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Abstract. we show that the automorphism groups of certain
countable structures obtained using the Hrushovski amalgamation
method are simple groups. The structures we consider are the
‘uncollapsed’ structures of infinite Morley rank obtained by the ab
initio construction and the (unstable) ℵ0-categorical pseudoplanes.
The simplicity of the automorphism groups of these follows from
results which generalize work of Lascar and of Tent and Ziegler.
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1. Introduction

In this paper, we show that the automorphism groups of certain
countable structures obtained using the Hrushovski amalgamation met-
hod are simple groups. This answers a question raised in [10] (Question
(iii) of the Introduction there). The structures we consider are the ‘un-
collapsed’ structures of infinite Morley rank obtained by the ab initio
construction in [7] and the (unstable) ℵ0-categorical pseudoplanes in
[6]. The simplicity of the automorphism groups of these follows from
some quite general results which should be of wider interest and appli-
cability. Although much of the intuition (and some of the motivation)
behind these results is model-theoretic, the paper requires no knowl-
edge of model theory.

The methods we use have their origins in the paper [9] of Lascar
and it will be helpful to recall some of the results from there. Suppose
M is a countable saturated structure with a 0-definable strongly min-
imal subset D such that M is in the algebraic closure of D. Consider
G = Aut(M/acl(∅)), the automorphisms of M which fix every element
(of M eq) algebraic over ∅. Suppose g ∈ G is unbounded (as defined
below). Then ([9], Théorème 2) the conjugacy class gG generates G.
In particular if all non-identity elements of G are unbounded, then G
is a simple group.

Here, unbounded means that for all n ∈ N there is a finite X ⊆ D
such that dim(gX/X) > n, where dim is dimension in the strongly
minimal set D. It is worth noting what this says in the ‘classical’ cases
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where M = D. If M is a pure set, so G is the full symmetric group
Sym(M), then g ∈ G is bounded if and only if it is finitary. If M is
a countably infinite dimensional vector space over a countable division
ring F , then G is the general linear group GL(ℵ0, F ) and g ∈ G is
bounded if and only if it is a scalar multiple of an element of G with
fixed point space of finite codimension. So in these cases, Lascar’s
result implies the well known results that G modulo the bounded part
is simple. If M is an algebraically closed field of characteristic zero
(and of countably infinite transcendence rank), then it can be shown
that all non-identity automorphisms are unbounded, so in this case G
is simple (note that acl(∅) is the algebraic closure of the prime field).
Lascar’s result has recently been used in [4] to give examples of simple
groups with BN -pairs which do not arise from algebraic groups.

Topological methods are a key feature of Lascar’s proof: the auto-
morphism group Aut(M) is regarded as a topological group and argu-
ments about Polish groups are used. Another key feature, arising from
the model theory, is the use of a natural independence relation on M .
These ideas were applied in other contexts in [10] and [13]. In [10], M
is a homogeneous structure arising from a free amalgamation class of
finite structures. Assuming G = Aut(M) 6= Sym(M) is transitive on
M , it is shown that G is simple. The free amalgamation here can be
viewed as giving a notion of independence on M , and [13] formalizes
this into the notion of a stationary independence relation on M ([13],
Definition 2.1; cf. Definition 2.1 here). Generalizing Lascar’s notion
of unboundedness, [13] introduce the notion of g ∈ Aut(M) moving
almost maximally (with respect to the independence relation). It is
shown ([13], Corollary 5.4) that in this case, every element of G is a
product of 16 conjugates of g.

We now describe the main results of the current paper. In the con-
texts of [10] and [13], algebraic closure in M is trivial. In Section 2
here, M is a countable structure and cl is an Aut(M)-invariant closure
operation on M ; we are interested in G = Aut(M/cl(∅)). We define
(Definition 2.1) the notion of a stationary independence relation com-
patible with cl and observe (Theorem 2.5) that the above result of Tent
and Ziegler also holds in this wider context.

In Section 3, we assume that the closure and independence are con-
trolled by an integer-valued dimension function d. This is the case in
the Hrushovski construction which interests us, and of course is also
the case in the almost strongly minimal situation of Lascar (where the
closure is algebraic closure and dimension is given by Morley rank).
The main result here is Corollary 3.12: there is a natural notion of
an automorphism g being ‘cld-unbounded’ and assuming that M is in
the closure of a basic orbit (a condition similar to almost strong mini-
mality), every element of G is the product of 96 conjugates of g or its
inverse. So this can be seen as a generalization of ([9], Théorème 2).
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An example here (Example 3.13) is where M is a countable, saturated
differentially closed field of characteristic 0 and cld is given by differen-
tial dependence. So cld(∅) = F contains the field of constants, and cld

is strictly bigger than algebraic closure. It follows from Corollary 3.12
that Aut(M/F ) is a simple group.

In Section 4 we apply these results to structures M0 coming from the
simplest form of the Hrushovski predimension construction. Unlike
in the collapsed case, the closure operation given by the dimension
function is strictly bigger than algebraic closure and the independence
notion is weaker than non-forking. Nevertheless, we show (Corollary
4.8) that it is a stationary independence relation. In the rest of the
section, under some restrictions on the predimension function, we verify
the conditions needed to apply Corollary 3.12. We show that M0 is in
the d-closure of a basic orbit (Lemma 4.11) and that the only cld-
bounded automorphism is the identity (Theorem 4.14). It follows that
Aut(M0/cld(∅)) is simple.

In the final section, we look at two further variations of the Hrushovski
construction. In 5.1 we consider the ‘uncollapsed’ generalized n-gons
constructed by the third Author in [12]. Here, the result is similar to
the result in [4]: the automorphism group is a simple group, so this
gives new examples of simple groups with a BN -pair. In Section 5.2
we consider the ω-categorical structures Mf constructed by Hrushovski
in [6] using an integer-valued predimension. Here the closure is alge-
braic closure and is locally finite. However, the novelty is that in order
to obtain stationarity, we work with an independence relation which
is stronger than d-independence. The main result (Corollary 5.10) is
that (under some mild restrictions on the control function f) if Mf is
the algebraic closure of a basic orbit, then Aut(Mf ) is simple. It seems
plausible that the condition of being in the algebraic closure of a basic
orbit should hold fairly generally, but the details of checking it even in
special cases are quite involved.

Notation: Throughout, M will denote a countable first-order structure;
we will not distinguish notationally between the structure and its do-
main. We denote by Aut(M) the group of automorphisms of M and if
X ⊆M , then Aut(M/X) is the subgroup consisting of automorphisms
which fix every element of X. We also use an alternative notation for
this: if H ≤ G is a group of permutations on M and X ⊆ M we let
HX = {h ∈ H : h(x) = x for all x ∈ X}. If a is a tuple of elements
from M then the H-orbit of a is {ha : h ∈ H}. The Aut(M/X)-orbit
of a is denoted by orb(a/X) (and is sometimes called the locus of a
over X). If A,B ⊆ M and c is a tuple in M , then we will often use
notation such as AB and Ac in place of A ∪B and A ∪ {c}. We write
A ⊆fin B to indicate that A is a finite subset of B.



4 DAVID M. EVANS, ZANIAR GHADERNEZHAD, AND KATRIN TENT

Acknowledgements: Several of the results given here appear in the PhD
thesis of the Second Author [5] with a slightly different presentation.
Work on the paper was completed whilst the Authors were participat-
ing in the trimester programme ‘Universality and Homogeneity’ at the
Hausdorff Institute for Mathematics, Bonn.

2. Stationary independence relations

In this section we use ideas from Lascar’s paper [9] to generalise some
of the results from [13]. We shall assume familiarlity with these papers
and only sketch the modifications which are required to produce the
generalisations. The treatment is axiomatic: examples can be found in
the applications later in the paper.

Suppose M is a countable structure and G = Aut(M) is its automor-
phism group. Let cl be a closure operation on M which is G-invariant
and finitary. So for all g ∈ G and X ⊆ M we have cl(gX) = g(cl(X))
and cl(X) =

⋃
{cl(Y ) : Y ⊆fin X}. We shall also assume that the clo-

sure operation subsumes definable closure, in the sense that if X ⊆M
is finite and a ∈M is fixed by all elements of G which fix all elements
of X, then a ∈ cl(X). Let X = {cl(A) : A ⊆fin M} consist of the
closures of finite sets in M and let F consist of all maps f : X → Y
with X, Y ∈ X which extend to automorphisms. We refer to the latter
as partial automorphisms of M . So of course, X is countable but F
need not be (if cl is not locally finite).

Now, as in Definition 2.1 of [13] we suppose that |̂ is an invariant
stationary independence relation between elements of X , or more gen-
erally between subsets of elements of X , which is compatible with the
closure operation cl. More precisely we have the following modification
of Definition 2.1 of [13].

Definition 2.1. We say that |̂ is a stationary independence relation
compatible with cl if for A,B,C,D ∈ X and finite tuples a, b:

(1) (Compatibility) We have a |̂
b
C ⇔ a |̂

cl(b)
C and

a |̂
B

C ⇔ e |̂
B

C for all e ∈ cl(a,B)⇔ cl(a,B) |̂
B

C.

(2) (Invariance) If g ∈ G and A |̂
B
C, then gA |̂

gB
gC.

(3) (Monotonicity) If A |̂
B
CD, then A |̂

B
C and A |̂

BC
D.

(4) (Transitivity) If A |̂
B
C and A |̂

BC
D, then A |̂

B
CD.

(5) (Symmetry) If A |̂
B
C, then C |̂

B
A.

(6) (Existence) There is g ∈ GB with g(A) |̂
B
C.

(7) (Stationarity) Suppose A1, A2, B, C ∈ X with B ⊆ Ai and
Ai |̂ B C. Suppose h : A1 → A2 is the identity on B and h ∈ F .

Then there is some k ∈ F which contains h ∪ idC (where idC
denotes the identity map on C).
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Henceforth, we shall assume that |̂ is a stationary independence
relation on M compatible with cl.

Remarks 2.2. By compatibility, A |̂
X

cl(X) for all finite X. More-

over, using existence and stationarity (and the fact that cl subsumes
definable closure), if A ∈ X and b ∈M , then b |̂

A
b⇔ b ∈ A.

As in Section 2 of Lascar’s paper [9], we topologise G by taking
basic open sets of the form O(f) = {g ∈ G : g ⊇ f}, for f ∈ F . It
should be stressed that in general this is not the ‘usual’ automorphism
group topology (where pointwise stabilisers of finite sets form a base of
open neighbourhoods of the identity). It is complete metrizable, but
not necessarily separable, so we cannot apply Polish group arguments
directly to G. However, as in [9], we will work in separable closed
subgroups to avoid this difficulty.

Suppose S ⊆ F and let

G(S) = {g ∈ G : g|X ∈ S for all X ∈ X}.
Then G(S) is a closed subset of G, and if S is countable, it is separable.
Moreover, if S satisfies conditions (1-7) on page 241 of [9], then G(S) is
a subgroup of G. Thus, if S is countable and satisfies these conditions
then G(S) is a Polish subgroup of G. The conditions just say that
S: contains the identity maps; is closed under inverses, restrictions
and compositions, and allows extension of domain (and codomain). It
is clear that any countable S0 ⊆ F can be extended to a countable S
satisfying these conditions. In particular, G(S) can be taken to include
any desired countable subset of G.

Lemma 2.3. Suppose S0 is a countable subset of F . Then there is a
countable S with S0 ⊆ S such that G(S) is a group and the conditions
in Definition 2.1 hold with G replaced by G(S) and F replaced by S.

Proof. First, note that we can assume (by extending S0) that Lascar’s
conditions (1-7) hold and for all B ∈ X , the group G(S0)B has the
same orbits on finite tuples from M as GB. This gives Existence when
G is replaced by G(S0), by taking a finite set of generators for A and
using the compatibility of |̂ and cl.

We can further extend S0 so that the Stationarity condition holds;
alternating this with a step to ensure that (1-7) hold we obtain, af-
ter a countable number of steps, a set S in which (1-7) hold and the
Stationarity condition holds. �

Definition 2.4. We say that g ∈ G moves almost maximally if for all
B ∈ X and elements a ∈M there is a′ in the GB-orbit of a such that

a′ |̂
B

ga′.
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Following the proof of Corollary 5.4 in [13], we then have:

Theorem 2.5. Suppose M is a countable structure with a stationary
independence relation compatible with a closure operation cl. Suppose
that G = Aut(M) fixes every element of cl(∅). If g ∈ G moves almost
maximally, then every element of G is a product of 16 conjugates of g.

Proof. Let k ∈ G and let S0 ⊆ F be any countable set which contains
the restrictions of k, g to all elements of X . Extend S0 to a countable set
S as in the above Lemma. So g, k ∈ G(S) and G(S) is a Polish group
acting on M ; furthermore, |̂ is an invariant stationary independence
relation with respect to this group.

For the rest of the proof only automorphisms in G(S) will be con-
sidered.

The proof then just consists of checking that the argument in [13]
works. We make some remarks about various parts of this.

(1) By stationarity and the assumption that G fixes every element of
cl(∅), the set S has the joint embedding property. This means that if hi :
Xi → Yi are in S (for i = 1, 2) there are f, h ∈ S with f−1h1f, h2 ⊆ h.
Indeed, by Existence we can assume (after applying a suitable f) that
X1, Y1 |̂ X2, Y2. By Stationarity we can then extend hi to gi which is
the identity on Xj ∪ Yj (for j 6= i). Note that this uses the fact that hi
fixes every element of cl(∅). Then g1g2 extends h1 and h2, as required.

Once we have this, it follows that if U, V are non-empty open subsets
of G(S) then there is f ∈ G(S) such that f(V )∩U 6= ∅. Thus Theorem
8.46 of [2] applies, as in the proof of Theorem 2.7 of [13].

(2) The part of the proof in [13] which requires the most adaptation
is in the use of Lemma 3.6 in the proof of Proposition 3.4. So we give
a reformulation of this lemma, and outline its proof.

Suppose g ∈ G moves maximally and X, Y ∈ X with gX = Y .
Suppose X ⊆ W ∈ X and Y ⊆ Z ∈ X are such that W and Z are
independent over X;Y (write W |̂

(X;Y )
Z for this: the definitions are

as in [13]). Suppose h : W → Z is a partial automorphism (in S) which
extends g|X. Then there is a ∈ Gcl(XY ) such that ga(w) = h(w) for all
w ∈ W .

To see this, let w be a finite tuple with cl(w) = W and let w′ ∈
orb(w/X) be moved maximally by g. So w′, gw′ are independent over
X;Y and in particular w′ |̂

X
Y . Also w |̂

X
Y , so by stationarity

there is a1 ∈ Gcl(XY ) with a1(w) = w′. So ga1 moves w maximally over
X. Let Z ′ = cl(ga1(w)). Thus W |̂

(X;Y )
Z ′.

So W,Y |̂
Y
Z and W,Y |̂

Y
Z ′. We have partial automorphisms (in

S) h : W → Z and h′ : W → Z ′ with h′(w) = ga1(w) for w ∈ W . Note
that h(x) = h′(x) for x ∈ W . Let k = h′h−1 : Z → Z ′. Then k(y) = y
for all y ∈ Y . So by stationarity, there is a2 ∈ Gcl(WY ) which extends
k. It is then easy to check that a = a1a2 has the required properties.
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3. Stationary independence relations with a dimension
function

Suppose M is a countable structure and G = Aut(M). In this section
we consider an independence relation arising from a dimension function
on M .

Definition 3.1. We say that an integer-valued function d defined on
finite subsets (or tuples) from M is a dimension function if for all
X, Y ⊆fin M :

(1) d(gX) = d(X) for all g ∈ G;
(2) 0 ≤ d(X) ≤ d(X ∪ Y ) ≤ d(X) + d(Y )− d(X ∩ Y ).

For finite X, Y ⊆ M we define d(X/Y ) = d(XY ) − d(Y ) and for
arbitrary Z ⊆ M we let d(X/Z) = min(d(X/Y ) : Y ⊆fin Z). We

obtain a finitary closure operation cld on M by setting cld(Z) = {a ∈
M : d(a/Z) = 0}. Let X = {cld(X) : X ⊆fin M} and for A,B,C ∈ X ,

write A |̂ d
B
C ⇔ d(A/BC) = d(A/B) (where the dimension of an

arbitrary set is the maximum of the dimensions of its finite subsets).

If d is a dimension function on M , then it is easy to check that cld is
a closure operation and |̂ d satisfies (1-5) of Definition 2.1. Note that

we may assume d(∅) = 0. We refer to cld and |̂ d as d-closure and
d-independence. For the rest of this section we assume that these also
satisfy (6) (Existence) in Definition 2.1. When we also require |̂ d to

satisfy (7) (Stationarity), we shall say that |̂ d is stationary.

Definition 3.2. Suppose b ∈ M and A ∈ X . We say that b is basic
over A if b 6∈ A and whenever A ⊆ C ∈ X and d(b/C) < d(b/A), then
b ∈ C.

Remarks 3.3. As d is integer-valued and non-negative, if d(b/A) = 1,
then b is basic over A. It is clear that if b 6∈ A there is some A ⊆ C ∈ X
such that b is basic over C. It is less clear that there should be such a
C with d(b/C) = 1, which is why we are working with this notion.

Suppose A ∈ X and D ⊆ M is such that the elements of D \ A are
basic over A. We claim that d-closure over A on D gives a pregeometry
on D. So we need to verify the exchange condition: if c1, c2 ∈ D and
c1 ∈ cld(A, c2) \ A, then c2 ∈ cld(c1, A). By assumption, d(c1, c2/A) =
d(c2/A). So d(c2/Ac1) = d(c1, c2/A) − d(c1/A) < d(c2/A), whence
d(c2/Ac1) = 0 (as c2 is basic over A), as required.

If X ⊆ D is finite, we write dimA(X) for the dimension of X with
respect to this pregeometry. It is easy to show that if c1, . . . , cr ∈ D
then dimA(c1, . . . , cr) = r if and only if c1, . . . , cr are d-independent
over A (meaning that d(c1, . . . , cr/A) =

∑
i d(ci/A)).



8 DAVID M. EVANS, ZANIAR GHADERNEZHAD, AND KATRIN TENT

Note that if B ∈ X contains A then all elements of D \ B are basic
over B, so we can also consider dimB on D.

Definition 3.4. We say that M (with dimension function d) is monodi-
mensional if for every A ∈ X and basicGA -orbitD there is A ⊆ B ∈ X
with M = cld(B,D \B).

Remark: The terminology is chosen by association with the model-
theoretic notion of unidimensionality. The structures we consider in
the next section are not unidimensional, which is why we feel obliged
to invent a different terminology.

If |̂ d is stationary, we can check monodimensionality on a single
basic orbit.

Lemma 3.5. Suppose |̂ d is stationary, A ∈ X and D is a basic GA-
orbit.

(1) If A ⊆ B ∈ X then D \B is a basic GB-orbit.
(2) If cld(A,D) = M then M is monodimensional.
(3) Suppose that for every c ∈ M \ A there is a finite tuple b of

elements of D such that c 6 |̂ d
A
b. Then M is monodimensional.

Proof. (1) If b1, b2 ∈ D \B then bi |̂ dAB. So by stationarity, b1, b2 are
in the same GB-orbit.

(2) By (1), it suffices to show that if E is another basic GA-orbit,
then cld(B,E \ B) = M for some A ⊆ B ∈ X . Let e ∈ E and choose
c1, . . . , cr ∈ D independent over A with e ∈ cld(c1, . . . , cr, A) and r
as small as possible. As cld over A gives a pregeometry on D ∪ E,
we may assume (by exchange) that c1 ∈ cld(e, c2, . . . , cr, A). Let B =
cld(c2, . . . , cr, A). So c1 ∈ cld(B, e) \B whence (by (1)) cld(B,E \B) ⊇
cld(B,D \B) = M .

(3) We show by induction on r = d(c/A) that c ∈ cld(A,D). The
induction is over all A,D. If r = 0, there is no problem. Otherwise we
can find a finite tuple e in D with c 6 |̂ d

A
e. So d(c/A, e) < d(c/A). Let

B = cld(A, e). By induction and (1) there is a finite tuple e′ in D \ B
such that c ∈ cld(B, e′), as required. �

The following notion of boundedness is less natural than Lascar’s.
We shall connect it with a more natural notion later in this section.

Definition 3.6. Suppose A ∈ X . We say that h ∈ G is unbounded
over A if for all A ⊆ C ∈ X and b ∈M which is basic over C, there is
b′ ∈ orb(b/C) with hb′ |̂ d

C
b′ (or equivalently, b′ 6∈ cld(C, hb′)). We say

that h is unbounded if it is unbounded over some A ∈ X , otherwise, it
is bounded.

Note that if h is unbounded over A and A ⊆ B ∈ X , then h is
unbounded over B.
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Proposition 3.7. Suppose A ∈ X is such that there is a GA-invariant
set D where the elements of D\A are basic over A and cld(D,A) = M .
Let h ∈ G be unbounded over A.

(1) If A ⊆ B ∈ X and c is a finite tuple in M , then there is

c′ ∈ orb(c/B) with hc′ |̂ d
B
c′.

(2) If |̂ d is stationary, and h ∈ GA, then every element of Aut(M/A)
is a product of 16 conjugates of h.

Proof. (1) First, we show that this holds for c an n-tuple of elements of
D with dimB(c) = n. If n = 1, this is just the definition of unbound-
edness of h. If n > 1 and c = (c1, . . . , cn) then write e = (c1, . . . , cn−1).

Inductively, there is e′ ∈ orb(e/B) with he′ |̂ d
B
e′. Let f ′ be such

that c′ = (e′, f ′) ∈ orb(c/B), f ′ 6∈ cld(h−1e′, h−1B, e′) and (using
the unboundedness) f ′ 6∈ cld(e′, B, he′, hf ′). From the first of these,
hf ′ 6∈ cld(e′, B, he′) and so, from the second, dimB(f ′, hf ′, he′, e′) =
2 + dimB(he′, e′) = 2 + 2(n − 1) = 2n. Thus dimB(c′, hc′) = 2n and

therefore hc′ |̂ d
B
c′, as required.

Now suppose b ∈ M . By assumption on D, there is a tuple c ∈ Dn

such that b ∈ cld(c, B). Clearly we can take c to be d-independent over
B. Let B1 = cld(B, hB). By Extension, there is b1c1 ∈ orb(bc/B) with

c1 |̂ dB B1.

By the above, we can find b2c2 ∈ orb(b1c1/B1) with c2 |̂ dB1
hc2. Then

b2 |̂ dB1
hc2. Moreover, as b2 ∈ cld(c2, B) we have hb2 ∈ cld(hc2, hB) ⊆

cld(hc2, B1). Thus b2 |̂ dB1
hb2.

We also have c2 |̂ dB B1, so b2 |̂ dB B1, therefore b2 |̂ dB hb2. As b2 ∈
orb(b/B), this completes the proof of (1).

(2) This follows from (1) and Theorem 2.5. �

Remark 3.8. Suppose c ∈M and B ⊆M . If h is any automorphism
of M , then h(orb(c/B)) is the translate of this GB-orbit by h. It is
a GhB-orbit, and depends only on the restriction of h to B. So the
notation h(orb(c/B)) also makes sense if h is a partial automorphism
with B in its domain.

Theorem 3.9. Suppose |̂ d is stationary and A ∈ X is such that there
is a GA-invariant set D where the elements of D \ A are basic over
A and cld(D,A) = M . Suppose g ∈ Aut(M/cld(∅)) is an unbounded
automorphism of M . Then every element of Aut(M/cld(∅)) is a product
of 96 conjugates of g±1.

Proof. By enlarging A if necessary, we can assume that g is unbounded
over a subset of A. We first show that there is h̃ ∈ Aut(M/cld(∅))
such that the commutator g1 = [g, h̃] = g−1h̃−1gh̃ is in GA and is

unbounded (over A). We build h̃ by back-and-forth as the union of a
chain of partial automorphism (with domains and images in X ).
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Note that if h is a partial automorphism which fixes all points of A∪
gA, then g−1h−1gh(a) = a for all a ∈ A. So we start the construction

of h̃ with such a partial automorphism. There is no problem extending
this to an automorphism, the issue is to ensure the unboundedness of
g1. We enforce this in the ‘forth’ step in the construction.

Suppose that the partial automorphism h has been defined and B =
dom(h). Suppose C ⊆ B, C ∈ X and a is basic over C. We want

to find a′ ∈ orb(a/C) so that (once h̃ is defined) g1a
′ |̂

C
a′, that is,

a′ 6∈ cld(g1a
′, C). It will suffice to do this with C = B.

So suppose that a is basic over B. We may assume (by Existence)
that a 6∈ cld(B, gB). By unboundedness of g there is b ∈ h(orb(a/B))

such that gb |̂ d
hB
b. Extend h to h′ with h′a = b.

By Existence, there is c ∈ h′−1(orb(gb/hB, b)) with c |̂ d
B,a

gB, ga.

Extend h′ to h′′ with h′′(c) = gb. As gb |̂ d
hB
b we have (applying h′′−1)

that c |̂ d
B
a. Thus, by Transitivity, c |̂ d

B
gB, ga, so c |̂ d

B,gB
ga. Then

g−1c |̂ d
g−1B,B

a. As a is basic over B and a 6∈ cld(B, g−1B), we have

g−1B |̂ d
B
a. It follows that g−1c |̂ d

B
a, that is,

g−1h′′−1gh′′a
d

|̂
B

a

as required.

It now follows from Proposition 3.7 that every element of GA is a
product of 32 conjugates of g±1. Thus, to prove the Theorem, it will
suffice to show that Aut(M/cld(∅)) is a product of 3 conjugates of
H1 = GA.

By Existence, there is A′ ∈ orb(A/cld(∅)) with A′ |̂ dA. So H2 =

GA′ is a conjugate of H1. Let k ∈ Aut(M/cld(∅)). By Existence again,

there is f1 ∈ H1 with f1A
′ |̂ dA, kA. By Stationarity, there is f2 ∈

Aut(M/f1A
′) with f2|A = k|A. Thus f−1

2 k ∈ H1 and so k ∈ f2H1. But
f2 ∈ f1H2f

−1
1 , so k ∈ H1H2H1, as required. �

We now give a more natural interpretation of boundedness whenM is
monodimensional. Note that the following does not require stationarity
of |̂ d.

Proposition 3.10. Suppose M is monodimensional and suppose g ∈ G
is bounded. Then there is E ∈ X such that g(B) = B for all B ∈ X
which contain E.

Proof. There is C ∈ X and a basic b over C such that for all b′ ∈
orb(b/C) we have b′ ∈ cld(C, gb′), so g−1b′ ∈ cld(g−1C, b′). By ex-
tendidng C if necessary, we can assume by monodimensionality that
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cld(C, orb(b/C)) = M . There are b1, . . . , bk ∈ orb(b/C) with g−1C ⊆
cld(C, b1, . . . , bk) = E. So

g−1E = cld(g−1C, g−1b1, . . . , g
−1bk) ⊆ cld(g−1C, b1, . . . , bk) ⊆ E.

As d(E) = d(g−1E) we obtain g−1E = E. Let b1 ∈ orb(b/C) be such

that b1 |̂ dC E. Then b1 is basic over E and for all b′ ∈ orb(b1/E) we

have that g−1 stabilizes cld(E, b′) (and therefore g stabilizes it also).
Now, given any B ⊇ E in X we can find a tuple b̄ of elements of

orb(b1/E) such that B1 = cld(E, b̄) ⊇ B. Then (by Extension) we can

find B2 ∈ orb(B1/B) with B2 |̂ dB B1: in particular B1 ∩ B2 = B. By
the previous paragraph, g stabilizes both B1 and B2, so gB = B. �

Definition 3.11. We say that g ∈ Aut(M) is cld-bounded if there is
some E ∈ X such that g stabilizes setwise all B ∈ X which contain E.

It is easy to see that the cld-bounded automorphisms form a normal
subgroup of Aut(M). The following follows from the above two results
and can be seen as a generalisation of Theorem 2 of [9] (the almost
strongly minimal case where there is a strongly minimal set definable
over the empty set).

Corollary 3.12. Suppose |̂ d is stationary and A ∈ X is such that

there is a basic Aut(M/A)-orbit D with cld(A,D) = M . Suppose g ∈
Aut(M/cld(∅)) is not cld-bounded. Then every element of Aut(M/cld(∅))
is a product of 96 conjugates of g±1. 2

Example 3.13. Suppose M is a countable, saturated differentially
closed field of characteristic 0. If a is a tuple of elements of M , let
d(a) denote the differential transcendence degree of a over ∅. This
gives a closure operation cld which satisfies exchange. It follows from
([3], Corollary 2.6) that |̂ d is a stationary equivalence relation. The
elements of differential transcendence degree 1 form a single orbit D
under G = Aut(M/cld(∅)) and clearly cld(D) = M , so Corollary 3.12
applies. By ([3], Proposition 2.9), the only cld-bounded automorphism
of M is the identity, so Aut(M/cld(∅)) is a simple group. In fact,
because we can use Proposition 3.7 with A = cld(∅), if 1 6= g ∈ G, then
every element of G is a product of 16 conjugates of g.

4. The ab initio Hrushovski constructions

4.1. The structures. The Hrushovski construction which originated
in [7] admits many extensions and variations, and can be presented
at various levels of generality. But to fix notation, we consider the
following basic case, and comment on generalizations later. The article
[14] is a convenient general reference for these constructions.

Suppose r ≥ 2 and m,n ≥ 1 are fixed coprime integers. We work
with the class C of finite r-uniform hypergraphs, which we regard as
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structures in a language with a single r-ary relation symbolR(x1, . . . , xr)
whose interpretation is invariant under permutation of coordinates and
satisfies R(x1, . . . , xr) →

∧
i<j(xi 6= xj). If B ∈ C consider the predi-

mension

δ(B) = n|B| −m|R[B]|
where R[B] denotes the set of hyperedges on B (i.e {{b1, . . . , br} : B |=
R(b1, . . . , br)}). For A ⊆ B, we write A ≤ B iff for all A ⊆ B′ ⊆ B we
have δ(A) ≤ δ(B′), and let C0 = {B ∈ C : ∅ ≤ B}. The following is
standard (cf. ([7], Lemma 1), for example).

Lemma 4.1. Suppose A,B ⊆ C ∈ C.

(1) δ(A ∪B) ≤ δ(A) + δ(B)− δ(A ∩B).
(2) If A ≤ B and X ⊆ B then A ∩X ≤ X.
(3) If A ≤ B ≤ C, then A ≤ C.

We let C̄0 be the set of structures all of whose finite substructure are
in C0. If C ⊆ B ∈ C̄0 we write C ≤ B iff X∩C ≤ X for all finite X ⊆ B.
(This agrees with what was previously defined, by the above lemma).
If A,B ⊆fin C ∈ C0 then we define δ(A/B) = δ(A ∪ B) − δ(B). Note
that this is equal to |A\B|−|R[A∪B]\R[B]| and this makes sense for
arbitrary B (allowing the value −∞, if necessary). Then B ≤ A ∪ B
iff δ(A′/B) ≥ 0 for all A′ ⊆ A.

The class C̄0 has the following amalgamation property: suppose
B,C ∈ C̄0 have a common substructure A and A ≤ B. Then the
free amalgam F = B

∐
AC of B and C over A, consisting of the dis-

joint union of B and C over A with only the relations on B and on C, is
in C̄0 and C ≤ F . Using this and a standard Fräıssé-style construction,
we obtain the following well-known result, which is sometimes referred
to as the ab initio case of the Hrushovski construction:

Theorem 4.2. There is a unique countable M0 ∈ C̄0 having the prop-
erties: M0 is a union of a chain of finite ≤-substructures; if X ≤ M0

is finite and X ≤ A ∈ C0, then there is an embedding α : A → M0

which is the identity on X and α(A) ≤M0. Moreover, if A1, A2 ≤M0

are finite and h : A1 → A2 is an isomorphism, then h extends to an
automorphism of M0. 2

The structure M0 is the generic structure for the class (C0,≤). The
property in the ‘Moreover’ statement is referred to as ≤-homogeneity
of M0. It is easy to see that every countable structure in C̄0 can be
embedded as a ≤-substructure of M0.

As usual, we have two closure operations and a dimension function
on M0 (indeed, on any structure in C̄0). If X is a finite subset of M0,
there is a smallest subset Y with X ⊆ Y ≤ M0. This Y is finite and
we denote it by cl0(X). The dimension d(X) of X (in M0) is defined to
be δ(cl0(X)). The d-closure of X is cld(X) = {a ∈ M0 : d(X ∪ {a}) =
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d(X)}. In general, this will not be finite. Let X = {cld(X) : X ⊆fin
M0}.

For tuples a, b, c in M0 we define a |̂ d
b
c to mean d(a/b) = d(a/bc)

(as in the previous section); similarly for sets in X . This is not the
same as non-forking independence. The following is well-known.

Lemma 4.3. (1) If A,B,C ∈ X then A |̂ d
B
C if and only if the

following three conditions hold: cld(AB)∩cld(BC) = B; cld(AB),
cld(BC) are freely amalgamated over B; and cld(AB)∪cld(BC) ≤
M0.

(2) The relation |̂ d satisfies the Compatibility, Invariance, Mono-
tonicity, Transitivity and Symmetry properties in Definition 2.1.

4.2. Extending the homogeneity. We will show that if A1, A2 ∈ X
and h : A1 → A2 is an isomorphism, then h extends to an automor-
phism of M0.

We need the following notion from [7]. Suppose Z ⊂ Y ∈ C̄0 and
Y \ Z is finite. We say that the extension Z ⊂ Y is simply algebraic
if δ(Y/Z) = 0 and whenever Z ⊂ Z1 ⊂ Y , then δ(Y/Z1) < 0. So
Z ≤ Y , but Z1 6≤ Y for all Z ⊂ Z1 ⊂ Y . We write sa for simply
algebraic. The extension is minimally simply algebraic (msa) if the
extension Z0 ⊂ Z0 ∪ (Y \ Z) is not simply algebraic for all proper
subsets Z0 of Z. In this case Z is finite and more generally, if Z ⊂ Y
is simply algebraic, there is finite subset Y1 of Y which contains Y \ Z
and is such that Y1 ∩ Z ⊂ Y1 is msa. Moreover, Y is the free amalgam
of Z and Y1 over Z1 = Y1 ∩ Z.( In fact, Z1 consists of the points in Z
which are in some R-relation containing a point of Y \Z.) In this case,
we say that Y has base Z1 and type (Z1, Y1) over Z.

If A ≤ M0 and B ⊆ M0 is an sa extension of A, then B ≤ M0.
Moreover, any collection {Bi : i ∈ I} of (distinct) sa extensions of A in
M0 is in free amalgamation over A and

⋃
i∈I Bi ≤M0 (Lemma 2 of [7]).

If Z1 ⊆ A and Z1 ⊂ Y1 is msa, then the multiplicity mult(Z1, Y1/A) is
the number of distinct minimal extensions of A of type (Z1, Y1) in M0.
So this is the maximum cardinality of {Bi : i ∈ I} where each Bi is a
sa extension of A of type (Z1, Y1).

Note that cld(A) = A iff each such multiplicity is zero. Indeed,
cld(A) is the union of all subsets of M0 which can be obtained from A
by a finite chain of successive sa extensions. The (full) amalgamation
property for C0 shows that if A is finite, then all multiplicities over A
are infinite.

Definition 4.4. Suppose A1, A2 ≤ M0 and k : A1 → A2 is an isomor-
phism. We say that k is potentially extendable if for every Z1 ⊆ A1

and msa Z1 ⊂ Y1 we have mult(Z1, Y1/A1) = mult(Z2, Y2/A2), where
Z2 = k(Z1), and k|Z1 extends to an isomorphism between Y1 and Y2.
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Evidently, if k as above extends to an automorphism of M0, then k is
potentially extendable. Moreover, there are isomorphisms k : A1 → A2

with Ai ≤M0 which are not potentially extendable.

Lemma 4.5. If A1, A2 ≤M0 are such that d(Ai) is finite and k : A1 →
A2 is potentially extendable, then k can be extended to an automorphism
of M0.

Proof. For i = 1, 2, let A′i be the union of all sa extensions of Ai in
M0. By the above, A′i ≤ M0 and A′i is the free amalgam over A of
the various sa extensions. So by the condition on the multiplicities, k
extends to an isomorphism k′ : A′1 → A′2.

We claim that k′ is potentially extendable. Indeed, suppose Z1 ⊆ A′1
is finite and Z1 ⊂ Y1 is msa. If Z1 ⊆ A1 then by construction of A′1 we
have mult(Z1, Y1/A

′
1) = 0. So it will suffice to show that if Z1 6⊆ A1

then there are only finitely many copies of Y1 over Z1 in A′1 (because it
then follows that mult(Z1, Y1/A

′
1) is infinite, and the same will be true

for the corresponding msa extension of k′(Z1) over A′2).
To see this, note that as A′1 is a free amalgam over A1, any point in

A′1 \ A1 is contained in only finitely many instances of the relation R.
But, in any msa extension, every point in the base is in some instance
of the relation R which also contains a non-base point. As any two
msa extensions with the same base are disjoint over the base, it follows
that Z1 is the base of only finitely many msa extensions contained in
A′1.

This shows that k′ is potentially extendable, so we can repeat the
argument and adjoin to A′1 all sa extensions of A′1 and extend k′. Con-
tinuing in this way, we see that we can extend k to h : B1 → B2, where
Bi = cld(Ai). Evidently h is potentially extendable (as all multiplicities
over its domain and image are zero).

Now, suppose we have c ∈ M0. It will be enough to show how to
extend h to a potentially extendable map which has c in its domain
(for then we can proceed by a back-and-forth argument to build up an
automorphism extending the original k). We may assume c 6∈ B1. Let
S0 ⊆ B be finite and such that cld(S0) = B1 and let S = cl0(c, S0)∩B1.
Then S ≤ M0 is finite and cl0(c, S) ∩ cld(S) = S. Furthermore, C =
cl0(c, S) and B1 are freely amalgamated over S, and C ∪B1 ≤M0.

Let T = h(S) and T ≤ D ∈ C0 be such that h|S extends to an
isomorphism C → D. We claim that we can find a copy D1 of D over
T such that D1, B2 are freely amalgamated over T and D1 ∪B2 ≤M0.
In fact, take any copy D1 ≤ M0 of D over T in M0: this exists, by
the characteristic property in Theorem 4.2. We have cld(T ) ∩D1 = T
(because the same is true of S ≤ C), so D1 ∩ B2 = T . The other
properties follow as d(D1/T ) = d(D1/B2).

So now we can extend h to h′ : B1 ∪ C → B2 ∪D and to finish, we
need to show that h′ is potentially extendable. But this is a similar
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argument to what was done previously. If Z1 ⊂ B1 ∪ C and Z1 ⊂ Y1

is msa, then either Z1 ⊆ B1, in which case mult(Z1, Y1/B1) = 0, or
Z1 ∩ (C \ B1) 6= ∅. But points in C \ B1 are in only finitely many
relations within B1 ∪ C, so in this latter case B1 ∪ C contains only
finitely many copies of Y1 over Z1. Thus mult(Z1, Y1/B1) is infinite.
The same argument also holds with B2 and D1, so we are finished. �

Lemma 4.6. Suppose A = cld(A) and C = cld(C) have finite d-
dimension and are such that A,C are freely amalgamated over B =
A ∩ C and A ∪ C ≤ M0. Then for every msa Z ⊂ Y with Z ⊆ A ∪ C
and Z 6⊆ A and Z 6⊆ C, there are only finitely many copies of Y over
Z in A ∪ C. In particular, mult(Z, Y/A ∪ C) is infinite.

Proof. The proof of Hrushovski’s algebraic amalgamation lemma (Lem-
ma 3 of [7]) shows that there are at most δ(Z) copies of Y over Z which
are contained in A ∪ C. �

Corollary 4.7. We have the following additional homogeneity proper-
ties of M0.

(1) (d-homogeneity:) Suppose A1, A2 ⊆ M0 are d-closed and of
finite d-dimension. Suppose h : A1 → A2 is an isomorphism.
Then h extends to an automorphism of M0.

(2) (d-stationarity:) Suppose A1, A2, C ⊆ M0 are d-closed and of
finite d-dimension. Suppose that for each i we have that Ai ∪
C ≤M0 and Ai, C are freely amalgamated over B = Ai∩C. If
h : A1 → A2 is an isomorphism which is the identity on B, then
h extends to an automorphism of M0 which fixes every element
of C pointwise.

Proof. (1) As the Ai are d-closed, h is potentially extendable. So by
Lemma 4.5, it extends to an automorphism of M0.

(2) Let k : A1∪C → A2∪C be the union of h with the identity map
on C. By the freeness, this is an isomorphism. By Lemma 4.6, it is po-
tentially extendable. So by Lemma 4.5, it extends to an automorphism
of M0. �

Corollary 4.8. The relation |̂ d is a stationary independence relation

on M0 compatible with cld.

Proof. We have already verified everything apart from the Existence
property. Given A,B,C ∈ X we need to show that there is g ∈ GB

with gA |̂ d
B
C. By taking d-closures over B, we may assume that

B ⊆ A,C. Let F be the free amalgam of A,C over B and let A′

denote the copy of A inside F . So there is an isomorphism h : A→ A′

which is the identity on B. By the construction of M0 we can assume
that F ≤M0. Then A′ |̂ d

B
C and h extends to an automorphism g of

M0 by d-homogeneity. �



16 DAVID M. EVANS, ZANIAR GHADERNEZHAD, AND KATRIN TENT

4.3. Bounded automorphisms. We shall show that, under a mild
restriction on the parameters n,m, r, the structure M0 has no non-
trivial bounded automorphisms. To see that some restriction is neces-
sary, consider the case where r = 2 and n = m = 1. Then M0 is a
graph each of whose connected components consists of an infinite tree
with infinite valency, or a single cycle with a collection of such trees
attached. Points in the first type of component have d-dimension 1,
and those in the second type form the d-closure of the empty set. It
is clear that there are non-trivial automorphisms which stabilise each
component (and fix every element in cld(∅)), and these are obviously
bounded.

For the rest of this section we assume that n,m are coprime, if r = 2
then n > m, and if r ≥ 3 then n ≥ m. The following is straightforward
for the case m = 1. The proof for the general case is surprisingly deli-
cate and makes use of some well known properties of Beatty sequences
(Lemma 4.10).

Lemma 4.9. There is X ⊆ Y ∈ C0 such that:

(1) δ(Y/X) = −1 and |X| ≥ 2.
(2) If U ⊆ Y and X 6⊆ U , then U ∩X ≤ U .
(3) If X ⊆ Z ⊂ Y , then δ(Z/X) ≥ 0.

Proof. Suppose first that m = 1. If r = 2, take X = {x0, . . . , xn} with
no relations on it and Y is X together with an extra point y, where
R(y, xi) holds for all i. If r ≥ 3, do the same, but X also includes an
(r − 2)-tuple z̄, and R(z̄, y, xi) holds.

So now suppose that n > m > 1. We will suppose that r = 2: a
similar argument to that used above will then allow us to deduce the
general case.

Write
n = ma+ c with 0 < c < m.

So m, c are coprime and we can find `, b ∈ Z with

`m− cb = 1.

We can take 0 < b < m (take an inverse of −c modulo m) and it then
follows that 0 < ` ≤ b, c. Note that

nb−m(ab+ `) = −1.

We now assume that b > 2 and describe the construction of Y (the
cases b = 1, 2 will be considered at the end).

Let X consist of (a − 1)b + ` points (with no edges). Let Y =
X ∪ {y0, . . . , yb−1} with ab+ ` edges as follows:

(i) the vertices y0, . . . , yb−1 form a b-cycle (with R(yi, yi+1) holding,
where the indices are read modulo b);

(ii) each vertex yi is adjacent to at least (a − 1) of the vertices in
X;
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(iii) each vertex in X is adjacent to exactly one vertex in Y \X.

Thus there are a further ` edges of Y to be specified. These will be
of the form (xi, yi) for i in some subset I ⊆ {0, . . . , b−1} of size ` (and
distinct xi ∈ X). The subset I is chosen so that (3) of the Lemma holds.
Once we have this, the rest of the Lemma follows. Indeed, first note
that as Y is a cycle with some extra edges freely amalgamated over its
vertices, then Y ∈ C0. By construction δ(Y/X) = nb−m(ab+`) = −1,
so (1) holds. For (2) suppose ∅ 6= A ⊆ X. We claim that X \ A ≤
Y \A, and then (2) follows (by Lemma 4.1(2)). To see the claim, note
that δ((Y \ A)/(X \ A)) = −1 + m|A| > 0, and if Z ⊂ Y \ X then
δ(Z/(X \ A)) ≥ δ(Z/X) ≥ 0, by (3).

To prove (3) (for suitable choice of I) it will suffice (by free amal-
gamation) to show that if Z ⊂ Y \X is connected, then δ(Z/X) ≥ 0.
Let q = |{i ∈ I : bi ∈ Z}| and s = p+ q = |Z|.

Then

δ(Z/X) = sn−m(qa+ p(a− 1)− p+ q − 1) = sc−m(q − 1).

Thus

(1) δ(Z/X) ≥ 0⇔ q − 1

s
≤ c

m
.

So we need to construct I of size ` so that for any s consecutive
elements of 0, . . . , b − 1 (read modulo b, and with s < b), the number
of elements q in I satisfies the above inequality. The construction uses
the following.

Lemma 4.10. There is a sequence (ai)i∈Z with ai ∈ {0, 1} having the
following properties:

(1) ai+b = ai for all i;
(2) for all i,

∑
i+1≤j≤i+b aj = `;

(3) for all i, s we have

1

s
(−1 +

∑
i+1≤j≤i+s

aj) ≤
`

b
.

Proof of Lemma: Let θ = `/b and note that 0 < θ < 1. The Beatty
sequence (βi(θ))i∈Z is defined as follows. For i ∈ Z let

βi(θ) = biθc

(where bxc is the largest integer ≤ x). Let

ai = βi(θ)− βi−1(θ).
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It is easy to see that ai ∈ {0, 1} and ai+b = ai. For part (3) of the
Lemma, note that

1

s
(−1 +

∑
i+1≤j≤i+s

aj) =
1

s
(βi+s(θ)− βi(θ)− 1)

=
1

s
(b(i+ s)θc − biθc − 1) ≤ i+ s

s
θ − biθc+ 1

s

<
i+ s

s
θ − iθ

s
= θ.

A similar calculation shows that
1

s
(1 +

∑
i+1≤j≤i+s

aj) > θ.

Thus for all i ∈ Z, we have 1
s

∑
i+1≤j≤i+s aj → θ as s → ∞. The

periodicity in (1) then implies (2). 2Lemma

Returning to the construction of Y , we let (ai) be the above sequence
and let:

I = {i ∈ {0, . . . , b− 1} : ai = 1}.
Verifying equation 1 amounts to showing that if 0 < s < b and i < b,

then q−1
s
≤ c

m
, where q =

∑
i+1≤j≤i+saj aj. Suppose for a contradiction

that (q− 1)/s > c/m. Recall that `m− cb = 1, so `
b

= c
m

+ 1
bm

. By (3)
of the Lemma, (q − 1)/s ≤ `/b, so by assumption, we have:

c

m
<
q − 1

s
≤ `

b
=

c

m
+

1

bm
.

Thus

0 <
q − 1

s
− c

m
<

1

bm
.

But
q − 1

s
− c

m
=

(q − 1)m− cs
sm

≥ 1

sm
>

1

bm
as s < b. This is a contradiction. So (q− 1)/s ≤ c/m and therefore by
equation 1, δ(Z/X) ≥ 0, as required.

This completes the proof that Y satisfies the properties of Lemma
4.9.

For the remaining cases b = 1, 2 we use a similar (but easier) con-
struction with Y \X of size b. We leave the details to the Reader. �

Lemma 4.11. Suppose A ∈ X and u0 ∈ M0 \ A is basic over A. Let
D = orb(u0/A). Then cld(A,D) = M0.

Proof. Suppose c ∈ M0 \ A. By Lemma 3.5 (3), it will suffice to show

that there is a finite tuple e in D with c 6 |̂ d
A
e.

Let A0 ≤ A be finite with d(A0) = A. Let C = cl0(cA0). We can
assume that C ∩A = A0. Similarly let B = cl0(u0A0) and note we can
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also assume that B ∩ A = A0 (if it is bigger, then replace A0 by the
intersection; this will not affect the condition on C).

Let X ⊆ Y be as in Lemma 4.9 and k = |X|. Note that we can
assume that there are no relations on the set X. Let Z be the free
amalgam of C and k−1 copies B2, . . . , Bk of B over A0. Let x1 = c and
for i = 2, . . . , k let xi ∈ Bi \A0 be the copy of u0 inside Bi. Identify the
xi with the points of X and let E consist of the free amalgam Z

∐
X Y

of Z and Y over X.

Claim: We have C,Bi ≤ E.

Note that once we have the claim, it follows (as ∅ ≤ C) that E ∈
C0, so we can assume that E ≤ M0. Then x2, . . . , xk ∈ D and
d(c/A0, x2, . . . , xk) = d(c/A0)− 1, so c 6 |̂ d

A
x2, . . . , xk.

We now prove the claim. By the symmetry of the sitaution, it is
enough to show C ≤ E. Let C ⊆ F ⊆ E. Then F is the free amalgam
F∩Z

∐
F∩X F∩Y . If X 6⊆ F then F∩X ≤ F∩Y (by (2)) so F∩Z ≤ Z.

As C ≤ F ∩Z we obtain C ≤ F . If X ⊆ F and Y 6⊆ F , then similarly
(using (3)) we have X = F ∩X ≤ F ∩ Y , so again C ≤ F .

So now suppose Y ⊆ F . Note that δ(F ∩Z) ≥ dZ(XC) (the dimen-
sion in Z of X ∪ C). So

δ(F ) ≥ dZ(XC)+δ(Y/X) = dZ(C)+dZ(X/C)−1 ≥ δ(C)+k−2 ≥ δ(C).

(Here we have used C ≤ Z and (1).) �

Corollary 4.12. If g ∈ Aut(M0/cld(∅)) is bounded, then there is E ∈
X such that g(cld(Eb)) = cld(Eb) for all b ∈M0.

Proof. This follows from the above and Proposition 3.10. �

Remarks 4.13. The class C0 contains some msa extension X ⊂ Y .
If we change the structure on X to some other structure in C0, then
then result is still a msa extension in C0. Furthermore, by ‘duplicating’
the points in X if necessary, we can obtain a msa extension with the
property that if r, r′ ∈ R[Y ] are distinct and both involve points of
Y \X and X, then r∩r′∩X = ∅. To do this, replace X by the disjoint
union of non-empty r ∩ X (for r ∈ R[Y ] \ R[X]). Then each element
of the new X is in exactly one relation in R[Y ] \R[X].

Theorem 4.14. If g ∈ Aut(M0/cld(∅)) is bounded, then g is the iden-
tity.

Proof. Let E ∈ X be as in the Corollary: so g(cld(Eb)) = cld(Eb) for
all b ∈M0. Let A ≤ E be finite and d(A) = d(E).

Step 1: If b ∈M0 is such that Ab ≤M0 and δ(b/A) = n, then gb = b.

Case 1: r ≥ 3, m = n = 1. Note that E is infinite, so we may take
A to be of size at least r− 3. By using elements of A for the first r− 3
coordinates in R, we can assume without loss that r = 3.



20 DAVID M. EVANS, ZANIAR GHADERNEZHAD, AND KATRIN TENT

Take c with c |̂ d
A
b of the same type as b over E. By the boundedness

condition on g we have c, gc |̂ d
A
b, gb. So there are finite C,B ≤ M0

with c, gc ∈ C, b, gb ∈ B, C ∪ B ≤ M0; by enlarging A if necessary
we can assume that E ∩ C = A = E ∩ B, and so C,B are freely
amalgamated over A.

There is f ∈M0 with R(c, b, f) and CBf ≤M0. Note that d(f/A) =
1 and gf ∈ cld(fA), so there is a finite A ≤ F ≤ M0 with δ(F/A) = 1
and f, gf ∈ F . Note that δ(C/F ) = 1 (otherwise it is zero and then
b ∈ cld(cA)). So δ(C ∩ F/A) = 0 and therefore (as C ∩ E = A)
C ∩ F = A. Similarly B ∩ F = A.

Suppose that {c, e, b} 6= {gc, ge, gb}. Then on C ∪ E ∪ B, there are
at least 2 extra relations beyond those in the free amalgam over A. So

δ(CEB/A) ≤ δ(C/A) + δ(E/A) + δ(B/A)− 2 = 1.

But this contradicts d(cb/A) = 2. Thus, in particular, gb = b.

Case 2: r ≥ 2, n > m. By using elements of A for the first r −
2 coordinates, we can assume r = 2. Let B = cl0(A, gA, b, gb) and
suppose for a contradiction that gb 6= b.

Let Ab ≤ C be a simply algebraic extension in M0 with base U
containing b. We can assume that b is in exactly one relation in C. Let
D = C \ (Ab); so U ≤ U ∪D is msa. As gA ⊆ E, we can assume that
g(U ∩ A) ⊆ A. We can also assume that D ∩ (B ∪ g−1B) = ∅. Then
gD∩B = ∅. So both B ≤ B∪D and B ≤ B∪gD are simply algebraic
extensions (based on U and gU = g(U ∩A)gb respectively). As gb 6= b,
we must have gb 6∈ U , so D 6= gD. As the extensions are minimal, it
follows that D ∩ gD = ∅.

Note that δ(A) + n = δ(Ab) = δ(C) = δ(AD) + n−m. So δ(AD) =
δ(A) + m. In particular, AD ≤ C ≤ M0, so d(AD) = d(A) + m. Let
V = cl0(A,D, gD). We show that b, gb 6∈ V . Note that V ⊆ cld(AD)
(by boundedness of g) so d(V ) = d(AD) = d(A) + m. But d(Ab) =
d(A) + n > d(A) + m, so b 6∈ V . As cld(V ) is g-invariant, we then
obtain gb 6∈ V .

Thus B ∪ V has at least 2 more relations in it than in the free
amalgam of B, V over B ∩ V (a relation from D to b and a relation
from gD to gb: neither of these is in the free amalgam, by the previous
paragraph). So

δ(BV ) ≤ δ(B) + δ(V )− δ(B ∩ V )− 2m ≤ δ(B) + δ(V )− δ(A)− 2m.

Now, δ(V ) = d(A) + m. So δ(BV ) ≤ δ(B) −m. But this is a contra-
diction as m ≥ 1 and B ≤M0.

Step 2: If c ∈M0 then gc = c.

Case 1: r ≥ 3, m = n = 1. As before, we may assume that r = 3.
It remains to show that if c ∈ E then gc = c. As g fixes all elements
of cld(∅), we may assume c 6∈ cld(∅). We may also assume gc, c ∈ A.
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There exist e, f ∈M0 with Aef ≤M0 and R[Aef ] = R[A]∪{{c, e, f}}.
Then Ae,Af ≤ Aef , so by Step 1, e, f are fixed by g. It then follows
that c is fixed by g (otherwise {gc, e, f} 6∈ R), as required.

Case 2: r ≥ 2, n > m. As before, we may assume that r = 2. Let
C = cl0(A, c). Suppose s ∈ N. There exist b0 = c, b1, b2, . . . , bs ∈ M0

such that R(bi−1, bi) (and no other relations hold on C ∪ {b1, . . . , bs}
outside C), and Cb1 . . . bs ≤ M0. It is easy to see that for t ≤ s we
have Cb1 . . . bt ≤M0, d(bt/Cb1 . . . bt−1) = n−m. Moreover, if s is large
enough, then Cbs ≤M0, so Abs ≤M0 and d(bs/A) = n. (For this, take
s ≥ n/(n−m).) It follows from Step 1 that gbs = bs.

We now show that if 0 ≤ t < s and bt+1 is fixed by g, then so is bt.
It follows that c is fixed by g, as required. So suppose bt is not fixed
by g. Note that R(bt, bt+1) ∧R(gbt, bt+1). Also, using the boundedness
of g we have:

n−m = d(bt+1/Cb1 . . . bt) = d(bt+1/Cb1 . . . btgb1 . . . gbt) ≤ d(bt+1/btgbt).

In particular, bt+1 6∈ cl0(bt, gbt) and

d(bt+1/btgbt) ≤ δ(bt+1/cl0(bt, gbt)) ≤ n− 2m,

because of the edges from bt+1 to bt, gbt. This is a contradiction (as
m ≥ 1).

�

Corollary 4.15. Suppose either that r = 2 and n > m, or that
r ≥ 3 and n ≥ m. Then Aut(M0/cld(∅)) is a simple group. In
fact, if g ∈ Aut(M0/cld(∅)) is not the identity then every element of
Aut(M0/cld(∅)) can be written as a product of 96 conjugates of g±1

Proof. This follows from Corollary 3.12, Lemma 4.8, Lemma 4.11 and
Theorem 4.14. �

Remarks 4.16. We have been working with symmetric structures in
a signature with a single r-ary relation. More generally, suppose we
have a signature with relations Ri of arity ri (for i ∈ I). Suppose n,mi

are non-negative integers with n ≥ 1. We define the predimension of a
finite structure A to be

δ(A) = n|A| −
∑
i∈I

mi|Ri[A]|.

Let C0 consist of such A with δ(A′) ≥ 0 for all A′ ⊆ A. Then we can
form the generic structure M0 for (C0,≤) exactly as before. If there is
some i such that mi 6= 0 is coprime to n, ri = 2 and n > mi, or ri ≥ 3
and n ≥ mi, then Corollary 4.15 holds. The argument is the same: for
all of the constructions in the proof, just work with Ri in place of R.
It should also be clear that our assumption that R is symmetric is not
essential.
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5. Further applications

5.1. Generalized polygons. For n ≥ 3, a generalized n-gon is a bi-
partite graph Γ of diameter n and girth 2n. It is thick if each vertex has
valency at least 3. In [12], Hrushovski’s amalgamation method from
[7] was adapted to produce thick generalized n-gons of finite Morley
rank. These are almost strongly minimal and in [4], Lascar’s result
([9], Théorème 2) was applied to show that their autmorphism groups
are simple. This gives new examples of simple groups having a BN-pair
which are not algebraic groups.

As with Hrushovski’s original construction, an intermediate stage
in the construction produces ω-stable generalized n-gons Γn of infinite
Morley rank. In this subsection we observe that we can use Corollary
4.15 in place of Lascar’s result to show that these generalized n-gons
also have simple automorphism group. As in [4], Aut(Γn) is transitive
on ordered 2n-cycles in Γn, so is also an example of a (non-algebraic)
simple group with a spherical BN-pair of rank 2.

We describe very briefly the construction of Γn from Section 3 of
[12]. Work with a signature which has a unary predicate symbol P and
a binary relation symbol R and consider bipartite graphs as structures
in this signature, where P picks out the vertices in one part of the
partition and R gives the adjacency relation. Vertices in P are called
points and those not in P are called lines. Fix a natural number n ≥ 3.

For a finite (bipartite) graph A define

δ(A) = (n− 1)|A| − (n− 2)|R[A]|.
As in the previous section, let C0 consist of the finite bipartite graphs

A with δ(B) ≥ 0 for all B ⊆ A. If C ⊆ A write C ≤ A to mean
δ(B) ≥ δ(C) whenever C ⊆ B ⊆ A.

Consider the class Kn of finite bipartite graphs A which satisfy:

(1) the graph A has no 2m-cycle, for m < n;
(2) if B ⊆ A contains a 2m-cycle for m > n, then δ(B) ≥ 2n+ 2.

The following is from ([12], Corollary 3.13 and Theorem 3.15):

Lemma 5.1. We have Kn ⊆ C0 and (Kn,≤) is an amalgamation class.

Let Γn be the generic structure for the class (Kn,≤) (cf. Theorem
4.2). So Γn is a countable generalized n-gon which is ≤-homogeneous.
Lemmas 4.5, 4.6 and Corollary 4.7 hold (essentially because of ≤-
homogeneity and the fact that Kn ⊆ C0). As in Corollary 4.8, we
have:

Corollary 5.2. The relation |̂ d is a stationary independence relation

on Γn compatible with cld.

Proof. If X ⊆ Y, Z ∈ Kn is d-closed in Y, Z, then the proof of Theorem
3.15 in [12] shows that the free amalgam of Y and Z over X is in Kn.
It follows that the class X of d-closures of finite sets in Γn has the free
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amalgamation property, and so the proof of Corollary 4.7 gives what
we want here. �

Theorem 5.3. The group Aut(Γn) is a simple group. In fact, if
1 6= g ∈ Aut(Γn), then every element of Aut(Γn) is a product of 96
conjugates of g±1.

Proof. It follows from ([12], Corollary 3.13) that cld(∅) = ∅ for Γn.
To prove the theorem, we shall apply Corollary 3.12. So we first find
a suitable basic orbit D and then show that there are no non-trivial
bounded automorphisms. The first part is essentially as in the proof
of ([12], Theorem 4.6), but we give a few details.

If x ∈ Γn, let D(x) denote the set of vertices adjacent to x. Then
by the ≤-homogeneity, D(x) is a basic orbit over x. If x, y ∈ Γn are at
distance n, then there is a bijection definable over x, y from D(x) to
D(y) ([11], 1.3). Suppose x0, . . . , x2n−1 is a 2n-cycle in Γn with x0 ∈ P .
Then Γn is in the definable closure of D(x0), D(x1), x2, . . . , x2n−1 (see
[11], 1.6). If n is odd, there is a vertex z at distance n from both x0 and
x1 and therefore Γn is in the definable closure of D(x0), x1, . . . , x2n−1, z.
So if we let A = {x0, . . . , x2n−1, z} and D = {c ∈ D(x0) : d(c/A) = 1},
then D is a basic orbit over A and Γn = cld(A,D).

So now suppose n is even. As in the previous paragraph, it will
suffice to show that there is a line ` and a finite set A with D(`) ⊆
cld(D(x0), A), because D(x1) is in the definable closure of D(`) and
some finite set. Let p3 ∈ P be at distance n from x0 and let ` 6∈ P be
at distance n − 1 from x0, p3. If k ∈ D(x0) there is a unique path of
length n − 1 from k to p3. Let a denote the vertex adjacent to k on
this path. There is then a unique path of length n − 1 from a to `.
Let φ(k) denote the vertex on this path adjacent to `. So we have a
definable map φ : D(x0) → D(`). It can be seen (by considering the
paths involved in this definition of φ) that that d(k/x0, p3, `, φ(k)) = 0
for all k ∈ D(x0). Thus, if d(k/x0, p3, `) = 1, then d(φ(k)/x0, p3, `) = 1.
It follows that the image of φ contains D(`) \ cld(x0, p3, `), so D(`) ⊆
cld(D(x0), x0, p3, `), as required.

To show that there are no non-trivial bounded automorphisms, one
uses that same proof as in ([4], Proposition 6.3), replacing acl there by
cld. �

5.2. ℵ0-categorical structures. We recall briefly a variation on the
construction method of Section 4.1 which gives rise to ℵ0-categorical
structures. The original version of this is in [6] where it is used to
provide a counterexample to Lachlan’s conjecture, and in [8] where it
is used to construct a non-modular, supersimple ℵ0-categorical struc-
ture. The book [15] (Section 6.2.1) is a convenient reference for this.
Generalizations and reworkings of the method (particulalrly relating
to simple theories) can be found in [1]. For the rest of this subsection,
assume that m,n, r, δ, (C0,≤) etc. are as in Section 4.1.
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In this version of the construction, d-closure is uniformly locally fi-
nite. Suppose f : R≥0 → R≥0 is a continuous, increasing function with
f(x)→∞ as x→∞. Let

Cf = {A ∈ C0 : δ(X) ≥ f(|X|) ∀X ⊆ A}.

Note that if X ⊆ A ∈ Cf then

δ(X) ≥ δ(cld(X)) ≥ f(|cld(X)|)

so |cldA(X)| ≤ f−1(δ(X)) ≤ f−1(n|X|).
If B ⊆ A ∈ Cf and cldA(B) = B, then we write B ≤d A. For suitable

choice of f (call these good f), (Cf ,≤d) has the free ≤d-amalgamation
property: if A0 ≤d A1, A2 ∈ Cf then Ai ≤d A1

∐
A0
A1 ∈ Cf . In this

case we have an associated countable generic structure Mf . So Mf is
≤d-homogeneous and the set X of finite d-closed subsets of Mf is (up to
isomorphism) Cf . As d-closure is uniformly locally finite, the structure
Mf is ℵ0-categorical (by the Ryll - Nardzewski Theorem). Algebraic
closure in Mf is equal to d-closure.

Remarks 5.4. To construct good functions, we can take f which are
piecewise smooth and where the right derivative f ′ satisfies f ′(x) ≤ 1/x
and is non-increasing, for x ≥ 1. The latter condition implies that
f(x + y) ≤ f(x) + yf ′(x) (for y ≥ 0). It can be shown that under
these conditions, Cf has the free ≤d-amalgamation property. Also note
that if f ′(x) ≤ 1/x for all x ≥ x0, then for y ≥ x ≥ x0 we have
f(y) ≤ f(x) + log(y − 1)− log(x− 1).

Assumption 5.5. Henceforth, we assume that if r = 2, then n > m
and if r ≥ 3, then n ≥ m. We suppose that f is a good function.
We will assume that f(0) = 0 and f(1) > 0, therefore cld(∅) = ∅. We
shall also assume that f(1) = n. Thus if X ∈ Cf and |X| ≥ 2, then
δ(X) ≥ f(|X|) > n. In particular {x} ≤d X for all x ∈ X.

Let G = Aut(Mf ).

As before, we write |̂ d for d-independence in Mf . This is not sta-

tionary. If A ≤d C ∈ X and b0 ∈ Mf , then {b ∈ orb(b0/A) : b |̂ d
A
C}

need not be a single GC-orbit: the orbits are determined by the d-
closures cld(bC). Clearly cld(bC) ⊇ cld(bA)∪C and as in Lemma 4.3 it
can be shown that cld(bA)∩C = A, cld(bA), C are freely amalgamated

over A and cld(bA) ∪ C ≤Mf if and only if b |̂ d
A
C.

Definition 5.6. Suppose A ≤d C ∈ X and b is a tuple of elements of
Mf . Write b ⊥A C to mean that b |̂ d

A
C and cld(bC) = cld(bA) ∪ C.

Note that in this case, cld(bC) is the free amalgam of cld(bA) and C
over A.

The following is straightforward:
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Lemma 5.7. The relation ⊥ is a stationary independence relation com-
patible with cld. 2

We will use Theorem 2.5 to show that, under some restrictions, the
group G = Aut(Mf ) is simple. The proof is similar to that in the previ-
ous sections, but we need to make some modifications as the dimension
function does not give rise to a stationary independence relation.

Suppose A ∈ X and b ∈Mf . We shall continue to say that b is basic
over A if b 6∈ A and whenever A ≤d C ∈ X and d(b/C) < d(b/A),
then b ∈ C. Recall also that Mf is monodimensional if for all basic
orbits D = orb(b/A) (for A ∈ X ) there is B ∈ X with A ⊆ B and
Mf = cld(B,D \ B). In fact, in the examples below where we verify
this, we will take B = A.

As before, we say that g ∈ G is d-bounded over A ∈ X if there
is A ⊆ C ∈ X and b ∈ Mf which is basic over C such that for all

b′ ∈ orb(b/C) we have gb′ ∈ cld(b′C).

Lemma 5.8. Suppose Mf is monodimensional and g ∈ Aut(Mf ) is
d-bounded (over some element of X ). Then g = 1.

Proof. By Proposition 3.10 there is E ∈ X such that g stabilizes every
B ∈ X containing E. In particular, g fixes all b ∈ Mf \ E for which
Eb ≤d Mf .

Let c, c′ be distinct elements of Mf and C = cld(E, c, c′). First sup-
pose that r > 2. Consider the structure B consisting of c together
with r − 1 points b1, . . . , br−1 such that R[B] is the single relation
{c, b1, . . . , br−1}. Then B ∈ Cf and c ≤d B. By Assumption 5.5,
the free amalgam U of C and B over c is in Cf , so we may suppose
U ≤d Mf . One calculates that Ebi ≤d U for each i (this uses that
r > 2), therefore the bi are fixed by g. As g stabilizes E,C and U , it is
then clear that gc 6= c′. But this holds for all c′ 6= c, so in fact, gc = c.

Now suppose that r = 2 (and n > m). Take b ⊥ C. Suppose
c, e1, . . . , es, b is a simple path with endpoints c, b. If s > m/(n −m)
then cb ≤d ce1 . . . esb. As cb ≤d Cb we may use free amalgamation over
cb to find such a path with U = Ce1 . . . esb ≤d Mf . Then gb = b and g
stabilizes E,C, U . There is a path from b to c whose internal vertices
are in U \C, but there is no such path to c′. So gc 6= c′, and it follows
that gc = c. �

Proposition 5.9. Suppose Mf is monodimensional, A ∈ X and D is
a basic orbit over A. Suppose 1 6= g ∈ Aut(Mf/A).

(1) If c ∈ Mf and A ⊆ B ∈ X , then there is c′ ∈ orb(c/B) with

gc′ |̂ d
B
c′.

(2) There is h̃ ∈ GA such that the commutator g̃ = [g, h̃] moves
almost maximally over A with respect to ⊥, that is, if a′ ∈ Mf

and A ⊆ X ∈ X , there is a ∈ orb(a′/X) such that g̃a ⊥X a.
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Proof. (1) This follows from Lemma 5.8 and Proposition 3.7.

(2) We build h̃ by a back-and-forth construction as in the first part of
the proof of Theorem 3.9. During the ‘forth’ step we shall ensure that
g̃ moves almost maximally with respect to ⊥ (over A). So suppose
we have constructed a partial automorphism h : U → V (fixing A)
and X, a′ are given. By extending h arbitrarily, we may assume that
U ⊇ X, gX, h−1ghX.

Claim 1: We can choose a ∈ orb(a′/X) such that a ⊥X U, g−1U and

ga |̂ d
U
a.

To do this, take a′′ ∈ orb(a′/X) with a′′ ⊥X U, g−1U (by Extension).

Then by (1), there is a ∈ orb(a′′/cld(U, g−1U)) with ga |̂ d
U,g−1U

a. It

follows from Transitivity (for |̂ d) that ga |̂ d
U
a, as required.

Similarly, we can take b ∈ horb(a′/U) with b ⊥hX V, g−1V and

gb |̂ d
V
b. Extend h by setting ha = b.

Note that h−1orb(gb/cld(V, b)) is an orbit over cld(U, a). We choose
e in this with e ⊥U,a ga and extend h further by setting he = gb.

We have that cld(e, U, a) ⊥U,a cld(ga, U, a). Intersecting this d-closed

free amalgam with Y = cld(U, e, ga) we obtain another d-closed free
amalgam, so e ⊥Z ga, where Z = cld(U, a) ∩ Y .

Claim 2: We have Z = U , so e ⊥U ga.
By Claim 1 we have d(ga, a/U) = d(ga/U) + d(a/U), and similarly

d(gb/V, b) = d(gb/V ). So we have:

d(e/U, a, ga) = d(e/U, a) = d(gb/V, b) = d(gb/V ) = d(e/U),

where the second and fourth of these come from applying h. It then
follows that a, ga, U are d-independent over U , so a |̂ d

U
ga, e. In par-

ticular, cld(u, a) ∩ cld(U, ga, e) = U .

Claim 3: We have e ⊥gX ga.

By Claim 1, U ⊥gX ga so cld(U, ga) = U
∐

gX E2, where E2 =

cld(gX, ga).
By choice of b we have gb ⊥ghX gV, V , so (applying h−1) e ⊥h−1ghX U .

Thus cld(U, e) = U
∐

h−1ghX E1 where E1 = cld(h−1ghX, e).

Let Ai = Ei ∩ U . So A1 = h−1ghX and A2 = gX. Let W =
cld(A1, A2). By Claim 2, U ∪ E1 ∪ E2 ≤d Mf . We also have W ∪ E1 ∪
E2 ≤d U ∪ E1 ∪ E2, so E1 ⊥W E2, that is:

E1 ⊥A1,A2 E2.

As a ⊥X g−1U , we have (applying g) E2 ⊥A2 U . So E2 ⊥A2 E1. By
Transitivity we obtain E1 ⊥A2 E2, which gives the claim.

By applying g−1 to Claim 3 we obtain:

[g, h]a ⊥X a

which is what we wanted to do in this step of the construction.
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�

Corollary 5.10. Suppose Mf is monodimensional and 1 6= g ∈ Aut(Mf ).
Then every element of Aut(Mf ) is a product of 192 conjugates of g±1.

Proof. Note that cld(∅) = ∅ so G = Aut(Mf ). Let A ∈ X be such
that there is a basic orbit D over A. It is easy to show that there is
a non-identity commutator g1 of g which fixes every element of A. By
Proposition 5.9, by taking a further commutator with an element of GA

we obtain some g2 ∈ GA which moves almost maximally over A (with
respect to ⊥). It follows from Theorem 2.5 that every element of GA is
a product of 16 conjugates of g2. As g2 is a product of 4 conjugates of
g±1, it follows that every element of GA is a product of 64 conjugates of
g±1. As in the final part of the proof of Theorem 3.9, G is the product
of three conjugates of GA: hence the result. �

We believe that under the conditions of Assumption 5.5, the struc-
ture Mf should be monodimensional. However, proving this appears to
require an extremely technical argument and we only have a full proof
in some special cases.

Example 5.11. Suppose that r ≥ 3 and m = n = 1; so δ(A) =
|A|− |R[A]|. Suppose f is as in Remarks 5.4 and also that Assumption
5.5 holds.

If A ∈ X and b ∈ Mf \ A then d(b/A) = 1 so b is basic over A. Let

D = orb(b/A). We show that Mf = cld(A,D).

Step 1. There is c ∈ cld(A,D) with c ⊥ A.
LetB = cld(A, b) and let F be the free amalgam of copiesB1, . . . , Br−1

of B over A, with bi ∈ Bi being the copy of b inside Bi. Let E = F ∪{c}
where R(b1, . . . , br−1, c) holds and this is the only relation in E involv-
ing c. We show that:

(i) E ∈ Cf ;
(ii) Bi ≤d E;

(iii) Ac ≤d E.

Note that once we have this, it follows that we may assume E ≤d Mf

and so (by (ii)) b1, . . . , br−1 ∈ D. Moreover, c ∈ cld(A, b1, . . . , br−1) and
(by (iii)) A ⊥ c, which finishes Step 1.

For (i), note of course that F ∈ Cf . Let Y ⊆ E. We want to
show that δ(Y ) ≥ f(|Y |). We may assume that c, b1, . . . , br−1 ∈ Y and
Y ≤d E. In the following, if C ⊆ E, let YC = Y ∩ C.

If YA = ∅ then Y is obtained by free amalgamation over the bi from
{b1, . . . , br−1, c} and the YBi , so is in Cf . So we may assume that YA 6= ∅.
Also, if |YBi \A| = 1 for all i, then as d(bi/A) = 1, there are no relations
between YA and {b1, . . . , br−1, c} and Y is again a free amalgam. So we
may also assume that 2 ≤ |YB1 \A| ≥ |YBi \A|. In particular, |B1| ≥ 3.
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Now we compute that

δ(Y ) = δ(YF ) = δ(YB1) +
∑
i≥2

δ(YBi/YB1) ≤ δ(YB1) + (r − 2).

Also

|Y | = 1 + |YB1|+
∑
i≥2

|YBi \ A| ≤ 1 + |YB1|+ (r − 2)|YB1 \ A|.

As in Remarks 5.4

f(|Y |) ≤ f(|YB1|) + log

(
|YB1 |+ (r − 2)|YB1 \ A|

|YB1| − 1

)
.

So to prove that δ(Y ) ≥ f(|Y |) it will suffice to show that

r − 2 ≥ log

(
|YB1|+ (r − 2)|YB1 \ A|

|YB1| − 1

)
.

As |YA| ≥ 1 and |YB1 \ YA| ≥ 2 we have:

|YB1|+ (r − 2)|YB1 \ A|
|YB1 | − 1

≤ (r − 1) +
1

2
,

and the required inequality holds as r ≥ 3. This completes the proof
of (i).

We now verify (ii); without loss we take i = 1. Suppose B1 ⊂ Y ⊆ E.
We need to show that δ(B1) < δ(Y ). We may assume that Y ≤d E and
also that b1, . . . , br−1, c ∈ Y (otherwise what we want follows from free
amalgamation). But then Y = E and δ(E) = δ(B1) + (r − 2) > δ(Y ).

For (iii), suppose Ac ⊂ Y ⊆ E. If Y does not contain all of
b1, . . . , br−1, then δ(Y ) = δ(YF ) + 1 > δ(A) + 1 = δ(Ac). On the other
hand, if Y contains all of b1, . . . , br−1, then δ(Y ) ≥ δ(A) + (r − 1) >
δ(Ac). This completes Step 1.

From Step 1 and Stationarity, it follows that cld(A,D) ⊇ {e ∈ Mf :

e ⊥ A}. So to show that cld(A,D) = Mf it will suffice to show:

Step 2. If a ∈Mf \A, there exist e1, . . . , er−1 ∈Mf with ei ⊥ A and

a ∈ cld(A, e1, . . . , er−1).
To see this, let C = cld(A, a) and let F be the free amalgam of this

over a with the structure on points {a, e1, . . . , er−1} which has a single
relation R(a, e1, . . . , er−1). As A ≤d F , we can assume that F ≤d Mf .
Moreover, an easy calculation shows that Aei ≤d F and so ei ⊥ A for
all i. But a ∈ cld(e1, . . . , er−1) so we have completed Step 2.

Example 5.12. Suppose as in [6] that r = 2, n = 2 and m = 1. So we
are considering graphs A and δ(A) = 2|A| − e(A) where e(A) denotes
the number of edges in A. We take f(0) = 0, f(1) = 2, f(2) = 3 and
f ′(x) ≤ 1/x non-increasing for x ≥ 2 as in Remarks 5.4. So if A ∈ Cf ,
then vertices and edges are d-closed inA. Moreover f(x) ≤ 3+log(x−1)
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for x ≥ 2; more generally, f(y) ≤ f(x) + log(y − 1) − log(x − 1) for
2 ≤ x ≤ y.

By free amalgamation, Cf contains paths P` of arbitrary length `.
One easily computes that if u, v are the endpoints of P` then uv ≤d P`
iff ` ≥ 3. In particular (using free amalgamation), Cf contains a 6-cycle,
but need not contain shorter cycles.

The strategy for verifying monodimensionality is as in the previous
example, but the details are considerably more complicated. Suppose
A ∈ X and orb(b/A) is any GA-orbit on Mf \ A. We shall show that

there exist b0, . . . , bs−1 ∈ orb(b/A) and c ∈ cld(b0, . . . , bs−1, A) such that
c ⊥ A. So cld(A, orb(b/A)) contains {e : e ⊥ A}. We then observe that
cld(A, {e : e ⊥ A}) = Mf .

In order to do this, we construct various graphs and verify that they
are in Cf .

Step 1. Let s ∈ N be sufficiently large. Construct a graph with
vertices C = {c0, . . . , cs−1} and D = {d0, . . . , ds−1} such that:

• c0, d0, c1, d1, . . . , cs−1, ds−1 is a 2s-cycle;
• the remaining edges on CD form a single s-cycle on D and CD

has girth at least 6.

To do this, we can take adjacencies in D to be di ∼ di+` where the
indices are read modulo s and ` is chosen coprime to s and 6 ≤ ` <
s/12.

Step 2. We have CD ∈ Cf .
Note that as s is large, δ(CD) = s > 3 + log(2s − 1) ≥ f(2s) =

f(|CD|). Let X ⊂ CD. We need to show that δ(X) ≥ f(|X|). We
may assume that X ≤d CD. Write XD = D ∩ X and use similar
notation throughout what follows. We have XD ⊂ D, so

δ(XD) ≥ 2|XD| − (|XD| − 1) = |XD|+ 1.

Consider the valencies of vertices in XC within X. There are at most
|XD|−1 of valency 2 and those of valency at most 1 contribute at least
1 to δ(X/XD). Thus

|XC | ≤ δ(X/XD) + |XD| − 1,

so
δ(X) ≥ |XC | − |XD|+ 1 + δ(XD) ≥ |XC |+ 2.

Also,

δ(X) = 2|XC |+ 2|XD| − e(XC , XD)− e(XD) ≥ δ(XD)

as e(XC , XD), the number of edges between XC and XD, is at most
2|XC |. So

δ(X) ≥ δ(XD) ≥ |XD|+ 1.

We therefore obtain:

δ(X) ≥ 1

2
(|X|+ 3).
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As f(x) ≤ 3 + 2 log(x − 1), we have δ(X) ≥ f(|X|) if |X| ≥ 7. If
|X| ≤ 6 then X is either a 6-cycle or has no cycles, so is in Cf .

Step 3. If X ≤d CD and X is the d-closure in CD of XC , then
|X| ≤ 4|XC | − 3.

This follows from the fact that 0 ≥ δ(X/XC) ≥ 1
2
(|X|+ 3)− 2|XC |.

Step 4. Let B consist of copies B0, . . . , Bs−1 of B′ = cld(A, b) freely
amalgamated over A, with bi the copy of of b inside Bi. Let E =
B ∪ C ∪ D with edges as in B, C ∪ D and additional edges bi ∼ ci
for i = 0, . . . , s − 1. Note that δ(E) = δ(A) + sδ(B′/A) = δ(B) and
|E| = |A|+ s|B′ \A|+ 2s = |A|+ s(|B′ \A|+ 2). For sufficiently large
s we have δ(E) ≥ f(|E|) (by the logarithmic growth of f).

Suppose Y ⊂ E; we claim that δ(Y ) ≥ f(|Y |), so E ∈ Cf . We may
assume that Y ≤d E. It is clear that E is the free amalgam of BC and
CD over C and it is easy to check that C ≤d BC. So YC ≤d YBC .

Let Y ′C be the d-closure of YC inside CD. So Y ′C ⊆ YCD and Y ′C∩C =
YC . Then YB ∪ Y ′C is a free amalgam over YC and Y ′C ≤d YB ∪ Y ′C .
Moreover, Y ′C ≤ YCD; so it will suffice to show that YB∪Y ′C ∈ Cf . Thus
we may assume Y ′C = YCD. In particular, by Step 3, we may assume
that |YCD| ≤ 4t− 3, where t = |YC |. We can assume t ≥ 2.

We may assume that δ(YBi/YA) ≤ 1 for all i. Then we may further
assume that bi ∈ Y iff ci ∈ Y . (If ci ∈ Y and bi 6∈ Y , then adding bi
into Y increases the size of Y without increasing δ; conversely if bi ∈ Y
but ci is not, then YBi is freely amalgamated with the rest of Y over
YA.) Similarly we can assume that if YBi ⊃ YA then bi ∈ Yi. It follows
that δ(YB/YA) = t.

Choose i such that |YBi \ YA| is as large as possible; say i = 1 and
the size is k. Then

|Y | = |YB|+ |YCD| ≤ |YB1|+ (t− 1)k + 4t− 3.

Also

δ(Y ) = δ(YB) + δ(YCD)− e(YB, YC) ≥ (δ(YB1) + (t− 1)) + (t+ 2)− t

using the inequality δ(YCD) ≥ t+ 2 from Step 2, and so:

δ(Y ) ≥ δ(YB1) + t+ 1.

So it will suffice to show that

δ(YB1) + t+ 1 ≥ f(|YB1 |+ (t− 1)k + 4t− 3).

By the logarithmic nature of f , and δ(B1) ≥ f(|B1|), this will follow
from:

t+ 1 ≥ log((t− 1)(k + 4))− log(|YB1| − 1).

It is easily checked that this is the case (as t ≥ 2 and |YB1 | ≥ k + 1).
This finishes the proof that E ∈ Cf .
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Step 5. If e ∈ D, then Ae ≤d E. To see this, let Ae ⊂ X ⊆ E. As E
is a free amalgam over C

δ(X) = δ(XBC/XC) + δ(XCD).

It is straightforward to see that this is greater than δ(Ae) = δ(A) + 2.

Step 6. We have Bi ≤d E. This follows from the the calculations in
Step 4.

It follows that A ≤d E, so we may assume that E ≤d Mf . As

δ(E) = δ(B), we have E = cld(B). By Step 6, each bi is in orb(b/A). By
Step 5, we have that A ⊥ e for e ∈ D. It follows that cld(A, orb(b/A))
contains {e ∈Mf : e ⊥ A}.

To conclude, we show that cld(A, {e : e ⊥ A}) = Mf . Let x ∈Mf \A
and X = cld(x,A). Using the above construction we can find V ∈ Cf
and distinct b1, . . . , bs, y ∈ V such that y ∈ cld(b1, . . . , bs) and y is not
adjacent to any of the bi. The latter implies that ybi ≤ V . Identify y
with x and form the free amalgam U of V and X over x. This is in Cf
so we may assume U ≤d Mf . Using that xbi ≤ V , it is straightforward

to check that bi ⊥ A, and so x ∈ cld(A, {e : e ⊥ A}), as required. It
follows that Mf is monodimensional.

5.3. Concluding remarks. Hrushovski’s paper [6] uses a further vari-
ation on the construction method of the previous subsection to produce
stable, ℵ0-categorical structures which are not one-based. In this vari-
ation of the construction, the predimension is given by

δ(A) = |A| − α|R[A]|
where α ∈ R≥0 is irrational. For certain α one defines a control function
fα : R≥0 → R≥0 such that Cfα is a free amalgamation class and the
Fräıssé limit Mα is stable and ℵ0-categorical. The details of this can be
found in ([14], Example 5.3). Forking independence gives a stationary
independence relation on Mα and it would be interesting to investigate
simplicity (or otherwise) of Aut(Mα) using Theorem 2.5.

In his paper [9], Lascar also proves a small index property for count-
able, saturated almost strongly minimal structures and it would be
interesting to know whether these methods can be used to prove that
such a property also holds for the structures M0 and Mf (for good f)
of Sections 4.1 and 5.2. More specifically, we ask:

• Suppose G is Aut(M0) or Aut(Mf ) and H ≤ G is of index less
than 2ℵ0 in G. Does there exist A ∈ X such that H ≥ GA?

In the case where G = Aut(M0), it seems likely that Lascar’s meth-
ods work, though we have not checked all of the details. For the case
where G = Aut(Mf ), the following problem is relevant:

• Suppose Ai, Bi ≤d Mf are finite and hi : Ai → Bi is an iso-
morphism (for i = 1, . . . , n). Do there exist D ∈ X with
Ai, Bi ≤d D and gi ∈ Aut(D) such that gi ⊇ hi for all i ≤ n?
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