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In a qualitative study with eighth to tenth graders (N=18), we investigated whether the 
activation of prior mathematical knowledge would promote or interfere with solution 
processes as students solved modelling problems. In addition, we analyzed the role of 
metacognitive monitoring of knowledge activation. Participants with different prior 
mathematical knowledge solved modelling problems in which multiple solution 
approaches were possible. We found that the activation of inappropriate prior 
mathematical knowledge negatively impacted modelling. Negative effects of prior 
knowledge also occurred if a second solution for a problem was required because 
learners stuck to the prior knowledge of their first approach. Monitoring of knowledge 
activation was rarely found, even when it would have been helpful. 

INTRODUCTION 
Building a mental model of a real-world situation is particularly important for solving 
modelling problems (Leiss, Schukajlow, Blum, Messner, & Pekrun, 2010). To build a 
mental model, students have to structure and simplify the information presented in the 
problem statement. To decide what information is important, they need to have at least 
a rough idea of a corresponding mathematical model in mind. Thus, students have to 
activate prior mathematical knowledge at the very beginning of the solution process. 
However, an initial strong focus on mathematical issues might occur at the expense of 
the development of a situational understanding and could lead to solutions that are not 
adequate from a realistic perspective. Metacognitive monitoring of the activated prior 
knowledge is considered to play an important role in the decision to either use or ignore 
the activated prior knowledge. The present article investigates the interplay between 
prior mathematical knowledge, modelling activities, and monitoring of knowledge 
activation, with the aim to better understand under what circumstances the activation 
of mathematical knowledge promotes or interferes with modelling processes. 

THEORETICAL BACKROUND AND RESEARCH QUESTIONS 
Effects of Prior Knowledge and Monitoring of Prior Knowledge on Performance 
Prior knowledge is considered to be an important predictor of performance (Dochy, 
Segers, & Buehl, 1999). But under certain circumstances, the activation of prior 
knowledge can have negative effects, as the activation of inappropriate knowledge 
while solving mathematical problems can lead to a search in the wrong part of the 
problem space (Kaplan & Simon, 1990). Certain mathematical contents seem to trigger 
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inappropriate activation of prior mathematical knowledge. Students were previously 
found to activate knowledge of proportional relations even when this knowledge was 
not suitable for the problem at hand. Reasons are seen in the dominant role linearity 
plays in classrooms and everyday contexts (Van Dooren, De Bock, Hessels, Janssens, 
& Verschaffel, 2005). Further, it can be hypothesized that knowledge about the topic 
that was taught most recently is often activated regardless of its appropriateness 
because, in most classroom situations, this knowledge is typically needed to solve 
exercises and to succeed on tests. Metacognitive monitoring of knowledge activation 
was found to be helpful to avoid negative effects of prior knowledge on performance 
(Stillman, 2011; Stillman & Galbraith, 1998; Van Dooren & Matthew, 2015). 
Role of Prior Knowledge for Mathematical Modelling 
The translation of a real-world situation into a mathematical model is at the core of 
mathematical modelling. The translation process requires initial modelling activities 
such as understanding, structuring, and simplifying the real-world situation in order to 
transfer it into an adequate mental model of the situation that can be further 
mathematized (Blum, 2015). Modelling problems often contain superfluous 
information, and identifying the important information becomes part of the activities of 
structuring and simplifying. Prior mathematical knowledge can be considered 
necessary to identify the information that is required to develop a mathematical model. 
Hence, anticipations of mathematical knowledge might be needed to successfully carry 
out initial modelling activities. On the other hand, impulsively activated mathematical 
knowledge has been suggested to promote superficial solutions in which situational 
constraints are neglected, especially if no metacognitive activities to monitor the 
activation of knowledge are conducted (Stillman & Galbraith, 1998). Cue salience and 
its interaction with prior knowledge is thereby seen as particularly important because it 
can trigger the activation of inappropriate knowledge. Activation of inappropriate prior 
mathematical knowledge and a lack of metacognitive activities devoted to monitoring 
knowledge activation might account for why students have trouble solving modelling 
problems, but little is known about the interplay between these factors and students’ 
solution processes. 
Research Questions 
These considerations led us to pose the following research questions: 

1. To what extent does the activation of prior mathematical knowledge promote or 
interfere with modelling processes?  

2. Is metacognitive monitoring used to determine the appropriateness of the 
activated mathematical knowledge? 

METHOD 
Participants and Data Collection 
The sample involved 18 eighth to tenth graders (9 girls and 9 boys between the ages of 
14 and 16) from four middle-track classes (German Realschule) from two different 
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schools. We selected participants by following the principle of maximum variation 
sampling (Patton, 2015, p. 283). As selection criteria, we focused on the background 
variables mathematical ability, reading comprehension, and prior mathematical 
knowledge. Mathematical ability was estimated with math grades and reading 
comprehension via a general standardized test (Leiss et al., 2010). Mathematical 
knowledge about circles could help or inhibit problem solving. Thus, we chose eight 
students who had not yet covered this topic in their mathematics classes and ten 
students who had studied this topic before participating in the investigation. The 
interviews were conducted individually. First, each participant worked on the 
problems “Wind turbine” and “Ferris wheel” using the think-aloud method to verbalize 
his or her approach (Figures 1 and 2). Second, a stimulated recall interview was 
conducted in which the participant watched the problem solving videos along with the 
interviewer and commented on his or her own (i.e. the student’s) actions spontaneously 
or when requested to do so by the interviewer. At the end of the stimulated recall 
interview, students were asked to find a second solution for the “Wind turbine” 
problem. 

“Wind turbine” problem 

Wind energy is the fourth largest type of energy in Germany and is therefore an 
important part of energy production. Because wind turbines are very large, they are 
also called wind giants. Overall, a wind turbine is about 150 meters high. The radius of 
the windmill is 45 meters. This is exactly the length of one of the blades. The three 
blades are mounted at a height of about 95 meters on a so-called nacelle. The nacelle is 
rotatable so that the blades of the wind turbine can align themselves with the wind 
direction. The speed at which the blade tip rotates is about 40 meters per second at an 
average wind speed. If the wind blows too hard, the system switches off. At a medium 
wind speed, a blade will return to its initial position after 6 seconds.  

How many meters will the blade tip cover in one turn of the wind turbine? 

Figure 1: “Wind turbine” problem 

“Ferris wheel” problem 

The London Eye is the third largest Ferris wheel in the world. It stands directly on the 
banks of the Thames. Overall, the Ferris wheel is 140 meters high and has a huge 
diameter of 125 meters. From the highest point of the Ferris wheel, you can see for 40 
km. For passengers to board and exit, the wheel does not have to stop because it turns 
very slowly. The speed is only 10 meters per minute. A ride on the Ferris wheel is 
expensive. It costs 25 euros but also takes 40 minutes. 

At what altitude above the water level will a person be 10 minutes after boarding? 

Figure 2: “Ferris wheel” problem 

To stimulate the activation of different prior knowledge, we decided to use problems to 
which different solution approaches could be applied. The first problem “Wind 
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turbine” can be solved by either calculating the circumference of the circle 
(C=2·π·45m≈283m) or using the proportional relation of time and travel distance 
(d=40m*6=240m). For the “Ferris wheel” problem, constructing an adequate mental 
model of the situation and recognizing that the position of the gondola after 10 minutes 
is a quarter of one rotation are crucial to applying an appropriate solution method. The 
result can be calculated by adding up the length of the radius and the height of the base 
(125:2+140-125=77.5 m). The problem can also be solved with other approaches (e.g. 
trigonometric functions), but other approaches did not come up in the interviews. 
Data Analysis 
The problem solving and stimulated recall interviews were transcribed and sequenced. 
Sequences of the stimulated recall interviews were assigned to the related problem 
solving sequences in order to collect more indications of whether prior knowledge was 
activated. The transcripts were analyzed using qualitative content analysis (Mayring, 
2014). A category scheme was used to code the sequences with regard to modelling 
activities, prior mathematical knowledge, metacognitive monitoring of knowledge 
activation, and the appropriateness of the solution. More specifically, the modelling 
activities were divided into initial modelling activities (understanding/structuring the 
problem) and later modelling activities. Prior mathematical knowledge was 
categorized into subcategories referring to different mathematical contents (e.g. circle 
calculation or proportional relations). The occurrence of metacognitive monitoring of 
knowledge activation was recorded. Different solution qualities (correct, partial, 
incorrect and processing canceled) and different qualities of the mental model of the 
situation (adequate, not adequate) were distinguished. Content-analytical quality 
criteria such as the stability and reproducibility of the analysis were tested by 
calculating intra- and inter-coder reliability for more than a quarter of the material with 
satisfactory agreement (Cohen’s kappa calculated for each dimension ranged between 
.691 ≤ κ ≤ .878). Disagreements about the coding were discussed and validated 
consensually. 

RESULTS 
Because of space limitations, we present only the most important results and 
exemplarily sketch two examples of solutions to the “Ferris wheel” problem in which 
aspects of prior mathematical knowledge were found to promote or interfere with 
problem solving. 
For the first research question, we analyzed what kind of prior mathematical 
knowledge was activated and how this knowledge interacted with the modelling 
processes. Learners who had prior knowledge of circle calculation often activated this 
knowledge (“Wind turbine” problem: 6 of 10 students; “Ferris wheel”: 6 of 10 
students). For the “Wind turbine” problem, they activated this knowledge even more 
often than knowledge that referred to proportional relations, although the approach of 
calculating the circumference of the circle is more difficult and prone to errors (circle 
calculation: 6 of 10 students; proportional relations: 2 of 10 students). This was found 
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despite the fact that these learners also had prior knowledge of proportional relations, 
which was verified in the interviews. Learners without prior knowledge of circle 
calculation usually used prior knowledge of proportional relations (“Wind turbine” 
problem: 6 of 8 students; “Ferris wheel”: 5 of 8 students). Regarding the supporting or 
interfering effect of the activated knowledge, we found a big difference between the 
problems. For the “Wind turbine” problem, in one third of the solution processes, 
knowledge of circle calculation or proportional relations was already activated in the 
initial modelling activities of understanding and structuring. In the largest number of 
cases (12 of 18 students), the activation of knowledge of circle calculation or 
proportional relations led to appropriate approaches and correct solutions. But after 
applying one approach, most learners had trouble applying a second approach. They 
tried to apply their prior knowledge of their first approach again, but they did not step 
back and activate their prior knowledge of other mathematical contents. The transcript 
below illustrates this difficulty as described by one of the learners. 

29:25 158 Ella: So this problem, the first one [“Wind turbine”], I thought was 
relatively easy because, as I said before, you only had to calculate the 
circumference here. But the first solutions are always easy, but then to 
come up with the second … because then you are so fixated on one 
calculation and then you also think that it is now the only one. It’s just 
difficult then to still be open to another way. 

In the “Ferris wheel” problem, activation of knowledge about circle calculation or 
proportional relations in initial modelling activities was often found to be accompanied 
by inadequate mental models of the situation (15 of 18). For example, students who 
activated prior knowledge of circle calculations in initial modelling activities (5 of 10) 
figured out that this was not fruitful and either applied a second approach (3 of 10) or 
canceled their processing (2 of 10). On the other hand, the activation of prior 
knowledge of proportional relations (10 of 18) typically led to a single attempt in 
which the learners used this knowledge to calculate the distance traveled instead of the 
height above the water level as requested and reported the distance traveled as a result 
(10 min·10 m/min=100 m). Hence, in almost all cases, the activation of prior 
knowledge of proportional relations resulted in incorrect solutions.   
The second research question was about the use of monitoring activities to control the 
activation of prior mathematical knowledge. Monitoring of knowledge activation was 
found only very rarely (“Wind turbine” problem: 2 of 18; “Ferris wheel” problem: 1 of 
18). In particular, for initial modelling activities, no metacognitive monitoring was 
found at all. Moreover, there were no differences between the “Wind turbine” and 
“Ferris wheel” problems, even though for the “Ferris wheel” problem, it was essential 
to monitor one’s knowledge activation in order to recognize the inappropriateness of 
certain prior knowledge. Moreover, we found indications that even if students 
identified contradictions in the solution, they did not change their solution. The case of 
Pia presented below exemplifies this issue.  
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In the following, two solutions to the “Ferris wheel” problem are sketched. In the first 
case, Tabea is a learner with high reading comprehension skills and high mathematical 
performance. Her solution process is characterized by a long period in which she 
engages in the initial modelling activities of understanding and structuring. Although 
Tabea has no prior knowledge of circle calculation, she activates such knowledge and 
mentions that “hopefully this has nothing to do with π.” She later explains that she 
knows about π because of a poster in her classroom. Her first idea is to calculate the 
circumference of the circle and divide the result, but she does not know how to do it. 
She mentions that “there must be something else that I have overlooked” and starts to 
read the problem statement again and transfers important information into a sketch 
(Figure 3). The sketch and her prior knowledge of fractions help her to recognize that 
10 minutes corresponds to a quarter rotation. She calculates the length of the radius and 
interprets it as equal to the height she was searching for. However, her solution fails to 
take into account the base of the Ferris wheel. 

 

Figure 3: Tabea’s solution to the “Ferris wheel” problem 

The second case is Pia, a student with rather weak reading comprehension skills and 
weak mathematical performance. Like Tabea, her process of solving the “Ferris 
wheel” problem begins with a long period in which she engages in initial modelling 
activities. She reads the problem statement several times and also sketches the 
situation. Pia uses prior knowledge of proportional relations to interpret the speed of 10 
m per minute as “in one minute, I am ten meters high” and to create a table to calculate 
the distance traveled after ten minutes (Figure 4, left). In the sequences presented 
below, she writes down and comments on her solution.  

18:06 37 [pause] So, I am not 
one hundred percent 
sure, but um. 

I: Are you at least satisfied with your solution? 

P: No, not really, actually this is not right.  

I: Okay, what is wrong? 

P: That, if you are 100 meters high, you have 
actually only gone this far [draws a sketch 
(Figure 4, right) to explain the difference 
between the distance traveled and the altitude]. 

18:10 38 [writes] After ten 
minutes, it is located at 
a height of 100 meters. 
Okay, I’m done. 

In the stimulated recall interview, Pia is able to explain that she is aware of the 
discrepancy between her solution, which presents the distance traveled, and the height 
she was searching for (Figure 4, right).  
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Figure 4: Pia’s solution and the sketch in which Pia explains the discrepancy between 
her solution and the question  

In summary, Tabea is one of the rare examples where the activation of inappropriate 
prior knowledge did not lead to an incorrect solution to the “Ferris wheel” problem 
(Tabea’s solution was categorized as partially correct). On the other hand, in Pia’s 
case, her prior knowledge of proportional relations was used to come up with a 
superficial solution, and even her recognition of discrepancies did not lead her to 
search for appropriate prior knowledge. 

SUMMARY AND DISCUSSION 
In the present study, we investigated whether the activation of prior mathematical 
knowledge would promote or interfere with solution processes in solving modelling 
problems. The positive or negative impact of the activated prior mathematical 
knowledge depended on the appropriateness of the knowledge. Students tended to 
activate inappropriate knowledge if some information in the problem statement looked 
promising at first glance but did not match the problem’s demands. In these cases, 
especially the activation of prior mathematical knowledge in initial modelling 
activities was accompanied by inadequate mental models of the situation and incorrect 
solutions. This can be considered an indication that supports the hypothesis that 
impulsively activated mathematical knowledge can promote superficial solutions 
(Stillman & Galbraith, 1998). Prior knowledge of proportional relations and circle 
calculation were both activated frequently, even if these types of knowledge were not 
appropriate for solving the problem at hand. The inappropriate activation of knowledge 
of proportional relations is in line with previous research that demonstrated that 
students tend to overgeneralize proportional relations (Van Dooren et al., 2005). 
Students’ frequent activation of prior knowledge of circle calculation indicates that the 
most recently learned subject is an important although unexplored factor that should be 
addressed in future studies. Further, it was found that learners had trouble finding a 
second solution because they stuck to the prior knowledge they had activated for the 
first solution. This indicates that a first solution impedes the search for a second 
solution, and this should be considered an aggravating factor when multiple solutions 
are required. A low occurrence of metacognitive monitoring was found, although in 
some of the solution processes, metacognitive activities could have helped students 
recognize the inappropriateness of the activated knowledge and might have stimulated 
a search for prior knowledge that was more appropriate. Therefore, a lack of 
metacognitive monitoring can also be considered as one reason for students’ low 
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success in solving the modelling problems (Stillman & Galbraith, 1998). Teaching 
methods that were found to stimulate monitoring activities such as prompting each 
student from the very beginning to find two solutions (Schukajlow & Krug, 2013) 
might help students recognize the inappropriateness of prior knowledge.  
Despite methodological limitations such as the limited number of participants, our 
findings can contribute to a better understanding of the role that prior mathematical 
knowledge plays in modelling processes and might inspire further studies. 
 
References 
Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can 

we do? In J. S. Cho (Ed.), Proceedings of the 12th International Congress on 
Mathematical Education (pp. 73-96). New York: Springer. 

Dochy, F., Segers, M., & Buehl, M. (1999). The relation between assessment practices and 
outcomes of studies: The case of research on prior knowledge. Review of Educational 
Research, 69(2), 145-186.  

Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22, 
374-419.  

Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the 
situation model in mathematical modelling-Task analyses, student competencies, and 
teacher interventions. Journal für Mathematikdidaktik, 31(1), 119-141.  

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures 
and software solution. Klagenfurt: Beltz. 

Patton, M. Q. (2015). Qualitative research and evaluation methods: Integrating theory and 
practice (4th ed.). Los Angeles: Sage. 

Schukajlow, S., & Krug, A. (2013). Planning, monitoring and multiple solutions while 
solving modelling problems. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 
37th Conference of the International Group for the Psychology of Mathematics Education 
(Vol. 4, pp. 177-184). Kiel, Germany: PME. 

Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and 
modelling tasks at secondary school. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman 
(Eds.), Trends in Teaching and Learning of Mathematical Modelling ICTMA14 (pp. 
165–180). Berlin: Springer. 

Stillman, G., & Galbraith, P. L. (1998). Applying mathematics with real world connections: 
Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 
36(2), 157-194.  

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not 
everything is proportional: Effects of age and problem type on propensities for 
overgeneralization. Cognition and Instruction, 23, 57–86.  

Van Dooren, W., & Matthew, I. (2015). Inhibitory control in mathematical thinking, learning 
and problem solving: A survey. ZDM, 47(5), 713-721.  


