Aufgabe 1:

Man gebe ein Beispiel für eine *-Darstellung $\pi: A \odot B \to \mathcal{B}(\mathcal{H})$ so dass π_A und π_B injektiv sind, π jedoch nicht.

Aufgabe 2:

Seien A, B, C C*-Algebren. Man zeige, dass es kanonische Isomorphismen $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$ und $(A \oplus B) \otimes_{\max} C \cong (A \otimes_{\max} C) \oplus (B \otimes_{\max} C)$ gibt.

Aufgabe 3:

Man zeige, dass $\mathcal{B}(\ell^2) \odot \mathcal{B}(\ell^2) \subset \mathcal{B}(\ell^2 \otimes \ell^2)$ nicht dicht bzgl. der Normtopologie ist.

Aufgabe 4:

Seien A und B unitale C*-Algebra. Man zeige, dass das maximale Tensorprodukt isomorph ist zur universellen C*-Algebra, welche von kommutierenden Kopien von A und B erzeugt wird,

$$A \otimes_{\max} B \cong C^*(A, B \mid [A, B] = 0).$$