Aufgabe 1:

Seien A und B be C*-Algebren, A unital, und sei $\varphi \colon A \to B$ linear und positiv.

- a) Man zeige, dass φ *-erhaltend ist.
- b) Man zeige, dass φ beschränkt ist. (Die Norm von φ lässt sich leicht durch $2\|\varphi(1)\|$ beschränken; mit mehr Aufwand kann man sogar $\|\varphi\| = \|\varphi(1)\|$ zeigen.)

Aufgabe 2:

Sei φ ein positives Funktional auf der C*-Algebra A, und sei $(\mathcal{H}_{\varphi}, \pi_{\varphi})$ die zugehörige GNS Darstellung aus 5.11.

- a) Man zeige, dass π_{φ} *-erhaltend ist.
- b) Man zeige, dass $\xi_{\varphi} = \lim_{\lambda} e_{\lambda} + N_{\varphi}$ in \mathcal{H}_{φ} existiert, wo $(e_{\lambda})_{\lambda \in \Lambda}$ eine beliebige approximative Eins für A ist.
- c) Man zeige, dass ξ_{φ} ein zyklischer Vector für π_{φ} ist und dass der Vektor ξ_{φ} das Funktional φ mittels

$$\varphi(a) = \langle \pi_{\varphi}(a)\xi_{\varphi}, \xi_{\varphi} \rangle, \ a \in A$$

implementiert.

Das positive Funktional φ heißt treu, falls $\varphi(a) = 0 \implies a = 0$ für alle $a \in A_+$ gilt.

d) Man zeige, dass π_{φ} treu als Darstellung (d.h. injektiv) ist, falls φ treu als Funktional ist.

Aufgabe 3:

Sei A eine C*-Algebra und τ ein Spurzustand auf A (d.h. ein Zustand, welcher die Bedingung $\tau(x^*x) = \tau(xx^*)$ erfüllt). Man zeige:

a) Es gilt $\tau(ab) = \tau(ba)$ für alle $a, b \in A$.

(Hinweis: Polarisierung, d.h. $4y^*x = \sum_{k=0}^3 i^k(x+i^ky)^*(x+i^ky)$.)

b) Ist A einfach, so ist τ treu.

Aufgabe 4:

Sei (A_n, φ_n) ein induktives System von C*-Algebren, $A = \lim_{\to} (A_n, \varphi_n)$. Man zeige: Falls alle A_n sowie die Verbindungsabbildungen unital sind, und falls jedes A_n genau einen Spurzustand hat, so auch A. Man folgere, dass die CAR Algebra $M_{2^{\infty}}$ genau einen Spurzustand hat. Was geht im nichtunitalen Fall schief?

