 ||y and degl =0,

’ 4 ’ u’
2. MY = M7 |0 and deg =0, so (M§)PY = MY f{arM" ,

3. for 0 < g < 1h(lUU), p € @é’feg S pe @élelg, and deglg = degg,,

4. if 0 < B < 1h(U) and [0, 8]y drops then MY = Mg’,,

’ Z/{,
5. if0 < 8 < Th(U) and [0, Bl does not drop then (MY)P* = MY'|rg™"? |

6. if 0 < 4+ 1 < Ih(U) and [0,8 + 1]y drops then Mg%l = Mgz/l and

AU U
tBt1 T Yat1s

7. if0< B+ 1< 1h(U) and [0, 8 + 1)y does not drop then zgzj{rl - iglfr,l,

’ u/
8 if 0 < B < Ih(U) and [0, Bl does not drop then MY is a méwﬁ -sound

u’
I\/Iﬁ
oo

. My .
Y7 jo-iterate ofMaT 10, Ms? isa 56\/1 -sound X7 | o-iterate of MT | 0,

u/
Mg
oo

Ult(M] |0, F(M])) =
and F(MﬂT) is the extender of the ¥y 7 o-iteration map.

Therefore V., . is good.

Proof. We omit most of the proof, as it follows from the usual calculations.
However, for part 8, just note that the action of the U- and U’-iteration maps
j and j' on MY = MIH'yMaT are identical (i.e. j C j’), since (M§)P¥ =

’ MM
MY |k ™0 and so

) u ) u’ u’ my !
GIMET) = §' (M0 05" ) = Mos” |0sc”

but then the fact that F(Mg) agrees with the X7 o-iteration map

u/
1] 105" — M

. . Vo e
is a consequence, since F”"" is likewise correct, where ¥ = M7 (by Lemma

4.68) and j' preserves indiscernibles. O

Note that if 7~ U is as above, with last model Mzﬁ”, then applying F(Mg’)
as the next extender (giving a non-short-normal tree), the next model is again
an iterate of ¥ via \Ily,1 v
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Definition 4.76. Say that W,U,T) is M-standard iff W is a X-tree on M
which is above kg, Th(W) = £ + 2 for some &, and letting £ = Eg/v, then
crit(E) = ko and E is M-total, U = Ult(M,E) = Mg/il, and 7 is the tree
leading from #; to #V; so

MT =V = Ult(#, E1 )

and i7 C .
U
Suppose (W, U, T) is M-standard. We define a strategy I'yy for above—(Sg/1
short-normal trees S on #V. 42 Let ¥ = ¥V and N =7 | 0= M.
If Ih(E§) <~”, then Ty follows W, _+ (recalling that T is via \1141,1,4,/1_).

Suppose Ih(E5) > ~”". Let T be the above—fisrU—strategy for U given by Xy .
Then since ¥ = #U is defined by P-construction, I' induces a short-normal
above-y” -strategy for ¥, which I'yy follows in this case.

We extend T' to TVIC], for set-generic extensions V[G] of V, using that ¥
extends canonically to XVI[C], b

Lemma 4.77. T'yy is good, and hence so is each F)‘,/\)[G].

Proof. Clearly T'yy yields wellfounded models, and we already saw that W,
is good. So with notation as in Definition 4.76, suppose 1h(ES) > v” and S
has successor length, and let S’ be the corresponding above—/@ar Y tree on U. Let
B < OR(MS) with F = F(MS ||8) long, and 8 > ~”. Let F' = F(M5||8).
Then crit(F') = x§ and F’ is U-total, and F C F’. So goodness with respect
to F' is an easy consequence of Lemma 4.57 (note that U and U’ = Ult(U, F)
are kY- and kY -sound Y-iterates of M). O

Lemma 4.78. Let A be a set of ordinals. Then there is an M-standard
(W, U, X) such that A is (U,P)-generic for some P € U|kY. Moreover, if ¥
is a non-dropping \IJA,/LVI— -iterate of 1, via maximal tree T = A, then ¥}V is a
V. o -iterate of ¥ (see Definition 4.69).

Likewise if V[G] is a set-generic extension of V and A € P(OR)NV[G].

Proof. Let F € EM be M-total with crit(F) = kg. Then Ap is a limit of
Woodin cardinals of M|Ih(F'), and vp < Ap. Let § € (vp, Ar) be Woodin in
MIW(F'). Let W' be an above-vp genericity iteration of M, for the extender

algebra of M|Ih(F) at §, making A generic. Note that pi\/[”lh(F) < vp, SO

W' drops immediately to M||Ih(F'), at degree 0. Set W = W'~ <F(MOVX/)>

The “moreover” clause is a routine consequence, and the extension to V[G] is
similar. O

We can now define the full short-normal strategy W, for #7. In the end the
method used to define the corresponding strategy for ¥#3, in §5.6.4 (especially

42We use subscript W, not T, as one can have M-standard W', U’, T") # (W, U, T) with
T’ = T. We will later see that, in this case however, T'yy = Tyyr.
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Definition 5.67), will be somewhat different, instead of being a direct general-
ization. One could probably use the methods of §5.6.4 to define a strategy for
#1 below, which would have benefit of making the construction more uniform.
But historically, the approach below was found earlier, and the verification that
it works involves ideas that do not come up for the methods of §5.6.4, which
and seem of interest. So in order to record more information, we use the two
different methods, as opposed to aiming for succinctness through uniformity.

Definition 4.79. Let 7 be the class of all trees 7 on ¥; via \Il%’y/f, of

successor length, with b7 non-dropping. For 7 € 7, letting ¥ = ML, we
will define a good above-d] short-normal strategy W+ for #. We will then
define
Uen = Wy o U U .
TET

So fix T. Let (W, U, X) be M-standard and such that 7 is (U, P)-generic for
some P € U|Y, which exists by Lemma 4.78. Let j : ¥ — #U be the correct
iteration map. By 4.71, #{U is w-standard. We define

U = the minimal j-pullback of T'yy,

(see [14, 10.3, 10.4] and Remark 4.80 below; by w-standardness, the minimal
j-pullback is well-defined, but we verify below that W is independent of the
choice of W13).

We also generalize this to set-generic extensions V[G] of V. Let .ZVI¢] be

the class of all trees 7 on ¥, via \Ifajv/[cfi]/, (determined by ©VIC just as \111/1,7/;

1,7
is from ), of successor length, with b7 non-dropping. Fix T € ZVI¢l. Let
(W, U, X) be as above with respect to 7 (but still with W e V,so U CV and
X €V also). Let ¥ = MZ. and j : ¥ — 7V be the correct iteration map.
Define
w;{[G] = the minimal j-pullback of I‘XV[G]. B

Remark 4.80. Let us summarize how the minimal j-pullback determining W
is defined. It is like a standard copying construction, except that the method

U
for copying extenders is different. Let E; be the (6§ ,6;’/ ! )-extender derived
from j. For S via U, we will have a tree S’ via I'}y,, with the same length, tree
order, drop and degree structure, and for o < 1h(S), a d = deg‘s—embedding

T : MS — MS,

and moreover, ,
MS = Ulty(MS, Ej)

and 7, is the associated ultrapower map, and if & + 1 < 1h(7") then

M |[IW(ES) = Ulto(MZ |Ih(ES), E;),

430f course, we could have simply chosen W in a canonical fashion, and then ¥+ would be
trivially well-defined. But the independence from W will be important later.
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and letting d* = deg® (o + 1), then
MS) = Ultg: (M54, Bj).

The remaining details are essentially as in [24] and [14], using w-standardness
for Vsps (the latter ensures that, for example, when ES # F(MS) or degS > 0,
the ultrapower above determining ES does indeed produce a segment of MS ).

Lemma 4.81. ** We have:
1. U is well-defined for each T € FVIC1,
2. \I/g;[G] is good.

Proof. Since G doesn’t make a significant difference, we assume G = ().

Part 2: Let S on ¥ be via ¥, and S’ the minimal j-copy, as in Remark
4.80. Using the copy maps mq : MS — MS', we can argue just like in the last
part of the proof of Lemma 4.68 to see that the long extenders in E, (M) are
correct.

Part 1: Let (W, U, X) and (W', U’, X’) be as in the definition, and let ¥, ¥’
respectively be the induced strategies for ¥ = MT.

Roughly, we would like to compare U with U’, producing a common iterate
U" and corresponding W, X" and show that ¥, ¥’ both agree with ¥y, and
hence are equal. However, a standard comparison of U,U’ doesn’t work for
this, as the resulting iteration map could have critical point x}! on one side,
which would cause problems. Instead, we form a modified kind of comparison,
as follows.

Let D € EY be the U-total order 0 measure on k. Let § be the least
Woodin of Ult(U, D) such that § > k{. Let D’, &' be likewise for U’.

Recall from [22] that the meas-lim extender algebra of a premouse N is like
the usual extender algebra, except that we only induce axioms with extenders
E € EY such that vg is a limit of measurable cardinals of N. We will form
a simultaneous genericity iteration (),)") of Ult(U, D) and Ult(U’, D’) for the
meas-lim extender algebras at 6,6’, above x§ + 1 and &Y " 4+ 1 respectively,
arranging that MY and M2’ are generic over one another, and §()) = iY_(8) =

Ooco
2.3;0/0(6, ) = §()'). To help ensure the latter, we also (i) arrange genericity of
(Ul0,U’]6"), which will allow Y,)’ to be recovered in the generic extensions,
and (ii) insert short linear iterations which ensure that every measurable of MY
below i3, () is a cardinal of M. 032/, and vice versa; this is like similar arguments
in [17] and [15]. However, executing this process in the most obvious manner,
using the process for genericity iteration with Jensen indexing on both sides (as
described in [22, Theorem 5.8]) seems to lead to the possibility of the trees Y, )’
being non-normal. Thus, instead of this, we produce a sequence (Va,V),),<,
of normal trees approximating the eventual desired trees Y =Y, and )/ = Y,
with the sequence converging in a natural way.

44 Although this lemma logically precedes later parts of the paper, its necessity and proof
were actually found later, in particular after the proof of Theorem 5.79, which was found after
the proof of Lemma 5.8.
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Here are the details. We initially iterate linearly with the least measurable
of Ult(U, D) which is > Y (hence < §), and likewise > x§  for Ult(U’, D'),
until they reach some common closure point > max(d,d’). Suppose we have
defined X = Y,, X’ = Y/, at some point after this initial phase. These trees

@

will be padded 0-maximal, of successor length, and if Eg( # () # Eé(/ then
lh(Eg) = lh(E/g,Y/). We will determine some extenders E,, E!,, or stop the
process. First let G, € E; (M) be the extender selected for the purposes
of genericity iteration, for making (EMQ{ ,U|6,U’|¢") generic, and given current
tree X (but not demanding that 1h(G,) > lh(Eé() for all 5+ 1 < lh(X); if
h(G,) < 1h(E5Y ) for some B, that is okay); we follow the extender selection
procedure for genericity iteration for Jensen indexing here (see [22, Theorem
5.8]), and if b drops then M will be active, and in this case F(MZYX) is
automatically set as G, if no extender with lower index is. (If there is no such
extender, set G, = 0.) Define G/, symmetrically, for making (EMZ U8, U"|6")
generic. If G, # () then let v = Ih(G,,); if otherwise and b* does not drop then
let v = iy (8), and otherwise let v = OR(MZ). Define 4/ symmetrically. If
there is F' € E(MZ |y) which is M2 -total and x§ < crit(F) and crit(F) is not a
cardinal of M OXO/, then let F,, = the least such F, and otherwise let F, = G,. (If
crit(F) is not a cardinal of M2’ for the trivial reason that OR(MZX') < crit(F),
and hence b’ drops, then it will follow from Claim 1 below that M (fg/ is active,
G, # 0 and so 1h(G.)) <1h(F), and in this case, F' will actually be irrelevant.)
Define F!, symmetrically. If F,, # @ and either F, = ) or Ih(F,) < Ih(F)) then
set E, = F,, and otherwise set E/, = 0; define £/, symmetrically.

If E, =0 = E/, then we stop the process (setting « = a). If E, # () then
let 8 be least such that E, € E+(M5X), and set YVotr1 = Vul(B+1) " E, (as a
0-maximal tree). If B/, # 0, define V), symmetrically. If E, # ) = E/, then
set Vi1 = Val(B + 1), where § is least such that either V/, = V/[(8 + 1) or
Ih(EY*) > Ih(E,). And if E, = 0 # E, proceed symmetrically.

Finally, given Yy, Y/, for all @ < n, where 7 is a limit, define ), as the natural
lim inf of the Y, for @ < 1, extended with the relevant iteration strategy ¥ as
necessary. That is, ), is via ¥, and }, uses an extender E iff ), uses E for
eventually all o < 7, and if this yields a limit length tree, then we extend it
using ¥ to successor length.

This determines the mutual genericity iteration. The first claim below is
much as in [22, Theorem 5.8] and related arguments in [17]:

CrAamM 1.
1. Y, is O-maximal and if Y= drops then MY is active; likewise for )/,
2. the process terminates at some ¢ < 0o, giving Y =Y, and V' = Y/, and

3. v, do not drop (although there can be v < 1h(,)”’) such that [0, o]y
or [0, a]ys drops, because of Jensen indexing).

Proof. Part 1: The O0-maximality is directly by definition; the rest is as in [22].
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Part 2: Suppose not. Fix some large enough regular cardinal x. Assume
for the sake of illustration that for all &« € OR there are 3,3’ > « such that
Eg # 0 and Ej # 0; the other case is similar. Let Y = ¥, and J' = )}, noting
that x + 1 =1h(}) and x = §()’) and x is a limit cardinal of MY, and likewise
for )'. Let J < H,+ with everything relevant in J and x = J N x € x, let
H be the transitive collapse of J and 7 : H — H,+ the uncollapse map. So
(k) = x and we have Y,V € H with m(¥,Y’) = (),)’). Note that Y = Y,

and 1h()) = k + 1, §()) = & is a limit cardinal of MY, k € b¥ =Y N (k + 1),
and for all « € [k, x], we have Y = YV, [(k + 1). Likewise for ).

As usual, igX [P(k) C w. Let E be the first extender used forming Z%]X,
so crit(E) = k. Let a € [k,x) with E = E,. Since k is a limit cardinal of
MY’ and hence of Mgg‘ , either (i) E = G, was chosen for genericity iteration
purposes, and let 3 = «, or (ii) b¥» drops and E, = F(M2Y+). But if (ii)
holds then as is usual for genericity iteration with A-indexing (see [22]), there is
B € [k, a) such that Eg = G is used in Y (but not along b”), and used in V,,

and Gglv(Gg) = Eolv(Gg). So in either case (i) or (ii), G is used in Y and

Gplv(Gp) is derived from i, . But note then that Mg:f\y(Gﬁ) = MY |v(Gp),
and therefore we obtain a contradiction like in the usual proof that genericity
iteration terminates.

Part 3 is by construction and part 1. O
Let 6 = iy _(6) and 0¥ = igﬁo(é’). Note that ¥ is a strong cutpoint of

M2, and M2 is 6¥-sound; likewise for ¥ and M2’ .
Cram 2. 6Y = 5.

Proof. We may assume 6 < &Y' By minimality of §, 6% is not Woodin in Mgé/.
Let Q' <1M032/ be the Q-structure for §7. Because of the inserted linear iterations
at measurables, 0 is a cardinal of M2 . Note then that by choice of D', ¢’ (and
smallness), 6% is a strong cutpoint of Q'. But (MY'|6¥, U8, U’|§’) is meas-lim
extender algebra generic over MY at 6, and (MY|6Y,U|§,U’|§") is likewise over
@', also at 67, because §¥ is a cardinal of Mgg. Therefore these two premice
can be lifted to premice (M) and (Q')* over (M |6Y, MY'|6Y,U|6,U’|&").
Comparing (M2)* with (Q")* (so the comparison is above §”) and considering
smallness and §”-soundness, we have (Q")* < (MY)*.

Now working in (M2)*, where we have U|§, MY |6¥, U’|6', MY |6¥ and @',
we can recover :)7[63} and 37’[(53]/ + 1), where Y is just like ) but as a tree on
U|6, and )’ likewise. For (i) we have U|§ and U’|§’, and we just proceed by
comparing U|§ with MY |§Y and U’|6’ with @', (ii) Q" determines the branch of
)’ at stage %, and (iii) the intermediate Q-structures used to guide Y, )’ are
segments of MY |6¥ and M2 |6¥ (for example if € = §()’|¢) and the Q-structure
for Y'[€ is non-trivial, then ¢ is a limit of measurable cardinals of Mgg, hence a
limit cardinal of M2, so the Q-structures on both sides do not overlap &, which
implies that the next extenders used have index beyond the Q-structures (and
likewise at all stages after £), so the Q-structures are retained).
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So in (M2)*, where §¥ is a regular cardinal, we can execute a slight variant
of the termination-of-genericity-iteration proof used above for Claim 1 (with §¥
in the role of x there). (We may not have the sequence of trees (Va,V,,),csv
in (MY)*, but note that the trees we do have are enough.)

Let 6* = 6¥ = 0¥ and Q = MY and Q' = MY'. Note now that (by &*-
soundness and as ¢* is a strong cutpoint on both sides), @,Q’ are equivalent
modulo a generic above §*, i.e. letting Q1 be Q[Q’]|d*], considered as a premouse
over (Q[6*,Q’|6*), and (Q')" likewise (we no longer need U|§ and U’|§’), then
Qt = (Q")*. It follows that /1(? = n(?, and #,¢ = ”//1("2/, and by uniqueness
of iteration strategies, the above-0* strategy for @ translates to that of @’.
Finally let Z be the normal tree equivalent to the stack (W, D,Y) and Z’ that
to W', D', )"); it follows that Tz =T'z/.

Let j: ¥ — #U and j/ : ¥ — ¥ be the correct iteration maps. Now
iV 19V is the correct iteration map k : 7V — VIQ (because we wanted this,
we couldn’t just compare U with U’ in the usual manner). Likewise k' =
LY So

koj:k'oj/:”f/—)”f/lQ:"f/lQ/

is also the correct iteration map. So the minimal k o j-pullback of I' z equals the
minimal &’ o j/-pullback of T'z/ (a strategy for ¥'); denote this by ¥*. Recall
that W is the minimal j-pullback of I'yy, and ¥ the minimal j’-pullback of I'y.
It suffices to see that ¥ = U*, since then by symmetry, ¥/ = U* also.

Let £ be the above—%;é2 strategy for Q given by ¥¢. Let XU be likewise for
U. Then by xY-soundness and since x§ is a cutpoint of U, XV is the minimal
iPY_pullback of ¥?. But then I'yy is the minimal k-pullback of I'z; for trees
S on ¥V with Ih(Ey) > 71,1U7 this uses that k£ C i?Y and the fine structural
translation of S to a tree on U; for trees with 1h(ES5) < 4% it uses minimal
hull condensation for ¥, and the fact that the action of I'yy, and I'z on such
trees in induced by X ;. Therefore ¥ = U* as desired. O

4.12.5 Normal trees on ¥;

So we have a good short-normal strategy Vg, extending v, v This extends
easily to a normal strategy >, .

Definition 4.82. We define a 0-maximal iteration strategy ¥, for 71, deter-
mined by the following properties:

1. Uy, C Sy,
2. Let T be on #7, 0-maximal, of length n+2, with 7 [+ 1 short-normal and
via Uy, and EnT long. Then (by goodness) M,], is a non-dropping iterate

"
-
of #1 via a tree U according to W, .-, and Ih(E]) = 5(])\4’7“. Then X,

acts on trees normally extending 7 [n + 2 by following Wy,, until another
long extender is used.
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3. Likewise, whenever 7 is on %4, via X, , and E,]T is long, then Mg;l is a
non-dropping V., ¥ -iterate, via a tree U, and Xy, extends T [(n+ 2) by
following W;,, until another long extender is used.

4. If X is a limit and there are long extenders used cofinally in A, there
is a unique T [A-cofinal branch, and M)\T is again an iterate via \I/n,,hn,/lf
(by normalization for transfinite stacks). In this case, 6(7A) is the least

;
measurable of Mg_, so we can have T [[\ «) based on M;\r|6éw* , with

A < a. This interval is formed using W 4 (see Definition 4.69). Letting
T

a be least such that (A, a]7 does not drop and 5(])\4” < h(ET), then (by

normalization) there is a short-normal tree U via ., ¥ with last model

M7, and Yy, extends 7 [(a + 1) by following ¥y, until the next long

extender. B

The following lemma is now easy to see:

Lemma 4.83. ¥y, is a good 0-maximal strategy for ¥;. Moreover, for every
successor length tree T via Y, there is a unique short-normal tree via Vg, with
the same last model.

Lemma 4.84. ¥y, has minimal inflation condensation (mic).

Proof. We just consider short-normal trees; it is easy to extend this to arbitrary
normal trees, and we leave this extension to the reader.

Let 7,U be short-normal trees on 77, via Wy, such that I/ has length A +1
for some limit A, 7 has successor length, and Y[\ is a minimal inflation of T
we must show that ¢/ is also a minimal inflation of 7. Let 7 = 7o~ 71 and
U = Uy~ U, with lower components Tq, Uy and upper T1,U;.

Now \117,177/17 has mic, because it follows ¥4, which has mic, since X/

does, and by [14, ***Theorem 10.2]. So we may assume T; # ). Therefore, 7y
has successor length o + 1, [0, )7, does not drop, and 7; is based on M0 and

pl
is above 5(1,\/1 «* and uses only short extenders. And Uy, Uy, 5 are likewise, and
note that 8 € I] = min!_ Let

T~>minld .
Iy = Hﬁ . 76 “—min Uo

(the minimal tree embedding at stage 3 of the inflation), and j : M0 — Mg’o
be the copy map determined by IIy. Then in fact, Mgo is a My - -iterate of 7

where ¥ = M0, and j is the iteration map (see [14, ***Lemma 4.5]).
Now it suffices to see that Wy, has minimal hull condensation (mhc) with
respect to extensions of Il “above dy”; that is, whenever T5,Us are trees on

r U, MTo M;/{O . . ~ .
Mo and Mﬁ", above §, * and ¢, respectively, with Uy~ Uy via PUg,, and
II: 76 A7d2 “—min Z/{O AZ/[Q

is a minimal tree embedding with ITy C II, then 7o~ 75 is also via Wg),.
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Let 7] = j“T2, a (putative) tree on Mg“. Then 73 has wellfounded models,
and in fact, there is a minimal tree embedding

HI : Z/[O A7—2l “—min Z/[O AMQ
determined in the obvious manner: for a < Ih(Uy), we have I = [, o], and
for a < 1h(75), we have Ijj 1. 0 = Mi(7) 1o this determines IT'.
Cram 1. Uy~ 74 is via Ug,.

/ U
Proof. If lh(Eg;) < ’yMﬂO then this is just because Wy, follows the strategy
induced by X, u, 10 in this case, which has mhc.

s

So suppose WMEIO < lh(EO"‘,). Let (W,U,Y) be M-standard for Uy. Let
l: Mé’o — 7Y be the iteration map. Since Uy follows Wy, , the minimal /-copy
Uy of Uy (a tree on V) follows I'yy. Let %27 be the minimal ¢-copy of T3 (see
[14, **¥%10.3, 10.4]). Then '}27 has wellfounded models, and in fact there is a
minimal tree embedding
2 T§ min Us,
determined in the obvious manner. But since Zjl; is via I'yy, and this strategy

has mhc, because Xy does, therefore ?2’ is also via T'yy, and therefore 73 is via
Wy, as desired. O

CLAIM 2. To ™ Tz is via Wg,.

Proof. If lh(Eg_z) < vMaTO, this is again easy, using mhc for EMQTO 0 So suppose
otherwise. Let (W, U, ) be simultaneously M-standard for 7o and for Uy. Let ¢
be as before, and k : M — 7,V be the correct iteration map. So W7, and Wy,
are the minimal k-pullback and ¢-pullback of T'yy respectively. But foj = k, since
these are correct iteration maps, and therefore W, is the minimal j-pullback of
Uy,, which, since 73 is via ¥y, proves the claim. O

This completes the proof. O

The preceding proof does not seem to give that 3, has mhc, because it relies
heavily on the fact that £o j = k, and if j were instead just a copy map arising
from an arbitrary minimal tree embedding, then it need not be an iteration map
(and in fact MZB’{0 need not be an iterate of M0).

5 The second Varsovian model 75

5.1 The 4;-short tree strategy for 7]

Definition 5.1. Let ¥ be a non-dropping X+, -iterate of #7.

Let 7 be a short-normal tree on ¥ via ¥y, based on 7|87, of limit length.
Let b= Xy (T). Say that T is §;-short iff either b drops or §(T) < i] (67), and
01-maximal otherwise.

We define §;-short and 61 -mazimal analogously for trees on M. —
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It will be shown in [16] that ¥#; knows its own strategy for d;-short trees,
and, moreover, has a modified P-construction which also computes the correct
branch model M, for §;-maximal 7, given that 7 is appropriate for forming a
P-construction.

In this paper we explain the main new idea needed to prove this, illustrated
with a restricted class of trees T (P-illustrative trees) which suffice, for example,
for genericity iterations at 6;’/ !, This restriction will ensure that for such T
and limits A with 7|\ being d;-short and @ be the correct Q-structure for
T, the only overlaps of 6(7)\) in @ are long extenders, and this will mean
that we have no need for *-translation. We will compute @) via a modified P-
construction; a key issue is that the P-construction has a new feature, due to
the long extenders on the T-side, and the extenders with critical point x}! on
the M-side. Similarly, for §;-maximal P-illustrative trees T, MbT will also be
computed by a modified P-construction. We will need a new argument (5.8) to
see that the P-construction does indeed compute the correct model. We will
actually first consider analogous P-illustrative trees on M, and then transfer
these results to trees on #;. We will then adapt the results to §; -sound non-
dropping X, -iterates ¥ of ¥7.

P-illustrative trees suffice to construct %3, and prove a significant amount
about it. However, in order to prove that it fully knows how to iterate itself, and
related facts, we need to consider arbitrary trees, including the full §;-short tree
strategy. Such facts are moreover used our proof that #5 is the mantle (because
it uses a comparison argument, which seems needs iterability with respect to
arbitrary trees). In order to deal with arbitrary trees, we need to deal with
trees having overlapped Q-structures, and therefore need *-translation, adapted
to incorporate the modified P-construction. This material is deferred to [1(]; at
certain points we summarize results from there we need.

5.1.1 P-illustrative trees on M

Definition 5.2. Given a (strategy) premouse N and x < 1 € OR", we say
that 7 is a k-cutpoint of N iff for all E € EY, if crit(E) < n < 1h(E) then
crit(E) = k, and a strong k-cutpoint iff for all E € EY | if crit(E) < n < Ih(E)
then crit(F) = k. 4

Definition 5.3. Let 7 be an iteration tree on an Mgysw-like premouse N
and ¥ a partial strategy for N. We say that T is P-illustrative iff there are
FEq, U, \,n, ag, i such that:

1. either

(i) E1=0,U=N and A = &Y, or

(ii) By € EN, Ey is N-total, crit(E;) = «¥, U = Ult(N, Ey) and A =
/\(El) = H[l]7

2. T € N, T is normal, of limit length, is above x{’ and based on N|§%¥, and
letting 7' be the corresponding tree on N |01, we have T’ € U|\,
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3. k)Y <m < Xand 7 is a strong k) -cutpoint of U, and 7 is a U-cardinal,
and if By # 0 then &Y < %
-

4. 0 < ap <nand ag < Ih(T) and [0, ag]7 does not drop and p = Kzg/[“‘) <,

5. T1lew, 1h(T)) is above (,u*)MaTO,
6. for each B+ 1 € (ap,1h(7)), every Woodin of Mg|1h(Eg) is < p,

7. m<d=06(T), nis the largest cardinal of U|J, T is definable from param-
eters over U|d, and U|d is extender algebra generic over M (T). -

Condition 6 prevents us from requiring #-translation.

Definition 5.4. Let 7 be P-illustrative and N,U as in 5.3. We define the
P-construction PY(M(T)) of U over M(T). This is the largest premouse P
such that:

1. M(T) < P E“§ is Woodin”, where 6 = §(T),
2. for a € [§,0R”], P||a is active iff U||« is active,

3. Let ag be as in 5.3, let o > & be such that Ul|« is active and let E = FFlle
and F = FUll*, Then either:

(a) crit(F) > wd! (so crit(F) > 6) and EJOR = F|OR, or
(b) crit(F) = k) and Eoif, kg™ = Flrg™. -

Remark 5.5. A key point in the above definition is that in condition 3b, with
j= z'oTao, we only require F o j and F' to agree over ordinals, not the full model
N|sg™ (although N|xf™ is an initial segment of both sides). In fact (as we
require that P is a premouse),

Eojl(N|kg™) # FI(N|s$™),

because P|kg = Nl|ko = Ulkg, but P|A(E) # N|A(F), and because E must
cohere P|a, therefore E(j(N|kg)) # F(N|ko). However, recall the following
fact, which we leave as an exercise for the reader.

Fact 5.6. Let N be a passive premouse, £ be a cardinal of N, X C stV
be unbounded in k™ and f : X — ORY. Then there is at most one active
premouse N’ whose reduct is N and FN[OR = f, and in fact, N’ is ¥, -definable
over (N, f).

(Note though that it is important that N is given; there can actually be
another active Nj with N # Ny, but FNM[OR = f.)

45Note there is no F' € EV with crit(F) = s} and A(F) = n, since otherwise N is past
superstrong.
46 7J||6 is passive, because 7 is the largest cardinal of U||§ and by Footnote 45.
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Remark 5.7. It is not immediate that the P-construction P is well-defined, as
we have defined it directly as the largest premouse with the above properties,
and one also needs one small observation to see that, if well-defined, then P is
unique (and appropriately locally definable).

Consider instead defining P|a and P||a by recursion on «. Note that j =
J M(J{N € Uln C U|4, so j is available as a parameter when making definitions
over U||3 for some 3 > §, and j is also in the generic extension (P||3)[N|d].

Now given P||S for all § < «, « a limit, (all P||S sound), we get a premouse
P|a satisfying “d is Woodin”. Suppose U||« is active with F. We need to see
that we get a premouse P||a, fine structurally equivalent with Ul|la (modulo
the generic). We need to in particular see that there is a unique premouse P||«
with the right properties. If crit(F' UHO‘) = Ko, existence is not immediately
clear, and will be verified in Lemma 5.8. Uniqueness and the manner in which
FPlle is determined, requires a short argument. We have P|a and can compute

i
FPlletrg(5), and rg(j) is cofinal in pt(Pl®) (where p = né\/[a“ = crit(FPll*)). By
Fact 5.6 this (very locally) determines F¥!l*. For the case that crit(FU!l*) > 4,
one makes the usual P-construction observations, although the generic equiva-
lence here involves the parameter j.

Overall we maintain level by level that

P|g is AV ({P5, 7)),

PlIg is AV (P15, 1),
uniformly in 8 > ¢ (and recalling P|6 = M(T)), and also that

U|B =5 (P|B)[U}8] and U5 is APV (118,71,

U|18 =5 (P||8)[U]6] and U||5 is APV (05, 7y,

uniformly in 8, where (P|3)[U|d] is a generic extension, which for definability
purposes has has P|f available as a predicate (and similarly for P||53), and where
=* means that U|S is the premouse which extends U|d, followed by the small
forcing extension of extenders E in EFI? or Ei”ﬁ when crit(FE) > §, and the
extender determined by F o j otherwise, and also that the usual fine structural
correspondence holds between the two sides (employing an extender algebra
name for j).

Lemma 5.8. Let T be P-illustrative on M, via %y, and b = X, (T), and let
U be as in Definition 5.3. If T is short let Q = Q(T,b), and otherwise let
Q = M, . Then 2Y(M(T)) = Q.

Proof. Let 6 = §(T). Working in V', we “compare the phalanx ®(7, Q) with the
phalanx ((M,¢),U), modulo the generic at 6”. That is, in the “comparison”,
we only use extenders indexed above §, with least disagreements determined
by the restrictions of extenders to the ordinals, and after composing extenders
E overlapping § on the ®(7, Q) side with j (notation as above). That is, we
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define normal padded trees & on ®(7,Q) and V on ((M,9),U), with both
corresponding to trees on M via Xj,%" and such that, given (U, V)[(a + 1),

letting v > & be least such that £ = FMdllv £ () or F = FM7 £ ) and either:
— crit(FE) = p and EOj[/{gM #FM(}LM7 or

— crit(E) > p (so crit(E) > §) and EJOR # F[OR, or

E=0+#F,

then FY = E and EY = F (and the comparison terminates if there is no such
v > §). We need to see that this comparison is trivial, i.e. no extenders are
used. So suppose otherwise.

CLAIM 1. The comparison terminates in set length.

Proof. Note that if Eg overlaps ¢ then Mg ,1 is proper class and

MZ/{
ko = A(E%{)
is a cutpoint of M/%{—H’ soU[[B+1,00) is above )\(Eg,’) Therefore there is at most
one such B. Likewise for V. But the comparison after these overlaps becomes
standard comparison modulo the small generic at §, so the usual argument then
shows that the comparison terminates. O

So say we get lh(U,V) =a + 1.
CLAIM 2. At least one of the trees U, ) uses an extender overlapping §.
Proof. Suppose otherwise. Suppose OR(MY) = OR(M)); the other case is sim-
ilar. Then the level-by-level translation process described in 5.7 works between

MY and MY, and we get fine structural correspondence above §. Suppose that
OR(MY) < OR. Let A be either the core of MY if p,,(MY) > §, and otherwise

47For ((M,§),U), the notation means that the exchange ordinal associated to M is §, so in
fact, since § < Ih(EY), and § is a strong kg-cutpoint of U, if crit(EY) < & then crit(EY) = ko.
If U = M then we V is directly equivalent to a tree on M via Xp;. If U = Ult(M, E) where
E € EM and crit(F) = k1, then a simple instance of normalization produces the tree V' on
M, via ¥z, corresponding to V: If V|3 is above & but based on UATU = U\ni"U, then V|8
is the tree on M, via Xjs, which uses the same extenders and has the same tree structure
as does V[B. Note that because 1,0 are strong kg-cutpoints of U, and by the Mitchell-

Steel ISC, E’s natural length v(E) < 7, so piijlh(E) < n, so for each a + 1 < B such that
pred’(a+1) = 0 and a4+ 1 ¢ 24, we have that V' drops in model and degree at o + 1 to
(M;li’l,degx;l) = (M||1h(E),0); V|B and V' |8 otherwise agree in drop and degree structure,
and so their models and embeddings agree in a simple manner. If V| is as above but [0, 8]y
MY /
does not drop and ni— p< Ih(EY), then V' uses first F(MY') as an extra extender, and
v
B

MY M
note then that ME = MY .. Since Ky # is a kg-cutpoint of MY, if VI[B,7) is above K,

B+1-
then V[[B,7) is directly equivalent to V'|[8 + 1,7’) where v/ = v+ 1 or v = v in the obvious

manner. Finally if £ is least such that crit(Eg}) = ko (either with £ < 8 or B < £ as above)
then V, V' are again directly equivalent thereafter.
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the d-core of MY%. Let B be likewise from MY. Let 7,0 be the core maps re-
spectively. Then by the fine structural correspondence and forcing calculations,

rg(m) N OR =rg(o) N OR,

so OR? = ORZ. But also, the core maps preserve the fact that the level-by-level
translation works, so B =5 A[M(T)] etc (with fine structural agreement up to
the relevant level). But we had A < ng and B < My for some -y, and either E,I;’
or Ey came from E4 or E¥ respectively, a contradiction. So OR(MY) = OR, so
there is no dropping on main branches, and 7 is maximal. But now we can just
replace “d-core” with the hull of § U.#, where .# is the class of indiscernibles of
MY or equivalently, MY and run the analogous argument, using that Q, U are
d-sound (if U # M, this is because 7 is a strong xo-cutpoint of U, and hence if
U = Ult(M, E) where E € EM with crit(E) = k1, then v(E) < 7, where v(E)
is the natural length of F). O

Now let 8 be least such that E% or Eg overlaps §. The following claim is
the most central issue:

CLAIM 3. Not both of EY, E}; overlap 9.

Proof. Suppose F' = Eg overlaps §. Then F' ME}" M ig a restriction of the iteration
map

Mo — MUALE),
Similarly, supposing E = E% overlaps §, EJOR is a restriction of the iteration

map
M7 Ult(M] | E)

Moo™ - Mo 207
so Eoj [KSFM is the restriction of the iteration map

Ult(M] | E)
Moo = Mo o

So it suffices to see that
Mgolt(M;rO,E) _ MEOM(M’F), (24)

as then Foj MSLM =F [/<;U+M , contradicting the disagreement of extenders. But
(24) holds because
(M In(E))[M]8] =5 MY |In(F),

since 6 < A(E) = A\(F') and E, F constitute the least disagreement. O

Now assume for notational simplicity that Eg overlaps §; the other case is
very similar. Note that:

— [0, 8 + 1]y does not drop in model, and
— UJ[B + 1,1h(U)) is above A(EY).
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As in the proof of Claim 2 we get:
CLAIM 4. Neither (7,b) ~U nor V drops on its main branch.

It easily follows that there is v > g such that E}f overlaps 6. We have
B+letMandy+1€bY. Let F = gMd = gM | Let A= \EY), so

rgM <8 <A< MEY),

so Fy = EY |\ is a non-whole segment of EY, by the ISC and smallness of M.
Let

HY = cHull™ (AU %) and HY = cHull™~ (AU .%),
and 7,7V the uncollapses. Then Iié—lu = )\ because HY = MBM+1 (and note
M\ o = 7). Similarly, HY = Ult(M, Fy), but A < i (ro) = ki since Fy
is not whole. But since § < A, we also have 74[OR = 7Y OR, so 7V(\) =

MY MY v _—
T(\) =Ky © =Ky @, 50 A =kl ", contradiction. O

We now want to consider similar P-constructions internal to %1, and also
iterates of 77 and their generic extensions.

Definition 5.9. Let ¥ be a non-dropping X, -iterate of #;. Let 7 be an
iteration tree on ¥. We say that T is dl-somewhat-relevant (dsr) iff there are
To, ¥, T1 such that:

1. 7 is short-normal,

2. T has lower and upper components 7y, 71 respectively, 7y has successor
length, b70 does not drop, ¥’ = M0, and T; (on ") is above v,

3. for each B+ 1 <1h(7y), 6] is the unique Woodin of M]*[lh(E]").

Note that every dl-somewhat-relevant tree on ¥ is based on #|§] . B

Easily:
Lemma 5.10. Let ¥ be a non-dropping Yy, -iterate of #1. Let T on ¥ be via
Y and 61-maximal. Then T is dsr.

Definition 5.11. For a non-dropping Xy, -iterate ¥ of 1, write ¥y o for the
restriction of ¥4 to d;-short trees, and ZS;,SfSh for the restriction of Xy ¢, to dsr

trees. =

Definition 5.12. Let ¥ be a non-dropping Xy, -iterate of #;. Let T be an
iteration tree on ¥". Let P € ¥ and g be (¥, P)-generic. Say T is P-suitable for
¥ [g] iff there are To, ¥', T1, E1,U, Eg,n, 0, A such that:

(a) gis (¥,P)-generic and T € ¥[g],
(b) T is short-normal with lower and upper components Ty, 71 respectively,

V' = M0 exists and b7° is non-dropping, and 7; is based on ¥’|67",
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(¢) T is via Xy,
(d) either

(i) BEy=0and U =7, or
(ii) By € E” is short and #-total, crit(E;) = k] and U = Ult(7, E;),

(e) Pc U|sY and T € (U|xY)[g] where T’ on #|§] is equivalent to T,
(f) either

(i) Ep =0 and Ty is trivial (so ¥’ = ¥), or

(ii) Ey € E” is long, v” < 1h(Ep) and the lower component Ty of T is
just the (successor length) short-normal tree corresponding to Ey (so
v’ = Ult(¥ Ey)),
(g) 56’// < n < kY and 7 is a strong §J -cutpoint of U, n is a U-cardinal,
P € Uln, and if By # () then ! < n,

(h) T has limit length, n < § = 6(T) < sY{, 1 is the largest cardinal of U|§, T
is definable from parameters over (U|d)[g], and (U|d, g) is IB%Q;[,(,,T)
0

over M(T).

-generic

Say T is dl-relevant (for ¥ ) iff T € ¥ is 61-maximal (hence dsr) P-suitable, as
witnessed by E; = (). 4

Definition 5.13. Let ¥ be a non-dropping 3y, -iterate of #;. Let g be set-
generic over ¥. Let T € ¥[g] be P-suitable for ¥[g], as witnessed by U, 7p.
Then £2Y:9(M(T)) denotes the P-construction P of Ulg] over M(T), using EV,
computed analogously to that in Definition 5.4; so when F = FUll* £ () and
F is long, then E = FFll* is determined by demanding E o j C F, where
J=ig%163 - 2

It is now straightforward to deduce a version of Lemma 5.8 for dsr P-suitable
trees 7 € ¥ on ¥, by translating them to trees on M and applying 5.8.
Combined with the minimal inflation method used for M, this allows us to
compute the d;-short tree strategy for 77 inside ¥, and also the models for
forming the second direct limit system. However, before we proceed to this,
we want to also consider the analogous issues for iterates ¥ of ¥; (and generic
extensions #[g] thereof). The argument given above does not immediately
adapt to such iterates ¥ in general, because (i) ¥ need not be as sound as 1,
and (ii) ¥ need not correspond appropriately to an iterate of M. To deal with
these possibilities, we will adjust somewhat the conclusion and argument for
Lemma 5.8, in Lemma 5.16 below. Also note that it is not immediate that P-
suitability and dl-relevance are first-order over ¥ (or ¥#; ), because of the demand
that 7 be via Yo. We will address this issue also, in a manner similar to that
for M.
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5.1.2 DSR trees on iterates of ¥;

To deal with issue (ii) mentioned above, it turns out we can replace the use
of M (or some iterate thereof) with an Myysw-like generic extension N of ¥
(together with such an extension of a related iterate ¥7; see below). It inherits
iterability (above {)') from the corresponding iterate of #:

Lemma 5.14. Let ¥ be a non-dropping ¥4, -iterate of #;. Let g be .” -generic
and N an Mgysy-like premouse such that N =* ¥[g] and ¥ = ¥N. Let
& =97 Then:

1. N is (0, OR)-iterable with respect to trees T with Ih(E] ) > x{'.

2. 7 is the class N of Silver indiscernibles for N (with respect to the
generator set k] = wY). If ¥ is n-sound where 5] < n then N is n-
sound. If ¥ is 6 -sound then N is k) -sound.

Proof. Part 1: Let P < N with pf = k}’. Then P is (0,OR)-iterable with
respect to trees 7 with 1h(EJ) > k)Y, because s}y is a cutpoint of P, and
letting £ € E” be long, E extends to ET € EN, and E*(P) is above-A\(E)-
(0, OR)-iterable, since iterating E*(P) above A(E) is equivalent to iterating
Y [|OR(E*(P)) above A(E).

So we may assume that k3 = 6 < 1h(E] ), and soy” < Ih(E]). Consider
translatable trees 7 on N. We get an iteration strategy for such trees induced
by ¥y, and the resulting iterates of N, ¥ are related according to Lemma 4.64.
Now suppose T [(« + 1) is translatable, and let & on ¥ be its translation to ¥/,
but 7 (a+2) is not translatable. Then « is a limit ordinal and a limit of stages

U
when U uses a long extender, and 1h(E]) < 6(])\4& . But then T [[a, 00) is just a
T T
tree on some P < M where pl = /fé\/[a , and néwa is a cutpoint of P, and this
T
P is also iterable above Héw“‘ , like in the previous paragraph.

Part 2: By genericity, .# form indiscernibles for N. Note that ¥ is x7 -sound.
Let n € [0, k)] be least such that ¥ is n-sound. Note that N = Hull} (.# U1).
So #N = 7. Finally suppose n = 6], so N = Hull{v(naﬂv U ). But also
Hull] (.#) is cofinal in 67 and ¥ is definable over N, so HulllY (s} U .#) is

cofinal in kg and transitive below x7 %, hence contains all of g, and hence
all of N. O

Definition 5.15. Under the hypotheses of Lemma 5.14, let ® x5 be the above-
k' -strategy for N induced by Y4 as in the proof of the lemma. (Note that the
components of this strategy which do not translate to a tree on ¥, i.e. on one
of the projecting structures P in the proof, are uniquely determined by P.) -

Lemma 5.16. Let ¥ be a Xy, -iterate of #;. Let S be the short-normal tree
on ¥, via Sy, , with last model ¥. Let ¥ = cHulll (#” U§)) and ¥ =
cHull] (.#” U 6Y). Then

1.V =M3 for some a € bS, and S, 00) is equivalent to a tree on ¥ via
S, V6] =167, and ¥ is 6] -sound. Likewise for ¥ and &§ .
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Let P € ¥ and g be (¥, IP)-generic. Let T € ¥[g], on ¥, be dsr-P-suitable and
b=2Xy(T), and U,n, ¢ as in Definition 5.12. Let T be the tree on ¥ equivalent
to T. If T is 61-short let Q = Q = Q(T,b), and otherwise let Q = M;] and

Q= M] =cHul?(#2U6).

Let P = 2Y9(M(T)). If P is set-sized let P = P and otherwise let P =
Hulll (#V U §) and 7 : P — P be the uncollapse. Then:

2. P=Q
3. if T is 6;-maximal then § = (n*)V (and P, P are proper class),

4. if P # P then P is an above-0, Yg-iterate of Q (and hence a ¥y, -iterate
of 1) and T is the iteration map, so 7499 = 4 = #7.

Proof (sketch). Part 1: This is straightforward and left to the reader.

Part 2: We will prove this by considering a comparison of two phalanxes.
It will take a little work to define the phalanxes and describe their relevant
properties.

Let S = Sy~ 81~ Sy where Sy is the lower component of S, 81~ Ss the upper

. MSO M‘Sl =
component, with S; based on MS°|§;"~ and Sy above §; = . Then V = MS°
is 63;—sound and Sy is above 47, and is via Yy, and ¥ = M3 is (51’7—sound and
Sy is via Y.

Let ¥ be an Mysw-like generic extension of ¥ with ¥ = “//1"’/+7 and such
that ¥, g are mutually ¥-generic. Let gy+ C L7 be the generic filter. Since
LY = L7 is below crit(i5’, 5?), we have L” = L” and gy+ is also (”/;JL"’;)—
generic, and extends uniquely to an Mgyew-like generic extension ¥+ of ¥ with
¥ = 9" note ”17+|/£(J{77+ = ”//+|/18“7/+. Lemma 5.14 applies to (¥ *+, %),
so S; 7 Sy translates to a tree S; T S; on Y+, via ® and note that
RIS

YT = MY .

Let Eo, By € E” be as in Definition 5.12. Let E;" € E”" with Ih(E;") =
IW(E;) (or Ef =0 = E;). Let U = Ult(¥*, Ef). Since ¥+ is k! -sound, U
is k) -sound. (Note Uy need not be C ¥+.)

Let Ut = Ult(#*,E), if By # 0, and Ut = #* otherwise. Since 7 is a
5 -strong cutpoint of U and U|d has largest cardinal 7, so is 6, and § is also a
kU -strong cutpoint of UT. Let U = Hullgj+ (#U"US). Letting w: U+ — U™
be the uncollapse, note that § < crit(m) (as 6 < (77+)U+ and 9 is a strong /if)ﬁ—
cutpoint), and 0 is a /iOU+ = ffg+—strong cutpoint of UT, and U™ is §-sound.
Note that if P is proper class then § = 67 = 67, P is a ground of U+ [g] via the
extender algebra at ¢ (to reach Ulg]) followed by some smaller forcing (to reach

Utlg), s =ntV, #F = #U = gU"

V+DV>

OR Nrg(r) = OR N Hullff(.# 7 U §) is independent of R € {P,U, U™},
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P is d-sound, and letting U = cHully (#V U §), then P C Ulg] € UT[g] are
related as are P C Ulg] C U*[g], so P = 2Y(M(T)), etc.

Let QF = M [|OR® where 7+ " b is the translation of 7 b to a tree on
¥+, Let Qt = Q7 if Q has set size, and Q1 = Hullifr (F9 U §) otherwise.
Write 7 = 7o~ 71 for the lower and upper components of 7, and 7+ = 7,7 ~ T,
correspondingly. Note that we can rearrange 7 as a tree T+ = 7:6+ - 7:?' on

¥+ with 75" equivalent to 75" (so MDY = UF), and T, given by normalizing
a stack equivalent to (j“Si, ’Tﬁ), where j : v - [j-gr is the iteration map and
7“8y is the minimal j-copy of S;. If Q is set size then QT = Q(7+,b) and
otherwise Q1 = M,TJr. Note that Q* is é-sound.

Now compare the phalanx (([73', ), Q%) versus the phalanx ((”V=+,6), U+,
“above §, modulo the generic at § and translation for overlapping extenders”,
just like in the proof of Lemma 5.8, using @7, .7 to iterate the phalanxes (a

- 5+
little bit of normalization shows this works). Because Uy is IQ([)J ° -sound and

Vtiskl "_sound and Q@+, U+ are §-sound, essentially the same proof as before
shows that the comparison is trivial, which gives P = Q.

We leave part 3 to the reader.

Part 4, sketch:*® Suppose P # P; then P is proper class and U # U.
Letting S’ = S~ E; if By # (), and 8’ = S otherwise, we have U = MS . Now
it need not be that U is M(‘fl for some «, but this is almost the case. In fact,
because § is a 65 -strong cutpoint of U, we get the following: Let a be least
such that Th(ES") > 6. Then there is a unique tree S* extending ' [(a+ 1) and
such that E(‘fj_z # 0 iff [0, + i]s~ drops, and if non-empty, E(‘E_H = F(M&SH),
and Mfo = U. Moreover, U is a Yg-iterate of U, via a tree S which is a
straightforward translation of S|{e, 00) via a little normalization (in [13] there
are similar kinds of calculations, though here it is easier). But & is above § + 1.
Therefore it translates to a tree S * on P whose last model is P. We have Q = P
is an iterate of ¥; and § = 51Q. But by the smallness of M, and since ST is
above 61Q and does not drop on its main branch, it must be via X5 (that is, P

has nothing remotely resembling a Woodin cardinal > 5?, so the Q-structures
at limit stages are of ST are trivial). This completes the sketch. O
5.1.3 Definability of ¥y 4, and (variants of) MbT

We consider first the question of whether ¥; can define its own extender sequence
over its universe. We don’t know whether this is the case or not, but in this
direction:

Lemma 5.17. We have:
1. #1163 is definable over the universe of ;.

2. ¥ is definable over its universe from the parameter MOO|/£6\A°°.

48We don’t really need this part of the lemma, but it is convenient to have it.

(s



Proof. Part 1: Since 7/1|5[f1 = Moo|5év[°° and these have the same Vv, this is
0]

an easy corollary of Remark 3.2 (and its proof).

Part 2: Let U be the universe of #;. Recall that U is closed under ¥
for maximal trees 7 via X sn. Since do is Woodin in #4, Ty (T) is in
fact the unique T-cofinal branch in ¥, for such 7. Moreover, by the (local)
definability of the short tree strategy and of maximality, Mu|ky > can define
the collection of trees in Moo|fi6\/[°° which are maximal via ¥ aq_ sn. Therefore
working in U, from parameter Mo, |, N' = MMo<|§M= can be computed.
But then the branch through the tree from My, |0 to N can be computed, and
hence also e’ also. Therefore we can compute Ult(U, eh ), which is the universe
of Ult(#1,e”) = ¥M= (by Lemma 4.47). But %"= [Mu.|ri'=] = My, s0 we
can identify the universe of M, so by Remark 3.2, we can identify M, itself.
But from e, we therefore compute *, hence M [*], and hence ¥7, by Lemma
4.47. O

Lemma 5.18. Let ¥ be a non-dropping ¥+, -iterate of #;. Let A € OR with
A>68) andP € V|t and g be (V,P)-generic.** Then ¥ is definable over the
universe of ¥[g] from the parameter x = ¥ |\*”".

Proof. This is an immediate corollary of Lemma 5.17 and ground definability
(from the parameter P(P)). O

Lemma 5.19. Let ¥ be a Yy, -iterate of 1. Let A > 6], let P € ¥|\ and g
be (¥, P)-generic. Let x = ¥ |\*”". Then:
1. ¥[g] is closed under X' and X5 [¥[g] is definable over the universe
of ¥[g] from the parameter x (hence lightface ¥ -definable if g = ().

2. The notions

(a) dsr,

(b) 61-short/d;-maximal dsr via Xy,
(c) dsr-P-suitable, and

(d) dl-relevant,

are each definable over ¥[g] from x (hence lightface ¥ -definable if g = ().

3. For each §;-maximal (hence dsr) P-suitable tree T € Vg, as witnessed
by U, letting T be the equivalent tree on ¥ = cHull] (.#”7 U 6}) (which

is via ¥z ) and b = X.7(T), we have

M = ctall”” " M) (g U (7).

Therefore letting n be least such that ¥ is n-sound (so n S_/@i’/), ifn<d=
§(T) then M,] = 2Y:9(M(T)) and the function T + M, (with domain
all such T with n < (7)) is definable over the universe of ¥ [g] from the
parameter (x,n) (hence from n over ¥ if g = 0).

49When we deal with such generic extensions of such ¥ (here and later), we allow g to
appear in some set-generic extension of V, as opposed to demanding g € V.
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4. Suppose g = 0. Then for each 6;-maximal tree T € V¥ via Yy, with
Ih(T) < w!, letting T be as in part 3, there is a dl-relevant tree X € 7/,
on ¥, and such that, letting X be likewise, then M is a EMj—iterate of

M, where b= $;(T) and ¢ = $7(X).

Moreover, the definability is uniform in ¥ ,x, and hence preserved by iteration
maps.

Proof Sketch. Part 3 is an immediate consequence of Lemma 5.16.

Parts 1, 2: For simplicity we assume g = (), but the general case is very
similar. Let 7 € ¥ be dsr of limit length and via ¥y; we will determine
whether 7 is d1-short or d;-maximal, and if d;-short, compute X (7). Let
T = To ™ T1 with lower and upper components 7o, 7; respectively. Let Ey € E”
be long with v < 1h(Ep) and Ty € ¥|N where X' = lged(¥|[Ih(E))). Let
T = 7~6 - 7~'1 where E is the successor length tree corresponding to Ejy, and
letting k : MTo — M0 be the iteration map (recall this is known to %), 71 is
the minimal k-copy of 77 (so T is also via Sy, by [14, ***10.3, 10.4]). It suffices
to compute Eaf/(’7~'). So instead assume that 7 is itself in the form of 7.

Let By € E” be #-total with crit(E;) = x] and T’ € 71|\ where A = \(E)
and and 7" is the tree on ¥|d; equivalent to 7. Let U = Ult(¥, E1). Let n < A
be a strong §; -cutpoint and cardinal of U with 7’ € U|n. Now working in U,

form a minimal inflation X of 7/, first iterating the least measurable > 5(])‘4 2
out to 7, and then folding in EY-genericity iteration. Now X is dsr (the issue
being that we do not introduce new Woodin cardinals below the index of some
E/g(, condition 3 in the definition of dsr (see 5.9)), because T is dsr and the
inflationary extenders are only being used for genericity iteration (and the linear
iteration at the start). The remaining details of the minimal inflation and overall
process are as sketched in §4.2 (but the minimal variant, which is essentially the
same), using that ¥ has minimal inflation condensation, by Lemma 4.84 and
[14, ***Theorem 10.2].

Part 4 follows from the proof of part 2 in the case that 7 is d;-maximal,
since by [14], both the conversion from 7 to 7 and minimal inflation yields a
correct iterate. O

Definition 5.20. Let ¥ be a non-dropping X+, -iterate of #;, and g be ¥-
generic. Let #~ = #10{". Then ¥, denotes the strategy for ¥~ induced
by Xy, and Xy - g, denotes its restriction to d;-short trees, and 23/5{ o 108

restriction dsr-d;-short trees.®® Also if R is a non-dropping Xy, -iterate of 71,
and R~ € ¥[g] is a ¥y —-iterate of ¥~ then Z;Eg}sh and (Zc}sf’sh)y[g] denote
the restrictions of X - g, and T | to trees in ¥[g].

Let T € #[g] be P-suitable for #[g], as witnessed by U. Let R = 2V9(M(T))
(so R is a ¥[g]-class and is a ¥, -iterate of #7). Then 2;{5}]1 and (E‘I{;rsh)"’/[g]

50Note that if 7, %’ are both such and ¥~ = (#’)~, then we get the same strategy for ¥~
induced by ¥+ and X+ /.
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denote the restriction of X g to d1-short and dsr-d;-short trees in ¥[g], respec-
tively.5? 4

Lemma 5.21. Let ¥ be a Yy, -iterate of 71, A > 6], P € ¥|\ and g be (¥, P)-
generic. Let z = ¥ |\T”. Let T € ¥[g] be a §;-maximal tree on ¥ ~, via Sy,
and if T is P-suitable for ¥[g] then let R = 2Y:9(M(T)), where U is as above.
Then:

1. ¥Ig] is closed under (Z‘}&?Tmh)y/[g] and (Eﬁff(ﬂ,sh)y[g] is definable over

¥g] from (T,x), uniformly in T; hence likewise for (E‘Iiirsh)“’/[g} for &1-
maximal P-suitable trees T € ¥[g].

2. The notions

— dsr, and

— 01-short /6;-maximal dsr via Y7y,

applied to trees in ¥[g] on M(T), are definable over ¥[g] from (T,z),
uniformly in T .

3. Suppose T is P-suitable. Let T' be the tree on ¥~ iterating out to
M(T)=R~. Let U € ¥[g] be on R~ and via (E‘}{vash)”’/[g]. Then the

stack (T',U") normalizes to a tree on ¥~ via (E‘};{)Sh)"’/[g],

Moreover, the definability is uniform in ¥, x, and so preserved by the itera-
tion maps.

Lemma 5.16 suffers from a significant drawback, which is that it is restricted
to dsr trees. In [10] there is a generalization of this to arbitrary trees, but
this involves a further modification of the P-construction, given by merging the
preceding methods with *-translation. We now summarize the key consequences
of this, also proven in [16], which we will need later.

Lemma 5.22. Lemmas 5.19 and 5.21 both remain true after striking out every
instance of the term dsr.

Note that that parts parts 3 and 4 of Lemma 5.19 are not actually modified
by striking out dsr, because all §;-maximal trees are dsr anyway.

5.2 The second direct limit system

We now define a system of uniform grounds for %1, and the associated Varsovian
model ¥5. This is analogous to the construction of #; in §4, albeit slightly more
involved. For the most part it is similar, and so we omit details and remarks
which are like before. We use the results of §5.1, and in particular the modified
P-construction, dsr §;-short tree strategies, etc.

5130 in the case that 7 is P-suitable, 21\7//1[(%]') sh and Ez[sg}} are equivalent, as are
(zg\l;lm,sh)"” o] and (25, )7 19l
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5.2.1 The external direct limit system Z{**

Definition 5.23. Let U; be the #i-class of all dl-relevant iteration trees (Def-
inition 5.9). Define

di = {71|6]"} U{M(U) | U € Uy is non-trivial}.

For p € dy, set P, = 2”1 (p) (P-construction as in Definition 5.13). Write
Z1 ={Pp | p € d1}. Define < on d; and on .#; and maps 7, = ip,p, for p < ¢
as in §4. -

By Lemma 5.19, (d1, (Pp),c,4, ) is lightface #;-definable, as are U; and 7.

Lemma 5.24. < is a directed partial order, is lightface ¥;-definable, and the
associated embeddings commute: if P < @ =< R then igr ©ipg = ipPR-

Proof Sketch. For the definability, that < is partial order, and the commuta-
tivity, see the proof of Lemma 4.8. For directedness, let 7,U € Uy, with lower
and upper components To, 71 and Uy, U, respectively. Let Ey, Fy € Bt with
be ¥#i-total with crit(Ey) = crit(Fy) = ko and such that 7o,Uy correspond to
Ey, Fy respectively. We may assume 1h(Ey) < 1h(Fp), so if Ey # Fy then in
fact 1h(Ep) < A(Fp). Therefore MY is a (possibly trivial) iterate of MJo.
Let j : Mo — MY be the iteration map. Let 7; be the minimal j-copy of
T1. Now proceed with a pseudo-comparison of Uy ~ 7 and U intertwined with
pseudo-genericity-iteration, as in Lemma 4.8. O

Define the external direct limit system 2¢** = (P,Q,ipg: P <X Q € ).
We have (ugl), (ug2), (ug3), (ugd), (ugd), (ugb), (ugld), and write
(MZ (ipoo: P € 7)) = dirlim 2. (25)

ool
Let P € .Z,. Then |61 is (P,BL;r)-generic and hence P[¥1|6] =5 71, so
170
P is a ground for 1 via the extender algebra Bsrsp (at 67, using extenders
with critical point > 6 (hence > 6{’)). Thus:

Definition 5.25. For P € %1, let 7{ be the canonical class Bspsp-name for
Y1, like in Definition 4.9, but incorporating the appropriate conversion for the
overlapping extenders (note the generic filter determines #;|0f’, which in turn
determines the “key” to this conversion). B

Lemma 5.26. (ugl9) holds: for each P € %1, I’ = dyndf is dense in (df’, <)
and dense in (dy, =), and <F[el’ = <]l

Proof. Let P € #;. That <P el = <Jef is by Lemma 5.21. So let Q € .7,
and R € #F. We must find S € 1 N with Q,R < S. Let Tp = Tpo ~ Tr1
be the maximal tree leading from #; to P, with lower and upper components
Tro, Tp1 respectively, and likewise for R, and let Tpg, Tpgo, Tro1 be likewise
for Q in P. Let Ey € E”* be long with 1h(Ey) < #; be Ih(Ey) sufficiently
large that P, @, R are all translations of one another above some v < A(Ep)
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and the various trees are in #1|\(Ep). Letting Ef € E¥ and Eff € Ef with
Ih(EL) = 1h(Ef) = 1h(Ey), then Ef, Ef are translations of Ey, so Ult(#4, Ep),
Ult(P, Ef’) and Ult(R, Ef) agree through their common least Woodin 1h(Ey)
(but not above there if P # ¥1, as Ult(¥1, Fy) is 6([)J (7150 _sound, whereas then
the others are not). Let o € P be a Bsrsp-name for @, and let p; € Bsrsr be

the Boolean value of the statement “r is #;-like and o € ﬁfp”. Working in
P, we will form a Boolean-valued comparison/genericity iteration of Ult(P, EY),
Ult(R, E) and all interpretations of Ult(o, FoI(¥0)) helow p;, much as in the
proof of Lemma 4.10 (in particular incorporating Boolean-valued 7{ -genericity).
However, because we have not yet established that #; knows its own §;-short
tree strategy, we cannot quite argue as for Lemma 4.10. Thus, we tweak the
comparison as in the following sketch (the process will be use an idea from [22,
§7]; see especially [22, Corollary 7.5 and Theorem 7.3 (Claim 8)]).

We define a B;r sp-name for a padded tree U on o, and define padded trees T
on Ult(P, Ef) and V on Ult(R, E{?), recursively on length in the usual manner
for comparison. Given (names for) the trees up to length v+ 1, we will also have
some condition q,, with g, < go = p1. Let go+1 be the Boolean value, below ¢,
of the statement “the least disagreement between MY and M and M), if it
exists, involves a dsr extender” (that is, satisfying condition 3 of Definition 5.9).
We then take the least forced disagreement working below .41, and use this
index and genericity iteration considerations to determine the next extender, etc.
Given everything through some limit stage v, which is short, the strategies Edifl
determine branches (as required), and set g, to be the infimum of (¢a),.,.- The
rest is as usual. The conditions ¢, are always non-zero, and in fact ¢, € g where
g is the generic adding 71 |0, because dq, T,V are then correct trees on R, P, (Q,
which were themselves iterates via dsr trees, and by the analysis of comparison
in [14, ***§8], the least disagreement must be an ultrapower-image of one of
the extenders used in those dsr trees, and hence be itself appropriate for dsr.
Because we rule out the use of non-dsr extenders, the Q-structure(s) Q¢ used
in the trees at limit stages £ do not overlap (7€) (except possibly with long
extenders). They also agree with one another (in 7,V and all interpretations
of Z/l), and no extenders in E% are used later in the comparison (in particular
for genericity iteration). This is because in P and in P[g'], the trees are P-
suitable, and the Q-structures are produced by P-construction, and because of
the agreement between P, 77, they are therefore identical. O

5.2.2 The internal direct limit system %

We adapt Definition 4.11 in the obvious manner, to which we refer the reader
for details:

Definition 5.27. Work in ¥;. Define (weak) s-iterability for P € Z; and
s € [OR]<¥\{0} as in 4.11. If P is s-iterable and s C ¢t and @ is t-iterable
with P < Q, then likewise for v, HY and mps o1 : HE — HtQ Define strong
s-iterability as before.
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Let ;" = {(P,s) | P € Z and P is strongly s-iterable}, and similarly let
df = {(P|6T,s) | (P,s) € #;'}. The order < on df is determined by (ug8).
Define < on Z* likewise. Clearly if (P, s) < (Q,t) = (R, u) then

TPs,Ru = TQt,Ru © TPs,Qt-

Define the system 2y = (HE, HZ  wpo.qr: (P, s) = (Q,t) € F).
Given P € .#; and s € [OR]<¥, recall that s is P-stable iff mpg(s) = s for
every @ € ; with P < Q. B

Remark 5.28. As in Remark 4.12, s-iterability actually implies strong s-
iterability.

The following lemma yields properties (ug7), (ug8), (ug9), (ugl0), (ugll),
(ugl2), (ugl3), (ugld), (uglh), (ugl6):
Lemma 5.29. We have:

(a) if P € #) and s € [OR]<“\{0} and s is P-stable, then (P,s) € #;" and
(P, s) is true (see Definition 2.1).

(b) (F7,=) is directed — for (P,s), (Q,t) € F," there is (R,u) € F;" with
(P,s) 2 (R,u) and (Q,t) = (R, u) (note u = s Ut suffices).

(c) 2, is lightface i -definable.

Definition 5.30. Noting that #”* = .#M is a club class of generating indis-
cernibles for 7, define #* = iy, p“.#”" whenever P is a non-dropping iterate
of 7/1 -

For the following, see the proof of Lemma 4.15:
Lemma 5.31. For each P € %, P is {a}-stable for every a € M = P,
Therefore property (ugl7) holds, as witnessed by some s € [#M]<%.

We can now (working in ¥7) define the direct limit
(Moot Tps,oet (P,s) € F;) = dirlim 21, (26)

and the associated #*-map ;. This notation is somewhat cumbersome, so let
us also write Ny = Mgo1, and we will often write * instead of *1, where there
should be no cause for confusion. By Lemmas 2.3 and 2.5, x : Noo — N is the
identity and N, = N, Property (ug20) holds as if P € .%; and Q € d Nd;
then Pg = 27(Q) = 27(Q), because E” is a translation of E”* above 61).
And (ug21) again holds if s is P-stable.

So we have established (ugl)—(ug21). For the remaining properties set § =
51’/ and B = IB%Z:;% (for the witnesses to those properties in §2). This gives

0

(ug22). Recall we defined 77 in Definition 5.25. Write 0100 = i9500(61) = 6{\[""
(replacing the notation d. of §2). As for Lemma 4.16:

Lemma 5.32. We have:
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1. For each ¥;-stable o € OR and each P € %, letting and g be the P-

generic filter for B, - given by #1|67, then iy, p(7"1 [a)y = ¥1|ov. More-
170

over, ¥4 = Plg] = P["|6F].
2. (ug24) holds.

3. kM = k] is the least measurable cardinal of N.

4. HIHM = Kf% = (5100.

5.2.3 The second Varsovian model as N [«]

Definition 5.33. Recall that *; is the x-map associated to the preceding con-
struction. We define the structure

Neol1] = (L[Noo, #1], Noo, #1); (27)

that is, with universe L[N, *1] and predicates N, and *;. However, as men-
tioned above, we will often abbreviate x; with %, hence writing Ny [*].

Note this structure has the universe of the abstract Varsovian model of §2.
Essentially by §2, we have the elementary maps

Tool : Noo —>N£°°,
mha t Naolea] = N [V,

where NN~ is computed in N, just as Ny is computed in ¥}, and *ff >~ ig
the *-map as computed in Ny. Recall *; C mee1 C ﬂ:ol, and these maps are

lightface definable over 7;. B

We next point out that J\/OJ\O/°o is a X -iterate of N, and 74 is the correct
iteration map. We also want to generalize this to other iterates of 77.

Definition 5.34. Given a #-like Vsp N, let 29 and NY be defined over N just
as 91, N are defined over 77, and likewise ), 7Y, (72 )V. If N is a correct
iterate of ¥4, also define (V') (the external direct limit) relative to N, as for
#1: given a maximal tree 7 € U (considered as a tree on N), let b = S (T)
and M7 = M, , and let (N<*)x be the direct limit of these models M7 under

the iteration maps. If in fact My = P]\]\/[[(T) (the model indexed by M (7) in the

covering system 2{V) for each such T, then define xy : N¥ — (NS y as in
§2. =

Lemma 5.35. Let N be a §1¥-sound, non-dropping Yy, -iterate of ;.
Then My = 2N (M(T)) = Pﬁ(nw for each T € UV, N¥ = (N&Y) y and

N
xn =id, and N¥ is a 5{\["" -sound, non-dropping X n-iterate of N, and hence is
a Xy, -iterate of ¥1. Moreover,

NN
all NN S N

52Recall that the notation is (M (7)) for P-construction over M(7), and Py for the
model of 2 indexed at M(T).
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is the iteration map according to ¥ yrn. This holds in particular for N = 1 and
for N = N, so NN is a correct iterate of N, and mao; is the iteration map.

Proof. This is just Lemma 5.16 and a consequence thereof, and by standard
arguments. O

Like with M, working in N [#1[6s01] We can compute 71, so Noo[#1] has
universe

L[N(Xn*l r(sool] = L[NOO7*1] = L[NOO77T001] == L[Nooaﬁjol]

5.2.4 Uniform grounds of 7|

Lemma 5.36. Write ¢ = d15,. We have:
1. SNM[*l] = VNOO

€

2. ¢ is (the second) Woodin in Ny[*1] (and 6{)\[‘” the first).

3. Property (ug23) of uniform grounds holds for Ny |*1] at €; that is, Noo [*1] E “c
is regular and By, is e-cc”. Moreover, N [*1] F “B is a complete Boolean
algebra”.

Proof. Part 1: As usual we have *; | ) € Ny, for every n < e. Now NV~ [*jlv“’]

is a class of N5, and
Tl Naolsa] = N2 [x>]

ool

is elementary. Let A € P(OR) N Noo[*1]. Then 71,(A) € Now. Soif ACn<e
then N, can compute A from the set 71, (A) and the map 7%, [n = *; 1. The
remaining parts are now as in Lemma 4.30. O

So by Theorem 2.16, N [*1] is a ground of ¥;.

5.3 The second Varsovian model as the strategy mouse 75

Let j : Moo|doo — Noo\éév‘” be the restriction of the ¥ o4__-iteration map. Note
that for each v > rky, if F = F”1I" £ is long, then x1 < A(F) and Nao|6)>
is definable in the codes over ¥1|k1, and hence in Noo|5év°° € 71|\. Moreover,
letting P = Ult(#, F) | 0, we have 68’ = Ih(F) and P|§F is an iterate of
/\/00|§0N°°. In this circumstance let

ky : No|8)= — P|sE

be the iteration map. Now define IE‘;Vlm as the class of all tuples (v, a, ) € OR?
such that v > k1, F = F”1ll” &£ () and either

— F is short (so k1 < crit(F')) and F(a) = 3, or
— Fislong and k,(a) = 6.
Lemma 5.37. FZ\ s lightface definable over N [#1].
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Proof. Write  for #;. Let (v,, 8) € OR® with v > k1. Let F/ = FN=Il"" We
claim that (v,«, ) € ]Fl/l,_,b1 iff either

— F' # () is short and F'(a*) = 8*, or
— F' # () is long and F'(a) = 8* (the argument to F”’ is «, not a*!),

and moreover, if F' # () then F is short iff F’ is short. This is proved like in
Lemma 4.24, but the case that F' is long is uses the modified P-construction. [

Lemma 5.38. Let L = LV=[(k,) (Definition 2.11, for adding a subset of k1 ).
Then ¥ |k1 is L-generic over Ny [*1] and N [*1][#1|k1] = 4.

Proof. This follows from Lemma 4.24 almost like in the proof of Lemma 4.38,
using the fact that ./\/'00\66\["" and the iteration map j used above are definable
(in the codes) over ¥]|k1, and hence available to Noo[*1][#1 k1] O

We now adapt Definition 4.39, presenting the second Varsovian model as a
strategy mouse ¥ analogous to #;. The sequence E”2 will have two kinds of
long extenders, corresponding to 56\[ > and (5{\[ i

Definition 5.39. Write 72 = V> and 4,2 = (k)TN Note that

Ky < 6= < ql2 < kT = 6N <A

Define the structure
¥ = (L[E”*];€,E72),

with segments %3||v = (J,[E"2|v]; €,E”2[v,E)2) and their passivizations 75|v,
recursively in v as follows:

E}~= if v < )2
g — ) ool f(/\/'oo|5f/°°) if v =12 (28)
’ EJ [(Ya|v) if v >~,2 and E/1 is short,

ky f(./\/oo|5év°°) if v >~/2 and EX* is long,

and with E”2 = {(v,z,y): E)* # () and y = E)2(2)} and E”2|v as usual. (We
verify well-definedness in Lemma 5.41.)

Definability etc over #5 has the predicate E”2 available by default.

Write e/2 = IE:/,;Q for i =0, 1. N

The fine structural concepts for segments of ¥, are defined directly as for
segments of ¥ (Definition 4.40). The next two lemmas are direct adaptations
of Lemmas 4.41, 4.42 respectively:

Lemma 5.40. Let ¥ = ¥||y/?. Then:
(a) L =ILN=l(k) is ¥ -definable over ¥'.
(b) ¥ is isomorphic to a structure which is definable without parameters over

7/1|/1f7/1.
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¥ is sound, with ,0 = 77 = 0100 and p"’7 = 0.
w P1 1

(d) OR” < &o, where & is the least & > KJ_‘—% such that ¥1|¢ is admissible.
Therefore ¥3||v is passive for every v € (772, &)

Lemma 5.41. Let g = gy, |, be the (N [*1],1L)-generic determined by #1|k;.
For every v € OR:

1. ¥5|v and ¥3||v are in No[*1],
2. ¥|v and ¥5||v are sound,
3. Suppose v > & and let E = F”2IV and E' = F”1llV 53 Then
(a) L € #%|v and g is (¥2|v,L)-generic,
(b) (2lv)lg] =" lv,>
(c) (Pallv)lg] == Allv,
(d) if E" # 0 and crit(E") > k1 then ¥5||v satisfies the usual premouse

axioms with respect to E (with Jensen indexing; so F is an extender
over ¥|v which coheres E”2" | etc),

(e) if B’ # 0 and crit(E’) = k1 then F is a long (81, v)-extender over
N and
Ult(Noo|5loov ) - 7’E’(j\/ ‘5100) NoUolt(Aj/l)E/)“gl/ (5100)

is a lightface proper class of ¥ |v, uniformly in such v, and
(f) if E' # 0 and E' is long then E is a long (6>, v)-extender over Nog
and
Ult(Woo |60, B) = i (4105") = MO ED]ih (55
is a lightface proper class of ¥3|v, uniformly in such v.
Remark 5.42. Here the notation =* is like in Remark 4.43, except that when
E’ is long, we have £/ = E o j, instead of E C E’; recall j is encoded into g.

An analogous consideration applies to the proof of part 4 in the next lemma;
cf. Lemmas 4.44 and 4.47 and their proofs:

Lemma 5.43.
1. Nx[*1] and ¥ have the same universe.
2. Ult(¥s,e)?) = ¥V,
3. V4 is a lightface class of N [*1].
4. N[*1] is a lightface class of 5.

53 Also, M\H(I)” and '7/1H'Y"V1 are “generically equivalent in the codes”, and letting

f:05",60) = (771, )
be the unique surjective order-preserving map, then M|a = M||a are likewise equivalent with

M| f(a) = 71| f(a) for all a € dom(f), but we will not need this.
54The notation is explained in 5.42.
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5.4 Tterability of N, |01 in ¥ and ¥
Adapting Definition 4.54:

Definition 5.44. Let ¥ be a non-dropping v, -iterate of #;. For P € .# let
HP = HulY (6T U o),

P its transitive collapse and 7pp : P — P the uncollapse map. Recall here
that by Lemma 5.16, P is a 6 -sound Y, -iterate of #;. Define (N %) as the
direct limit of the iterates P such for P.

Recall that 7 is automatically x] -sound. Let o € OR and P € #". We
say that o is (P,.%")-stable iff whenever P < Q € .#, we have a € H? and

- —1
ToQ 0ipg o Tpp(a) = a. =

Adapting Lemmas 4.21, 4.22, 4.55, 4.56 and 4.57 and their proofs (and using

that non-dropping Yy, -iterates of #] are always ] -sound), we have:

Lemma 5.45. Let ¥ be a non-dropping Y. -iterate of ¥ and ¥ be the §{ -core
of V. Let N = NZ. Then:

1. For each P < Q € %, we have H N OR C H? N OR.

2. For each a € OR there is P € % such that « is (P, %] )-stable.
3. INwe = 7" and iy p_ | I =id = %, [IT1,

4. IN% = 77 and /177 =id,

5 N=NL =ipyWNw) = (NS is a 01V -sound Y-iterate of ¥. More-
over, N'= (N iff ¥ = ¥ iff N is a Xy -iterate of ¥ iff ¥ is 6] -sound.

6. Let ¥’ be a non-dropping S -iterate ¥ with ¥|xk] «#'. Then
(a) NV is a Sy -iterate of N7, and
(b) iyy INZ is just the 3y v -iteration map NI — N
N ’.
7. NY is a 5ff°° -sound X yr-iterate of N and 7 C 7. : N' — N& is the
Y ar-iteration map.

Recall that ¥y 4|, denotes the restriction of ¥y to trees based on 7#|a.
Write (V)™ = N2 |67
Lemma 5.46. Let ¥ be a non-dropping Y, -iterate of ¥1. Then:

(a) ¥ is closed under Xy (vy)- and Spry (vx)- 17 is lightface definable
over V.
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(b) Let A > &), let P € ¥|\, and g be (¥,P)-generic (with g appearing in
some generic extension of V). Then ¥[g] is closed under Xyry (nrx)- and
Yny vy~ [V is definable over the universe of ¥[g| from the parameter
T = 7/|)\+7/7 uniformly in \.5°

Moreover, the definability is uniform in ¥, x.

Proof. By Lemma 5.18, we can define ¥ from z in ¥[g], and uniformly so. To
compute the d;-short tree strategy (for V) and determine §;-maximality, use
Lemma 5.22 (recall this involves #-translation). The computation of branches
at §;-maximal stages is like in the proof of Lemma 4.18, using Lemmas 5.45 and
3.11 (or arguing as in Footnote 27 in place of Lemma 3.11). O

By Lemma 4.84 and [14, ***Theorem 10.2], ¥yr» has minimal inflation
condensation. So like in Remark 4.19, it follows that ¥ [g] can also compute
the tail strategy I'\rx (nz)- for stacks on NZ, based on (ML)~ (restricted to
stacks in ¥[g]), as in fact

Pay.w)- = Bz mn)- )™

Similarly:
Lemma 5.47. ¥5 is closed under Z%y{ and E%’n,,{ [ /5 is lightface definable
over Y5.

Proof. To compute the dg-short and §;-short tree strategies in 75, proceed much
as in the proof of Lemmas 5.46 and 4.45, naturally adapted to ¥5. Since %5 is
a ground of ¥, via L”2 and because of the correspondence between E*2, E”1
and EM | we can perform the relevant P-constructions above fyf/z using E”2 in
the natural way. For dg-maximal and §;-maximal trees, we use the 0-long and
1-long extenders in E”2 as usual. O

5.5 2-Varsovian strategy premice

Definition 5.48. For a #;-like 7, we define the lightface ¥-classes N2, %7,
Nao[#1]” and #5” over ¥ just as the corresponding classes are defined over ;.

Also given a 7/1 like 7 and ¥ < 7/ with k7”7 < ORW, we define 7/2’/ by

recursion on OR” by setting %, VIt +e) = 7"||(y + @), where v = ’Y1

Noting that this definition is level- py—level, we similarly define 7/7/( ) whenever
¥ is a #1-small Vsp such that ] exists and & is an inaccessible limit of 57/—

cutpomts of ¥ and k < ORA’/ level-by-level (starting by defining ”f/ni/lH as
V|77 is defined (in the codes) over ¥1|k7”"). We will often suppress the &

from the notation, writing just 75". .

55Regarding trees ¢ V, cf. Footnote 26.
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We now want to axiomatize structures in the hierarchy of 75 to some ex-
tent, just like for 71, adapting Definitions 4.49, 4.51 and 4.52. These are very
straightforward adaptations, and the reader could fill it in him/herself, but be-
cause they are reasonably detailed, we write them out for convenience:

Definition 5.49. A base 2-Vsp is an amenable transitive structure ¥ = (Pao, F')
such that in some forcing extension there is P such that:

1.

P, P, are 1-Vsps which model ZFC™, 7 < OR? and 'y(f"" < ORP>~, and
P, P, are #;-small (that is, P has no active segments satisfying “There
are &1, K such that 4 < 8 < w} and ] is Woodin and &/ is strong”, and
likewise for P).

. P has a unique Woodin cardinal 6f > ~¢" and a largest cardinal k¥’ > 6F

and k¥ is inaccessible in P and a limit of §f’-cutpoints of P; likewise for
POO’

OR” = 6>, k¥ is the least measurable of Py, and %5 = cHullf(&f‘x’),
NP~ (defined over Py like Noo|y?? is defined over #|s{ ") is well-
Poo
defined, and has least measurable x1> and second Woodin 5ff°° = OR"=,
POO
NE= |5iv°° is obtained by iterating Poo|6f >, via a short-normal tree 7 of
NEee
length 67 >
F is a cofinal ¥;-elementary (hence fully elementary) embedding
F i Po|of> — NI | P
Poo
and there is a T-cofinal branch b such that F C i] , and i] (01>) = 54\/“’

(so b is intercomputable with F', and note that by amenability of ¥, F' is
amenable to P, and hence so is b),

p! =01 = ORY and p! = 0 (so €, (¥) = #%F) and 6> is Woodin in
J (€1 (7)), as witnessed by Ef>=.

Pis (J(€1(7)),L”)-generic, where L” is defined over ¥ as IL above was
defined over ¥3||72. =

Remark 4.50 carries over directly.

Definition 5.50. A 2-Varsovian strategy premouse (2-Vsp) is a structure

¥V =(Jy.E,F)

for some sequence E of extenders, where either ¥ is a premouse or a 1-Vsp, or:

1.
2.

a < OR and 7 is an amenable acceptable J-structure,

¥ has at least two Woodin cardinals, the least two of which are 6] < 67,
and has an initial segment ¥#||y which is a base 2-Vsp,
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3. 07 <, s0 6] is the second Woodin of 7||y,
4. if F # () and v < OR” then either:

(a) ¥ satisfies the premouse axioms (for Jensen indexing) with respect
to F, and v < crit(F'), or

(b) ¥ satisfies the 1-Vsp axioms for a long extender, i.e. clause 4b of
Definition 4.51, for giving an iteration map on (the premouse) 7|47,
or

(c) i VP = (JEE,0)EZFC™,

ii. ¥ has largest cardinal p, which is inaccessible in ¥ and a limit
of 8§ -cutpoints of ¥ (where §] -cutpoint applies to both short
extenders and long extenders over 7|5;")

iii. NN = NZ" is a well-defined, and satisfies the axioms of a 1-
Vsp with &% existing (but A is possibly illfounded), and N is
(OR” + 1)-wellfounded, with 7Y = OR”,

iv. N |5{v is a proper class of ¥P¥ has least measurable p,

v. F is a cofinal ¥;-elementary embedding F : |67 — N|6%V,

vi. N6V is pseudo-iterate of ¥[8, via short-normal tree 7, and
there is a T-cofinal branch b such that F' C iZ— (hence b is
amenable to ¥ and inter-definable with F' over ¥PV),

5. each proper segment of ¥ is a sound 2-Vsp (defining 2-Vsp recursively),
where the fine structural language for active segments is just that with
symbols for €, E, F,

6. some p € L” = L”I7 forces that the generic object is a 1-Vsp P of
height 67" with %57 = #||, and there is an extension P to a 1-Vsp P+t
such that 75" Ty (so P is level-by-level definable over ¥, via inverse
P-construction).

We write 7;" =~ above (if 7 is not a 1-Vsp). -

Definition 5.51. A 2-Vsp 7 is ¥,-like iff it is proper class and in some set-
generic extension, ¥ = 7, for some Mgygy-like premouse N. (Note this is
first-order over ¥.)

We write %5 | 1 = N and ¥ | 0 = N, | 0. Let ¥ be ¥5-like. We define
¥ | 1 and ¥ | 0 analogously (first-order over ¥ as in the proof of Lemma
5.43 part 4). In fact, let us define ¥ | i more generally, in the same first-order
manner, but allowing ¥ to be illfounded, but #5-like with respect to first-order
properties. Also if N is a 1-Vsp, let N | 1 = N. We write ¥~ for (the 1-Vsp)
7167 . We write A for the putative strategy for # | i for trees based on 76},
defined over ¥ just as the corresponding restrictions of ¥, ; are defined over
Y5, via the proof of Lemma 5.47.

We write % = ¥ (Noo, *1) = ¥ (Noo, #1[0100) = 7/(/\/'007611/"’). Given a pair
(N, ") or (N,+']d) or (N,e) where N is #;-like and the pair has similar first-
order properties as does (Nag, %1) or (Noo, %1 [0100) 0F (Nao, €72) respectively, we
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define ¥ (N, ) or ¥ (N,*'[§) or ¥ (N,e) analogously (via the proof of Lemma
5.43 part 3). -

5.6 Iterability of 75

In this subsection we will define a normal iteration strategy ¥, for %5 in V.

Definition 5.52. For i < 1, an i-long extender is a (3], §)-extender over 7,
for some premouse, 1-Vsp or 2-Vsp ¥, and some §. a

Definition 5.53. Let ¥ be a ¥5-like 2-Vsp. A 0-maximal iteration tree T on

¥ of length A > 1 is a system with the usual properties for O-maximality, except

that when E7 is a i-long extender, then then predT(a + 1) is the least 5 < «
T

such that [0, 8] does not drop and (51Mﬁ < Ih(ET).

Iteration strategies and iterability for (such trees on) ¥4 are defined in the
obvious manner (one detail here is that if [0, « + 1]7 does not drop then M,
is a (putative) 2-Vsp, including when E7 is 0-long). —

Definition 5.54. A short-normal tree on a ¥5-like 2-Vsp ¥ is a 0-maximal
tree that uses no long extenders. Note that a short-normal tree is of the form
To " T1 " S, where Ty is based on 73], either

(i) [7o has limit length or 70 drops] and T; = S = 0, or
(ii) 7o has successor length, b7° does not drop and 7; is above 7(1,\/1 2 and based
on MT[5"<
and if 7; # () then either
(i) [71 has limit length or b7 drops] and S = @, or

-
(ii) 71 has successor length, b7 does not drop and S is above ’y{w <

Say that 7o~ 71 and S are the lower, upper components respectively, and 7; the
i-lower component. B

5.6.1 Condensation properties for full normalization

Definition 5.55. We define the notions (m+1)-relevantly condensing, (m-+1)-
sub-condensing and n-standard for 2-Vsps just as for 1-Vsps (see Definition
4.70), replacing the role of premice there with 1-Vsps, and replacing ;" ,’yg/
with 67,~7. -

By Lemma 4.71 and its proof we have the following, and Remark 4.72 carries
over directly:

Lemma 5.56. ¥; is w-standard. (Thus, we take ¥2-like to include w-standard.)
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5.6.2 Tree translation from 7] to %5

Definition 5.57. Let ¥ be ¥i-like. We define I-translatable trees T on ¥ like
in Definition 4.60, with 0 replaced by 1 as appropriate, but add the demand
that 7 uses no 0-long extenders.

Let 7 on ¥ be l-translatable. The I-translation of T is the tree on #5”
defined just as in Definition 4.62. -

Remarks 4.61 and 4.63 carry over directly, replacing 0 with 1 as appropriate.
Likewise Lemma 4.64 and its proof:

Lemma 5.58. Let 7 on ¥ be 1-translatable, where ¥ is ¥;-like. Then:

1. The I-translation U of T exists and is unique.
2. MY = %MI and Vi\/[‘b’( < OR(MY) for all o < 1h(T).
3. ig’ﬂ = i;rﬁ [MY for all a« <+ f3 such that («, 8] does not drop.

T
Mu+1

4. MM, =, for all & +1 < 1h(T).

5. aU =T IMIY, for all a + 1 < 1h(T).

5.6.3 Trees based on N,|0]>=

Toward defining »y,, we first consider trees on ¥ based on ¥, = NOO|5{V°°,

adapting Definition 4.65:

Definition 5.59. Write Ej\‘} . for the strategy for NV for short-normal trees
SERS]

based on 7, , induced by X_. Let v, ¥ denote the putative strategy for

sn

short-normal trees on #; based on ¥, , induced by X N v
o0y 2
by Lemma 5.36. -

. This makes sense

Remark 4.66 adapts routinely. We now partially adapt Lemma 4.68, but
omit the clause “and in fact, AM C X717, as we will prove this in more
generality later, in Lemma 5.68. The proof of the rest is a direct adaptation:

Lemma 5.60. \111,277,27 yields wellfounded models. Moreover, let T be on N,
via Zj\r}w%,, and let U be the corresponding tree on %3 (so via \117,2,,27) Let
Mo : M — MY | 1C MY

be the natural copy map (where mg = id). Then:
(i) [0, )7 drops iff [0, &)y drops.
(i) If [0,a]7 drops then M] = M4 = MY | 1 (cf. Remark 4.66 adapted ).

(iii) If [0, a)7 does not drop then M] = MY | 1 and MY = ¥ (M ,¢) where

M . . .
0:M] — N is the correct iteration map,
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(iv) 7o = id; therefore, i] C i“.

Definition 5.61. Given a non-dropping V., %_—iterate V oof V5, let Wy -
be induced by ¥y ; just as \I/n,/%n,/; is induced by ¥ (this makes sense by
Lemma 5.60). —|

5.6.4 Short-normal trees on %

Definition 5.62. Let ¥ be a (possibly dropping, putative) iterate of %5, via a
short-normal tree 7~ S with lower and upper components 7,S. We say that
V' is good Ul T is via W, ¥ ¥ is wellfounded and for every i-long FE € IEZ,

M;’;Llh(E) = P|6F for some Sy ;-iterate P of ¥ | i, and E is the corresponding
iteration map.

Say that a (partial) iteration strategy W for ¥ is good iff all putative iterates
via ¥ are good. 4

We now extend ¥, vy to a good short-normal 0-maximal strategy Wy, for
¥5. We first deal with trees based on 7|/ :

Definition 5.63. Write \1’7/2 LY for the putative strategy ¥ for ¥#5, for short-
Y1
normal 0-maximal trees based on ¥3||772, as follows:

LW, , CU,and

2. given T via v, A of successor length a+1, where [0, a]7 does not drop,

T T
and given a putative 0-maximal tree U on M | |7{VI «  which is above (5{\4‘* ,
then 7 ~U is (equivalent to a tree) via W iff there is a tree U’ on M | 1,
via Xps7 1, with the same extenders and tree order as U. !
We adapt Lemma 4.75:
Lemma 5.64. \I!% e is a short-normal O-maximal strategy (hence yields well-

founded models). Moreover, let T~ U and U’ be as in Definition 5.63, with
U # (). Then:

-
1. MY = M7 ||y'e and deg =0,
’ ’ , u’
2. MY = MT |1 and degd =0, so (MY)» = MY liirMo ,
3. for 0 < B <Ih(U), B € P4, & B € FY,, and degd = deg? ,

4. if 0 < 8 < Ih(U) and [0, By drops then MY = M,

’ I/{,
5. if0 < 8 < Ih(U) and [0, Bl does not drop then (MY)P* = MY'|x™"% |

6. if 0 < 8+ 1 < lh(U) and [0,8 + 1)y drops then MY, = M4, and

Z-*Z/{ _Z'*Z/{'
B+1 T "B+1
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7. if0 < B+ 1 <1h(U) and [0, 3 + 1]y does not drop then if{, C igbfr/l,
! M/
8 if 0 < B < Ih(U) and [0, 8y does not drop then MF is a (niwﬁ -sound)
u’ MM/
Yp71-iterate of MT | 1, No]owﬁ isa5f/°°5 -sound ¥y, 7 1 -iterate of MT | 1,

Ule(M] | 1, F(M])) = N&F

and F(Mg_) is the extender of the Y7 ;-iteration map.

Therefore if T,U each have successor length, then M " U s good with respect

T u —~ —~
to extenders indexed < ~i'> (or all extenders in E, (ML ), if b7 ¢
drops).

Proof. The (last) “therefore” clause is because ¥y, is good. The rest of the
proof is like for Lemma 4.75 (although we did not yet prove that 27 v, is

good, Lemma 5.60(iii) does give the instance of this with respect to F“’/”'Y;V7
where ¥ = MQT , which is enough to prove part 8 as in Lemma 4.75). O

We now prove a couple of variants of the branch condensation lemma 3.11
for trees on 71:

Lemma 5.65. Let T,U be short-normal on ¥;, via X, , based on ¥1|6*, with
u
T of limit length, U successor length with b non-dropping and §(U) = 5{\4“’.

Let G be V-generic. Let b,k € V|G| where b is a non-dropping T -cofinal branch
with i (6]") = 6(T) and and

ko MT|6MT s apt s
is elementary with k o i] = i¥4_[(¥1]6]"). Then b= X, (T).

Proof. We may assume b,k € V. Let ¥ = MbT Let a € b be least with either
- _ i

a+1=1Ih(T)or 6(])\4“ < crit(i/,). So ¥ = M is §J -sound and T [[a, o0) is on
¥, above 55’/. Let 3 € b be analogous for /.

Define 7 : ¥ — MY in the natural way, extending k, like in Lemma 3.11.
Also define k : ¥ — Mg analogously. So k[d] C k.

The phalanx B = ((¥,8), 7, 6(T)) is iterable, via lifting trees with (k, k).

Let ¢ = Sy, (T) and Q. = Q(T,c) be the Q-structure, or Q. = M if
i (671) = 6(T). Let Q be the phalanx ((¥,6), Qe,6(T)), which is also iter-
able.

Let ¥ be a generic expansion of M, I (so P+ is an Mawew-like premouse

and ¥ = 7ﬁ77+). Then T [[a, 00) can be translated to a tree 7+ on ¥+, which is
above ri”" . Let ¥+ = M7 and QF = Q(T+,¢) or QF = M7 " accordingly.
Then the phalanxes

P = (7T kT +1),7T,6(T)) and QF = (7, 6] +1),Q7F,5(T))
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ar«;ﬁterable7 since trees on them translate to trees on 3, Q. Note that ¥ is
kg -sound, and ¥, QF are §(T)-sound. But then comparing B+ versus QF
gives b = c. O

Lemma 5.66. Let 7,U be short-normal dsr trees on ¥, via ¥v,, based on
“//1\51’/1, with T,U of limit length. Suppose there is a < 1h(T) such that [0, ]

does not drop and T [[a,c0) is above 6(])\4”7, and there is an analogous such
B < Ih(U); fix the least such o, B. Let ¢ = X, (U). Suppose that if ¢ is non-
u
dropping then 6(U) < 6%16 . Let G be V-generic. Let b € V[G] where b is a
T
T -cofinal branch such that if b is non-dropping then §(T) < (5{\4” . Let k € V]G]
be such that
k:Q(T,b) — QU,c)

is elementary and ko i] [(#1]00*) = i%[(#1]60*). Then b= Yy, (T).

Proof. This is via a straightforward variant of the proof of Lemma 5.65, noting
that because T is dsr, Q(T,b) can only overlap 6(7) with long extenders. I

It turns out that the method we used to define \Ilﬁ,/‘i is not so well suited to
¥5. Instead we proceed as follows:

Definition 5.67. U3 denotes the (putative) short-normal strategy ¥ for %5,
defined as follows. Firstly, \11,1/2 Y C W. Secondly, let T be via v, v of
Y1 5

successor length, such that b7 does not drop, and ¥ = MOTO We define the
action of ¥ on above-y/ trees on 7.

Let P=7% ] 1=ryy(Nx), so (by Lemma 5.60) P is a X _-iterate of N
and P C¥. Let e = F¥I | Let (and by Lemma 5.43)

iV = UV e) =4

P
be the ultrapower map. Let A be the above—’yf/ ® strategy for 757 determined

by translating above—nfp (hence 1-translatable) trees on P via ¥p. Then for

above-y{ trees U on ¥, T ~U is via ¥ iff U is via the minimal i’ -pullback of
I. 4

Lemma 5.68. V%7 is good.

Proof. Clearly W5 is well-defined and yields wellfounded models. So let 7~ U
be via W5}, as in Definition 5.67, and 7', P, e, i, = ’LZ/ be as there. Let i.“U
be the minimal i, = i”-copy of U to a tree on #,F. Let # = ML ¥ and
7?7 < a < OR” be such that # ||« is active with an i-long extender. Let
W' = Ultoy(# ||, e). By Lemma 5.56, #' < M.
’ P

Now F”" is a correct iteration extender (via ¥ 7 ) based on Ngzwj\/‘”. For
let U'" be the translation of i, “U to a tree on P, and #'* = M&,+||ORW/. If
i =1 (so crit(F"”//+) = kT) the correctness of F”” is by Lemma 5.45 part 6
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applied to P and P’ = Ult(P, FWl+) and ippr. If 1 =0 (so 7" s long) it is
because Yy is good (so F” s correct) and how 75" is defined.

Let S be the limit length tree leading from P|57 to MZQ'O‘, and &’ likewise,

so &' = j(S) where j = i 110 ig the ultrapower map. Let R be the successor

length tree leading from P|6F to NZ |67 (given by e[(P|6F)). We know that S’
is via the short tree strategy for N£|6Z/-v£, and F”" yields the branch I ICHE
We claim the same holds for S and F”lle; that is, S is via the §;-short tree
strategy for P | i, and F”ll* yields b = Sp(S).

For if ¢ = 0, the Q-structure used in S for the limit stage S[n does not
overlap §(S[n), and is embedded by j into an iterable Q-structure used in S'.
And if ¢ = 1, it is likewise through the O-lower component of S (until reaching
5(])V[(S)), and above there, Lemma 5.66 applies to the normalizations of (7, S[n)
and (T, R,j(S[n)), using a restriction of j as the map k. (Here 7 and T~ R can
be é1-maximal, but one should literally apply Lemma 5.66 to the short-normal
trees T’ on ¥1, iterating to M(S[n), and U’ on 3, iterating to M (5(S[n))).

Finally let b be the S-cofinal branch determined by F”l* and v’ that de-
termined by F”’. Then we can apply Lemma 5.65 to (8,b) and the stack
(R,(S8',b)), using k = j[(M(S)). Therefore b is correct. O

5.6.5 Normal trees on %5

Much like in Definition 4.82, it is now easy to see:

Lemma 5.69. There is a unique 0-maximal strategy ¥ for ¥3 such that W%, C
3. We write ¥y, = X. Every iterate of %2 via ¥y, is a short-normal iterate of
V5 via U, and hence Y, is good.

Remark 5.70. Consider a 0-maximal tree 7 on ¥ and some limit A < 1h(7)
such that 7 uses 1-long extenders cofinally below A\. Then &(7) is the least

T
measurable of M ;r , and in particular 6(7) < 5(1)\/1 * . Suppose E:\r is short with
T

crit(E]) < 6{% and total over MY, or EJ is O-long. Then pred” (A +1) = A
and M], | = Ult(M],E]), and note that the short-normal tree U via L 47

has (1) > 1h(E]). This could be unnatural; letting Uy be the short-normal
tree with last model M/\T, it might be better to define 0-maximality by taking

MY
B < 1h(Uy) least such that E] € E,” , and defining M7, to be the model
produce by normally extending Uy (8 + 1) with E/\T However, for our purposes
here, the more naive notion of O-maximality suffices.
Lemma 5.71. Let ¥ be a non-dropping v, v -iterate of ¥, and ¥ a non-
dropping V. . -iterate of ¥ ~. Let m: ¥ — ¥ be the iteration map. Let ¥ be

the abgve—éf/ short-normal strategy for ¥ given by Yy,, and ¥ likewise for ¥ .
Then VU is the minimal m-pullback of U (see [14, ¥*¥¥10.3, 10.4)).

Proof. Let T on ¥ be via the m-pullback of U; we want to see that 7y is via v,
Let Xy = m“Ty, which is via W. Let 7’ = 7[(¥ ] 1). So 7’ =iy 41, also an
iteration map.
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If lh(Eg_l) < 71’7 then the desired conclusion follows from the fact that X
has mic. So suppose otherwise.

Let j: 7 — Ult(¥,e]) and j : ¥ — Ult(¥,e]) be the ultrapower maps,
and recall Ult(7,e”1) = ”1/27“1 and likewise for #. So the minimal j-copy j“X;
of Xy, on 7/2%’1, translates to a tree X7 on ¥ | 1 which is via ¥ ; (and above
v = nyu). We need to see that the minimal j-copy of 77 translates to a tree
T/ on ¥ | 1via ¥y ;. Since ¥,y ; has mic (Lemma 4.84 and [14, ***Theorem
10.2]) and by [14, ***10.3, 10.4], it therefore suffices to see that that X = =" “T7 .

Let o/ = 7' [(¥|7)) and

7 R0 _ _ _
o =o' 1502 ) = (7167 €7,

We have - - )
Ult(¥ | 1,0") = Ul(¥ L 1,0'167) =7 |1

and the associated ultrapower map is just T[(V | 1). Given the fine structural
correspondence between 7/27%1 and 7 | 1, therefore

Ult(ﬂj/ju7 o) = 7/24/@1

and the o-ultrapower map 7/2‘/7¢1 — 7/21/_“ is just W[”V;;U. Although o is not
the restriction of an iteration map on 7/27/“, it is straightforward to see we still
have X; = c“T; (that is, X} is the minimal o-copy of 77), meaning that:

— 5(: has the same tree, drop and degree structure as has ’fl,
~ for each a4 1 < 1h(7;), we have Mngh(Egl) = UltO(Mz:th(E;rvl), o),

— for each a < lh(ﬁ)Lif d= degzlihen MO/?I = Ultd(MZI, o), and if « is a
successor then M}*t = Ulty(M:71, o), and

— the resulting ultrapower maps M;ﬁ — Mgl and M;?l — M(jz (via o)
commute with the iteration maps of 7; and Xj.

These are just standard properties of minimal copying, so we already know
the corresponding properties hold with respect to (w, 71, X1), (j,T1,71), and
(j, X1, X1). One can now deduce them for (o, 77, A1) with some commutativity,
and in particular that

jorl(7167) = m1(# ) 0],

But then because 77, X/ are translations of 7y, X1, and given the fine struc-

tural correspondence between ¥ | 1 and 7/27;“, and likewise between ¥ | 1 and
7/2“1%1’ it follows that X] = «"“T/, as desired. O

Lemma 5.72. ¥, has minimal inflation condensation (mic).
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Proof. We just discuss short-normal trees. Let T =T~ 71 and X = Xy~ X}
be as before, but with respect to ¥2 and ¥+, ; in particular we have

76 - 7-1 ~?min XO - (Xl f>\)7

where A is a limit ordinal and A+1 = lh(X}). We must show that X is a minimal
inflation of 7. Now \117/2’1,27 has mic, since ¥y, does, by Lemma 4.84 and [14,
***Theorem 10.2]. So we may assume T; # ), so we get «, 3, o, 7 like before,
with analogous properties (with §; replacing dg). Let n < 1h(77) be the limit
ordinal and ¢ the 77 [n-cofinal branch and

IL: 707 (Taln) ~ ¢ =rmin X

the minimal tree embedding determined by extending the inflation T ~-pnin
Xo ” (X1]A) to X in the unique possible way. We want ¢ = [0,7)7; .

Let 7 = MJ°, ¥ = M;° and j : ¥/ — Ult(¥,e]) and j : ¥ — Ult(¥,e])
be the ultrapower maps, and recall Ult(¥,e”1) = “I/;/u and likewise for ¥. So
the minimal j-copy j“X; of X7, on ”727/“, translates to a tree X on ¥ | 1 which
is via ¥4 and is above mf(y/“). Likewise, 77 translates to a tree 7{ on v 11
via ¥ ; which is above HT(VLI).

Let 7, = 7“T;. By Lemma 5.71, Xy A’ﬁ is via Xy, . Lifting with =, it is easy
to see that R

Xo " Ti ~min X0~ (X1[A)

and that it suffices to see that
XO A7—1 ~?min XO - Xl

(see [14, ***Theorem 10.7] for details; there is a straightforward correspondence
between these inflations and those for 7o~ 77).

So relabelling, we may assume 7o = &y and I1[7, = id, so ¥ =% and m =1id
and j = j. Let To = &p be the short-normal tree leading from 75 to Ult(?,e]).
Then _ N

76 A.j“ﬂ ~?min XO - (.] “Xl F)‘)a

as can be seen by lifting all relevant structures up by the extender e”* = ¢”

with the relevant degree ultrapowers. Letting 75 = &} be Top = & but as a tree
on Ny (and recall T/, X] were introduced above), it follows that

To =T ~min X5~ (X[N).
Since ¥z has mic, therefore
76/ - 7? ~?min Xo - Xll

But the ultimate minimal tree embedding IT' determined by this inflation is
induced naturally by II above, and in particular ¢ = [0,7)77, so ¢ = [0,7)7;, as
desired. 0
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5.7 Self-iterability of 75

Lemma 5.73. ¥ is definable over its universe from the parameter Noo|/<aj1v .

Proof. This is an essentially direct adaptation of the proof of Lemma 5.17, but
using Lemma 5.17 at the point that Remark 3.2 was used there. 0

Note that in Theorem 5.79, we will improve the lemma above, showing that,
in fact, 75 is definable without any parameters over its universe. But just using
Lemma 5.73 and adapting Lemma 5.18, we have:

Lemma 5.74. Let ¥ be a non-dropping X+, -iterate of ¥3. Let A € OR with
A> 672 and P € ¥|A\t” and g be (V,P)-generic. Then ¥ is definable over the
universe of ¥[g] from the parameter v = ¥ |\*”.

We will now state a key fact on the self-iterability of ¥2 (and more). As
usual, we will give the proof in a special case which illustrates the main new
features, but the full proof will be handled by [16], as it involves *-translation:

Theorem 5.75. Let G C X be set generic over ¥, where A > (51’/"‘. Let x =
Y5|A*t72. Then:
1. ¥, is closed under ¥+, and ¥+, V4 is lightface definable over %5.

2. #5|G] is closed under Y, and X, |(¥3|G]) is definable over the universe
of %3|G] from the parameter x, uniformly in .

3. ¥4 is closed under X and X [ V5 is lightface definable over ¥5. (Recall
that Now = %5 | 1 is a X, -iterate of ¥1.)

4. ¥5|G) is closed under ¥ and X [(¥2[G]) is definable over the universe
of ¥5[G] from the parameter x, uniformly in x.

In order to prove the theorem, we again use modified P-constructions (in
general, incorporating #-translation), in the context of the following notions of
P-suitability. The full proof will rely on x-translation, and so will be given in
[16]. Here we will restrict our attention to dsr (defined in this context below)
trees only, for illustration purposes (but the notion of P-suitability below does
not have such a restriction). We restrict to trees in %3 (as opposed to ¥3[G]),
as this simplifies things, and we can reduce other trees to this case.

Definition 5.76. Let 7 € ¥ be an iteration tree on ¥;. Say that T is P-
suitable for ¥4 iff there are 7o, T1, T2, 2, F, V', n,d, . such that:

1. T =Ty~ Ti~ Tz is short-normal on %3, according to Xv,, with 0-lower
and 1-lower components 7y, 71 and upper component T3 # 0,

2. E,F € E” are ¥-total and 1-long,
3. To ™~ T1 is the successor-length tree on ¥#5 induced by E,
4. ¥ =MD~ T = Ult(#, E),
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57 =1h(E) < X% < ¢ = lged(%|Ih(F)) < h(F),
T2 € ¥3|1; note T is on ¥ and is above 87,

7 is a strong {(53/2, 5;’6 }-cutpoint of %5,

© N o

T has limit length, A*772 <15 < 6§ = §(T3) < ¢, 1 is the largest cardinal
of 5|0, T2 is definable from parameters over ¥3|d, and #3|d is generic over
M (T3) for the above-§ extender algebra of M(7z) at 4, for some & < 6.

Now let T € ¥ be a tree on Ny = ¥ | 1. Say that T is P-suitable for ¥,
iff the conditions above hold, except that 7 is short-normal on N, according

b4
to L, To is the lower component of 7, 77 is based on M0 |5{W°"O and is above

o
63/[“’0, To " T1 has successor length and does not drop, and 73 is on N = MZ:} and
is above 67V (so N = Ult(Na, E), and note that 75~ 77 can also be considered
as a tree on Y5, with properties as above). B

The corresponding P-constructions are as follows; no proper class models
show up, because we are now working up above the real Woodin cardinals. We
must now restrict our attention to dsr trees (as defined immediately below).

Definition 5.77. Let P € % and §/2 < A € OR with P C A, and G be
(¥4, P)-generic.
Let T € ¥5, on either ¥ or N, be P-suitable for ¥, and adopt notation
as in Definition 5.76. Say that T is dsr iff M(7) has only 2 Woodin cardinals.
Suppose that 7 is dsr, but M(7) is not a Q-structure for itself. Then the
P-construction P721*(M(T)) of 3|t over M(T) (recalling that ¢ is the largest
cardinal of #3|lh(F)) is defined like the P-constructions used to compute the ;-

g
short tree strategy for ¥1, noting that the iteration map j : "//2\53/2 — Mo |<5é\/[°°0 ,
which is determined by E, is in ¥4|n (and note that there are no 1-long extenders
in E”2[[5,4]). 4

Lemma 5.78. Let T be dsr P-suitable for V5, on either ¥, or N. Suppose
M(T) is not a Q-structure for itself. Then the P-construction 22”2I*(M(T))
reaches the Q-structure Q(T,b), where b = Xy, (T) or b= X (T).

Proof. We first consider P-suitable trees 7 on N, in #. So adopt the notation
of Definition 5.76 for this, with N = Ult(Nx, E). Because T is above ¢V, the
Q-structure @ = Q(72,b) exists, where b = X _(T). Suppose Q # M(T3).
We want to see that the P-construction reaches @). To verify this, we run a
comparison analogous some earlier in the paper, modulo the generic at ¢, and
after appropriate translation of long extenders. We need to specify the phalanxes
we compare.

On the P-construction side, we just have M.

On the Q-structure side, we proceed as follows. Let A be the &)/ -core of
N (this is not M0, as N itself is not 5év°°—sound). Note that & = &) and

N is 56\7 -sound. Let 't be a generic expansion of N (to a premouse), via
a filter which is M-generic (for the same forcing LV. So N = ¥N". Then
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Ti ™ Tz translates to a tree 7;7 73" on N+ which is above £ = 6. Let
QT = Q(7,",b). Define the phalanx

QF = (N, k) +1),Q%,9).
Note that Q7 is iterable, as it corresponds to iterating the phalanx
Q= (W, 6)),Q.9).

(Note here that the only extenders overlapping ¢ in ]E_qﬁ are long, since T is dsr.)

We now compare QF with M, above d, modulo the generic at §, translating
extenders with critical point /{6\/ " on the QF side, and those with critical point
k3! on the M side, much as before. Much like in the proof of Lemma 5.16, and
using the n{)\[ " _soundness of N+ (which is by Lemma 5.14), the comparison is
trivial, so the P-construction reaches @), as desired. Regarding the equivalence
modulo the generic at d, although ¥#3|¢ is extender algebra generic over @, (for
an extender algebra B at J, above some &), it doesn’t seem immediate that
it is also generic for the corresponding extender algebra of Q% (although the
extenders correspond, it seems there might still be further axioms in QT which
cause problems). However, this is not a problem. Note that

P(<0) N (Q[72]0]) = P(< 6) N (M(T)[2]6]) = P(< 6) N (¥2]9).

We can force over Q[#3|6] with I/ = 1.7 « L% € Y6, adding (4 |k7*, M|xdT),
which results in Q[M|4], and similarly

P(<0) N (Q[M]d]) = P(< 6) N (M(T)[M]d]) = P(< 6) N (M]5).

Since N+ |k was taken M-generic for LN € M (T), we can therefore force fur-
ther with LV to reach Q[M|4, ./\_/'+|I€/0\[+], which computes Q. But the product
(B + 1) x LN can be reversed, and so M|J is also Q*-generic for B * L. More-
over, B is definable from parameters over M (7T ) = Q*|§. The same holds for
all models that appear above Q7 in the comparison. This gives the usual fine
structural correspondence between models above QT and their generic exten-
sions given by adjoining M|d. On the M-side, the extension to MIN*|&) 7] is
via LV, which is small relative to & in M. Likewise for all models on the M-side
of the comparison. So we also get the appropriate fine structural correspondence
on the M-side.

Now consider trees 7 on 73; we adopt the relevant notation from Defini-
tion 5.76. If Ih(EJ?) < ~7, then since p;/‘my = 6/, To immediately drops in
model to #||y{", and this cannot be undone (since 75 is short-normal). Since
Y |y? = NV, where NV is as in the previous case, with corresponding itera-
tion strategy for such trees, everything in this situation is as above. So suppose
v/ < Ih(EJ?). Let Et € EM with Ih(Et) = Ih(E). Let R = Ult(M, Et).
Then ¥ = %F and (since 7 < Ih(EJ?)), Tz translates to a tree 7,7 on R,
which is above k. Let QT = Q(7,",b). It is straightforward to see that
@ = Q(T2,b) has no 1-long extenders overlapping § (recall that @ # M(7s),
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and use the smallness of M), so QT can only have extenders overlapping ¢ with
critical point kg. Define the phalanx

0= ((M’ Ko + 1)7Q+75)‘

Clearly Q is iterable. We compare £ versus M, again above 0 etc, like be-
fore. This time the equivalence modulo the generic is a little different, because
R|/<;1+R is not M-generic, but instead is in M. However, over ), we adjoin
¥3|6 with the extender algebra, then adjoin M|x7, reaching Q[M|d]. Like in
the previous case, this two-step forcing iteration is definable from parameters
over Q|6 and the Woodinness of § ensures genericity. But R|x]® € M|d, so
Q7 is (simply) definable from parameters over Q[M|d], and Q* (simply) de-
fines @ from parameters. This (together with exactly how these definitions are
made and the parameters used) is enough for the fine structural analysis of the
comparison. O

Without discussing x-translation, we are limited to sketching the proof of
that %, can iterate itself and Noo:

Sketch of proof for Theorem 5.75.
Lemma 5.47 handles trees based on ./\/Do|5f/°° = 75|67
So consider dsr trees U = Uy U, " Us, with lower component Uy, Uy on M40,

o0
MYo ~ . ~
based on Mg’oo, and above &5 >~ , pHo ~ U pon-dropping, and Us on MY U
above 5{\/1 =

“ Let E € E”2 be such that E is 1-long and A\*”2 < | =
lged(#2[Ih(E)) and Uy ~ Uy € #5|c. Then letting To = 71 on N result from E,
N=MDb 7= ”VlUlt(%’E) is a correct iterate of MY ~ i and ¥; knows the
iteration map j. So given that #5 computes the restriction of ¥ to above—é{\/
trees correctly, it can use j to form minimal copies of trees Uz (of the form above)
to correct trees T2, and then Us is correct, because X4, has minimal inflation
condensation (Lemma 4.84), and hence so does ¥, by [14, ***Theorem 10.2].
(Note also that dsr-ness is preserved by the copying.) Finally, arbitrary (dsr)
trees 7o can be reduced to P-suitable trees by the usual minimal genericity
inflation technique.

By [16], the foregoing generalizes to arbitrary (not just dsr) trees, so that
27\/,200 is definable over 73. Since ¥, has minimal inflation condensation,

2 h“Efﬁw has minimal inflation condensation”.
Since the least ¥, indiscernible is countable in V', and ¥, has minimal in-

flation condensation in V, by [14, ***Remark 9.2], Z;{ﬁm extends to canonically
to set-generic extensions ¥3[G] of ¥; (via the method in the proof of [14, ***Re-

mark 9.2]), and letting ZfﬁiG} be the extension, every tree via Zj\/ﬁo[oc} embeds via

a minimal tree embedding arising from minimal inflation into some tree in %,
via Ef}m, and therefore EK?Q[CG] also agrees with Exff] if G is V-generic. For the
definability in #2[G] from the parameter z, use 5.74 to recover ¥3, from which
we compute(d) the strategy.

For trees on %5, i.e. computing 272 and ZQ[G], it is very similar, using

Lemma 5.72. O
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5.8 The mantle and eventual generic HOD of M

In this section we prove the main facts regarding the eventual generic HOD and
the mantle:

Theorem 5.79. Let Us be the universe of ¥5. Then:

1. Uy = HODY2(C! for all ¥5-generics G C Coll(w, A), for all A > 611/2 =k,
and likewise Uy = HODMH! for all M-generics H C Coll(w, \).

2. Uy has no proper ground, so U, is the mantle and smallest ground of M.
3. U, is the mantle of all set generic extensions of M.

4. ¥, is definable without parameters over Us, and in fact over any set-generic
extension of Us.

Proof. Work in %[G] where G C Coll(w, \) is ¥-generic and A > §72. Say that
¥ is a A-candidate iff ¥ is a ¥5-like 2-Vsp and there is H C Coll(w, A) which is
¥ -generic and ¥ [H] = ¥%[G].

Note that # is determined in #3[G] by ¥ = #|A\*”, by Lemma 5.74, and
moreover, by the uniformity of its proof, # ++ 7 is definable over (the universe
of) #[G]. (We can recover the universe U of # from ¥, via (the proof of)
Woodin-Laver, and we can recover ¥ from ¥ and U via (the proof of) Lemma
5.74.) So there are only set-many A-candidates. Note that ¥#5 is a A-candidate.

Recall here that ¥5-like is assumed to include whatever first-order facts
satisfied by #5 to make our arguments work. In particular, it should include the
statement /proof of Lemma 5.74, and also the statements

— ¥ is fully iterable in every set generic extension ¥'[g] of ¥, via the strategy
EZ’g defined as in the proof of Theorem 5.75; and

— ¥ | 1 is fully iterable in every set generic extension ¥[g] of ¥, via the
strategy EZfl defined as in the proof of Theorem 5.75.

Now using this iterability (which holds in ¥3[G] with respect to each A-
candidate ¥'), we want to define a kind of simultaneous “comparison” of all \-
candidates. For this, we will not directly attempt to compare the A-candidates
¥ themselves by least disagreement (due to familiar problems with showing that
the comparison terminates), but, as we have done elsewhere in the paper, instead
compare generic expansions of the ¥ | 1, and then use this to infer a comparison
of the A-candidates (and it doesn’t seem obvious that this comparison of A-
candidates is by least disagreement).

However, we only have iterability for the generic expansions N above their
#{’, which isn’t enough to expect a standard comparison of these premice by
least disagreement either (they need not agree below their x7', as this part is
just generic). Instead, like in the proof of Lemma 4.81, we will first form a
“mutual genericity iteration” at an appropriate Woodin cardinal, and after this
converges, move to comparison “modulo a generic” above that point.
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So, work in #5[G, G'], where G’ C Coll(w, AT 72151} is #5[G]-generic. Fix for
each A-candidate ¥ a generic expansion P = Py of ¥ [ 1. So (¥1 1 1) C P
and (71 | 1) = #F. (Moving to %[G,G'] ensures these Ps exist.) Let Xp be
the iteration strategy for P for 0-maximal trees 7 with lh(E]) > k{’ given by

the proof of Lemma 4.81 (translating to trees via EKQ[G’G/], etc). Let DP ¢ EP

be the least P-total extender with crit(DF) = kZ’. Let 6 be the least Woodin
cardinal of P|A(DT) such that 67 > k{’ (so 67 > r{?).

Recall the meas-lim extender algebra (see [17]), used in the proof of Lemma
4.81. Write BY for the (meas-lim) extender algebra of P|lh(DF), at 67, formed
with extenders £ € EF such that crit(E) > ko and v(F) is a limit of mea-
surables of P|lh(DF), as witnessed by EX. We will now form a mutual gener-
icity iteration of all P as above, for the image of BY, producing padded trees

Tp on P, above rg”, based on P|6” (and hence Tp immediately drops in

P
model to P|lh(D?), noting that pf“h(D ) = rg?), inserting some linear iter-

ations at successor measurables to space things conveniently. Let & be the
set of all Py, for A-candidates ¥ (where “A-candidate” is still as computed
in 7[G], but & C ¥[G,G’]). Fix an enumeration (Pg), of &, and let C

be a set of ordinals coding <PB|5Pﬁ>ﬁ.
proximations to the final trees Tp = T,. We start with 7" being the triv-

ial tree on P. Suppose we have defined 7. for each P € . This will be

a 0-maximal successor-length padded tree on P, based on P|lh(DF), above

kgT. Let 64 = suppeyp (7)), where §(T) = SUPg41<1n(T) lh(EﬁT). If b7

drops below the image of P|lh(DY) then let vZ = OR(M7+), and otherwise
P

let v& = j7a (%), where G P|Ih(D?) — MZe is the iteration map. Let
KP = M7 ||yP. Let Dy = (C,Cy) where Cy codes <(K53)pv>ﬂ as

We define a sequence <Tap >a -, of ap-

Ca = {(B.7) € OR? | y € E(K4")}

(where IE(Kf;ﬂ ) is taken as a set of ordinals in a canonical fashion). Let GX be
the least E € E; (KL) such that E is KF-total and

1. E=F(KL), or

2. v(E) is a limit of measurable cardinals of KX as witnessed by EX , and
Efv(E) induces an extender algebra axiom false of D,,, or

3. crit(E) < sup(C), or crit(E) is not a cardinal in ¥%3[G, G'],

if there is such an E, and G = () otherwise. If there is P € & such that GE = ()
and b7 does not drop below the image of P[Ih(DF) and v < Ih(GE") for all P’
such that GSI # (), then we stop the construction, and set ¢ = o, and 7% = T
for all P. Otherwise, let &, = minpe » Ih(GE), and set EY = G ifIh(GE) = ¢,
and EP = () otherwise. Let v be least such that either v + 1 = 1h(7.F) or

ps
€a < lh(E,T‘* ), and set 7., = TP (v + 1)~ (EL) (as a 0-maximal tree, with

[0

last extender used being EX, which might be empty).
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Now suppose we have defined 7. for all @ < n and P € &2, where 7 is a
limit. Let £ = liminf,<y,&,. Then 7:713 is the natural lim inf of the sequence

P
(1) That is, Ez—” = F iff Ih(E) < ¢ and eventually all & < n have

P
Ez—“ = F, and 7;]]3 is via X p, and has successor length. This determines 777P .

This determines the entire construction. The first claim is very much like in
the proof of Lemma 4.81:

a<n’

CLAIM 1. We have:

1. Each T, is 0-maximal on P, and if b72 drops below the image of P|Ih(DF)
then KL is active, so GE # ().

2. 1 < o0.

3. Therefore there is P’ € &2 such that bTLP/ does not drop below the image
of P'|Ih(DF").

CLAIM 2. For every P € 2, b7 does not drop below the image of P|Ih(DF),
and j7"(67) = 57" (87").

Proof. Because b7"" does not drop below the image of P’[Ih(DF"), and jTP/ (67"

is a limit of measurables of KF', and GP' = 0, jTP/ (67") must be a limit cardi-
nal of %[G, G']. Therefore every T uses cofinally many non-empty extenders
indexed below jTP/ (5Pl) = ¢ = liminf,., &, £ is a limit cardinal of MZ;P,
and note that (C,C,) is generic over M (T7*) for its extender algebra at £, since
¢ <Ih(GP)if GF #0.

Now suppose that 7" drops below the image of P|lh(DT), or jTP (6F) > ¢.
Let Q < M 07:3 be the Q-structure for £. It is straightforward to see that @ does
not overlap &, and note that we can compare @ versus U = Ult(P’, F(MZ;P/))
as premice Q1 and Ut over (M(TF), M(TF")), s0 by Myyey-likeness, it follows
that QT <U™. Expanding U to UT[C,C,], where ¢ is still regular, we can now
argue like in the proof of Claim 1 of the proof of Lemma 4.81 for a contradiction.
(Although TF € U*[P|67], we work in UT[C,C,] because the reasons for the
extenders used in 7F are encoded into (C,C,), and we need this to obtain the
contradiction.) O

So MOCP is active with an image E¥ of DT, and ET is P-total with crit(EY) =
kb, Let Up = Ult(P, EF). Then ¢ is a strong cutpoint of Up, Ups, and both
extend to premice over (Up|¢,Up/|£). So we can simultaneously compare all Up
above £, modulo this generic equivalence. (With a simple instance of normal-
ization, the resulting trees can easily be rearranged as trees on the phalanxes
®(TF).) This produces a final iterate Wp of P, with Wp =; Wpr, € is Woodin
in Wp and§<ﬁgVP.

Cram 3. V7 = 9V for all PP’ € 2.
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Proof. By §4.5, % = ¥ depends only on the equivalence class &. So the
corresponding fact holds for Wp. But we can take G, G’ C Coll(w, < ko) which
are Wp, Wpi-generic respectively with Wp[G] = Wp/[G’], and then &"F =
&EWr | which suffices. O

Now let # be a A-candidate and P = Py, so ¥ | 1 = #. Note that
Tp~ (Ep) ~Up, after normalization, is translatable, where Up is the tree leading
from Up to Wp. Let Ty 1 on ¥ | 1 =¥ be its (short-normal) translation on
¥ | 1. Then MT» = ”//1W” , which by the previous claim is independent of 7.
So the trees Ty iterate the various # | 1 to a common model 77*.

Let Ty 1 = To = T1 where T is based on 7|6y = (¥ | D[67*, and T;

T *
is on Mo, and is above 6{”""0 = 5;1/1 . Then 7Ty translates to a tree Uy on
¥, and MT0 = MY | 1. Now T; essentially translates to a tree U; on MYo.
The extenders used in U; are just those with indices those used in 77, together

with 1 further 1-long extender, which is an image of e;(M40). That is, let

. . +M]0
ag = 0, and let o be least such that [0, a1]7, is non-dropping and x, **

Ih(EJ°). Then U [(a1 4 1) is a direct translation of 7y, though note that if it

is non-trivial, it drops in model immediately to Mgo0||'y{w 10400, or some segment
thereof. Then, U uses an extra extender; if oy = 0 then EY! = ey (MY0),
and otherwise E¥1 = F(MY) (which is an image of e;(M%0)). This results
in MZ;’;Jrl = "//Q(M;rll) After this, noting that 77 [[a1,00) is 1-translatable on
MZ} (in particular, uses no 0-long extenders), we set U [[a + 1,00) to be its
1-translation. Write Uy = Uy~ U;.

So we end up with MY = #5(MI7), but M7 was independent of ¥. So
write ¥5* for this common iterate of the A-candidates 7.

Using the strategies X p, we can define Uy uniformly in ¥. So let T be
the proper class of all ordinals fixed by all the iteration maps i“*. Let % =
cHullf/"’ (T') and 7 : %5 — 75* the uncollapse map. Since rg(ivsy, ) C 1g(m), this
determines an elementary 7 : % — #; by factoring. But 7 is a set-ground of
¥5[G,G"], so by [5], Y2 = ¥5 and 7 = id.

So we have defined #3 over the universe of ¥3[G, G'] from the parameter A,
and so by homogeneity, in fact over the universe of #53[G] from A. The uniformity
then gives that we can define ¥ over the universe of any set-generic extension
of 74, from no parameter.

We can now easily complete the proof of the theorem. Part 4 was just
established above. Part 1: Let Us be the universe of %5 and G C Coll(w, A)
be ¥5-generic, where A > 5;’/2. It now easily follows that Uy C HODU"‘[G], SO
actually Uy = HODY2(¢), And if H is Coll(w, \)-generic over M, then since M is
an L”2-extension of %5, it follows that Uy = HODMWI, Part 2. It W CUs;is a
ground of Uy, then we get HODY? [G] C Wy if M is sufficiently large, so Uy C W,
so Uy = W. Part 3: The fact that Us is the mantle of all set-generic extensions
of Uy now follows from the set-directedness of set-grounds. O

Corollary 5.80. We have:
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1. The k1-mantle %g of M is the universe of V5, so k1 is the least ordinal
with this property.

2. If G C Coll(w, < k1) is M-generic then HODM js the universe of .

Proof. Note that ¥4 C HODMICI ¢ //{é‘f, using Theorem 5.79. So we just need
to see that ///,?14 C 7. Let X be a set of ordinals in ///é‘f Let E € EM be
M-total with crit(E) = &1, and U = Ult(M, E). Then j(X) € Q///j[{m) and
Jjlsup X € ¥, so it suffices to find a < j(k1)-ground W of U with W C ¥5.
But this can be done like in the proof of Theorem 4.36, or as follows:?% Let W
be the result of the P-construction of U over ¥|y72 (in the style of that used
to construct ¥2). Note that (#1|x1, M|ko) is generic over W for the two-step
forcing iteration given by 72 followed by ", and W [#1|k1, M|ko] = U. So W
is a < j(k1)-ground of U. But W C ¥4, since W||lb(E) = #3|Ih(E), and we can
inductively compute the extender sequence of W above lh(F) using F[%; and
ULt(%, E143) = 4. O
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