
Basic Category Theory.

Categories.

A category consists of

• a class of objects ob(C),

• a class of morphisms or arrows hom(C),

• a domain or source object class function dom : hom(C)→ ob(C),

• a codomain or target object class function cod : hom(C)→ ob(C),

• for every three objects a, b and c, a binary operation hom(a, b)×hom(b, c)→
hom(a, c) called composition of morphisms. We will denote the compo-
sition of f : a→ b and g : b→ c as g ◦ f or gf .

such that the following axioms hold:

• (associativity) if f : a → b, g : b → c and h : c → d then h ◦ (g ◦ f) =
(h ◦ g) ◦ f , and

• (identity) for every object x, there exists a morphism idx : x→ x called
the identity morphism for x, such that every morphism f : a→ x satisfies
idx ◦f = f , and every morphism g : x→ b satisfies g ◦ idx = g.

Examples:

• ob(C) = sets, hom(C) = maps between sets.

• ob(C) = groups, hom(C) = group homomorphisms.

• ob(C) = topological spaces,
hom(C) = continuous functions between topological spaces.

A category is called small if the class of objects and the class of morphisms
are sets and large otherwise.

A subcategory C ′ of C is a category, such that:

• Objects of C ′ are objects in C

• For an ordered pair (X ′, Y ′) of objects in C ′ homC′(X ′, Y ′) ⊂ homC(X ′, Y ′).

• For morphisms f ′ ∈ hom(Y ′, Z ′) and f ′ ∈ homC′(Y ′, Z ′) the composition
in C ′ is the same as in C.

For a category C we define the opposite category Cop as follows:

• objects of Cop = objects of C

• morphisms of Cop: homCop(X,Y ) = homC(Y,X)
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Morphisms.

For a morphism f ∈ hom(X,Y ) a morphism g ∈ hom(Y,X) is called a left
inverse of f if g ◦ f = idX . (Right inverse analogously.)

If g is a left and right inverse for f then f is called an isomorphism.

A category is called skeletal when any two isomorphic objects are identi-
cal; i.e. when the category is its own skeletal.

A morphism f : a→ b is called

• a monomorphism if it is left-cancellable, i.e. f ◦ g1 = f ◦ g2 ⇒ g1 = g2
for all morphisms g1, g2 : x→ a.

• an epimorphism if it is right-cancellable, i.e. g1 ◦ f = g2 ◦ f ⇒ g1 = g2
for all morphisms g1, g2 : b→ x.

Remark: Epimorphisms are not necessarily surjective. Consider the inclusion
ι : Z ↪→ Q. This is an epimorphism in Rings. Suppose g, h : Q → A ring
homomorphisms agreeing on Z. Then g = h, because: For any n ∈ Z we have
g(n) = h(n), for m ∈ Z\{0} we have

g(1/m) = g(m)−1 = h(m)−1 = h(1/m).

So g ◦ ι = h ◦ ι⇒ g = h.

An object X of a category C is called initial if hom(X,Y ) consists of ex-
actly one element for every object Y .

An object Y of a category C is called terminal if hom(X,Y ) consists of
exactly one element for every object X.
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Functors.

Let C,D be categories. A (covariant) functor F : C → D is a mapping that

• associates each object X in C to an object F (X) in D.

• associates each morphism f : X → Y in C to a morphism F (f) :
F (X)→ F (Y ) in D such that:

– F (idX) = idF (X)

– F (g ◦ f) = F (g) ◦ F (f) for all morphisms
f : X → Y, g : Y → Z in C.

Contravariant functors F : A→ B are covariant functors F : Aop → B.

A functor S : C → D is an isomorphism of categories when there is a
functor T : D → C such that ST ' idD and TS ' idC .

Let C,D be categories, F,G : C → D functors. A natural transforma-
tion η : F → G is a mapping that maps every object X ∈ C to a morphism
ηX : F (X)→ G(X) such that for every morphism f : X → Y in C the follow-
ing diagram commutes:

F (X) F (Y )

G(X) (GY )

ηX

F (f)

ηY

G(f)

Example: In Groups: F = idGrps, G = ( )ab (Abelianization),
qH : H → Hab = H/[H,H].

A functor S : C → D is an equivalence of categories when there is a
functor T : D → C and natural isomorphisms ST ∼= idD and TS ∼= idC . In
this case T is also an equivalence of categories.

Examples:

• A category is equivalent to any one of its skeleta.

• {Rn}n∈N is a skeletal subcategory for finite dimensional real vector spaces.
(Let V be an n-dim real vector space. For any basis v1, . . . , vn ∈ V
each element of V is uniquely expressable as a1v1 + · · ·+ anvn for some
a1, . . . , an ∈ R. One gets isomorphisms (a1, . . . , an) 7→ (a1v1 + · · · +
anvn).)
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Limits.

The equaliser consists of an object E and a morphism eq : E → X satisfying
f ◦ eq = g ◦ eq such that, given any object O and morphism m : O → X,
if f ◦m = g ◦m then there exists a unique morphism u : O → E such that
eq ◦u = m.

Example: In Groups: Let G,H,L be groups, f : G→ H and K = ker(f).

(Equalisers generalise kernels.)

Let I be a small category and C a category. Then we define a functor
category or diagram category CI as follows:

• objects: functors from I to C

• morphisms: natural transformations of such functors

For all objects c ∈ C there exists a constant functor : c : I → C with c(i) = c
for all objects i ∈ I, c(f) = idC for all arrows f ∈ I.

A cone over a diagram F ∈ CI is an object C and morphisms γi : C → Fi
for all objects i ∈ I such that for each (f : i → j) ∈ I the following triangle
commutes

A cone over F can be seen as a morphism c→ f in CI .
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A limit of the diagram F : J → C is a cone (L, φ) to F such that for every
other cone (N,ψ) to F there exists a unique morphism u : N → L such that
φX ◦ u = ψX for all X in J .

Cocones and colimits are the dual notions of cones and limits. We obtain
them by inverting arrows. A cocone can be seen as a natural transformation
f → c in CI .

Equalisers (pullbacks, pushouts, . . . ) are examples for limits. A limit of
F : I → C is a terminal object in Cone(F ).

Homsets preserve limits. We have:

homC(X, limFi)↔ ConeI(X,Fi)↔ ConeSets(pt,homC(X,Fi))

↔ lim homC(X,Fi)
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Adjoint functors.

Let F : C → D and G : D → C be functors. F and G are called adjoint,
if there is a bijection ∀c, d ∈ ob(C) between homD(Fc, d) and homC(c,Gd)
that is natural in c and d.

Naturality in c means that for each (f : c′ → c) ∈ C, the following diagram
commutes:

homD(Fc, d) homC(c,Gd)

homD(Fc′, d) homC(c′, Gd).

ηc,d

−◦Ff −◦f
ηc′,d

Naturality in d means that for each (g : d → d′) ∈ D, the following diagram
commutes:

homD(Fc, d) homC(c,Gd)

homD(Fc, d′) homC(c,Gd′).

ηc,d

g◦− Gg◦−
ηc′,d

Example: F : Sets → Grps maps a set to the free group over that set,
U : Grps → Sets maps a group to the set of group elements (it is called the
forget functor, because it forgets about the additional structure a group has).

• Set maps: X → UG

• Group homomorphisms: FX → G

Remark: Adjunction generalizes the notion of equivalence, inducing natural
transformations η : idC → GF and η : FG → idD, called the unit and counit
of the adjunction, respectively, which need not be natural isomorphisms. An
adjunction can alternatively be axiomatized in terms of two functors equipped
with a unit and counit satisfying certain identities.
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Example: Čech–Stone compactification:

Let X be a Tychonov space and let ιX : X →
∏
C(X,[0,1])[0, 1] be a map with

ιX(p) = (ϕ(p))ϕ∈C(X,[0,1]). The Čech–Stone compactification is βX :=

ιX(X).

If X,Y are Tychonov spaces and ξ : X → Y is a continuous map, then there
exists a unique continuous map βξ : βX → βY , such that ιY ◦ ξ = βξ ◦ ιX
(such that the following diagram commutes:)

X Y

βX βY

ιX

ξ

ιY

βξ

The Čech–Stone compactification is a left-adjoint functor for the inclusion
map G : CptHaus ↪→ Tyc. We have:

homTyc(X,GK)↔ homCptHaus(βX,K)

One can see that Čech–Stone compactification is a functor by using these
diagrams:

X Y Z

βX βY βZ

ιX

g

ιY

f

ιZ

βg

β(f◦g)

βf

X X

βX βX

ιX

idX

ιX

idβX=β idX

Fact: Right adjoints preserve limits. Left adjoints preserve colimits.

A subcategory A of B is called reflective in B when the inclusion functor
K : A→ B has a left adjoint F : B → A.

Example: The Čech–Stone compactification shows that compact Hausdorff
spaces are a reflective subcategory of the category of Tychonov spaces. Abelian-
ization shows that abelian groups are a reflective subcategory of the category
of groups.

7



Filtered (co)limits.

A category J is filtered when

• it is not empty,

• for every two objects j and j′ in J there exists an object k and two
arrows f : j → k and f ′ : j′ → k in J ,

• for every two parallel arrows u, v : i → j in J , there exists an object k
and an arrow w : j → k such that wu = wv.

A filtered colimit is a colimit of a functor F : J → C where J is a filtered
category. Equivalently every finite diagram in a filtered category C admits a
cocone under it.

Filtered colimits commute with finite limits in some categories (Sets, Top,
Grps, Rings). For Sets see Theorem IX.2.1, p. 215 in Mac Lane’s Categories
for the Working Mathematician. To see this is also true in Grps, Rings, and
Top requires knowledge of how filtered colimits are computed in these cate-
gories (they are created by the forgetful functor to Sets; see Prop. IX.1.2 for
Grps).

More generally, let κ be a regular cardinal. We say a category C is κ-filtered
if every diagram I → C from a category I with fewer than κ-many arrows
admits a cocone.

In Sets, κ-filtered colimits commute with κ-small limits; the previous state-
ment is the case κ = ℵ0.
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Appendix.

A pullback of morphisms f and g consists of an object P and two mor-
phisms p1 : P → X and p2 : P → Y such that the following diagram commutes

Z X

Y P

f

g

p1

p2

and such that the pullback (P, p1, p2) is universial with respect to this dia-
gram. That is for any other (Q, q1, q2) where q1 : Q→ X and q2 : Q→ Y are
morphisms with f ◦ q1 = g ◦ q2 there must exist a unique u : Q→ P such that
p1 ◦ u = q1 and p2 ◦ u = q2.

Z X

Y P

Q

f

g

p2

p1
q1

q2

u

A pushout of the morphisms f and g consists of an object P and two
morphisms i1 : X → P and i2 : Y → P such that the following diagram
commutes

Z Y

X P

f

g

i2

i1

and such that the pushout (P, i1, i2) is universial with respect to this dia-
gram. That is for any other (Q, j1, j2) where j1 : X → Q and j2 : Y → Q are
morphisms with j1 ◦ f = j2 ◦ g there must exist a unique u : Q→ P such that
u ◦ i1 = j1 and u ◦ i2 = j2.

Z Y

X P

Q

f

g

i2
j2

i1

j1

u
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