SIMPLICITY OF THE AUTOMORPHISM GROUPS OF SOME HRUSHOVSKI CONSTRUCTIONS

DAVID M. EVANS, ZANIAR GHADERNEZHAD, AND KATRIN TENT

Abstract

. we show that the automorphism groups of certain countable structures obtained using the Hrushovski amalgamation method are simple groups. The structures we consider are the 'uncollapsed' structures of infinite Morley rank obtained by the ab initio construction and the (unstable) \aleph_{0}-categorical pseudoplanes. The simplicity of the automorphism groups of these follows from results which generalize work of Lascar and of Tent and Ziegler. 2010 Mathematics Subject Classification: 03C15, 20B07, 20B27.

1. Introduction

In this paper, we show that the automorphism groups of certain countable structures obtained using the Hrushovski amalgamation method are simple groups. This answers a question raised in [10] (Question (iii) of the Introduction there). The structures we consider are the 'uncollapsed' structures of infinite Morley rank obtained by the ab initio construction in 77 and the (unstable) \aleph_{0}-categorical pseudoplanes in [6]. The simplicity of the automorphism groups of these follows from some quite general results which should be of wider interest and applicability. Although much of the intuition (and some of the motivation) behind these results is model-theoretic, the paper requires no knowledge of model theory.

The methods we use have their origins in the paper [9] of Lascar and it will be helpful to recall some of the results from there. Suppose M is a countable saturated structure with a 0 -definable strongly minimal subset D such that M is in the algebraic closure of D. Consider $G=\operatorname{Aut}(M / \operatorname{acl}(\emptyset))$, the automorphisms of M which fix every element (of $M^{e q}$) algebraic over \emptyset. Suppose $g \in G$ is unbounded (as defined below). Then ([9, Théorème 2) the conjugacy class g^{G} generates G. In particular if all non-identity elements of G are unbounded, then G is a simple group.

Here, unbounded means that for all $n \in \mathbb{N}$ there is a finite $X \subseteq D$ such that $\operatorname{dim}(g X / X)>n$, where dim is dimension in the strongly minimal set D. It is worth noting what this says in the 'classical' cases

[^0]where $M=D$. If M is a pure set, so G is the full symmetric group $\operatorname{Sym}(M)$, then $g \in G$ is bounded if and only if it is finitary. If M is a countably infinite dimensional vector space over a countable division ring F, then G is the general linear group $\mathrm{GL}\left(\aleph_{0}, F\right)$ and $g \in G$ is bounded if and only if it is a scalar multiple of an element of G with fixed point space of finite codimension. So in these cases, Lascar's result implies the well known results that G modulo the bounded part is simple. If M is an algebraically closed field of characteristic zero (and of countably infinite transcendence rank), then it can be shown that all non-identity automorphisms are unbounded, so in this case G is simple (note that $\operatorname{acl}(\emptyset)$ is the algebraic closure of the prime field). Lascar's result has recently been used in [4] to give examples of simple groups with $B N$-pairs which do not arise from algebraic groups.

Topological methods are a key feature of Lascar's proof: the automorphism group $\operatorname{Aut}(M)$ is regarded as a topological group and arguments about Polish groups are used. Another key feature, arising from the model theory, is the use of a natural independence relation on M. These ideas were applied in other contexts in [10] and [13. In [10], M is a homogeneous structure arising from a free amalgamation class of finite structures. Assuming $G=\operatorname{Aut}(M) \neq \operatorname{Sym}(M)$ is transitive on M, it is shown that G is simple. The free amalgamation here can be viewed as giving a notion of independence on M, and [13] formalizes this into the notion of a stationary independence relation on M ([13], Definition 2.1; cf. Definition 2.1 here). Generalizing Lascar's notion of unboundedness, [13] introduce the notion of $g \in \operatorname{Aut}(M)$ moving almost maximally (with respect to the independence relation). It is shown ([13], Corollary 5.4) that in this case, every element of G is a product of 16 conjugates of g.

We now describe the main results of the current paper. In the contexts of [10] and [13], algebraic closure in M is trivial. In Section 2 here, M is a countable structure and cl is an $\operatorname{Aut}(M)$-invariant closure operation on M; we are interested in $G=\operatorname{Aut}(M / \operatorname{cl}(\emptyset))$. We define (Definition 2.1) the notion of a stationary independence relation compatible with cl and observe (Theorem 2.5) that the above result of Tent and Ziegler also holds in this wider context.

In Section 3, we assume that the closure and independence are controlled by an integer-valued dimension function d. This is the case in the Hrushovski construction which interests us, and of course is also the case in the almost strongly minimal situation of Lascar (where the closure is algebraic closure and dimension is given by Morley rank). The main result here is Corollary 3.12; there is a natural notion of an automorphism g being ' cl^{d}-unbounded' and assuming that M is in the closure of a basic orbit (a condition similar to almost strong minimality), every element of G is the product of 96 conjugates of g or its inverse. So this can be seen as a generalization of (9], Théorème 2).

An example here (Example 3.13) is where M is a countable, saturated differentially closed field of characteristic 0 and cl^{d} is given by differential dependence. So $\mathrm{cl}^{d}(\emptyset)=F$ contains the field of constants, and cl^{d} is strictly bigger than algebraic closure. It follows from Corollary 3.12 that $\operatorname{Aut}(M / F)$ is a simple group.

In Section 4 we apply these results to structures M_{0} coming from the simplest form of the Hrushovski predimension construction. Unlike in the collapsed case, the closure operation given by the dimension function is strictly bigger than algebraic closure and the independence notion is weaker than non-forking. Nevertheless, we show (Corollary 4.8) that it is a stationary independence relation. In the rest of the section, under some restrictions on the predimension function, we verify the conditions needed to apply Corollary 3.12. We show that M_{0} is in the d-closure of a basic orbit (Lemma 4.11) and that the only cl^{d} bounded automorphism is the identity (Theorem 4.14). It follows that $\operatorname{Aut}\left(M_{0} / \mathrm{cl}^{d}(\emptyset)\right)$ is simple.

In the final section, we look at two further variations of the Hrushovski construction. In 5.1 we consider the 'uncollapsed' generalized n-gons constructed by the third Author in [12]. Here, the result is similar to the result in [4]: the automorphism group is a simple group, so this gives new examples of simple groups with a $B N$-pair. In Section 5.2 we consider the ω-categorical structures M_{f} constructed by Hrushovski in [6] using an integer-valued predimension. Here the closure is algebraic closure and is locally finite. However, the novelty is that in order to obtain stationarity, we work with an independence relation which is stronger than d-independence. The main result (Corollary 5.10) is that (under some mild restrictions on the control function f) if M_{f} is the algebraic closure of a basic orbit, then $\operatorname{Aut}\left(M_{f}\right)$ is simple. It seems plausible that the condition of being in the algebraic closure of a basic orbit should hold fairly generally, but the details of checking it even in special cases are quite involved.

Notation: Throughout, M will denote a countable first-order structure; we will not distinguish notationally between the structure and its domain. We denote by $\operatorname{Aut}(M)$ the group of automorphisms of M and if $X \subseteq M$, then $\operatorname{Aut}(M / X)$ is the subgroup consisting of automorphisms which fix every element of X. We also use an alternative notation for this: if $H \leq G$ is a group of permutations on M and $X \subseteq M$ we let $H_{X}=\{h \in H: h(x)=x$ for all $x \in X\}$. If a is a tuple of elements from M then the H-orbit of a is $\{h a: h \in H\}$. The $\operatorname{Aut}(M / X)$-orbit of a is denoted by $\operatorname{orb}(a / X)$ (and is sometimes called the locus of a over X). If $A, B \subseteq M$ and c is a tuple in M, then we will often use notation such as $A B$ and $A c$ in place of $A \cup B$ and $A \cup\{c\}$. We write $A \subseteq_{f i n} B$ to indicate that A is a finite subset of B.

Acknowledgements: Several of the results given here appear in the PhD thesis of the Second Author [5] with a slightly different presentation. Work on the paper was completed whilst the Authors were participating in the trimester programme 'Universality and Homogeneity' at the Hausdorff Institute for Mathematics, Bonn.

2. Stationary independence relations

In this section we use ideas from Lascar's paper [9] to generalise some of the results from [13]. We shall assume familiarlity with these papers and only sketch the modifications which are required to produce the generalisations. The treatment is axiomatic: examples can be found in the applications later in the paper.

Suppose M is a countable structure and $G=\operatorname{Aut}(M)$ is its automorphism group. Let cl be a closure operation on M which is G-invariant and finitary. So for all $g \in G$ and $X \subseteq M$ we have $\operatorname{cl}(g X)=g(\operatorname{cl}(X))$ and $\operatorname{cl}(X)=\bigcup\left\{\operatorname{cl}(Y): Y \subseteq_{\text {fin }} X\right\}$. We shall also assume that the closure operation subsumes definable closure, in the sense that if $X \subseteq M$ is finite and $a \in M$ is fixed by all elements of G which fix all elements of X, then $a \in \operatorname{cl}(X)$. Let $\mathcal{X}=\left\{\operatorname{cl}(A): A \subseteq_{\text {fin }} M\right\}$ consist of the closures of finite sets in M and let \mathcal{F} consist of all maps $f: X \rightarrow Y$ with $X, Y \in \mathcal{X}$ which extend to automorphisms. We refer to the latter as partial automorphisms of M. So of course, \mathcal{X} is countable but \mathcal{F} need not be (if cl is not locally finite).

Now, as in Definition 2.1 of [13] we suppose that \downarrow is an invariant stationary independence relation between elements of \mathcal{X}, or more generally between subsets of elements of \mathcal{X}, which is compatible with the closure operation cl. More precisely we have the following modification of Definition 2.1 of [13].

Definition 2.1. We say that \downarrow is a stationary independence relation compatible with cl if for $A, B, C, D \in \mathcal{X}$ and finite tuples a, b :
(1) (Compatibility) We have $a \downarrow_{b} C \Leftrightarrow a \downarrow_{\mathrm{cl}(b)} C$ and

$$
a \underset{B}{\downarrow} C \Leftrightarrow e \underset{B}{\downarrow} C \text { for all } e \in \operatorname{cl}(a, B) \Leftrightarrow \operatorname{cl}(a, B) \underset{B}{\downarrow} C .
$$

(2) (Invariance) If $g \in G$ and $A \downarrow_{B} C$, then $g A \downarrow_{g B} g C$.
(3) (Monotonicity) If $A \downarrow_{B} C D$, then $A \downarrow_{B} C$ and $A \downarrow_{B C} D$.
(4) (Transitivity) If $A \downarrow_{B} C$ and $A \downarrow_{B C} D$, then $A \downarrow_{B} C D$.
(5) (Symmetry) If $A \downarrow_{B} C$, then $C \downarrow_{B} A$.
(6) (Existence) There is $g \in G_{B}$ with $g(A) \downarrow_{B} C$.
(7) (Stationarity) Suppose $A_{1}, A_{2}, B, C \in \mathcal{X}$ with $B \subseteq A_{i}$ and $A_{i} \downarrow_{B} C$. Suppose $h: A_{1} \rightarrow A_{2}$ is the identity on B and $h \in \mathcal{F}$. Then there is some $k \in \mathcal{F}$ which contains $h \cup \mathrm{id}_{C}$ (where id_{C} denotes the identity map on C).

Henceforth, we shall assume that \downarrow is a stationary independence relation on M compatible with cl .

Remarks 2.2. By compatibility, $A \downarrow_{X} \mathrm{cl}(X)$ for all finite X. Moreover, using existence and stationarity (and the fact that cl subsumes definable closure), if $A \in \mathcal{X}$ and $b \in M$, then $b \downarrow_{A} b \Leftrightarrow b \in A$.

As in Section 2 of Lascar's paper [9], we topologise G by taking basic open sets of the form $O(f)=\{g \in G: g \supseteq f\}$, for $f \in \mathcal{F}$. It should be stressed that in general this is not the 'usual' automorphism group topology (where pointwise stabilisers of finite sets form a base of open neighbourhoods of the identity). It is complete metrizable, but not necessarily separable, so we cannot apply Polish group arguments directly to G. However, as in [9], we will work in separable closed subgroups to avoid this difficulty.

Suppose $\mathcal{S} \subseteq \mathcal{F}$ and let

$$
G(\mathcal{S})=\{g \in G: g \mid X \in \mathcal{S} \text { for all } X \in \mathcal{X}\}
$$

Then $G(\mathcal{S})$ is a closed subset of G, and if \mathcal{S} is countable, it is separable. Moreover, if \mathcal{S} satisfies conditions (1-7) on page 241 of [9], then $G(\mathcal{S})$ is a subgroup of G. Thus, if \mathcal{S} is countable and satisfies these conditions then $G(\mathcal{S})$ is a Polish subgroup of G. The conditions just say that \mathcal{S} : contains the identity maps; is closed under inverses, restrictions and compositions, and allows extension of domain (and codomain). It is clear that any countable $\mathcal{S}_{0} \subseteq \mathcal{F}$ can be extended to a countable \mathcal{S} satisfying these conditions. In particular, $G(\mathcal{S})$ can be taken to include any desired countable subset of G.

Lemma 2.3. Suppose \mathcal{S}_{0} is a countable subset of \mathcal{F}. Then there is a countable \mathcal{S} with $\mathcal{S}_{0} \subseteq \mathcal{S}$ such that $G(\mathcal{S})$ is a group and the conditions in Definition 2.1 hold with G replaced by $G(\mathcal{S})$ and \mathcal{F} replaced by \mathcal{S}.
Proof. First, note that we can assume (by extending \mathcal{S}_{0}) that Lascar's conditions (1-7) hold and for all $B \in \mathcal{X}$, the group $G\left(\mathcal{S}_{0}\right)_{B}$ has the same orbits on finite tuples from M as G_{B}. This gives Existence when G is replaced by $G\left(\mathcal{S}_{0}\right)$, by taking a finite set of generators for A and using the compatibility of \downarrow and cl.

We can further extend \mathcal{S}_{0} so that the Stationarity condition holds; alternating this with a step to ensure that (1-7) hold we obtain, after a countable number of steps, a set \mathcal{S} in which (1-7) hold and the Stationarity condition holds.

Definition 2.4. We say that $g \in G$ moves almost maximally if for all $B \in \mathcal{X}$ and elements $a \in M$ there is a^{\prime} in the G_{B}-orbit of a such that

$$
a^{\prime} \underset{B}{\downarrow} g a^{\prime} .
$$

Following the proof of Corollary 5.4 in [13], we then have:
Theorem 2.5. Suppose M is a countable structure with a stationary independence relation compatible with a closure operation cl. Suppose that $G=\operatorname{Aut}(M)$ fixes every element of $\operatorname{cl}(\emptyset)$. If $g \in G$ moves almost maximally, then every element of G is a product of 16 conjugates of g.
Proof. Let $k \in G$ and let $\mathcal{S}_{0} \subseteq \mathcal{F}$ be any countable set which contains the restrictions of k, g to all elements of \mathcal{X}. Extend \mathcal{S}_{0} to a countable set \mathcal{S} as in the above Lemma. So $g, k \in G(\mathcal{S})$ and $G(\mathcal{S})$ is a Polish group acting on M; furthermore, \downarrow is an invariant stationary independence relation with respect to this group.

For the rest of the proof only automorphisms in $G(\mathcal{S})$ will be considered.

The proof then just consists of checking that the argument in [13] works. We make some remarks about various parts of this.
(1) By stationarity and the assumption that G fixes every element of $\operatorname{cl}(\emptyset)$, the set \mathcal{S} has the joint embedding property. This means that if h_{i} : $X_{i} \rightarrow Y_{i}$ are in \mathcal{S} (for $i=1,2$) there are $f, h \in \mathcal{S}$ with $f^{-1} h_{1} f, h_{2} \subseteq h$. Indeed, by Existence we can assume (after applying a suitable f) that $X_{1}, Y_{1} \downarrow X_{2}, Y_{2}$. By Stationarity we can then extend h_{i} to g_{i} which is the identity on $X_{j} \cup Y_{j}$ (for $j \neq i$). Note that this uses the fact that h_{i} fixes every element of $\operatorname{cl}(\emptyset)$. Then $g_{1} g_{2}$ extends h_{1} and h_{2}, as required.

Once we have this, it follows that if U, V are non-empty open subsets of $G(\mathcal{S})$ then there is $f \in G(\mathcal{S})$ such that $f(V) \cap U \neq \emptyset$. Thus Theorem 8.46 of [2] applies, as in the proof of Theorem 2.7 of [13].
(2) The part of the proof in [13] which requires the most adaptation is in the use of Lemma 3.6 in the proof of Proposition 3.4. So we give a reformulation of this lemma, and outline its proof.

Suppose $g \in G$ moves maximally and $X, Y \in \mathcal{X}$ with $g X=Y$. Suppose $X \subseteq W \in \mathcal{X}$ and $Y \subseteq Z \in \mathcal{X}$ are such that W and Z are independent over $X ; Y$ (write $W \downarrow_{(X ; Y)} Z$ for this: the definitions are as in [13]). Suppose $h: W \rightarrow Z$ is a partial automorphism (in \mathcal{S}) which extends $g \mid X$. Then there is $a \in G_{\mathrm{cl}(X Y)}$ such that $g^{a}(w)=h(w)$ for all $w \in W$.

To see this, let w be a finite tuple with $\operatorname{cl}(w)=W$ and let $w^{\prime} \in$ $\operatorname{orb}(w / X)$ be moved maximally by g. So $w^{\prime}, g w^{\prime}$ are independent over $X ; Y$ and in particular $w^{\prime} \downarrow_{X} Y$. Also $w \downarrow_{X} Y$, so by stationarity there is $a_{1} \in G_{\mathrm{cl}(X Y)}$ with $a_{1}(w)=w^{\prime}$. So $g^{a_{1}}$ moves w maximally over X. Let $Z^{\prime}=\operatorname{cl}\left(g^{a_{1}}(w)\right)$. Thus $W \downarrow_{(X ; Y)} Z^{\prime}$.

So $W, Y \downarrow_{Y} Z$ and $W, Y \downarrow_{Y} Z^{\prime}$. We have partial automorphisms (in $\mathcal{S}) h: W \rightarrow Z$ and $h^{\prime}: W \rightarrow Z^{\prime}$ with $h^{\prime}(w)=g^{a_{1}}(w)$ for $w \in W$. Note that $h(x)=h^{\prime}(x)$ for $x \in W$. Let $k=h^{\prime} h^{-1}: Z \rightarrow Z^{\prime}$. Then $k(y)=y$ for all $y \in Y$. So by stationarity, there is $a_{2} \in G_{\mathrm{cl}(W Y)}$ which extends k. It is then easy to check that $a=a_{1} a_{2}$ has the required properties.

3. STATIONARY INDEPENDENCE RELATIONS WITH A DIMENSION FUNCTION

Suppose M is a countable structure and $G=\operatorname{Aut}(M)$. In this section we consider an independence relation arising from a dimension function on M.

Definition 3.1. We say that an integer-valued function d defined on finite subsets (or tuples) from M is a dimension function if for all $X, Y \subseteq_{f i n} M:$
(1) $d(g X)=d(X)$ for all $g \in G$;
(2) $0 \leq d(X) \leq d(X \cup Y) \leq d(X)+d(Y)-d(X \cap Y)$.

For finite $X, Y \subseteq M$ we define $d(X / Y)=d(X Y)-d(Y)$ and for arbitrary $Z \subseteq M$ we let $d(X / Z)=\min \left(d(X / Y): Y \subseteq_{f i n} Z\right)$. We obtain a finitary closure operation cl^{d} on M by setting $\mathrm{cl}^{d}(Z)=\{a \in$ $M: d(a / Z)=0\}$. Let $\mathcal{X}=\left\{\operatorname{cl}^{d}(X): X \subseteq_{\text {fin }} M\right\}$ and for $A, B, C \in \mathcal{X}$, write $A \downarrow_{B}^{d} C \Leftrightarrow d(A / B C)=d(A / B)$ (where the dimension of an arbitrary set is the maximum of the dimensions of its finite subsets).

If d is a dimension function on M, then it is easy to check that cl^{d} is a closure operation and \downarrow^{d} satisfies (1-5) of Definition 2.1. Note that we may assume $d(\emptyset)=0$. We refer to cl ${ }^{d}$ and \downarrow^{d} as d-closure and d-independence. For the rest of this section we assume that these also satisfy (6) (Existence) in Definition 2.1. When we also require \downarrow^{d} to satisfy (7) (Stationarity), we shall say that \downarrow^{d} is stationary.

Definition 3.2. Suppose $b \in M$ and $A \in \mathcal{X}$. We say that b is basic over A if $b \notin A$ and whenever $A \subseteq C \in \mathcal{X}$ and $d(b / C)<d(b / A)$, then $b \in C$.

Remarks 3.3. As d is integer-valued and non-negative, if $d(b / A)=1$, then b is basic over A. It is clear that if $b \notin A$ there is some $A \subseteq C \in \mathcal{X}$ such that b is basic over C. It is less clear that there should be such a C with $d(b / C)=1$, which is why we are working with this notion.

Suppose $A \in \mathcal{X}$ and $D \subseteq M$ is such that the elements of $D \backslash A$ are basic over A. We claim that d-closure over A on D gives a pregeometry on D. So we need to verify the exchange condition: if $c_{1}, c_{2} \in D$ and $c_{1} \in \operatorname{cl}^{d}\left(A, c_{2}\right) \backslash A$, then $c_{2} \in \operatorname{cl}^{d}\left(c_{1}, A\right)$. By assumption, $d\left(c_{1}, c_{2} / A\right)=$ $d\left(c_{2} / A\right)$. So $d\left(c_{2} / A c_{1}\right)=d\left(c_{1}, c_{2} / A\right)-d\left(c_{1} / A\right)<d\left(c_{2} / A\right)$, whence $d\left(c_{2} / A c_{1}\right)=0$ (as c_{2} is basic over A), as required.

If $X \subseteq D$ is finite, we write $\operatorname{dim}_{A}(X)$ for the dimension of X with respect to this pregeometry. It is easy to show that if $c_{1}, \ldots, c_{r} \in D$ then $\operatorname{dim}_{A}\left(c_{1}, \ldots, c_{r}\right)=r$ if and only if c_{1}, \ldots, c_{r} are d-independent over A (meaning that $d\left(c_{1}, \ldots, c_{r} / A\right)=\sum_{i} d\left(c_{i} / A\right)$).

Note that if $B \in \mathcal{X}$ contains A then all elements of $D \backslash B$ are basic over B, so we can also consider dim_{B} on D.

Definition 3.4. We say that M (with dimension function d) is monodimensional if for every $A \in \mathcal{X}$ and basic G_{A}-orbit D there is $A \subseteq B \in \mathcal{X}$ with $M=\operatorname{cl}^{d}(B, D \backslash B)$.

Remark: The terminology is chosen by association with the modeltheoretic notion of unidimensionality. The structures we consider in the next section are not unidimensional, which is why we feel obliged to invent a different terminology.

If \downarrow^{d} is stationary, we can check monodimensionality on a single basic orbit.
Lemma 3.5. Suppose \downarrow^{d} is stationary, $A \in \mathcal{X}$ and D is a basic $G_{A^{-}}$ orbit.
(1) If $A \subseteq B \in \mathcal{X}$ then $D \backslash B$ is a basic G_{B}-orbit.
(2) If $\operatorname{cl}^{d}(A, D)=M$ then M is monodimensional.
(3) Suppose that for every $c \in M \backslash A$ there is a finite tuple b of elements of D such that $c \mathbb{X}_{A}^{d} b$. Then M is monodimensional.
Proof. (1) If $b_{1}, b_{2} \in D \backslash B$ then $b_{i} \downarrow_{A}^{d} B$. So by stationarity, b_{1}, b_{2} are in the same G_{B}-orbit.
(2) By (1), it suffices to show that if E is another basic G_{A}-orbit, then $\operatorname{cl}^{d}(B, E \backslash B)=M$ for some $A \subseteq B \in \mathcal{X}$. Let $e \in E$ and choose $c_{1}, \ldots, c_{r} \in D$ independent over A with $e \in \operatorname{cl}^{d}\left(c_{1}, \ldots, c_{r}, A\right)$ and r as small as possible. As cl ${ }^{d}$ over A gives a pregeometry on $D \cup E$, we may assume (by exchange) that $c_{1} \in \operatorname{cl}^{d}\left(e, c_{2}, \ldots, c_{r}, A\right)$. Let $B=$ $\operatorname{cl}^{d}\left(c_{2}, \ldots, c_{r}, A\right)$. So $c_{1} \in \operatorname{cl}^{d}(B, e) \backslash B$ whence (by (1)) $\operatorname{cl}^{d}(B, E \backslash B) \supseteq$ $\operatorname{cl}^{d}(B, D \backslash B)=M$.
(3) We show by induction on $r=d(c / A)$ that $c \in \operatorname{cl}^{d}(A, D)$. The induction is over all A, D. If $r=0$, there is no problem. Otherwise we can find a finite tuple e in D with $c \mathbb{X}_{A}^{d} e$. So $d(c / A, e)<d(c / A)$. Let $B=\operatorname{cl}^{d}(A, e)$. By induction and (1) there is a finite tuple e^{\prime} in $D \backslash B$ such that $c \in \operatorname{cl}^{d}\left(B, e^{\prime}\right)$, as required.

The following notion of boundedness is less natural than Lascar's. We shall connect it with a more natural notion later in this section.

Definition 3.6. Suppose $A \in \mathcal{X}$. We say that $h \in G$ is unbounded over A if for all $A \subseteq C \in \mathcal{X}$ and $b \in M$ which is basic over C, there is $b^{\prime} \in \operatorname{orb}(b / C)$ with $h b^{\prime} \downarrow_{C}^{d} b^{\prime}$ (or equivalently, $b^{\prime} \notin \mathrm{cl}^{d}\left(C, h b^{\prime}\right)$). We say that h is unbounded if it is unbounded over some $A \in \mathcal{X}$, otherwise, it is bounded.

Note that if h is unbounded over A and $A \subseteq B \in \mathcal{X}$, then h is unbounded over B.

Proposition 3.7. Suppose $A \in \mathcal{X}$ is such that there is a G_{A}-invariant set D where the elements of $D \backslash A$ are basic over A and $\mathrm{cl}^{d}(D, A)=M$. Let $h \in G$ be unbounded over A.
(1) If $A \subseteq B \in \mathcal{X}$ and c is a finite tuple in M, then there is $c^{\prime} \in \operatorname{orb}(c / B)$ with $h c^{\prime} \downarrow_{B}^{d} c^{\prime}$.
(2) If \downarrow^{d} is stationary, and $h \in G_{A}$, then every element of $\operatorname{Aut}(M / A)$ is a product of 16 conjugates of h.
Proof. (1) First, we show that this holds for c an n-tuple of elements of D with $\operatorname{dim}_{B}(c)=n$. If $n=1$, this is just the definition of unboundedness of h. If $n>1$ and $c=\left(c_{1}, \ldots, c_{n}\right)$ then write $e=\left(c_{1}, \ldots, c_{n-1}\right)$. Inductively, there is $e^{\prime} \in \operatorname{orb}(e / B)$ with $h e^{\prime} \downarrow_{B}^{d} e^{\prime}$. Let f^{\prime} be such that $c^{\prime}=\left(e^{\prime}, f^{\prime}\right) \in \operatorname{orb}(c / B), f^{\prime} \notin \operatorname{cl}^{d}\left(h^{-1} e^{\prime}, h^{-1} B, e^{\prime}\right)$ and (using the unboundedness) $f^{\prime} \notin \operatorname{cl}^{d}\left(e^{\prime}, B, h e^{\prime}, h f^{\prime}\right)$. From the first of these, $h f^{\prime} \notin \operatorname{cl}^{d}\left(e^{\prime}, B, h e^{\prime}\right)$ and so, from the second, $\operatorname{dim}_{B}\left(f^{\prime}, h f^{\prime}, h e^{\prime}, e^{\prime}\right)=$ $2+\operatorname{dim}_{B}\left(h e^{\prime}, e^{\prime}\right)=2+2(n-1)=2 n$. Thus $\operatorname{dim}_{B}\left(c^{\prime}, h c^{\prime}\right)=2 n$ and therefore $h c^{\prime} \downarrow_{B}^{d} c^{\prime}$, as required.

Now suppose $b \in M$. By assumption on D, there is a tuple $c \in D^{n}$ such that $b \in \operatorname{cl}^{d}(c, B)$. Clearly we can take c to be d-independent over B. Let $B_{1}=\operatorname{cl}^{d}(B, h B)$. By Extension, there is $b_{1} c_{1} \in \operatorname{orb}(b c / B)$ with $c_{1} \downarrow_{B}^{d} B_{1}$.

By the above, we can find $b_{2} c_{2} \in \operatorname{orb}\left(b_{1} c_{1} / B_{1}\right)$ with $c_{2} \downarrow_{B_{1}}^{d} h c_{2}$. Then $b_{2} \downarrow_{B_{1}}^{d} h c_{2}$. Moreover, as $b_{2} \in \operatorname{cl}^{d}\left(c_{2}, B\right)$ we have $h b_{2} \in \operatorname{cl}^{d}\left(h c_{2}, h B\right) \subseteq$ $\operatorname{cl}^{d}\left(h c_{2}, B_{1}\right)$. Thus $b_{2} \downarrow_{B_{1}}^{d} h b_{2}$.

We also have $c_{2} \downarrow_{B}^{d} B_{1}$, so $b_{2} \downarrow_{B}^{d} B_{1}$, therefore $b_{2} \downarrow_{B}^{d} h b_{2}$. As $b_{2} \in$ $\operatorname{orb}(b / B)$, this completes the proof of (1).
(2) This follows from (1) and Theorem 2.5.

Remark 3.8. Suppose $c \in M$ and $B \subseteq M$. If h is any automorphism of M, then $h(\operatorname{orb}(c / B))$ is the translate of this G_{B}-orbit by h. It is a $G_{h B}$-orbit, and depends only on the restriction of h to B. So the notation $h(\operatorname{orb}(c / B))$ also makes sense if h is a partial automorphism with B in its domain.
Theorem 3.9. Suppose \downarrow^{d} is stationary and $A \in \mathcal{X}$ is such that there is a G_{A}-invariant set D where the elements of $D \backslash A$ are basic over A and $\operatorname{cl}^{d}(D, A)=M$. Suppose $g \in \operatorname{Aut}\left(M / \operatorname{cl}^{d}(\emptyset)\right)$ is an unbounded automorphism of M. Then every element of $\operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ is a product of 96 conjugates of $g^{ \pm 1}$.
Proof. By enlarging A if necessary, we can assume that g is unbounded over a subset of A. We first show that there is $\tilde{h} \in \operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ such that the commutator $g_{1}=[g, \tilde{h}]=g^{-1} \tilde{h}^{-1} g \tilde{h}$ is in G_{A} and is unbounded (over A). We build \tilde{h} by back-and-forth as the union of a chain of partial automorphism (with domains and images in \mathcal{X}).

Note that if h is a partial automorphism which fixes all points of $A \cup$ $g A$, then $g^{-1} h^{-1} g h(a)=a$ for all $a \in A$. So we start the construction of \tilde{h} with such a partial automorphism. There is no problem extending this to an automorphism, the issue is to ensure the unboundedness of g_{1}. We enforce this in the 'forth' step in the construction.

Suppose that the partial automorphism h has been defined and $B=$ $\operatorname{dom}(h)$. Suppose $C \subseteq B, C \in \mathcal{X}$ and a is basic over C. We want to find $a^{\prime} \in \operatorname{orb}(a / C)$ so that (once \tilde{h} is defined) $g_{1} a^{\prime} \downarrow_{C} a^{\prime}$, that is, $a^{\prime} \notin \operatorname{cl}^{d}\left(g_{1} a^{\prime}, C\right)$. It will suffice to do this with $C=B$.

So suppose that a is basic over B. We may assume (by Existence) that $a \notin \operatorname{cl}^{d}(B, g B)$. By unboundedness of g there is $b \in h(\operatorname{orb}(a / B))$ such that $g b \downarrow_{h B}^{d} b$. Extend h to h^{\prime} with $h^{\prime} a=b$.

By Existence, there is $c \in h^{\prime-1}(\operatorname{orb}(g b / h B, b))$ with $c \downarrow_{B, a}^{d} g B, g a$. Extend h^{\prime} to $h^{\prime \prime}$ with $h^{\prime \prime}(c)=g b$. As $g b \downarrow_{h B}^{d} b$ we have (applying $h^{\prime \prime-1}$) that $c \downarrow_{B}^{d} a$. Thus, by Transitivity, $c \downarrow_{B}^{d} g B, g a$, so $c \downarrow_{B, g B}^{d} g a$. Then $g^{-1} c \downarrow_{g^{-1} B, B}^{d} a$. As a is basic over B and $a \notin \operatorname{cl}^{d}\left(B, g^{-1} B\right)$, we have $g^{-1} B \downarrow_{B}^{d} a$. It follows that $g^{-1} c \downarrow_{B}^{d} a$, that is,

$$
g^{-1} h^{\prime \prime-1} g h^{\prime \prime} a \underset{B}{\stackrel{d}{d} a}
$$

as required.
It now follows from Proposition 3.7 that every element of G_{A} is a product of 32 conjugates of $g^{ \pm 1}$. Thus, to prove the Theorem, it will suffice to show that $\operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ is a product of 3 conjugates of $H_{1}=G_{A}$.

By Existence, there is $A^{\prime} \in \operatorname{orb}\left(A / \mathrm{cl}^{d}(\emptyset)\right)$ with $A^{\prime} \downarrow^{d} A$. So $H_{2}=$ $G_{A^{\prime}}$ is a conjugate of H_{1}. Let $k \in \operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$. By Existence again, there is $f_{1} \in H_{1}$ with $f_{1} A^{\prime} \downarrow^{d} A, k A$. By Stationarity, there is $f_{2} \in$ $\operatorname{Aut}\left(M / f_{1} A^{\prime}\right)$ with $f_{2}|A=k| A$. Thus $f_{2}^{-1} k \in H_{1}$ and so $k \in f_{2} H_{1}$. But $f_{2} \in f_{1} H_{2} f_{1}^{-1}$, so $k \in H_{1} H_{2} H_{1}$, as required.

We now give a more natural interpretation of boundedness when M is monodimensional. Note that the following does not require stationarity of \downarrow^{d}.

Proposition 3.10. Suppose M is monodimensional and suppose $g \in G$ is bounded. Then there is $E \in \mathcal{X}$ such that $g(B)=B$ for all $B \in \mathcal{X}$ which contain E.

Proof. There is $C \in \mathcal{X}$ and a basic b over C such that for all $b^{\prime} \in$ $\operatorname{orb}(b / C)$ we have $b^{\prime} \in \operatorname{cl}^{d}\left(C, g b^{\prime}\right)$, so $g^{-1} b^{\prime} \in \operatorname{cl}^{d}\left(g^{-1} C, b^{\prime}\right)$. By extendidng C if necessary, we can assume by monodimensionality that
$\operatorname{cl}^{d}(C, \operatorname{orb}(b / C))=M$. There are $b_{1}, \ldots, b_{k} \in \operatorname{orb}(b / C)$ with $g^{-1} C \subseteq$ $\operatorname{cl}^{d}\left(C, b_{1}, \ldots, b_{k}\right)=E$. So

$$
g^{-1} E=\operatorname{cl}^{d}\left(g^{-1} C, g^{-1} b_{1}, \ldots, g^{-1} b_{k}\right) \subseteq \operatorname{cl}^{d}\left(g^{-1} C, b_{1}, \ldots, b_{k}\right) \subseteq E .
$$

As $d(E)=d\left(g^{-1} E\right)$ we obtain $g^{-1} E=E$. Let $b_{1} \in \operatorname{orb}(b / C)$ be such that $b_{1} \downarrow_{C}^{d} E$. Then b_{1} is basic over E and for all $b^{\prime} \in \operatorname{orb}\left(b_{1} / E\right)$ we have that g^{-1} stabilizes $\mathrm{cl}^{d}\left(E, b^{\prime}\right)$ (and therefore g stabilizes it also).

Now, given any $B \supseteq E$ in \mathcal{X} we can find a tuple \bar{b} of elements of $\operatorname{orb}\left(b_{1} / E\right)$ such that $B_{1}=\operatorname{cl}^{d}(E, \bar{b}) \supseteq B$. Then (by Extension) we can find $B_{2} \in \operatorname{orb}\left(B_{1} / B\right)$ with $B_{2} \downarrow_{B}^{d} B_{1}$: in particular $B_{1} \cap B_{2}=B$. By the previous paragraph, g stabilizes both B_{1} and B_{2}, so $g B=B$.

Definition 3.11. We say that $g \in \operatorname{Aut}(M)$ is cl^{d}-bounded if there is some $E \in \mathcal{X}$ such that g stabilizes setwise all $B \in \mathcal{X}$ which contain E.

It is easy to see that the cl^{d}-bounded automorphisms form a normal subgroup of $\operatorname{Aut}(M)$. The following follows from the above two results and can be seen as a generalisation of Theorem 2 of [9] (the almost strongly minimal case where there is a strongly minimal set definable over the empty set).

Corollary 3.12. Suppose \downarrow^{d} is stationary and $A \in \mathcal{X}$ is such that there is a basic $\operatorname{Aut}(M / A)$-orbit D with $\operatorname{cl}^{d}(A, D)=M$. Suppose $g \in$ $\operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ is not cl^{d}-bounded. Then every element of $\operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ is a product of 96 conjugates of $g^{ \pm 1}$.
Example 3.13. Suppose M is a countable, saturated differentially closed field of characteristic 0 . If a is a tuple of elements of M, let $d(a)$ denote the differential transcendence degree of a over \emptyset. This gives a closure operation cl^{d} which satisfies exchange. It follows from (3), Corollary 2.6) that \downarrow^{d} is a stationary equivalence relation. The elements of differential transcendence degree 1 form a single orbit D under $G=\operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ and clearly $\operatorname{cl}^{d}(D)=M$, so Corollary 3.12 applies. By ([3], Proposition 2.9), the only cl^{d}-bounded automorphism of M is the identity, so $\operatorname{Aut}\left(M / \mathrm{cl}^{d}(\emptyset)\right)$ is a simple group. In fact, because we can use Proposition 3.7 with $A=\operatorname{cl}^{d}(\emptyset)$, if $1 \neq g \in G$, then every element of G is a product of 16 conjugates of g.

4. The ab initio Hrushovski constructions

4.1. The structures. The Hrushovski construction which originated in [7] admits many extensions and variations, and can be presented at various levels of generality. But to fix notation, we consider the following basic case, and comment on generalizations later. The article [14] is a convenient general reference for these constructions.

Suppose $r \geq 2$ and $m, n \geq 1$ are fixed coprime integers. We work with the class \mathcal{C} of finite r-uniform hypergraphs, which we regard as
structures in a language with a single r-ary relation symbol $R\left(x_{1}, \ldots, x_{r}\right)$ whose interpretation is invariant under permutation of coordinates and satisfies $R\left(x_{1}, \ldots, x_{r}\right) \rightarrow \bigwedge_{i<j}\left(x_{i} \neq x_{j}\right)$. If $B \in \mathcal{C}$ consider the predimension

$$
\delta(B)=n|B|-m|R[B]|
$$

where $R[B]$ denotes the set of hyperedges on B (i.e $\left\{\left\{b_{1}, \ldots, b_{r}\right\}: B \models\right.$ $\left.\left.R\left(b_{1}, \ldots, b_{r}\right)\right\}\right)$. For $A \subseteq B$, we write $A \leq B$ iff for all $A \subseteq B^{\prime} \subseteq B$ we have $\delta(A) \leq \delta\left(B^{\prime}\right)$, and let $\mathcal{C}_{0}=\{B \in \mathcal{C}: \emptyset \leq B\}$. The following is standard (cf. ([7], Lemma 1), for example).

Lemma 4.1. Suppose $A, B \subseteq C \in \mathcal{C}$.
(1) $\delta(A \cup B) \leq \delta(A)+\delta(B)-\delta(A \cap B)$.
(2) If $A \leq B$ and $X \subseteq B$ then $A \cap X \leq X$.
(3) If $A \leq B \leq C$, then $A \leq C$.

We let $\overline{\mathcal{C}}_{0}$ be the set of structures all of whose finite substructure are in \mathcal{C}_{0}. If $C \subseteq B \in \overline{\mathcal{C}}_{0}$ we write $C \leq B$ iff $X \cap C \leq X$ for all finite $X \subseteq B$. (This agrees with what was previously defined, by the above lemma). If $A, B \subseteq_{\text {fin }} C \in \mathcal{C}_{0}$ then we define $\delta(A / B)=\delta(A \cup B)-\delta(B)$. Note that this is equal to $|A \backslash B|-|R[A \cup B] \backslash R[B]|$ and this makes sense for arbitrary B (allowing the value $-\infty$, if necessary). Then $B \leq A \cup B$ iff $\delta\left(A^{\prime} / B\right) \geq 0$ for all $A^{\prime} \subseteq A$.

The class $\overline{\mathcal{C}}_{0}$ has the following amalgamation property: suppose $B, C \in \overline{\mathcal{C}}_{0}$ have a common substructure A and $A \leq B$. Then the free amalgam $F=B \coprod_{A} C$ of B and C over A, consisting of the disjoint union of B and C over A with only the relations on B and on C, is in $\overline{\mathcal{C}}_{0}$ and $C \leq F$. Using this and a standard Fraïssé-style construction, we obtain the following well-known result, which is sometimes referred to as the ab initio case of the Hrushovski construction:

Theorem 4.2. There is a unique countable $M_{0} \in \overline{\mathcal{C}}_{0}$ having the properties: M_{0} is a union of a chain of finite \leq-substructures; if $X \leq M_{0}$ is finite and $X \leq A \in \mathcal{C}_{0}$, then there is an embedding $\alpha: A \rightarrow M_{0}$ which is the identity on X and $\alpha(A) \leq M_{0}$. Moreover, if $A_{1}, A_{2} \leq M_{0}$ are finite and $h: A_{1} \rightarrow A_{2}$ is an isomorphism, then h extends to an automorphism of M_{0}.

The structure M_{0} is the generic structure for the class $\left(\mathcal{C}_{0}, \leq\right)$. The property in the 'Moreover' statement is referred to as \leq-homogeneity of M_{0}. It is easy to see that every countable structure in $\overline{\mathcal{C}}_{0}$ can be embedded as a \leq-substructure of M_{0}.

As usual, we have two closure operations and a dimension function on M_{0} (indeed, on any structure in $\overline{\mathcal{C}}_{0}$). If X is a finite subset of M_{0}, there is a smallest subset Y with $X \subseteq Y \leq M_{0}$. This Y is finite and we denote it by $\mathrm{cl}_{0}(X)$. The dimension $d(X)$ of $X\left(\right.$ in $\left.M_{0}\right)$ is defined to be $\delta\left(\operatorname{cl}_{0}(X)\right)$. The d-closure of X is $\operatorname{cl}^{d}(X)=\left\{a \in M_{0}: d(X \cup\{a\})=\right.$
$d(X)\}$. In general, this will not be finite. Let $\mathcal{X}=\left\{\operatorname{cl}^{d}(X): X \subseteq_{\text {fin }}\right.$ $\left.M_{0}\right\}$.

For tuples a, b, c in M_{0} we define $a \downarrow_{b}^{d} c$ to mean $d(a / b)=d(a / b c)$ (as in the previous section); similarly for sets in \mathcal{X}. This is not the same as non-forking independence. The following is well-known.

Lemma 4.3. (1) If $A, B, C \in \mathcal{X}$ then $A \downarrow_{B}^{d} C$ if and only if the following three conditions hold: $\mathrm{cl}^{d}(A B) \cap \mathrm{cl}^{d}(B C)=B ; \mathrm{cl}^{d}(A B)$, $\operatorname{cl}^{d}(B C)$ are freely amalgamated over $B ;$ and $\operatorname{cl}^{d}(A B) \cup \operatorname{cl}^{d}(B C) \leq$ M_{0}.
(2) The relation \downarrow^{d} satisfies the Compatibility, Invariance, Monotonicity, Transitivity and Symmetry properties in Definition 2.1.
4.2. Extending the homogeneity. We will show that if $A_{1}, A_{2} \in \mathcal{X}$ and $h: A_{1} \rightarrow A_{2}$ is an isomorphism, then h extends to an automorphism of M_{0}.

We need the following notion from [7]. Suppose $Z \subset Y \in \overline{\mathcal{C}}_{0}$ and $Y \backslash Z$ is finite. We say that the extension $Z \subset Y$ is simply algebraic if $\delta(Y / Z)=0$ and whenever $Z \subset Z_{1} \subset Y$, then $\delta\left(Y / Z_{1}\right)<0$. So $Z \leq Y$, but $Z_{1} \not Z Y$ for all $Z \subset Z_{1} \subset Y$. We write $s a$ for simply algebraic. The extension is minimally simply algebraic (msa) if the extension $Z_{0} \subset Z_{0} \cup(Y \backslash Z)$ is not simply algebraic for all proper subsets Z_{0} of Z. In this case Z is finite and more generally, if $Z \subset Y$ is simply algebraic, there is finite subset Y_{1} of Y which contains $Y \backslash Z$ and is such that $Y_{1} \cap Z \subset Y_{1}$ is msa. Moreover, Y is the free amalgam of Z and Y_{1} over $Z_{1}=Y_{1} \cap Z$. (In fact, Z_{1} consists of the points in Z which are in some R-relation containing a point of $Y \backslash Z$.) In this case, we say that Y has base Z_{1} and type $\left(Z_{1}, Y_{1}\right)$ over Z.

If $A \leq M_{0}$ and $B \subseteq M_{0}$ is an sa extension of A, then $B \leq M_{0}$. Moreover, any collection $\left\{B_{i}: i \in I\right\}$ of (distinct) sa extensions of A in M_{0} is in free amalgamation over A and $\bigcup_{i \in I} B_{i} \leq M_{0}$ (Lemma 2 of [7]). If $Z_{1} \subseteq A$ and $Z_{1} \subset Y_{1}$ is msa, then the multiplicity $\operatorname{mult}\left(Z_{1}, Y_{1} / A\right)$ is the number of distinct minimal extensions of A of type $\left(Z_{1}, Y_{1}\right)$ in M_{0}. So this is the maximum cardinality of $\left\{B_{i}: i \in I\right\}$ where each B_{i} is a sa extension of A of type (Z_{1}, Y_{1}).

Note that $\operatorname{cl}^{d}(A)=A$ iff each such multiplicity is zero. Indeed, $\operatorname{cl}^{d}(A)$ is the union of all subsets of M_{0} which can be obtained from A by a finite chain of successive sa extensions. The (full) amalgamation property for \mathcal{C}_{0} shows that if A is finite, then all multiplicities over A are infinite.

Definition 4.4. Suppose $A_{1}, A_{2} \leq M_{0}$ and $k: A_{1} \rightarrow A_{2}$ is an isomorphism. We say that k is potentially extendable if for every $Z_{1} \subseteq A_{1}$ and msa $Z_{1} \subset Y_{1}$ we have $\operatorname{mult}\left(Z_{1}, Y_{1} / A_{1}\right)=\operatorname{mult}\left(Z_{2}, Y_{2} / A_{2}\right)$, where $Z_{2}=k\left(Z_{1}\right)$, and $k \mid Z_{1}$ extends to an isomorphism between Y_{1} and Y_{2}.

Evidently, if k as above extends to an automorphism of M_{0}, then k is potentially extendable. Moreover, there are isomorphisms $k: A_{1} \rightarrow A_{2}$ with $A_{i} \leq M_{0}$ which are not potentially extendable.

Lemma 4.5. If $A_{1}, A_{2} \leq M_{0}$ are such that $d\left(A_{i}\right)$ is finite and $k: A_{1} \rightarrow$ A_{2} is potentially extendable, then k can be extended to an automorphism of M_{0}.

Proof. For $i=1,2$, let A_{i}^{\prime} be the union of all sa extensions of A_{i} in M_{0}. By the above, $A_{i}^{\prime} \leq M_{0}$ and A_{i}^{\prime} is the free amalgam over A of the various sa extensions. So by the condition on the multiplicities, k extends to an isomorphism $k^{\prime}: A_{1}^{\prime} \rightarrow A_{2}^{\prime}$.

We claim that k^{\prime} is potentially extendable. Indeed, suppose $Z_{1} \subseteq A_{1}^{\prime}$ is finite and $Z_{1} \subset Y_{1}$ is msa. If $Z_{1} \subseteq A_{1}$ then by construction of A_{1}^{\prime} we have $\operatorname{mult}\left(Z_{1}, Y_{1} / A_{1}^{\prime}\right)=0$. So it will suffice to show that if $Z_{1} \nsubseteq A_{1}$ then there are only finitely many copies of Y_{1} over Z_{1} in A_{1}^{\prime} (because it then follows that $\operatorname{mult}\left(Z_{1}, Y_{1} / A_{1}^{\prime}\right)$ is infinite, and the same will be true for the corresponding msa extension of $k^{\prime}\left(Z_{1}\right)$ over $\left.A_{2}^{\prime}\right)$.

To see this, note that as A_{1}^{\prime} is a free amalgam over A_{1}, any point in $A_{1}^{\prime} \backslash A_{1}$ is contained in only finitely many instances of the relation R. But, in any msa extension, every point in the base is in some instance of the relation R which also contains a non-base point. As any two msa extensions with the same base are disjoint over the base, it follows that Z_{1} is the base of only finitely many msa extensions contained in A_{1}^{\prime}.

This shows that k^{\prime} is potentially extendable, so we can repeat the argument and adjoin to A_{1}^{\prime} all sa extensions of A_{1}^{\prime} and extend k^{\prime}. Continuing in this way, we see that we can extend k to $h: B_{1} \rightarrow B_{2}$, where $B_{i}=\operatorname{cl}^{d}\left(A_{i}\right)$. Evidently h is potentially extendable (as all multiplicities over its domain and image are zero).

Now, suppose we have $c \in M_{0}$. It will be enough to show how to extend h to a potentially extendable map which has c in its domain (for then we can proceed by a back-and-forth argument to build up an automorphism extending the original k). We may assume $c \notin B_{1}$. Let $S_{0} \subseteq B$ be finite and such that $\operatorname{cl}^{d}\left(S_{0}\right)=B_{1}$ and let $S=\operatorname{cl}_{0}\left(c, S_{0}\right) \cap B_{1}$. Then $S \leq M_{0}$ is finite and $\operatorname{cl}_{0}(c, S) \cap \operatorname{cl}^{d}(S)=S$. Furthermore, $C=$ $\mathrm{cl}_{0}(c, S)$ and B_{1} are freely amalgamated over S, and $C \cup B_{1} \leq M_{0}$.

Let $T=h(S)$ and $T \leq D \in \mathcal{C}_{0}$ be such that $h \mid S$ extends to an isomorphism $C \rightarrow D$. We claim that we can find a copy D_{1} of D over T such that D_{1}, B_{2} are freely amalgamated over T and $D_{1} \cup B_{2} \leq M_{0}$. In fact, take any copy $D_{1} \leq M_{0}$ of D over T in M_{0} : this exists, by the characteristic property in Theorem 4.2. We have $c l^{d}(T) \cap D_{1}=T$ (because the same is true of $S \leq C$), so $D_{1} \cap B_{2}=T$. The other properties follow as $d\left(D_{1} / T\right)=d\left(D_{1} / B_{2}\right)$.

So now we can extend h to $h^{\prime}: B_{1} \cup C \rightarrow B_{2} \cup D$ and to finish, we need to show that h^{\prime} is potentially extendable. But this is a similar
argument to what was done previously. If $Z_{1} \subset B_{1} \cup C$ and $Z_{1} \subset Y_{1}$ is msa, then either $Z_{1} \subseteq B_{1}$, in which case $\operatorname{mult}\left(Z_{1}, Y_{1} / B_{1}\right)=0$, or $Z_{1} \cap\left(C \backslash B_{1}\right) \neq \emptyset$. But points in $C \backslash B_{1}$ are in only finitely many relations within $B_{1} \cup C$, so in this latter case $B_{1} \cup C$ contains only finitely many copies of Y_{1} over Z_{1}. Thus mult $\left(Z_{1}, Y_{1} / B_{1}\right)$ is infinite. The same argument also holds with B_{2} and D_{1}, so we are finished.
Lemma 4.6. Suppose $A=\operatorname{cl}^{d}(A)$ and $C=\operatorname{cl}^{d}(C)$ have finite d dimension and are such that A, C are freely amalgamated over $B=$ $A \cap C$ and $A \cup C \leq M_{0}$. Then for every msa $Z \subset Y$ with $Z \subseteq A \cup C$ and $Z \nsubseteq A$ and $Z \nsubseteq C$, there are only finitely many copies of Y over Z in $A \cup C$. In particular, mult $(Z, Y / A \cup C)$ is infinite.

Proof. The proof of Hrushovski's algebraic amalgamation lemma (Lemma 3 of [7]) shows that there are at most $\delta(Z)$ copies of Y over Z which are contained in $A \cup C$.

Corollary 4.7. We have the following additional homogeneity properties of M_{0}.
(1) (d-homogeneity:) Suppose $A_{1}, A_{2} \subseteq M_{0}$ are d-closed and of finite d-dimension. Suppose $h: A_{1} \rightarrow A_{2}$ is an isomorphism. Then h extends to an automorphism of M_{0}.
(2) (d-stationarity:) Suppose $A_{1}, A_{2}, C \subseteq M_{0}$ are d-closed and of finite d-dimension. Suppose that for each i we have that $A_{i} \cup$ $C \leq M_{0}$ and A_{i}, C are freely amalgamated over $B=A_{i} \cap C$. If $h: A_{1} \rightarrow A_{2}$ is an isomorphism which is the identity on B, then h extends to an automorphism of M_{0} which fixes every element of C pointwise.

Proof. (1) As the A_{i} are d-closed, h is potentially extendable. So by Lemma 4.5, it extends to an automorphism of M_{0}.
(2) Let $k: A_{1} \cup C \rightarrow A_{2} \cup C$ be the union of h with the identity map on C. By the freeness, this is an isomorphism. By Lemma 4.6, it is potentially extendable. So by Lemma 4.5, it extends to an automorphism of M_{0}.

Corollary 4.8. The relation \downarrow^{d} is a stationary independence relation on M_{0} compatible with cl^{d}.

Proof. We have already verified everything apart from the Existence property. Given $A, B, C \in \mathcal{X}$ we need to show that there is $g \in G_{B}$ with $g A \downarrow_{B}^{d} C$. By taking d-closures over B, we may assume that $B \subseteq A, C$. Let F be the free amalgam of A, C over B and let A^{\prime} denote the copy of A inside F. So there is an isomorphism $h: A \rightarrow A^{\prime}$ which is the identity on B. By the construction of M_{0} we can assume that $F \leq M_{0}$. Then $A^{\prime} \downarrow_{B}^{d} C$ and h extends to an automorphism g of M_{0} by d-homogeneity.
4.3. Bounded automorphisms. We shall show that, under a mild restriction on the parameters n, m, r, the structure M_{0} has no nontrivial bounded automorphisms. To see that some restriction is necessary, consider the case where $r=2$ and $n=m=1$. Then M_{0} is a graph each of whose connected components consists of an infinite tree with infinite valency, or a single cycle with a collection of such trees attached. Points in the first type of component have d-dimension 1, and those in the second type form the d-closure of the empty set. It is clear that there are non-trivial automorphisms which stabilise each component (and fix every element in $\operatorname{cl}^{d}(\emptyset)$), and these are obviously bounded.

For the rest of this section we assume that n, m are coprime, if $r=2$ then $n>m$, and if $r \geq 3$ then $n \geq m$. The following is straightforward for the case $m=1$. The proof for the general case is surprisingly delicate and makes use of some well known properties of Beatty sequences (Lemma 4.10).

Lemma 4.9. There is $X \subseteq Y \in \mathcal{C}_{0}$ such that:
(1) $\delta(Y / X)=-1$ and $|X| \geq 2$.
(2) If $U \subseteq Y$ and $X \nsubseteq U$, then $U \cap X \leq U$.
(3) If $X \subseteq Z \subset Y$, then $\delta(Z / X) \geq 0$.

Proof. Suppose first that $m=1$. If $r=2$, take $X=\left\{x_{0}, \ldots, x_{n}\right\}$ with no relations on it and Y is X together with an extra point y, where $R\left(y, x_{i}\right)$ holds for all i. If $r \geq 3$, do the same, but X also includes an ($r-2$)-tuple \bar{z}, and $R\left(\bar{z}, y, x_{i}\right)$ holds.

So now suppose that $n>m>1$. We will suppose that $r=2$: a similar argument to that used above will then allow us to deduce the general case.
Write

$$
n=m a+c \text { with } 0<c<m .
$$

So m, c are coprime and we can find $\ell, b \in \mathbb{Z}$ with

$$
\ell m-c b=1 .
$$

We can take $0<b<m$ (take an inverse of $-c$ modulo m) and it then follows that $0<\ell \leq b, c$. Note that

$$
n b-m(a b+\ell)=-1
$$

We now assume that $b>2$ and describe the construction of Y (the cases $b=1,2$ will be considered at the end).

Let X consist of $(a-1) b+\ell$ points (with no edges). Let $Y=$ $X \cup\left\{y_{0}, \ldots, y_{b-1}\right\}$ with $a b+\ell$ edges as follows:
(i) the vertices y_{0}, \ldots, y_{b-1} form a b-cycle (with $R\left(y_{i}, y_{i+1}\right)$ holding, where the indices are read modulo b);
(ii) each vertex y_{i} is adjacent to at least $(a-1)$ of the vertices in X;
(iii) each vertex in X is adjacent to exactly one vertex in $Y \backslash X$.

Thus there are a further ℓ edges of Y to be specified. These will be of the form $\left(x_{i}, y_{i}\right)$ for i in some subset $I \subseteq\{0, \ldots, b-1\}$ of size ℓ (and distinct $x_{i} \in X$). The subset I is chosen so that (3) of the Lemma holds. Once we have this, the rest of the Lemma follows. Indeed, first note that as Y is a cycle with some extra edges freely amalgamated over its vertices, then $Y \in \mathcal{C}_{0}$. By construction $\delta(Y / X)=n b-m(a b+\ell)=-1$, so (1) holds. For (2) suppose $\emptyset \neq A \subseteq X$. We claim that $X \backslash A \leq$ $Y \backslash A$, and then (2) follows (by Lemma 4.1(2)). To see the claim, note that $\delta((Y \backslash A) /(X \backslash A))=-1+m|A|>0$, and if $Z \subset Y \backslash X$ then $\delta(Z /(X \backslash A)) \geq \delta(Z / X) \geq 0$, by (3).

To prove (3) (for suitable choice of I) it will suffice (by free amalgamation) to show that if $Z \subset Y \backslash X$ is connected, then $\delta(Z / X) \geq 0$. Let $q=\left|\left\{i \in I: b_{i} \in Z\right\}\right|$ and $s=p+q=|Z|$.

Then

$$
\delta(Z / X)=s n-m(q a+p(a-1)-p+q-1)=s c-m(q-1) .
$$

Thus

$$
\begin{equation*}
\delta(Z / X) \geq 0 \Leftrightarrow \frac{q-1}{s} \leq \frac{c}{m} . \tag{1}
\end{equation*}
$$

So we need to construct I of size ℓ so that for any s consecutive elements of $0, \ldots, b-1$ (read modulo b, and with $s<b$), the number of elements q in I satisfies the above inequality. The construction uses the following.

Lemma 4.10. There is a sequence $\left(a_{i}\right)_{i \in \mathbb{Z}}$ with $a_{i} \in\{0,1\}$ having the following properties:
(1) $a_{i+b}=a_{i}$ for all i;
(2) for all $i, \sum_{i+1 \leq j \leq i+b} a_{j}=\ell$;
(3) for all i,s we have

$$
\frac{1}{s}\left(-1+\sum_{i+1 \leq j \leq i+s} a_{j}\right) \leq \frac{\ell}{b}
$$

Proof of Lemma: Let $\theta=\ell / b$ and note that $0<\theta<1$. The Beatty sequence $\left(\beta_{i}(\theta)\right)_{i \in \mathbb{Z}}$ is defined as follows. For $i \in \mathbb{Z}$ let

$$
\beta_{i}(\theta)=\lfloor i \theta\rfloor
$$

(where $\lfloor x\rfloor$ is the largest integer $\leq x$). Let

$$
a_{i}=\beta_{i}(\theta)-\beta_{i-1}(\theta) .
$$

It is easy to see that $a_{i} \in\{0,1\}$ and $a_{i+b}=a_{i}$. For part (3) of the Lemma, note that

$$
\begin{aligned}
& \frac{1}{s}(-1+\left.\sum_{i+1 \leq j \leq i+s} a_{j}\right)=\frac{1}{s}\left(\beta_{i+s}(\theta)-\beta_{i}(\theta)-1\right) \\
&=\frac{1}{s}(\lfloor(i+s) \theta\rfloor-\lfloor i \theta\rfloor-1) \leq \frac{i+s}{s} \theta-\frac{\lfloor i \theta\rfloor+1}{s} \\
&<\frac{i+s}{s} \theta-\frac{i \theta}{s}=\theta .
\end{aligned}
$$

A similar calculation shows that

$$
\frac{1}{s}\left(1+\sum_{i+1 \leq j \leq i+s} a_{j}\right)>\theta
$$

Thus for all $i \in \mathbb{Z}$, we have $\frac{1}{s} \sum_{i+1 \leq j \leq i+s} a_{j} \rightarrow \theta$ as $s \rightarrow \infty$. The periodicity in (1) then implies (2).
$\square_{L e m m a}$
Returning to the construction of Y, we let $\left(a_{i}\right)$ be the above sequence and let:

$$
I=\left\{i \in\{0, \ldots, b-1\}: a_{i}=1\right\} .
$$

Verifying equation 1 amounts to showing that if $0<s<b$ and $i<b$, then $\frac{q-1}{s} \leq \frac{c}{m}$, where $q=\sum_{i+1 \leq j \leq i+s a_{j}} a_{j}$. Suppose for a contradiction that $(q-1) / s>c / m$. Recall that $\ell m-c b=1$, so $\frac{\ell}{b}=\frac{c}{m}+\frac{1}{b m}$. By (3) of the Lemma, $(q-1) / s \leq \ell / b$, so by assumption, we have:

$$
\frac{c}{m}<\frac{q-1}{s} \leq \frac{\ell}{b}=\frac{c}{m}+\frac{1}{b m}
$$

Thus

$$
0<\frac{q-1}{s}-\frac{c}{m}<\frac{1}{b m} .
$$

But

$$
\frac{q-1}{s}-\frac{c}{m}=\frac{(q-1) m-c s}{s m} \geq \frac{1}{s m}>\frac{1}{b m}
$$

as $s<b$. This is a contradiction. So $(q-1) / s \leq c / m$ and therefore by equation 1, $\delta(Z / X) \geq 0$, as required.

This completes the proof that Y satisfies the properties of Lemma 4.9

For the remaining cases $b=1,2$ we use a similar (but easier) construction with $Y \backslash X$ of size b. We leave the details to the Reader.
Lemma 4.11. Suppose $A \in \mathcal{X}$ and $u_{0} \in M_{0} \backslash A$ is basic over A. Let $D=\operatorname{orb}\left(u_{0} / A\right)$. Then $\operatorname{cl}^{d}(A, D)=M_{0}$.

Proof. Suppose $c \in M_{0} \backslash A$. By Lemma 3.5 (3), it will suffice to show that there is a finite tuple e in D with $c \mathbb{X}_{A}^{d} e$.

Let $A_{0} \leq A$ be finite with $d\left(A_{0}\right)=A$. Let $C=\operatorname{cl}_{0}\left(c A_{0}\right)$. We can assume that $C \cap A=A_{0}$. Similarly let $B=\operatorname{cl}_{0}\left(u_{0} A_{0}\right)$ and note we can
also assume that $B \cap A=A_{0}$ (if it is bigger, then replace A_{0} by the intersection; this will not affect the condition on C).

Let $X \subseteq Y$ be as in Lemma 4.9 and $k=|X|$. Note that we can assume that there are no relations on the set X. Let Z be the free amalgam of C and $k-1$ copies B_{2}, \ldots, B_{k} of B over A_{0}. Let $x_{1}=c$ and for $i=2, \ldots, k$ let $x_{i} \in B_{i} \backslash A_{0}$ be the copy of u_{0} inside B_{i}. Identify the x_{i} with the points of X and let E consist of the free amalgam $Z \coprod_{X} Y$ of Z and Y over X.

Claim: We have $C, B_{i} \leq E$.
Note that once we have the claim, it follows (as $\emptyset \leq C$) that $E \in$ \mathcal{C}_{0}, so we can assume that $E \leq M_{0}$. Then $x_{2}, \ldots, x_{k} \in D$ and $d\left(c / A_{0}, x_{2}, \ldots, x_{k}\right)=d\left(c / A_{0}\right)-1$, so $c \not \mathbb{X}_{A}^{d} x_{2}, \ldots, x_{k}$.

We now prove the claim. By the symmetry of the sitaution, it is enough to show $C \leq E$. Let $C \subseteq F \subseteq E$. Then F is the free amalgam $F \cap Z \coprod_{F \cap X} F \cap Y$. If $X \nsubseteq F$ then $F \cap X \leq F \cap Y$ (by (2)) so $F \cap Z \leq Z$. As $C \leq F \cap Z$ we obtain $C \leq F$. If $X \subseteq F$ and $Y \nsubseteq F$, then similarly (using (3)) we have $X=F \cap X \leq F \cap Y$, so again $C \leq F$.

So now suppose $Y \subseteq F$. Note that $\delta(F \cap Z) \geq d_{Z}(X C)$ (the dimension in Z of $X \cup C)$. So
$\delta(F) \geq d_{Z}(X C)+\delta(Y / X)=d_{Z}(C)+d_{Z}(X / C)-1 \geq \delta(C)+k-2 \geq \delta(C)$.
(Here we have used $C \leq Z$ and (1).)
Corollary 4.12. If $g \in \operatorname{Aut}\left(M_{0} / \mathrm{cl}^{d}(\emptyset)\right)$ is bounded, then there is $E \in$ \mathcal{X} such that $g\left(\mathrm{cl}^{d}(E b)\right)=\mathrm{cl}^{d}(E b)$ for all $b \in M_{0}$.

Proof. This follows from the above and Proposition 3.10 .
Remarks 4.13. The class \mathcal{C}_{0} contains some msa extension $X \subset Y$. If we change the structure on X to some other structure in \mathcal{C}_{0}, then then result is still a msa extension in \mathcal{C}_{0}. Furthermore, by 'duplicating' the points in X if necessary, we can obtain a msa extension with the property that if $r, r^{\prime} \in R[Y]$ are distinct and both involve points of $Y \backslash X$ and X, then $r \cap r^{\prime} \cap X=\emptyset$. To do this, replace X by the disjoint union of non-empty $r \cap X$ (for $r \in R[Y] \backslash R[X]$). Then each element of the new X is in exactly one relation in $R[Y] \backslash R[X]$.
Theorem 4.14. If $g \in \operatorname{Aut}\left(M_{0} / \mathrm{cl}^{d}(\emptyset)\right)$ is bounded, then g is the identity.

Proof. Let $E \in \mathcal{X}$ be as in the Corollary: so $g\left(\operatorname{cl}^{d}(E b)\right)=\operatorname{cl}^{d}(E b)$ for all $b \in M_{0}$. Let $A \leq E$ be finite and $d(A)=d(E)$.

Step 1: If $b \in M_{0}$ is such that $A b \leq M_{0}$ and $\delta(b / A)=n$, then $g b=b$.
Case 1: $r \geq 3, m=n=1$. Note that E is infinite, so we may take A to be of size at least $r-3$. By using elements of A for the first $r-3$ coordinates in R, we can assume without loss that $r=3$.

Take c with $c \downarrow_{A}^{d} b$ of the same type as b over E. By the boundedness condition on g we have $c, g c \downarrow_{A}^{d} b, g b$. So there are finite $C, B \leq M_{0}$ with $c, g c \in C, b, g b \in B, C \cup B \leq M_{0}$; by enlarging A if necessary we can assume that $E \cap C=A=E \cap B$, and so C, B are freely amalgamated over A.

There is $f \in M_{0}$ with $R(c, b, f)$ and $C B f \leq M_{0}$. Note that $d(f / A)=$ 1 and $g f \in \operatorname{cl}^{d}(f A)$, so there is a finite $A \leq F \leq M_{0}$ with $\delta(F / A)=1$ and $f, g f \in F$. Note that $\delta(C / F)=1$ (otherwise it is zero and then $b \in \operatorname{cl}^{d}(c A)$). So $\delta(C \cap F / A)=0$ and therefore (as $C \cap E=A$) $C \cap F=A$. Similarly $B \cap F=A$.
Suppose that $\{c, e, b\} \neq\{g c, g e, g b\}$. Then on $C \cup E \cup B$, there are at least 2 extra relations beyond those in the free amalgam over A. So

$$
\delta(C E B / A) \leq \delta(C / A)+\delta(E / A)+\delta(B / A)-2=1
$$

But this contradicts $d(c b / A)=2$. Thus, in particular, $g b=b$.
Case 2: $r \geq 2, n>m$. By using elements of A for the first $r-$ 2 coordinates, we can assume $r=2$. Let $B=\operatorname{cl}_{0}(A, g A, b, g b)$ and suppose for a contradiction that $g b \neq b$.

Let $A b \leq C$ be a simply algebraic extension in M_{0} with base U containing b. We can assume that b is in exactly one relation in C. Let $D=C \backslash(A b)$; so $U \leq U \cup D$ is msa. As $g A \subseteq E$, we can assume that $g(U \cap A) \subseteq A$. We can also assume that $D \cap\left(B \cup g^{-1} B\right)=\emptyset$. Then $g D \cap B=\emptyset$. So both $B \leq B \cup D$ and $B \leq B \cup g D$ are simply algebraic extensions (based on U and $g U=g(U \cap A) g b$ respectively). As $g b \neq b$, we must have $g b \notin U$, so $D \neq g D$. As the extensions are minimal, it follows that $D \cap g D=\emptyset$.

Note that $\delta(A)+n=\delta(A b)=\delta(C)=\delta(A D)+n-m$. So $\delta(A D)=$ $\delta(A)+m$. In particular, $A D \leq C \leq M_{0}$, so $d(A D)=d(A)+m$. Let $V=\operatorname{cl}_{0}(A, D, g D)$. We show that $b, g b \notin V$. Note that $V \subseteq \operatorname{cl}^{d}(A D)$ (by boundedness of g) so $d(V)=d(A D)=d(A)+m$. But $d(A b)=$ $d(A)+n>d(A)+m$, so $b \notin V$. As cl ${ }^{d}(V)$ is g-invariant, we then obtain $g b \notin V$.

Thus $B \cup V$ has at least 2 more relations in it than in the free amalgam of B, V over $B \cap V$ (a relation from D to b and a relation from $g D$ to $g b$: neither of these is in the free amalgam, by the previous paragraph). So
$\delta(B V) \leq \delta(B)+\delta(V)-\delta(B \cap V)-2 m \leq \delta(B)+\delta(V)-\delta(A)-2 m$.
Now, $\delta(V)=d(A)+m$. So $\delta(B V) \leq \delta(B)-m$. But this is a contradiction as $m \geq 1$ and $B \leq M_{0}$.

Step 2: If $c \in M_{0}$ then $g c=c$.
Case 1: $r \geq 3, m=n=1$. As before, we may assume that $r=3$. It remains to show that if $c \in E$ then $g c=c$. As g fixes all elements of $\operatorname{cl}^{d}(\emptyset)$, we may assume $c \notin \operatorname{cl}^{d}(\emptyset)$. We may also assume $g c, c \in A$.

There exist $e, f \in M_{0}$ with $A e f \leq M_{0}$ and $R[A e f]=R[A] \cup\{\{c, e, f\}\}$. Then $A e, A f \leq A e f$, so by Step $1, e, f$ are fixed by g. It then follows that c is fixed by g (otherwise $\{g c, e, f\} \notin R$), as required.

Case 2: $r \geq 2, n>m$. As before, we may assume that $r=2$. Let $C=\mathrm{cl}_{0}(A, c)$. Suppose $s \in \mathbb{N}$. There exist $b_{0}=c, b_{1}, b_{2}, \ldots, b_{s} \in M_{0}$ such that $R\left(b_{i-1}, b_{i}\right)$ (and no other relations hold on $C \cup\left\{b_{1}, \ldots, b_{s}\right\}$ outside C), and $C b_{1} \ldots b_{s} \leq M_{0}$. It is easy to see that for $t \leq s$ we have $C b_{1} \ldots b_{t} \leq M_{0}, d\left(b_{t} / C b_{1} \ldots b_{t-1}\right)=n-m$. Moreover, if s is large enough, then $C b_{s} \leq M_{0}$, so $A b_{s} \leq M_{0}$ and $d\left(b_{s} / A\right)=n$. (For this, take $s \geq n /(n-m)$.) It follows from Step 1 that $g b_{s}=b_{s}$.

We now show that if $0 \leq t<s$ and b_{t+1} is fixed by g, then so is b_{t}. It follows that c is fixed by g, as required. So suppose b_{t} is not fixed by g. Note that $R\left(b_{t}, b_{t+1}\right) \wedge R\left(g b_{t}, b_{t+1}\right)$. Also, using the boundedness of g we have:
$n-m=d\left(b_{t+1} / C b_{1} \ldots b_{t}\right)=d\left(b_{t+1} / C b_{1} \ldots b_{t} g b_{1} \ldots g b_{t}\right) \leq d\left(b_{t+1} / b_{t} g b_{t}\right)$.
In particular, $b_{t+1} \notin \mathrm{cl}_{0}\left(b_{t}, g b_{t}\right)$ and

$$
d\left(b_{t+1} / b_{t} g b_{t}\right) \leq \delta\left(b_{t+1} / \mathrm{cl}_{0}\left(b_{t}, g b_{t}\right)\right) \leq n-2 m,
$$

because of the edges from b_{t+1} to $b_{t}, g b_{t}$. This is a contradiction (as $m \geq 1$).

Corollary 4.15. Suppose either that $r=2$ and $n>m$, or that $r \geq 3$ and $n \geq m$. Then $\operatorname{Aut}\left(M_{0} / \mathrm{cl}^{d}(\emptyset)\right)$ is a simple group. In fact, if $g \in \operatorname{Aut}\left(M_{0} / \mathrm{cl}^{d}(\emptyset)\right)$ is not the identity then every element of $\operatorname{Aut}\left(M_{0} / \mathrm{cl}^{d}(\emptyset)\right)$ can be written as a product of 96 conjugates of $g^{ \pm 1}$

Proof. This follows from Corollary 3.12, Lemma 4.8, Lemma 4.11 and Theorem 4.14.

Remarks 4.16. We have been working with symmetric structures in a signature with a single r-ary relation. More generally, suppose we have a signature with relations R_{i} of arity $r_{i}($ for $i \in I)$. Suppose n, m_{i} are non-negative integers with $n \geq 1$. We define the predimension of a finite structure A to be

$$
\delta(A)=n|A|-\sum_{i \in I} m_{i}\left|R_{i}[A]\right| .
$$

Let \mathcal{C}_{0} consist of such A with $\delta\left(A^{\prime}\right) \geq 0$ for all $A^{\prime} \subseteq A$. Then we can form the generic structure M_{0} for $\left(\mathcal{C}_{0}, \leq\right)$ exactly as before. If there is some i such that $m_{i} \neq 0$ is coprime to $n, r_{i}=2$ and $n>m_{i}$, or $r_{i} \geq 3$ and $n \geq m_{i}$, then Corollary 4.15 holds. The argument is the same: for all of the constructions in the proof, just work with R_{i} in place of R. It should also be clear that our assumption that R is symmetric is not essential.

5. Further applications

5.1. Generalized polygons. For $n \geq 3$, a generalized n-gon is a bipartite graph Γ of diameter n and girth $2 n$. It is thick if each vertex has valency at least 3. In [12], Hrushovski's amalgamation method from [7] was adapted to produce thick generalized n-gons of finite Morley rank. These are almost strongly minimal and in [4], Lascar's result (9 , Théorème 2) was applied to show that their autmorphism groups are simple. This gives new examples of simple groups having a BN-pair which are not algebraic groups.

As with Hrushovski's original construction, an intermediate stage in the construction produces ω-stable generalized n-gons Γ_{n} of infinite Morley rank. In this subsection we observe that we can use Corollary 4.15 in place of Lascar's result to show that these generalized n-gons also have simple automorphism group. As in [4], $\operatorname{Aut}\left(\Gamma_{n}\right)$ is transitive on ordered $2 n$-cycles in Γ_{n}, so is also an example of a (non-algebraic) simple group with a spherical BN-pair of rank 2.

We describe very briefly the construction of Γ_{n} from Section 3 of [12]. Work with a signature which has a unary predicate symbol P and a binary relation symbol R and consider bipartite graphs as structures in this signature, where P picks out the vertices in one part of the partition and R gives the adjacency relation. Vertices in P are called points and those not in P are called lines. Fix a natural number $n \geq 3$.

For a finite (bipartite) graph A define

$$
\delta(A)=(n-1)|A|-(n-2)|R[A]| .
$$

As in the previous section, let \mathcal{C}_{0} consist of the finite bipartite graphs A with $\delta(B) \geq 0$ for all $B \subseteq A$. If $C \subseteq A$ write $C \leq A$ to mean $\delta(B) \geq \delta(C)$ whenever $C \subseteq B \subseteq A$.

Consider the class \mathcal{K}_{n} of finite bipartite graphs A which satisfy:
(1) the graph A has no $2 m$-cycle, for $m<n$;
(2) if $B \subseteq A$ contains a $2 m$-cycle for $m>n$, then $\delta(B) \geq 2 n+2$.

The following is from ([12], Corollary 3.13 and Theorem 3.15):
Lemma 5.1. We have $\mathcal{K}_{n} \subseteq \mathcal{C}_{0}$ and $\left(\mathcal{K}_{n}, \leq\right)$ is an amalgamation class.
Let Γ_{n} be the generic structure for the class $\left(\mathcal{K}_{n}, \leq\right)$ (cf. Theorem 4.2). So Γ_{n} is a countable generalized n-gon which is \leq-homogeneous. Lemmas 4.5, 4.6 and Corollary 4.7 hold (essentially because of $\leq-$ homogeneity and the fact that $\mathcal{K}_{n} \subseteq \mathcal{C}_{0}$). As in Corollary 4.8, we have:
Corollary 5.2. The relation \downarrow^{d} is a stationary independence relation on Γ_{n} compatible with cl^{d}.

Proof. If $X \subseteq Y, Z \in \mathcal{K}_{n}$ is d-closed in Y, Z, then the proof of Theorem 3.15 in [12] shows that the free amalgam of Y and Z over X is in \mathcal{K}_{n}. It follows that the class \mathcal{X} of d-closures of finite sets in Γ_{n} has the free
amalgamation property, and so the proof of Corollary 4.7 gives what we want here.
Theorem 5.3. The group $\operatorname{Aut}\left(\Gamma_{n}\right)$ is a simple group. In fact, if $1 \neq g \in \operatorname{Aut}\left(\Gamma_{n}\right)$, then every element of $\operatorname{Aut}\left(\Gamma_{n}\right)$ is a product of 96 conjugates of $g^{ \pm 1}$.
Proof. It follows from ([12], Corollary 3.13) that $\operatorname{cl}^{d}(\emptyset)=\emptyset$ for Γ_{n}. To prove the theorem, we shall apply Corollary 3.12. So we first find a suitable basic orbit D and then show that there are no non-trivial bounded automorphisms. The first part is essentially as in the proof of ([12], Theorem 4.6), but we give a few details.
If $x \in \Gamma_{n}$, let $D(x)$ denote the set of vertices adjacent to x. Then by the \leq-homogeneity, $D(x)$ is a basic orbit over x. If $x, y \in \Gamma_{n}$ are at distance n, then there is a bijection definable over x, y from $D(x)$ to $D(y)\left([11,1.3)\right.$. Suppose $x_{0}, \ldots, x_{2 n-1}$ is a $2 n$-cycle in Γ_{n} with $x_{0} \in P$. Then Γ_{n} is in the definable closure of $D\left(x_{0}\right), D\left(x_{1}\right), x_{2}, \ldots, x_{2 n-1}$ (see [11], 1.6). If n is odd, there is a vertex z at distance n from both x_{0} and x_{1} and therefore Γ_{n} is in the definable closure of $D\left(x_{0}\right), x_{1}, \ldots, x_{2 n-1}, z$. So if we let $A=\left\{x_{0}, \ldots, x_{2 n-1}, z\right\}$ and $D=\left\{c \in D\left(x_{0}\right): d(c / A)=1\right\}$, then D is a basic orbit over A and $\Gamma_{n}=\operatorname{cl}^{d}(A, D)$.
So now suppose n is even. As in the previous paragraph, it will suffice to show that there is a line ℓ and a finite set A with $D(\ell) \subseteq$ $\operatorname{cl}^{d}\left(D\left(x_{0}\right), A\right)$, because $D\left(x_{1}\right)$ is in the definable closure of $D(\ell)$ and some finite set. Let $p_{3} \in P$ be at distance n from x_{0} and let $\ell \notin P$ be at distance $n-1$ from x_{0}, p_{3}. If $k \in D\left(x_{0}\right)$ there is a unique path of length $n-1$ from k to p_{3}. Let a denote the vertex adjacent to k on this path. There is then a unique path of length $n-1$ from a to ℓ. Let $\phi(k)$ denote the vertex on this path adjacent to ℓ. So we have a definable map $\phi: D\left(x_{0}\right) \rightarrow D(\ell)$. It can be seen (by considering the paths involved in this definition of ϕ) that that $d\left(k / x_{0}, p_{3}, \ell, \phi(k)\right)=0$ for all $k \in D\left(x_{0}\right)$. Thus, if $d\left(k / x_{0}, p_{3}, \ell\right)=1$, then $d\left(\phi(k) / x_{0}, p_{3}, \ell\right)=1$. It follows that the image of ϕ contains $D(\ell) \backslash \operatorname{cl}^{d}\left(x_{0}, p_{3}, \ell\right)$, so $D(\ell) \subseteq$ $\operatorname{cl}^{d}\left(D\left(x_{0}\right), x_{0}, p_{3}, \ell\right)$, as required.

To show that there are no non-trivial bounded automorphisms, one uses that same proof as in ([4], Proposition 6.3), replacing acl there by cl^{d}.
5.2. \aleph_{0}-categorical structures. We recall briefly a variation on the construction method of Section 4.1 which gives rise to \aleph_{0}-categorical structures. The original version of this is in [6] where it is used to provide a counterexample to Lachlan's conjecture, and in [8] where it is used to construct a non-modular, supersimple \aleph_{0}-categorical structure. The book [15] (Section 6.2.1) is a convenient reference for this. Generalizations and reworkings of the method (particulalrly relating to simple theories) can be found in [1]. For the rest of this subsection, assume that $m, n, r, \delta,\left(\mathcal{C}_{0}, \leq\right)$ etc. are as in Section 4.1.

In this version of the construction, d-closure is uniformly locally finite. Suppose $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ is a continuous, increasing function with $f(x) \rightarrow \infty$ as $x \rightarrow \infty$. Let

$$
\mathcal{C}_{f}=\left\{A \in \mathcal{C}_{0}: \delta(X) \geq f(|X|) \forall X \subseteq A\right\}
$$

Note that if $X \subseteq A \in \mathcal{C}_{f}$ then

$$
\delta(X) \geq \delta\left(\operatorname{cl}^{d}(X)\right) \geq f\left(\left|\mathrm{cl}^{d}(X)\right|\right)
$$

so $\left|\mathrm{cl}_{A}^{d}(X)\right| \leq f^{-1}(\delta(X)) \leq f^{-1}(n|X|)$.
If $B \subseteq A \in \mathcal{C}_{f}$ and $\operatorname{cl}_{A}^{d}(B)=B$, then we write $B \leq_{d} A$. For suitable choice of f (call these good f), $\left(\mathcal{C}_{f}, \leq_{d}\right)$ has the free \leq_{d}-amalgamation property: if $A_{0} \leq_{d} A_{1}, A_{2} \in \mathcal{C}_{f}$ then $A_{i} \leq_{d} A_{1} \coprod_{A_{0}} A_{1} \in \mathcal{C}_{f}$. In this case we have an associated countable generic structure M_{f}. So M_{f} is \leq_{d}-homogeneous and the set \mathcal{X} of finite d-closed subsets of M_{f} is (up to isomorphism) \mathcal{C}_{f}. As d-closure is uniformly locally finite, the structure M_{f} is \aleph_{0}-categorical (by the Ryll - Nardzewski Theorem). Algebraic closure in M_{f} is equal to d-closure.

Remarks 5.4. To construct good functions, we can take f which are piecewise smooth and where the right derivative f^{\prime} satisfies $f^{\prime}(x) \leq 1 / x$ and is non-increasing, for $x \geq 1$. The latter condition implies that $f(x+y) \leq f(x)+y f^{\prime}(x)$ (for $y \geq 0$). It can be shown that under these conditions, \mathcal{C}_{f} has the free \leq_{d}-amalgamation property. Also note that if $f^{\prime}(x) \leq 1 / x$ for all $x \geq x_{0}$, then for $y \geq x \geq x_{0}$ we have $f(y) \leq f(x)+\log (y-1)-\log (x-1)$.
Assumption 5.5. Henceforth, we assume that if $r=2$, then $n>m$ and if $r \geq 3$, then $n \geq m$. We suppose that f is a good function. We will assume that $f(0)=0$ and $f(1)>0$, therefore $\operatorname{cl}^{d}(\emptyset)=\emptyset$. We shall also assume that $f(1)=n$. Thus if $X \in \mathcal{C}_{f}$ and $|X| \geq 2$, then $\delta(X) \geq f(|X|)>n$. In particular $\{x\} \leq_{d} X$ for all $x \in X$.

Let $G=\operatorname{Aut}\left(M_{f}\right)$.
As before, we write \downarrow^{d} for d-independence in M_{f}. This is not stationary. If $A \leq{ }_{d} C \in \mathcal{X}$ and $b_{0} \in M_{f}$, then $\left\{b \in \operatorname{orb}\left(b_{0} / A\right): b \downarrow_{A}^{d} C\right\}$ need not be a single $G_{C^{-}}$orbit: the orbits are determined by the d closures $\mathrm{cl}^{d}(b C)$. Clearly $\mathrm{cl}^{d}(b C) \supseteq \operatorname{cl}^{d}(b A) \cup C$ and as in Lemma 4.3 it can be shown that $\operatorname{cl}^{d}(b A) \cap C=A, \mathrm{cl}^{d}(b A), C$ are freely amalgamated over A and $\mathrm{cl}^{d}(b A) \cup C \leq M_{f}$ if and only if $b \downarrow_{A}^{d} C$.
Definition 5.6. Suppose $A \leq_{d} C \in \mathcal{X}$ and b is a tuple of elements of M_{f}. Write $b \perp_{A} C$ to mean that $b \downarrow_{A}^{d} C$ and $\operatorname{cl}^{d}(b C)=\operatorname{cl}^{d}(b A) \cup C$. Note that in this case, $\operatorname{cl}^{d}(b C)$ is the free amalgam of $\mathrm{cl}^{d}(b A)$ and C over A.

The following is straightforward:

Lemma 5.7. The relation \perp is a stationary independence relation compatible with cl^{d}.

We will use Theorem 2.5 to show that, under some restrictions, the group $G=\operatorname{Aut}\left(M_{f}\right)$ is simple. The proof is similar to that in the previous sections, but we need to make some modifications as the dimension function does not give rise to a stationary independence relation.

Suppose $A \in \mathcal{X}$ and $b \in M_{f}$. We shall continue to say that b is basic over A if $b \notin A$ and whenever $A \leq_{d} C \in \mathcal{X}$ and $d(b / C)<d(b / A)$, then $b \in C$. Recall also that M_{f} is monodimensional if for all basic orbits $D=\operatorname{orb}(b / A)$ (for $A \in \mathcal{X}$) there is $B \in \mathcal{X}$ with $A \subseteq B$ and $M_{f}=\operatorname{cl}^{d}(B, D \backslash B)$. In fact, in the examples below where we verify this, we will take $B=A$.

As before, we say that $g \in G$ is d-bounded over $A \in \mathcal{X}$ if there is $A \subseteq C \in \mathcal{X}$ and $b \in M_{f}$ which is basic over C such that for all $b^{\prime} \in \operatorname{orb}(b / C)$ we have $g b^{\prime} \in \operatorname{cl}^{d}\left(b^{\prime} C\right)$.

Lemma 5.8. Suppose M_{f} is monodimensional and $g \in \operatorname{Aut}\left(M_{f}\right)$ is d-bounded (over some element of \mathcal{X}). Then $g=1$.

Proof. By Proposition 3.10 there is $E \in \mathcal{X}$ such that g stabilizes every $B \in \mathcal{X}$ containing E. In particular, g fixes all $b \in M_{f} \backslash E$ for which $E b \leq_{d} M_{f}$.

Let c, c^{\prime} be distinct elements of M_{f} and $C=\operatorname{cl}^{d}\left(E, c, c^{\prime}\right)$. First suppose that $r>2$. Consider the structure B consisting of c together with $r-1$ points b_{1}, \ldots, b_{r-1} such that $R[B]$ is the single relation $\left\{c, b_{1}, \ldots, b_{r-1}\right\}$. Then $B \in \mathcal{C}_{f}$ and $c \leq_{d} B$. By Assumption 5.5, the free amalgam U of C and B over c is in \mathcal{C}_{f}, so we may suppose $U \leq_{d} M_{f}$. One calculates that $E b_{i} \leq_{d} U$ for each i (this uses that $r>2$), therefore the b_{i} are fixed by g. As g stabilizes E, C and U, it is then clear that $g c \neq c^{\prime}$. But this holds for all $c^{\prime} \neq c$, so in fact, $g c=c$.

Now suppose that $r=2$ (and $n>m$). Take $b \perp C$. Suppose $c, e_{1}, \ldots, e_{s}, b$ is a simple path with endpoints c, b. If $s>m /(n-m)$ then $c b \leq_{d} c e_{1} \ldots e_{s} b$. As $c b \leq_{d} C b$ we may use free amalgamation over $c b$ to find such a path with $U=C e_{1} \ldots e_{s} b \leq_{d} M_{f}$. Then $g b=b$ and g stabilizes E, C, U. There is a path from b to c whose internal vertices are in $U \backslash C$, but there is no such path to c^{\prime}. So $g c \neq c^{\prime}$, and it follows that $g c=c$.

Proposition 5.9. Suppose M_{f} is monodimensional, $A \in \mathcal{X}$ and D is a basic orbit over A. Suppose $1 \neq g \in \operatorname{Aut}\left(M_{f} / A\right)$.
(1) If $c \in M_{f}$ and $A \subseteq B \in \mathcal{X}$, then there is $c^{\prime} \in \operatorname{orb}(c / B)$ with $g c^{\prime} \downarrow_{B}^{d} c^{\prime}$.
(2) There is $\tilde{h} \in G_{A}$ such that the commutator $\tilde{g}=[g, \tilde{h}]$ moves almost maximally over A with respect to \perp, that is, if $a^{\prime} \in M_{f}$ and $A \subseteq X \in \mathcal{X}$, there is $a \in \operatorname{orb}\left(a^{\prime} / X\right)$ such that $\tilde{g} a \perp_{X} a$.

Proof. (1) This follows from Lemma 5.8 and Proposition 3.7.
(2) We build \tilde{h} by a back-and-forth construction as in the first part of the proof of Theorem 3.9. During the 'forth' step we shall ensure that \tilde{g} moves almost maximally with respect to \perp (over A). So suppose we have constructed a partial automorphism $h: U \rightarrow V$ (fixing A) and X, a^{\prime} are given. By extending h arbitrarily, we may assume that $U \supseteq X, g X, h^{-1} g h X$.

Claim 1: We can choose $a \in \operatorname{orb}\left(a^{\prime} / X\right)$ such that $a \perp_{X} U, g^{-1} U$ and $g a \downarrow_{U}^{d} a$.

To do this, take $a^{\prime \prime} \in \operatorname{orb}\left(a^{\prime} / X\right)$ with $a^{\prime \prime} \perp_{X} U, g^{-1} U$ (by Extension). Then by (1), there is $a \in \operatorname{orb}\left(a^{\prime \prime} / \mathrm{cl}^{d}\left(U, g^{-1} U\right)\right)$ with $g a \downarrow_{U, g^{-1} U}^{d} a$. It follows from Transitivity (for \downarrow^{d}) that $g a \downarrow_{U}^{d} a$, as required.

Similarly, we can take $b \in h o r b\left(a^{\prime} / U\right)$ with $b \perp_{h X} V, g^{-1} V$ and $g b \downarrow_{V}^{d} b$. Extend h by setting $h a=b$.

Note that $h^{-1} \operatorname{orb}\left(g b / \mathrm{cl}^{d}(V, b)\right)$ is an orbit over $\operatorname{cl}^{d}(U, a)$. We choose e in this with $e \perp_{U, a} g a$ and extend h further by setting $h e=g b$.

We have that $\operatorname{cl}^{d}(e, U, a) \perp_{U, a} \mathrm{cl}^{d}(g a, U, a)$. Intersecting this d-closed free amalgam with $Y=\operatorname{cl}^{d}(U, e, g a)$ we obtain another d-closed free amalgam, so $e \perp_{Z} g a$, where $Z=\operatorname{cl}^{d}(U, a) \cap Y$.

Claim 2: We have $Z=U$, so $e \perp_{U} g a$.
By Claim 1 we have $d(g a, a / U)=d(g a / U)+d(a / U)$, and similarly $d(g b / V, b)=d(g b / V)$. So we have:

$$
d(e / U, a, g a)=d(e / U, a)=d(g b / V, b)=d(g b / V)=d(e / U),
$$

where the second and fourth of these come from applying h. It then follows that $a, g a, U$ are d-independent over U, so $a \downarrow_{U}^{d} g a, e$. In particular, $\operatorname{cl}^{d}(u, a) \cap \operatorname{cl}^{d}(U, g a, e)=U$.

Claim 3: We have $e \perp_{g X} g a$.
By Claim 1, $U \perp_{g X} g a \operatorname{so~} \operatorname{cl}^{d}(U, g a)=U \coprod_{g X} E_{2}$, where $E_{2}=$ $\mathrm{cl}^{d}(g X, g a)$.

By choice of b we have $g b \perp_{g h X} g V, V$, so (applying h^{-1}) $e \perp_{h^{-1} g h X} U$. Thus $\mathrm{cl}^{d}(U, e)=U \coprod_{h^{-1} g h X} E_{1}$ where $E_{1}=\operatorname{cl}^{d}\left(h^{-1} g h X, e\right)$.

Let $A_{i}=E_{i} \cap U$. So $A_{1}=h^{-1} g h X$ and $A_{2}=g X$. Let $W=$ $\operatorname{cl}^{d}\left(A_{1}, A_{2}\right)$. By Claim 2, $U \cup E_{1} \cup E_{2} \leq_{d} M_{f}$. We also have $W \cup E_{1} \cup$ $E_{2} \leq_{d} U \cup E_{1} \cup E_{2}$, so $E_{1} \perp_{W} E_{2}$, that is:

$$
E_{1} \perp_{A_{1}, A_{2}} E_{2} .
$$

As $a \perp_{X} g^{-1} U$, we have (applying g) $E_{2} \perp_{A_{2}} U$. So $E_{2} \perp_{A_{2}} E_{1}$. By Transitivity we obtain $E_{1} \perp_{A_{2}} E_{2}$, which gives the claim.

By applying g^{-1} to Claim 3 we obtain:

$$
[g, h] a \perp_{X} a
$$

which is what we wanted to do in this step of the construction.

Corollary 5.10. Suppose M_{f} is monodimensional and $1 \neq g \in \operatorname{Aut}\left(M_{f}\right)$. Then every element of $\operatorname{Aut}\left(M_{f}\right)$ is a product of 192 conjugates of $g^{ \pm 1}$.

Proof. Note that $\mathrm{cl}^{d}(\emptyset)=\emptyset$ so $G=\operatorname{Aut}\left(M_{f}\right)$. Let $A \in \mathcal{X}$ be such that there is a basic orbit D over A. It is easy to show that there is a non-identity commutator g_{1} of g which fixes every element of A. By Proposition 5.9, by taking a further commutator with an element of G_{A} we obtain some $g_{2} \in G_{A}$ which moves almost maximally over A (with respect to \perp). It follows from Theorem 2.5 that every element of G_{A} is a product of 16 conjugates of g_{2}. As g_{2} is a product of 4 conjugates of $g^{ \pm 1}$, it follows that every element of G_{A} is a product of 64 conjugates of $g^{ \pm 1}$. As in the final part of the proof of Theorem 3.9, G is the product of three conjugates of G_{A} : hence the result.

We believe that under the conditions of Assumption 5.5, the structure M_{f} should be monodimensional. However, proving this appears to require an extremely technical argument and we only have a full proof in some special cases.

Example 5.11. Suppose that $r \geq 3$ and $m=n=1$; so $\delta(A)=$ $|A|-|R[A]|$. Suppose f is as in Remarks 5.4 and also that Assumption 5.5 holds.

If $A \in \mathcal{X}$ and $b \in M_{f} \backslash A$ then $d(b / A)=1$ so b is basic over A. Let $D=\operatorname{orb}(b / A)$. We show that $M_{f}=\operatorname{cl}^{d}(A, D)$.

Step 1. There is $c \in \operatorname{cl}^{d}(A, D)$ with $c \perp A$.
Let $B=\operatorname{cl}^{d}(A, b)$ and let F be the free amalgam of copies B_{1}, \ldots, B_{r-1} of B over A, with $b_{i} \in B_{i}$ being the copy of b inside B_{i}. Let $E=F \cup\{c\}$ where $R\left(b_{1}, \ldots, b_{r-1}, c\right)$ holds and this is the only relation in E involving c. We show that:
(i) $E \in \mathcal{C}_{f}$;
(ii) $B_{i} \leq_{d} E$;
(iii) $A c \leq_{d} E$.

Note that once we have this, it follows that we may assume $E \leq{ }_{d} M_{f}$ and so (by (ii)) $b_{1}, \ldots, b_{r-1} \in D$. Moreover, $c \in \operatorname{cl}^{d}\left(A, b_{1}, \ldots, b_{r-1}\right)$ and (by (iii)) $A \perp c$, which finishes Step 1 .

For (i), note of course that $F \in \mathcal{C}_{f}$. Let $Y \subseteq E$. We want to show that $\delta(Y) \geq f(|Y|)$. We may assume that $c, b_{1}, \ldots, b_{r-1} \in Y$ and $Y \leq{ }_{d} E$. In the following, if $C \subseteq E$, let $Y_{C}=Y \cap C$.

If $Y_{A}=\emptyset$ then Y is obtained by free amalgamation over the b_{i} from $\left\{b_{1}, \ldots, b_{r-1}, c\right\}$ and the $Y_{B_{i}}$, so is in \mathcal{C}_{f}. So we may assume that $Y_{A} \neq \emptyset$. Also, if $\left|Y_{B_{i}} \backslash A\right|=1$ for all i, then as $d\left(b_{i} / A\right)=1$, there are no relations between Y_{A} and $\left\{b_{1}, \ldots, b_{r-1}, c\right\}$ and Y is again a free amalgam. So we may also assume that $2 \leq\left|Y_{B_{1}} \backslash A\right| \geq\left|Y_{B_{i}} \backslash A\right|$. In particular, $\left|B_{1}\right| \geq 3$.

Now we compute that

$$
\delta(Y)=\delta\left(Y_{F}\right)=\delta\left(Y_{B_{1}}\right)+\sum_{i \geq 2} \delta\left(Y_{B_{i}} / Y_{B_{1}}\right) \leq \delta\left(Y_{B_{1}}\right)+(r-2) .
$$

Also

$$
|Y|=1+\left|Y_{B_{1}}\right|+\sum_{i \geq 2}\left|Y_{B_{i}} \backslash A\right| \leq 1+\left|Y_{B_{1}}\right|+(r-2)\left|Y_{B_{1}} \backslash A\right| .
$$

As in Remarks 5.4

$$
f(|Y|) \leq f\left(\left|Y_{B_{1}}\right|\right)+\log \left(\frac{\left|Y_{B_{1}}\right|+(r-2)\left|Y_{B_{1}} \backslash A\right|}{\left|Y_{B_{1}}\right|-1}\right) .
$$

So to prove that $\delta(Y) \geq f(|Y|)$ it will suffice to show that

$$
r-2 \geq \log \left(\frac{\left|Y_{B_{1}}\right|+(r-2)\left|Y_{B_{1}} \backslash A\right|}{\left|Y_{B_{1}}\right|-1}\right) .
$$

As $\left|Y_{A}\right| \geq 1$ and $\left|Y_{B_{1}} \backslash Y_{A}\right| \geq 2$ we have:

$$
\frac{\left|Y_{B_{1}}\right|+(r-2)\left|Y_{B_{1}} \backslash A\right|}{\left|Y_{B_{1}}\right|-1} \leq(r-1)+\frac{1}{2}
$$

and the required inequality holds as $r \geq 3$. This completes the proof of (i).

We now verify (ii); without loss we take $i=1$. Suppose $B_{1} \subset Y \subseteq E$. We need to show that $\delta\left(B_{1}\right)<\delta(Y)$. We may assume that $Y \leq_{d} E$ and also that $b_{1}, \ldots, b_{r-1}, c \in Y$ (otherwise what we want follows from free amalgamation). But then $Y=E$ and $\delta(E)=\delta\left(B_{1}\right)+(r-2)>\delta(Y)$.

For (iii), suppose $A c \subset Y \subseteq E$. If Y does not contain all of b_{1}, \ldots, b_{r-1}, then $\delta(Y)=\delta\left(Y_{F}\right)+1>\delta(A)+1=\delta(A c)$. On the other hand, if Y contains all of b_{1}, \ldots, b_{r-1}, then $\delta(Y) \geq \delta(A)+(r-1)>$ $\delta(A c)$. This completes Step 1.
From Step 1 and Stationarity, it follows that $\mathrm{cl}^{d}(A, D) \supseteq\left\{e \in M_{f}\right.$: $e \perp A\}$. So to show that $\mathrm{cl}^{d}(A, D)=M_{f}$ it will suffice to show:

Step 2. If $a \in M_{f} \backslash A$, there exist $e_{1}, \ldots, e_{r-1} \in M_{f}$ with $e_{i} \perp A$ and $a \in \operatorname{cl}^{d}\left(A, e_{1}, \ldots, e_{r-1}\right)$.

To see this, let $C=\operatorname{cl}^{d}(A, a)$ and let F be the free amalgam of this over a with the structure on points $\left\{a, e_{1}, \ldots, e_{r-1}\right\}$ which has a single relation $R\left(a, e_{1}, \ldots, e_{r-1}\right)$. As $A \leq_{d} F$, we can assume that $F \leq_{d} M_{f}$. Moreover, an easy calculation shows that $A e_{i} \leq{ }_{d} F$ and so $e_{i} \perp A$ for all i. But $a \in \operatorname{cl}^{d}\left(e_{1}, \ldots, e_{r-1}\right)$ so we have completed Step 2.

Example 5.12. Suppose as in [6] that $r=2, n=2$ and $m=1$. So we are considering graphs A and $\delta(A)=2|A|-e(A)$ where $e(A)$ denotes the number of edges in A. We take $f(0)=0, f(1)=2, f(2)=3$ and $f^{\prime}(x) \leq 1 / x$ non-increasing for $x \geq 2$ as in Remarks 5.4. So if $A \in \mathcal{C}_{f}$, then vertices and edges are d-closed in A. Moreover $f(x) \leq 3+\log (x-1)$
for $x \geq 2$; more generally, $f(y) \leq f(x)+\log (y-1)-\log (x-1)$ for $2 \leq x \leq y$.

By free amalgamation, \mathcal{C}_{f} contains paths P_{ℓ} of arbitrary length ℓ. One easily computes that if u, v are the endpoints of P_{ℓ} then $u v \leq_{d} P_{\ell}$ iff $\ell \geq 3$. In particular (using free amalgamation), \mathcal{C}_{f} contains a 6 -cycle, but need not contain shorter cycles.

The strategy for verifying monodimensionality is as in the previous example, but the details are considerably more complicated. Suppose $A \in \mathcal{X}$ and $\operatorname{orb}(b / A)$ is any $G_{A^{-}}$-orbit on $M_{f} \backslash A$. We shall show that there exist $b_{0}, \ldots, b_{s-1} \in \operatorname{orb}(b / A)$ and $c \in \operatorname{cl}^{d}\left(b_{0}, \ldots, b_{s-1}, A\right)$ such that $c \perp A$. So $\mathrm{cl}^{d}(A, \operatorname{orb}(b / A))$ contains $\{e: e \perp A\}$. We then observe that $\operatorname{cl}^{d}(A,\{e: e \perp A\})=M_{f}$.

In order to do this, we construct various graphs and verify that they are in \mathcal{C}_{f}.

Step 1. Let $s \in \mathbb{N}$ be sufficiently large. Construct a graph with vertices $C=\left\{c_{0}, \ldots, c_{s-1}\right\}$ and $D=\left\{d_{0}, \ldots, d_{s-1}\right\}$ such that:

- $c_{0}, d_{0}, c_{1}, d_{1}, \ldots, c_{s-1}, d_{s-1}$ is a $2 s$-cycle;
- the remaining edges on $C D$ form a single s-cycle on D and $C D$ has girth at least 6 .
To do this, we can take adjacencies in D to be $d_{i} \sim d_{i+\ell}$ where the indices are read modulo s and ℓ is chosen coprime to s and $6 \leq \ell<$ $s / 12$.

Step 2. We have $C D \in \mathcal{C}_{f}$.
Note that as s is large, $\delta(C D)=s>3+\log (2 s-1) \geq f(2 s)=$ $f(|C D|)$. Let $X \subset C D$. We need to show that $\delta(X) \geq f(|X|)$. We may assume that $X \leq_{d} C D$. Write $X_{D}=D \cap X$ and use similar notation throughout what follows. We have $X_{D} \subset D$, so

$$
\delta\left(X_{D}\right) \geq 2\left|X_{D}\right|-\left(\left|X_{D}\right|-1\right)=\left|X_{D}\right|+1
$$

Consider the valencies of vertices in X_{C} within X. There are at most $\left|X_{D}\right|-1$ of valency 2 and those of valency at most 1 contribute at least 1 to $\delta\left(X / X_{D}\right)$. Thus

$$
\left|X_{C}\right| \leq \delta\left(X / X_{D}\right)+\left|X_{D}\right|-1
$$

so

$$
\delta(X) \geq\left|X_{C}\right|-\left|X_{D}\right|+1+\delta\left(X_{D}\right) \geq\left|X_{C}\right|+2
$$

Also,

$$
\delta(X)=2\left|X_{C}\right|+2\left|X_{D}\right|-e\left(X_{C}, X_{D}\right)-e\left(X_{D}\right) \geq \delta\left(X_{D}\right)
$$

as $e\left(X_{C}, X_{D}\right)$, the number of edges between X_{C} and X_{D}, is at most $2\left|X_{C}\right|$. So

$$
\delta(X) \geq \delta\left(X_{D}\right) \geq\left|X_{D}\right|+1
$$

We therefore obtain:

$$
\delta(X) \geq \frac{1}{2}(|X|+3) .
$$

As $f(x) \leq 3+2 \log (x-1)$, we have $\delta(X) \geq f(|X|)$ if $|X| \geq 7$. If $|X| \leq 6$ then X is either a 6 -cycle or has no cycles, so is in \mathcal{C}_{f}.

Step 3. If $X \leq_{d} C D$ and X is the d-closure in $C D$ of X_{C}, then $|X| \leq 4\left|X_{C}\right|-3$.

This follows from the fact that $0 \geq \delta\left(X / X_{C}\right) \geq \frac{1}{2}(|X|+3)-2\left|X_{C}\right|$.
Step 4. Let B consist of copies B_{0}, \ldots, B_{s-1} of $B^{\prime}=\operatorname{cl}^{d}(A, b)$ freely amalgamated over A, with b_{i} the copy of of b inside B_{i}. Let $E=$ $B \cup C \cup D$ with edges as in $B, C \cup D$ and additional edges $b_{i} \sim c_{i}$ for $i=0, \ldots, s-1$. Note that $\delta(E)=\delta(A)+s \delta\left(B^{\prime} / A\right)=\delta(B)$ and $|E|=|A|+s\left|B^{\prime} \backslash A\right|+2 s=|A|+s\left(\left|B^{\prime} \backslash A\right|+2\right)$. For sufficiently large s we have $\delta(E) \geq f(|E|)$ (by the logarithmic growth of f).
Suppose $Y \subset E$; we claim that $\delta(Y) \geq f(|Y|)$, so $E \in \mathcal{C}_{f}$. We may assume that $Y \leq_{d} E$. It is clear that E is the free amalgam of $B C$ and $C D$ over C and it is easy to check that $C \leq_{d} B C$. So $Y_{C} \leq_{d} Y_{B C}$.

Let Y_{C}^{\prime} be the d-closure of Y_{C} inside $C D$. So $Y_{C}^{\prime} \subseteq Y_{C D}$ and $Y_{C}^{\prime} \cap C=$ Y_{C}. Then $Y_{B} \cup Y_{C}^{\prime}$ is a free amalgam over Y_{C} and $Y_{C}^{\prime} \leq_{d} Y_{B} \cup Y_{C}^{\prime}$. Moreover, $Y_{C}^{\prime} \leq Y_{C D}$; so it will suffice to show that $Y_{B} \cup Y_{C}^{\prime} \in \mathcal{C}_{f}$. Thus we may assume $Y_{C}^{\prime}=Y_{C D}$. In particular, by Step 3, we may assume that $\left|Y_{C D}\right| \leq 4 t-3$, where $t=\left|Y_{C}\right|$. We can assume $t \geq 2$.

We may assume that $\delta\left(Y_{B_{i}} / Y_{A}\right) \leq 1$ for all i. Then we may further assume that $b_{i} \in Y$ iff $c_{i} \in Y$. (If $c_{i} \in Y$ and $b_{i} \notin Y$, then adding b_{i} into Y increases the size of Y without increasing δ; conversely if $b_{i} \in Y$ but c_{i} is not, then $Y_{B_{i}}$ is freely amalgamated with the rest of Y over Y_{A}.) Similarly we can assume that if $Y_{B_{i}} \supset Y_{A}$ then $b_{i} \in Y_{i}$. It follows that $\delta\left(Y_{B} / Y_{A}\right)=t$.

Choose i such that $\left|Y_{B_{i}} \backslash Y_{A}\right|$ is as large as possible; say $i=1$ and the size is k. Then

$$
|Y|=\left|Y_{B}\right|+\left|Y_{C D}\right| \leq\left|Y_{B_{1}}\right|+(t-1) k+4 t-3 .
$$

Also

$$
\delta(Y)=\delta\left(Y_{B}\right)+\delta\left(Y_{C D}\right)-e\left(Y_{B}, Y_{C}\right) \geq\left(\delta\left(Y_{B_{1}}\right)+(t-1)\right)+(t+2)-t
$$

using the inequality $\delta\left(Y_{C D}\right) \geq t+2$ from Step 2 , and so:

$$
\delta(Y) \geq \delta\left(Y_{B_{1}}\right)+t+1
$$

So it will suffice to show that

$$
\delta\left(Y_{B_{1}}\right)+t+1 \geq f\left(\left|Y_{B_{1}}\right|+(t-1) k+4 t-3\right) .
$$

By the logarithmic nature of f, and $\delta\left(B_{1}\right) \geq f\left(\left|B_{1}\right|\right)$, this will follow from:

$$
t+1 \geq \log ((t-1)(k+4))-\log \left(\left|Y_{B_{1}}\right|-1\right)
$$

It is easily checked that this is the case (as $t \geq 2$ and $\left|Y_{B_{1}}\right| \geq k+1$). This finishes the proof that $E \in \mathcal{C}_{f}$.

Step 5. If $e \in D$, then $A e \leq_{d} E$. To see this, let $A e \subset X \subseteq E$. As E is a free amalgam over C

$$
\delta(X)=\delta\left(X_{B C} / X_{C}\right)+\delta\left(X_{C D}\right)
$$

It is straightforward to see that this is greater than $\delta(A e)=\delta(A)+2$.
Step 6. We have $B_{i} \leq_{d} E$. This follows from the the calculations in Step 4.

It follows that $A \leq_{d} E$, so we may assume that $E \leq_{d} M_{f}$. As $\delta(E)=\delta(B)$, we have $E=\operatorname{cl}^{d}(B)$. By Step 6, each b_{i} is in orb (b / A). By Step 5, we have that $A \perp e$ for $e \in D$. It follows that $\operatorname{cl}^{d}(A, \operatorname{orb}(b / A))$ contains $\left\{e \in M_{f}: e \perp A\right\}$.

To conclude, we show that $\operatorname{cl}^{d}(A,\{e: e \perp A\})=M_{f}$. Let $x \in M_{f} \backslash A$ and $X=\operatorname{cl}^{d}(x, A)$. Using the above construction we can find $V \in \mathcal{C}_{f}$ and distinct $b_{1}, \ldots, b_{s}, y \in V$ such that $y \in \operatorname{cl}^{d}\left(b_{1}, \ldots, b_{s}\right)$ and y is not adjacent to any of the b_{i}. The latter implies that $y b_{i} \leq V$. Identify y with x and form the free amalgam U of V and X over x. This is in \mathcal{C}_{f} so we may assume $U \leq_{d} M_{f}$. Using that $x b_{i} \leq V$, it is straightforward to check that $b_{i} \perp A$, and so $x \in \operatorname{cl}^{d}(A,\{e: e \perp A\})$, as required. It follows that M_{f} is monodimensional.
5.3. Concluding remarks. Hrushovski's paper [6] uses a further variation on the construction method of the previous subsection to produce stable, \aleph_{0}-categorical structures which are not one-based. In this variation of the construction, the predimension is given by

$$
\delta(A)=|A|-\alpha|R[A]|
$$

where $\alpha \in \mathbb{R}^{\geq 0}$ is irrational. For certain α one defines a control function $f_{\alpha}: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ such that $\mathcal{C}_{f_{\alpha}}$ is a free amalgamation class and the Fraïssé limit M_{α} is stable and \aleph_{0}-categorical. The details of this can be found in ([14], Example 5.3). Forking independence gives a stationary independence relation on M_{α} and it would be interesting to investigate simplicity (or otherwise) of $\operatorname{Aut}\left(M_{\alpha}\right)$ using Theorem 2.5.

In his paper [9], Lascar also proves a small index property for countable, saturated almost strongly minimal structures and it would be interesting to know whether these methods can be used to prove that such a property also holds for the structures M_{0} and $M_{f}($ for $\operatorname{good} f)$ of Sections 4.1 and 5.2. More specifically, we ask:

- Suppose G is $\operatorname{Aut}\left(M_{0}\right)$ or $\operatorname{Aut}\left(M_{f}\right)$ and $H \leq G$ is of index less than $2^{\aleph_{0}}$ in G. Does there exist $A \in \mathcal{X}$ such that $H \geq G_{A}$?
In the case where $G=\operatorname{Aut}\left(M_{0}\right)$, it seems likely that Lascar's methods work, though we have not checked all of the details. For the case where $G=\operatorname{Aut}\left(M_{f}\right)$, the following problem is relevant:
- Suppose $A_{i}, B_{i} \leq_{d} M_{f}$ are finite and $h_{i}: A_{i} \rightarrow B_{i}$ is an isomorphism (for $i=1, \ldots, n$). Do there exist $D \in \mathcal{X}$ with $A_{i}, B_{i} \leq_{d} D$ and $g_{i} \in \operatorname{Aut}(D)$ such that $g_{i} \supseteq h_{i}$ for all $i \leq n$?

References

[1] David M. Evans, ' \aleph_{0}-categorical structures with a predimension', Annals of Pure and Applied Logic 116 (2002), 157-186.
[2] Alexander S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995.
[3] Reinhold Konnerth, 'Automorphism groups of differentially closed fields', Annals of Pure and Applied Logic 118 (2002), 1-60.
[4] Zaniar Ghadernezhad and Katrin Tent, 'New simple groups with a BN-pair', Preprint, March 2013, to appear in J. Algebra.
[5] Zaniar Ghadernezhad, Autmorphism Groups of Generic Structures, PhD Dissertation, Universität Münster, June 2013.
[6] Ehud Hrushovski, 'A stable \aleph_{0}-categorical pseudoplane', Unpublished notes, 1988.
[7] Ehud Hrushovski, 'A new strongly minimal set', Ann. Pure Appl. Logic 62 (1993), 147 - 166.
[8] Ehud Hrushovski, 'Simplicity and the Lascar group', Unpublished notes, 1997.
[9] Daniel Lascar, 'Les automorphismes d'un ensemble fortement minimal', J. Symbolic Logic 57 (1992), 238-251.
[10] Dugald Macpherson and Katrin Tent, 'Simplicity of some automorphism groups', J. Algebra 342 (2011), 40-52.
[11] Katrin Tent, 'A note on the model theory of generalizd polygons', J. Symbolic Logic 65 (2000), 692-702.
[12] Katrin Tent, 'Very homogeneous generalized n-gons of finite Morley rank', J. London Math. Soc. (2) 62 (2000), 1-15.
[13] Katrin Tent and Martin Ziegler, 'On the isometry group of the Urysohn space', Arxiv:1109.3811v3, February 2012. To appear in J. London Math. Soc.
[14] Frank O. Wagner, 'Relational structures and dimensions', In Automorphisms of First-Order Structures, eds. R. Kaye and D. Macpherson, Oxford University Press, Oxford, 1994, 153-180.
[15] Frank O. Wagner, Simple Theories, Kluwer, Dordrecht, 2000.
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.

E-mail address: d.evans@uea.ac.uk
Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany.

E-mail address: zaniar.gh@gmail.com
Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany.

E-mail address: tent@math.uni-muenster.de

[^0]: The work of the first author was partially supported by the EPSRC grant $\mathrm{EP} / \mathrm{G} 067600 / 1$. The second author was supported by funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement 23838.

