Basic Category Theory.

Categories.

A category consists of

- a class of objects ob(C),
- a class of morphisms or arrows $\hom(C)$,
- a domain or source object class function dom : $hom(C) \rightarrow ob(C)$,
- a codomain or target object class function $\operatorname{cod} : \operatorname{hom}(C) \to \operatorname{ob}(C)$,
- for every three objects a, b and c, a binary operation $\hom(a, b) \times \hom(b, c) \to \hom(a, c)$ called composition of morphisms. We will denote the composition of $f: a \to b$ and $g: b \to c$ as $g \circ f$ or gf.

such that the following axioms hold:

- (associativity) if $f : a \to b, g : b \to c$ and $h : c \to d$ then $h \circ (g \circ f) = (h \circ g) \circ f$, and
- (identity) for every object x, there exists a morphism $id_x : x \to x$ called the identity morphism for x, such that every morphism $f : a \to x$ satisfies $id_x \circ f = f$, and every morphism $g : x \to b$ satisfies $g \circ id_x = g$.

Examples:

- ob(C) = sets, hom(C) = maps between sets.
- ob(C) = groups, hom(C) = group homomorphisms.
- ob(C) = topological spaces,
 hom(C) = continuous functions between topological spaces.

A category is called **small** if the class of objects and the class of morphisms are sets and **large** otherwise.

A subcategory C' of C is a category, such that:

- Objects of C' are objects in C
- For an ordered pair (X', Y') of objects in $C' \hom_{C'}(X', Y') \subset \hom_{C}(X', Y')$.
- For morphisms $f' \in \text{hom}(Y', Z')$ and $f' \in \text{hom}_{C'}(Y', Z')$ the composition in C' is the same as in C.

For a category C we define the **opposite category** C^{op} as follows:

- objects of $C^{\text{op}} = \text{objects of } C$
- morphisms of C^{op} : $\hom_{C^{\text{op}}}(X, Y) = \hom_C(Y, X)$

Morphisms.

For a morphism $f \in \text{hom}(X, Y)$ a morphism $g \in \text{hom}(Y, X)$ is called a **left inverse** of f if $g \circ f = \text{id}_X$. (**Right inverse** analogously.)

If g is a left and right inverse for f then f is called an **isomorphism**.

A category is called **skeletal** when any two isomorphic objects are identical; i.e. when the category is its own skeletal.

A morphism $f: a \to b$ is called

- a monomorphism if it is left-cancellable, i.e. $f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$ for all morphisms $g_1, g_2 : x \to a$.
- an epimorphism if it is right-cancellable, i.e. $g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2$ for all morphisms $g_1, g_2 : b \to x$.

Remark: Epimorphisms are not necessarily surjective. Consider the inclusion $\iota : \mathbb{Z} \hookrightarrow \mathbb{Q}$. This is an epimorphism in Rings. Suppose $g, h : \mathbb{Q} \to A$ ring homomorphisms agreeing on \mathbb{Z} . Then g = h, because: For any $n \in \mathbb{Z}$ we have g(n) = h(n), for $m \in \mathbb{Z} \setminus \{0\}$ we have

$$g(1/m) = g(m)^{-1} = h(m)^{-1} = h(1/m).$$

So $g \circ \iota = h \circ \iota \Rightarrow g = h$.

An object X of a category C is called **initial** if hom(X, Y) consists of exactly one element for every object Y.

An object Y of a category C is called **terminal** if hom(X, Y) consists of exactly one element for every object X.

Functors.

Let C, D be categories. A (covariant) functor $F: C \to D$ is a mapping that

- associates each object X in C to an object F(X) in D.
- associates each morphism $f : X \to Y$ in C to a morphism $F(f) : F(X) \to F(Y)$ in D such that:
 - $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$ - $F(g \circ f) = F(g) \circ F(f)$ for all morphisms $f: X \to Y, \ g: Y \to Z$ in C.

Contravariant functors $F : A \to B$ are covariant functors $F : A^{\text{op}} \to B$.

A functor $S : C \to D$ is an **isomorphism of categories** when there is a functor $T : D \to C$ such that $ST \simeq id_D$ and $TS \simeq id_C$.

Let C, D be categories, $F, G : C \to D$ functors. A **natural transforma**tion $\eta : F \to G$ is a mapping that maps every object $X \in C$ to a morphism $\eta_X : F(X) \to G(X)$ such that for every morphism $f : X \to Y$ in C the following diagram commutes:

$$\begin{array}{ccc} F(X) & \xrightarrow{F(f)} & F(Y) \\ \eta_X & & & \eta_Y \\ & & & & \\ G(X) & \xrightarrow{G(f)} & (GY) \end{array}$$

Example: In Groups: $F = id_{Grps}$, $G = (_)^{ab}$ (Abelianization), $q_H : H \to H^{ab} = H/[H, H]$.

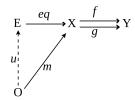
A functor $S : C \to D$ is an **equivalence of categories** when there is a functor $T : D \to C$ and natural isomorphisms $ST \cong id_D$ and $TS \cong id_C$. In this case T is also an equivalence of categories.

Examples:

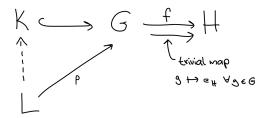
- A category is equivalent to any one of its skeleta.
- $\{\mathbb{R}^n\}_{n\in\mathbb{N}}$ is a skeletal subcategory for finite dimensional real vector spaces. (Let V be an n-dim real vector space. For any basis $v_1, \ldots, v_n \in V$ each element of V is uniquely expressable as $a_1v_1 + \cdots + a_nv_n$ for some $a_1, \ldots, a_n \in \mathbb{R}$. One gets isomorphisms $(a_1, \ldots, a_n) \mapsto (a_1v_1 + \cdots + a_nv_n)$.)

Limits.

The **equaliser** consists of an object E and a morphism eq : $E \to X$ satisfying $f \circ \text{eq} = g \circ \text{eq}$ such that, given any object O and morphism $m : O \to X$, if $f \circ m = g \circ m$ then there exists a unique morphism $u : O \to E$ such that $\text{eq} \circ u = m$.



Example: In Groups: Let G, H, L be groups, $f : G \to H$ and $K = \ker(f)$.



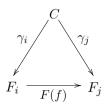
(Equalisers generalise kernels.)

Let I be a small category and C a category. Then we define a **functor** category or diagram category C^{I} as follows:

- objects: functors from I to C
- morphisms: natural transformations of such functors

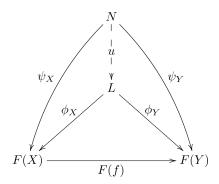
For all objects $c \in C$ there exists a constant functor : $\underline{c} : I \to C$ with $\underline{c}(i) = c$ for all objects $i \in I$, $\underline{c}(f) = \mathrm{id}_C$ for all arrows $f \in I$.

A cone over a diagram $F \in C^{I}$ is an object C and morphisms $\gamma_{i} : C \to F_{i}$ for all objects $i \in I$ such that for each $(f : i \to j) \in I$ the following triangle commutes

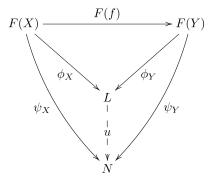


A cone over F can be seen as a morphism $\underline{c} \to f$ in C^I .

A limit of the diagram $F: J \to C$ is a cone (L, ϕ) to F such that for every other cone (N, ψ) to F there exists a unique morphism $u: N \to L$ such that $\phi_X \circ u = \psi_X$ for all X in J.



Cocones and **colimits** are the dual notions of cones and limits. We obtain them by inverting arrows. A cocone can be seen as a natural transformation $f \to \underline{c}$ in C^{I} .



Equalisers (pullbacks, pushouts, ...) are examples for limits. A limit of $F: I \to C$ is a terminal object in Cone(F).

Homsets preserve limits. We have:

$$\hom_C(X, \lim F_i) \leftrightarrow \operatorname{Cone}_I(X, F_i) \leftrightarrow \operatorname{Cone}_{\operatorname{Sets}}(\operatorname{pt}, \hom_C(X, F_i))$$
$$\leftrightarrow \lim \hom_C(X, F_i)$$

Adjoint functors.

Let $F: C \to D$ and $G: D \to C$ be functors. F and G are called **adjoint**, if there is a bijection $\forall c, d \in ob(C)$ between $\hom_D(Fc, d)$ and $\hom_C(c, Gd)$ that is natural in c and d.

Naturality in c means that for each $(f: c' \to c) \in C$, the following diagram commutes:

$$\begin{array}{c} \hom_D(Fc,d) \xrightarrow{\eta_{c,d}} \hom_C(c,Gd) \\ \downarrow \neg \circ Ff & \downarrow \neg \circ f \\ \hom_D(Fc',d) \xrightarrow{\eta_{c',d}} \hom_C(c',Gd). \end{array}$$

Naturality in d means that for each $(g : d \to d') \in D$, the following diagram commutes:

$$\begin{array}{ccc} \hom_D(Fc,d) & \xrightarrow{\eta_{c,d}} & \hom_C(c,Gd) \\ & & \downarrow^{g\circ-} & \downarrow^{Gg\circ-} \\ & \hom_D(Fc,d') & \xrightarrow{\eta_{c',d}} & \hom_C(c,Gd'). \end{array}$$

Example: F : Sets \rightarrow Grps maps a set to the free group over that set, U : Grps \rightarrow Sets maps a group to the set of group elements (it is called the forget functor, because it *forgets* about the additional structure a group has).

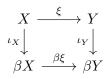
- Set maps: $X \to UG$
- Group homomorphisms: $FX \to G$

Remark: Adjunction generalizes the notion of equivalence, inducing natural transformations η : $\mathrm{id}_C \to GF$ and η : $FG \to \mathrm{id}_D$, called the *unit* and *counit* of the adjunction, respectively, which need not be natural isomorphisms. An adjunction can alternatively be axiomatized in terms of two functors equipped with a unit and counit satisfying certain identities.

Example: Čech–Stone compactification:

Let X be a Tychonov space and let $\iota_X : X \to \prod_{C(X,[0,1])} [0,1]$ be a map with $\iota_X(p) = (\varphi(p))_{\varphi \in C(X,[0,1])}$. The **Čech–Stone compactification** is $\beta X := \iota_X(X)$.

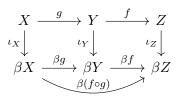
If X, Y are Tychonov spaces and $\xi : X \to Y$ is a continuous map, then there exists a unique continuous map $\beta \xi : \beta X \to \beta Y$, such that $\iota_Y \circ \xi = \beta \xi \circ \iota_X$ (such that the following diagram commutes:)



The Čech–Stone compactification is a left-adjoint functor for the inclusion map $G: CptHaus \hookrightarrow Tyc$. We have:

$$\hom_{\mathrm{Tvc}}(X, GK) \leftrightarrow \hom_{\mathrm{CptHaus}}(\beta X, K)$$

One can see that Čech–Stone compactification is a functor by using these diagrams:



$$\begin{array}{ccc} X & \stackrel{\operatorname{id}_X}{\longrightarrow} X \\ \iota_X & \downarrow & \iota_X \\ \downarrow & \downarrow \\ \beta X & \stackrel{\iota_d_{\beta X} = \beta \operatorname{id}_X}{\longrightarrow} \beta X \end{array}$$

Fact: Right adjoints preserve limits. Left adjoints preserve colimits.

A subcategory A of B is called **reflective** in B when the inclusion functor $K: A \to B$ has a left adjoint $F: B \to A$.

Example: The Čech–Stone compactification shows that compact Hausdorff spaces are a reflective subcategory of the category of Tychonov spaces. Abelianization shows that abelian groups are a reflective subcategory of the category of groups.

Filtered (co)limits.

A category J is **filtered** when

- it is not empty,
- for every two objects j and j' in J there exists an object k and two arrows $f: j \to k$ and $f': j' \to k$ in J,
- for every two parallel arrows $u, v : i \to j$ in J, there exists an object k and an arrow $w : j \to k$ such that wu = wv.

A filtered colimit is a colimit of a functor $F: J \to C$ where J is a filtered category. Equivalently every finite diagram in a filtered category C admits a cocone under it.

Filtered colimits commute with finite limits in some categories (Sets, Top, Grps, Rings). For Sets see Theorem IX.2.1, p. 215 in Mac Lane's *Categories for the Working Mathematician*. To see this is also true in Grps, Rings, and Top requires knowledge of how filtered colimits are computed in these categories (they are created by the forgetful functor to Sets; see Prop. IX.1.2 for Grps).

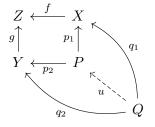
More generally, let κ be a regular cardinal. We say a category C is κ -filtered if every diagram $I \to C$ from a category I with fewer than κ -many arrows admits a cocone.

In Sets, κ -filtered colimits commute with κ -small limits; the previous statement is the case $\kappa = \aleph_0$.

Appendix.

A **pullback of morphisms** f and g consists of an object P and two morphisms $p_1: P \to X$ and $p_2: P \to Y$ such that the following diagram commutes

and such that the pullback (P, p_1, p_2) is universial with respect to this diagram. That is for any other (Q, q_1, q_2) where $q_1 : Q \to X$ and $q_2 : Q \to Y$ are morphisms with $f \circ q_1 = g \circ q_2$ there must exist a unique $u : Q \to P$ such that $p_1 \circ u = q_1$ and $p_2 \circ u = q_2$.



A pushout of the morphisms f and g consists of an object P and two morphisms $i_1 : X \to P$ and $i_2 : Y \to P$ such that the following diagram commutes

$$\begin{array}{ccc} Z & \xrightarrow{g} & Y \\ f \downarrow & i_2 \downarrow \\ X & \xrightarrow{i_1} & P \end{array}$$

and such that the pushout (P, i_1, i_2) is universial with respect to this diagram. That is for any other (Q, j_1, j_2) where $j_1 : X \to Q$ and $j_2 : Y \to Q$ are morphisms with $j_1 \circ f = j_2 \circ g$ there must exist a unique $u : Q \to P$ such that $u \circ i_1 = j_1$ and $u \circ i_2 = j_2$.

