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Abstract

This thesis aims to contribute to the model-theoretic study of expansions

of ordered fields by exponential functions and power functions. We will

mainly be interested in the special case that the ordered field is R, but

will also work in the context of arbitrary o-minimal expansions of ordered

fields.

In chapter 1 we give an overview of the work contained in this thesis

as well as providing motivation and background. In chapter 2 we set

up some notation and conventions and then give a brief account of the

parts of the theory of o-minimal structures which we will need. Finally

we recall some basic results in model theory on quantifier elimination

and model-completeness. In chapters 3 and 4 we prove our first main

theorem: that given any first order formula φ in the language L′ = {+, ·, <
, (fi)i∈I , (ci)i∈I}, where the fi are unary function symbols and the ci are

constants, one can find an existential formula ψ such that φ and ψ are

equivalent in any L′-structure 〈R,+, ·, <, (xci)i∈I , (ci)i∈I〉. In chapter 5

we introduce a first order theory T∞ which can be seen as the theory of

certain real closed fields, each expanded by a power function with infinite

exponent. We note that it follows from the first main theorem that T∞ is

model-complete, furthermore we prove that T∞ is decidable if and only if

the theory of the real field with the exponential function is decidable. In

chapter 6 we consider the problem of expanding an arbitrary o-minimal

expansion of a field by a non-trivial exponential function whilst preserving

o-minimality. It is known that if R̃ is an o-minimal expansion of the real

field then 〈R̃, exp〉 is o-minimal. By different methods it is also known

that if R̃ defines exp �[0,1] then 〈R̃, exp, log〉 admits quantifier elimination

and a universal axiomatization relative to R̃. We generalize this second

result to o-minimal expansions of arbitrary ordered fields under certain

assumptions. Finally, in chapter 7 we propose a future research project

arising from the results in chapter 5.
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Introduction
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The first part of this thesis is concerned with the study of first order definability in

certain structures expanding the real field. Let us consider the simplest, yet certainly

non-trivial, case: that of 〈R,+, ·〉. The first thing to note about this structure is

that the normal ordering on R is definable; the set of non-negative elements of R is

precisely the set defined by the formula ∃y(x = y2). Consequently all semialgebraic

sets are definable. Indeed, if we add a symbol for < to our language then they are

exactly the quantifier-free definable sets (of course, because the ordering is already

definable using + and ·, adding < to our language does not add any new definable

sets). Using quantifiers one readily sees that amongst other things we can define the

interior and closure of any semialgebraic set. Remarkably, in 1930 1 Tarski proved

that the structure R = 〈R,+, ·, <, 0, 1〉 has quantifier elimination so that in fact

all definable sets in this structure are semialgebraic. In particular, the closure and

interior of a semialgebraic set are semialgebraic.

Tarski-Seidenberg Theorem. 2 There is an effective procedure which, given any

formula φ(x1, . . . , xn) in the language Lord = {+, ·, <, 0, 1} produces a quantifier-free

formula ψ(x1, . . . , xn) such that

R |= φ(x1, . . . , xn)↔ ψ(x1, . . . , xn).

Let us make a couple of remarks about this theorem.

1. The quantifier elimination allows us to deduce many geometric and topological

properties of sets definable in R. For instance, it follows immediately that every

definable subset of R is a boolean combination of sets of the form {x : p(x) = 0}
and {x : p(x) > 0} where p(x) is a polynomial in 1-variable. Consequently every

definable subset of R is a finite union of intervals and points; i.e. R is o-minimal.

Thus the theory of sets definable in o-minimal expansions of fields applies to R,

so, amongst many other things, we get that definable families of sets have a uniform

bound on the number of connected components and all definable sets have a definable

triangulation3. It is worth commenting at this point that the quantifier elimination

allows us to deduce properties of definable sets in R which do not follow from the

general theory of o-minimal expansions of fields. For instance, that every unary

1This result was actually not published until it appeared in [18] in 1948
2Although this theorem was first proved by Tarski it is commonly referred to as the Tarski-

Seidenberg theorem
3This remark is slightly disingenuous; many of the properties which hold for definable sets in

arbitrary o-minimal expansions of fields were proved for semialgebraic sets (and hence for all sets
definable in R) before the notion of o-minimality was invented.
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definable function f : (r,∞) → R is asymptotic to axq for some q ∈ Q and a ∈ R
(see example 2.2.65).

2. The second remark is to highlight the use of the word ‘effective’ in the statement

of the theorem. In Tarski’s own words an effective procedure is one “which tells one

what to do at each step so that no intelligence is required to follow it; and the method

can be applied by anyone so long as he is able to read and follow instructions”.

In particular, given an Lord-sentence one can effectively find a quantifier-free Lord-

sentence with the same truth value in R; this shows that Th(R) is decidable since

it is clear that one can effectively determine the truth-value of a quantifier-free Lord-

sentence.

Much of the subsequent work on structures expanding the real field has been

in trying to find mathematically interesting structures whose definable sets share

some of the good geometric and topological properties of the definable sets in R.

Since the invention of o-minimality in the late 1980’s this has taken the form of

proving that certain expansions of the real field are o-minimal. Let us recall some

significant successes in this direction. The first is the o-minimality of Ran, the real field

expanded by predicates for all bounded semianalytic sets, which was seen by van den

Dries [21] to be a consequence of theorems of  Lojasiewicz and Gabrielov. Gabrielov’s

theorem says that the complement of a subanalytic set is subanalytic. One deduces

from this that the structure Ran is model-complete in the language described above.

Now  Lojasiewicz’s theorem says that all bounded semianalytic sets, and hence all

quantifier-free definable sets in Ran, have finitely many connected components. Since

the number of connected components of a set cannot increase upon projection we

see that Ran is o-minimal. Using the fact that all subanalytic subsets of R2 are in

fact semianalytic van den Dries proves that, as in R, every unary definable function

f : (r,∞) → R is asymptotic to axq for some q ∈ Q and a ∈ R. Notice that this

implies that every such f is eventually bounded by the function x 7→ xn for some n;

i.e. Ran is polynomially bounded.

The structure Ran is often alternatively defined as 〈R, (Fn)n≥0〉 (see example

2.2.66), where F0 contains a constant for every r ∈ R, and, for n ≥ 0, the set Fn

consists of those functions f : Rn → R for which there exists a function g, analytic on

a neighbourhood of [0, 1]n, such that on [0, 1]n the function f is equal to g and outside

[0, 1]n the function f is identically zero; we call f a restricted analytic function. It is

easy to see that both definitions of Ran have the same quantifier-free definable sets, so

model-completeness of the first definition implies the model-completeness of the sec-

ond. A very natural question arising from the second formulation is the following: for
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which F′ ⊂
⋃
n≥0 Fn is 〈R,F′〉 model-complete? Wilkie’s theorem on restricted Pfaf-

fian functions (see section 3.1 for definitions and the full statement of the theorem)

provides a partial answer to this question. The theorem says that if the functions in

F′ are the restrictions of a Pfaffian chain over a set C then 〈R,F′, (c)c∈C〉 is model-

complete. Since (exp) is a Pfaffian chain of length 1, an application of this theorem

tells us that the structure 〈R, exp �[0,1]〉 is model-complete. This is an important step

in Wilkie’s proof that Rexp = 〈R, exp〉 is model-complete. Another key ingredient

is the valuation inequality (theorem 2.2.59) which Wilkie proves for a special class

of polynomially bounded o-minimal theories4, so-called ‘smooth o-minimal theories’,

of which Th(〈R, exp �[0,1]〉) is one (note that since Ran is polynomially bounded it

follows of course that 〈R, exp �[0,1]〉 is polynomially bounded)5. Now Khovanskii’s

theorem tells us that all quantifier-free definable sets in Rexp have finitely many con-

nected components. Combining this with model-completeness we deduce that Rexp is

o-minimal just as we did for Ran.

Now let us begin to turn our attention to the first main result of this thesis. Let

I be some fixed index set and let L′ be the language expanding Lord by a function

symbol fi and a constant symbol ci for each i ∈ I. Now consider an L′-structure

of the form R̃ = 〈R, (xci)i∈I , (ci)i∈I〉, i.e. for each i ∈ I we interpret fi as a power

function with exponent ci. We will let C′ be the class of all such L′-structures. Note

that because every real power function is definable in Rexp the structure R̃ is a reduct

of Rexp and hence is o-minimal. It is natural to ask whether the structure R̃ is

model-complete. It follows immediately from Wilkie’s result on restricted Pfaffian

functions that 〈R, (xci �[1,2])i∈I , (ci)i∈I〉 is model-complete6. Using a special case of

the valuation inequality, Miller obtains a universal axiomatization of Th(R̃) over

Th(〈R, (xci �[1,2])i∈I , (ci)i∈I〉) in the style of Ressayre (albeit using different methods).

From this Miller deduces that R̃ is model-complete.

One way of stating Miller’s result is to say that given any L′-formula φ there exists

an existential L′-formula ψ such that R̃ |= φ ↔ ψ. We ask the following question:

must we choose different existential L-formulas for different members of C′? The first

main theorem of this thesis tells us that in fact we can choose a single ψ which will

work for all members of C′. In fact we prove the following theorem.

4Wilkie’s special case predates the proof of the full result as stated in theorem 2.2.59
5It is worth remarking at this stage that in [15] Ressayre gives a different deduction of the model-

completeness of Rexp from that of 〈R, exp �[0,1]〉 by showing that the ‘with parameters’ theory of an
arbitrary model of Th(Rexp) is axiomatized by the ‘with parameters’ theory of the associated model
of Th(〈R, exp �[0,1]〉) and the ‘without parameters’ theory Texp = Th(Rexp).

6For any r ∈ R the sequence (x−1, xr) is a Pfaffian chain on (0,∞).
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First Main Theorem. Th(C′) is model-complete.

In order to prove this theorem we first generalize Wilkie’s theorem on restricted

Pfaffian functions. This is the content of chapter 3. We complete the proof of the

‘First Main Theorem’ in chapter 4. Making much use of the o-minimality of Rexp

we apply the generalization of Wilkie’s theorem on restricted Pfaffian functions to

prove a version of the ‘First Main Theorem’ for restricted power functions (this is

the content of sections 4.4 and 4.5). In section 4.6 we generalize the work of Miller

mentioned above, using the full strength of the valuation inequality, in order to obtain

the full result.

Let us now return to our second remark about the Tarski-Seidenberg theorem. As

already mentioned, it follows from the effective quantifier elimination for R that Th(R)

is decidable. In the concluding remarks to his paper [18], Tarski asks whether Texp is

decidable. Now Rexp does not admit quantifier elimination [20] so we cannot hope to

reduce the decidability of Rexp to the decidability of the quantifier-free theory of Rexp à

la Tarski. Furthermore, even if we could do this, the decidability of the quantifier-free

theory of Rexp is not trivial as it is for R. In [8], Wilkie and Macintyre are able to use

and extend Wilkie’s model-completeness for Rexp to reduce the problem of proving the

decidability of Texp to that of proving that the existential part of Texp is recursively

enumerable (although they do not prove that Texp is effectively model-complete).

They then go on to prove that the existential part of Texp is recursively enumerable

(and hence Texp is decidable) under the assumption of Schanuel’s conjecture for R,

an established conjecture in transcendental number theory. However, this conjecture

is generally thought to be out of reach of current techniques (even very special cases,

such as the statement that ee is irrational, are open).

In chapter 5 we introduce the theory T∞ which may be defined as follows. Consider

C′, constructed as above, in the special case that the index set I consists of one

element. So L′ = Lord ∪ {f, c}, where f is unary function symbol and c is a constant

symbol, and C′ is the class of all structures of the form 〈R, xr, r〉 where r ∈ R. Then

T∞ = Th(C′) ∪ {c > n : n ∈ N}. Note that by compactness T∞ is consistent and,

since it extends Th(C′), it is model-complete. Each model of T∞ is an expansion of a

non-Archimedean ordered field by a power function with positive infinite exponent.

Second Main Theorem. Texp is decidable if and only if T∞ is decidable.

That the decidability of Texp implies the decidability of T∞ readily follows from the

o-minimality of Texp. In order to prove the reverse implication, using the reduction of

Wilkie and Macintyre, we assume that T∞ is decidable and prove that the existential
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part of Texp is recursively enumerable. To do this we prove a stronger version of the

classical limit formula

lim
y→∞

(
1 +

x

y

)y
= exp(x).

This allows us to approximate the value of the exponential function on finite elements

of models of Texp by the definable function

x 7→
(

1 +
x

λ

)λ
,

where λ is positive infinite. As a corollary to the Second Main Theorem we obtain

the following.

Corollary 1.0.1. Texp is decidable if and only if there is an effective procedure which,

given n ≥ 1 and p ∈ Z[x1, . . . , x2n, x2n+1], terminates if and only if for all positive

integers d the polynomial p(x1, . . . , xn, x
d
1, . . . , x

d
n, d) has a zero in the positive orthant

of Rn.

For the final chapter we consider the problem of extending an arbitrary o-minimal

expansion of a field by an exponential function whilst preserving o-minimality. Fol-

lowing Wilkie’s proof that Rexp is o-minimal, work of Speissegger shows that if R̃
is any o-minimal expansion of the real field then 〈R̃, exp〉 is o-minimal [17]. When

the o-minimal structure under consideration is not an expansion of the real field the

situation is less clear; for a start, one does not have a ready made exponential func-

tion to append. Now, work of van den Dries and Speissegger in [28] (following the

methods of Macintyre, Marker and van den Dries in [26]) shows that if R̃ is a polyno-

mially bounded o-minimal expansion of the real field which defines the exponential

function on [0, 1] then Th(〈R̃, exp, log〉) admits quantifier elimination and a univer-

sal axiomatization over Th(R̃). We consider the situation where R is an o-minimal

expansion of an ordered field which defines a restricted exponential function and has

field of exponents cofinal in its prime model P . We are then able to naturally con-

struct an exponential function Ẽ on P . Adapting the methods of [26] we prove that

Th(〈P , Ẽ,Log〉) (where Log is the compositional inverse of Ẽ) admits quantifier elim-

ination and a universal axiomatization over Th(P). Finally we prove that 〈P , Ẽ〉 is

o-minimal. From this we easily deduce the third main theorem.

Third Main Theorem. Let R be an o-minimal expansion of a field which defines an

exponential function E on [0, 1] and has field of exponents cofinal in its prime model.

Then there is an elementary extension S of R which supports a (global) exponential

function Ẽ which extends E. Furthermore the expansion of S by this exponential

function is o-minimal.
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Chapter 2

Preliminaries
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2.1 Notation and conventions

Let us briefly set out some of the notation and conventions that will be used through-

out this thesis. We will typically denote model-theoretic structures by A,B, . . . and

their domains by A,B, . . .. If we say that a subset X of An is definable (in the struc-

ture A) this will mean ‘definable with parameters from A’. We will say that X is

C-definable, where C is a subset of A, if X is definable with parameters taken only

from C, and we will say that X is 0-definable if it is ∅-definable. If we simply say

that X is definable in A we mean that X is a subset of An, for some n ≥ 1, which is

definable in the structure A. If A is an L-structure and φ(x1, . . . , xn) is an L-formula

we will write φ(A) to denote the subset of An defined by φ(x1, . . . , xn) in A. We will

not normally distinguish notationally between non-logical symbols in a first order

language and their interpretations in a given structure; a notable exception to this

is in our treatment of power functions in chapter 4. We will let Lord = {+, ·, <, 0, 1}
denote the language of ordered rings. If L ⊃ Lord and A is an L-structure we will

denote the Lord-reduct of A by A. In particular R = 〈R,+, ·, <, 0, 1〉. If A expands

an ordered field we will let Pos(A) denote the (definable) set {x ∈ A : x > 0}. If A
expands a real closed field and r̄ = (r1, . . . , rn) ∈ An we will let ‖r̄‖ denote the Eu-

clidean norm of r̄. If φ(ȳ, x̄) is a formula and we wish to consider the definable family

given by φ(ȳ, x̄) by varying the interpretations of the variables ȳ we may denote the

formula by φȳ(x̄). Finally, if we say that a structure A is model-complete or admits

quantifier elimination we mean that its theory Th(A) has this property.

2.2 o-minimality

Throughout this thesis o-minimality will play a large role. Here we recall some defi-

nitions and results from the theory of o-minimal structures.

Definition 2.2.1. LetR = 〈R,<, . . .〉 be a structure expanding 〈R,<〉, a dense linear

order without endpoints. The structure R is said to be o-minimal if every definable

subset of R is a finite union of intervals and points (i.e. singletons).

Remark 2.2.2. By an interval in 〈R,<〉 we mean a set of one of the following forms:

1. (a, b) where a, b ∈ R ∪ {±∞} with a < b,

2. [a, b) where a ∈ R and b ∈ R ∪ {+∞} and a < b,

3. (a, b] where a ∈ R ∪ {−∞} and b ∈ R and a < b,

8



4. [a, b] where a, b ∈ R and a < b.

Example 2.2.3. Let R = 〈R,<〉 be a dense linear order without endpoints. Since

the theory of dense linear orders without endpoints has quantifier elimination R is

o-minimal.

Example 2.2.4. Let R = 〈R,+, ·, <, 0, 1〉. A theorem of Tarski [18] says that R has

quantifier elimination so definable subsets of R are boolean combinations of sets of

the form {x ∈ R : p(x) = 0} and {x ∈ R : p(x) > 0} where p ∈ R[X], consequently R
is o-minimal.

Example 2.2.5. Let Rexp = 〈R, exp〉. It is a theorem of Wilkie [29] that Rexp is

o-minimal. We will say more about this later (example 2.2.67).

2.2.1 Topological properties

Unless otherwise stated, all results in this section can be found in [24].

LetR be an o-minimal structure. ThenR carries a natural topology on R induced

by its ordering; i.e. the topology whose basic open sets are the open intervals of R

with endpoints in R ∪ {±∞}. For each n ≥ 2 we give the Cartesian power Rn the

product topology. Notice that for any n ≥ 1 the family of all open boxes of Rn forms

a definable family and a basis for the topology on Rn.

Notice that if R expands 〈R, <〉 then the topology on R is just the Euclidean

topology and the definable subsets of R are precisely those with finitely many con-

nected components. This is because the only connected subsets of R are the intervals

and the singletons. Of course there are dense linear orders which are totally dis-

connected so it is not the case in general that if R is o-minimal then the definable

subsets of R are those with finitely many connected components. However, consider

the following weakening of the notion of connectedness.

Definition 2.2.6. Let R be o-minimal. A definable subset X of Rn is definably

connected if it is not the disjoint union of two non-empty definable, relatively open

subsets.

Now we introduce the notion of a cell and state the cell decomposition theorem.

This will tell us that in fact, in an o-minimal structure all definable sets (i.e. in any

Cartesian power) have finitely many definably connected components.

Definition 2.2.7. The cells of Rn are defined inductively on n as follows.

9



1. The cells of R are of the from (a, b) and {a}, where a and b are 0-definable.

2. The cells of Rn+1 are of one of the following forms:

(a) graph(f), where f is a 0-definable continuous map with domain C, a cell

in Rn,

(b) (f, g)C , or (f,∞)C or (−∞, f)C , where f and g are 0-definable continuous

maps with domain C, a cell in Rn, and

(f, g)C = {(x̄, y) ∈ C ×R : f(x̄) < y < g(x̄)},

(f,∞)C = {(x̄, y) ∈ C ×R : f(x̄) < y},

(−∞, f)C = {(x̄, y) ∈ C ×R : y < f(x̄)}.

The following lemma is proved by induction.

Lemma 2.2.8. Cells are definably connected.

We say that a finite collection C of cells in Rn is a partition of Rn if the cells in

C are pairwise disjoint and their union covers Rn. We will say that a partition C is

compatible with a definable set X ⊆ Rn if for all C ∈ C either C ⊆ X or C ∩X = ∅.

Theorem 2.2.9. [Cell decomposition theorem] Let X be a 0-definable subset of Rn.

Then there exists a partition C of Rn into cells, compatible with X. Furthermore, if

f : X → R is 0-definable then the collection C can be chosen so that if C ∈ C and

C ⊆ X then f is continuous on C.

It follows from lemma 2.2.8 and the cell decomposition theorem that in an o-

minimal structure all 0-definable sets have finitely many definably connected com-

ponents. In fact it is not difficult to deduce the following stronger result about sets

definable with parameters.

Theorem 2.2.10. Let R be an o-minimal structure and let S ⊆ Rn×Rm be definable.

Then there exists a natural number M (depending on S) such that for any ā ∈ Rn

the set Sā = {x̄ ∈ Rm : (ā, x̄) ∈ S} has at most M definably connected components.

So in an o-minimal structure definable sets have finitely many definably connected

components and furthermore, for a definable family of definable sets there is a uniform

bound (i.e. a bound depending only on the family) on the number of definably

10



connected components of each set in the family. We remarked above that for o-

minimal structures expanding R, if X is a definable subset of R then X is connected

if and only if X is definably connected. In fact this holds for Cartesian powers of R,

i.e. for any n ≥ 1, if X is a definable subset of Rn then X is connected if and only if

X is definably connected. So for o-minimal expansions of the real field, all definable

sets have finitely many connected components and indeed for every definable family

there is a uniform bound on the number of connected components of each set in the

family.

A number of topological properties of R generalize to arbitrary o-minimal struc-

tures when we insert the word ‘definable’ at appropriate points in their statement.

For instance, it is easy to see that the usual intermediate value theorem holds for de-

finable continuous functions. For another example of this consider the classical result

that says: if X is a closed and bounded subset of Rn and f : X → Rm is continuous

then f(X) is closed and bounded. For an arbitrary o-minimal structure R we have

the following theorem.

Theorem 2.2.11. Let X be a closed and bounded definable subset of Rn and let

f : X → Rm be a definable continuous map. Then f(X) is closed and bounded.

Remark 2.2.12. Bounded means contained in [−a, a]n for some a ∈ Pos(R).

2.2.1.1 Dimension

Let R be an o-minimal structure and let X be a definable subset of Rn. We define

dim(X), the dimension of X, to be the largest natural number k ≤ n such that for

some projection π : Rn → Rk the set π(X) has non-empty interior in the ambient

space Rk (note that the projection of X onto R0 has non-empty interior if and only if

X is non-empty). If X is empty we set dim(X) = −∞. Using the cell decomposition

theorem one obtains a number of desirable properties for this dimension.

Theorem 2.2.13.

1. dim(Rn) = n for all n ≥ 1.

2. If X is definable then dim(X) = −∞ if and only if X is empty and dim(X) = 0

if and only if X is finite.

3. If X and Y are definable and f : X → Y is a definable bijection then dim(X) =

dim(Y ).
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4. If X, Y ⊆ Rn are definable then dim(X ∪ Y ) = max{dim(X), dim(Y )}.

5. Let S be a definable subset of Rn × Rm. For each d ∈ {−∞, 0, 1, . . . ,m} let

S(d) = {x̄ ∈ Rn : dim(Sx̄) = d}. Then S(d) is definable and

dim{(x̄, ȳ) ∈ S : x̄ ∈ S(d)} = dim(S(d)) + d.

6. If f is a definable function on X then the set

Y = {x̄ ∈ X : f is continuous at x̄}

is definable and large in X,i.e. dim(X \ Y ) < dim(X).

2.2.2 Model-theoretic properties

We recall here some important model-theoretic properties of o-minimal structures

which we shall make frequent use of throughout the course of this thesis. All the

material in this section is standard and can be found in [9], [22].

Theorem 2.2.10 is listed as a topological property of o-minimal structures but it

has the following very important corollary.

Theorem 2.2.14. o-minimality is preserved under elementary equivalence - i.e. if

R is o-minimal and R′ is elementarily equivalent to R then R′ is o-minimal.

Remark 2.2.15. We will say that a complete theory T is o-minimal if one of its models

is o-minimal. It follows from theorem 2.2.14 that all models of a complete o-minimal

theory are o-minimal.

2.2.2.1 Definable closure and rank

Let R be an arbitrary o-minimal structure. Given A ⊆ R we define the definable

closure of A, written dcl(A), to be the union of all A-definable singletons; i.e. b ∈
dcl(A) if and only if there is a formula φ(x) with parameters from A such that

φ(R) = {b}. One can show that dcl is a pregeometry on R, i.e. it satisfies the

following properties:

1. if A ⊆ R then A ⊆ dcl(A),

2. if A ⊆ R then dcl(dcl(A)) = dcl(A),

3. if A ⊆ R and b ∈ R such that b ∈ dcl(A) then there exists A0, a finite subset of

A, such that b ∈ dcl(A0),
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4. if A ⊆ R and a, b ∈ R such that b ∈ dcl(A∪{a})\dcl(A) then a ∈ dcl(A∪{b}).

Remark 2.2.16. Properties (1)-(3) are satisfied by dcl in any first-order structure.

Property (4) is a consequence of the monotonicity theorem for o-minimal structures

(see for instance [24]).

Given X ⊆ R we say that X is definably closed if X = dcl(X).

Now, because dcl is a pregeometry on R it determines a notion of independence

for subsets of R. Namely, if X ⊆ R we say that X is independent if for all x ∈ X
we have x /∈ dcl(X \ {x}). A subset B of a set Y is said to be a basis for Y if it

is maximal amongst independent subsets of Y . It follows from the fact that dcl is a

pregeometry that if B1 and B2 are bases for a set Y then B1 and B2 have the same

cardinality; we define this cardinality to be the rank of the set Y , written rk(Y ).

If A ⊆ R we may write dclA(X) to denote dcl(A ∪ X). Note that dclA is also

a pregeometry (it is just definable closure in the o-minimal structure expanding R
where we take constant symbols for elements of A). We will sometimes write rk(X|A)

to denote the rank of X with respect to dclA.

The notions of rank and dimension are connected by the following lemma.

Lemma 2.2.17. Let r̄ ∈ Rm and suppose that rk(r̄|A) = n. Then there exists X

an n-dimensional A-definable subset of Rm containing r̄, and r̄ is not contained in

any A-definable sets of dimension strictly smaller than n. Conversely, if X is an

n-dimensional A-definable set then, in an (|A|+ |L|)+-saturated elementary extension

of R (where L is the language of R), X contains a point r̄ with rk(r̄|A) = n.

If X is an A-definable set of dimension n then a point ā ∈ X with rk(ā|A) = n is

called a generic point of X over A. If we say that ā is a generic point of X without

mentioning a set of parameters we mean generic over ∅. The above lemma tells us

that we can always find generic points by passing to sufficiently saturated elementary

extensions. The following lemma tells us that in an important special case we do not

need to pass to an elementary extension in order to find generic points.

Lemma 2.2.18. Let R̃ be an o-minimal expansion of R in a countable language and

let A ⊆ R be a countable set of parameters. If X is a non-empty A-definable set in

R̃, then X contains a point generic over A.

Sketch of proof. Suppose X ⊆ Rn. By taking a suitable projection of X if necessary,

we may assume that X has interior in Rn. It follows from lemma 2.2.17 that it is

sufficient to find a point r̄ in X such that r̄ is not contained in any A-definable subsets
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of X of strictly smaller dimension, i.e. we must prove that X is not covered by its

A-definable subsets of strictly smaller dimension. To see this we note that there only

countably many A-definable subsets of X of strictly smaller dimension since R̃ has a

countable language, furthermore each such set has empty interior in Rn. It follows

from the Baire category theorem that their union has empty interior and hence does

not cover X.

2.2.2.2 Definable Skolem functions and prime models

Let us now assume that our o-minimal structure R expands an ordered group. We

must also assume that R has a 0-definable non-zero element, i.e. there exists r ∈
R \ {0} such that {r} is definable in R (this is required for the proof of lemma

2.2.19). Of course this assumption holds for all o-minimal expansions of fields. Both

of these assumptions hold for all o-minimal structures considered in this thesis.

Lemma 2.2.19. Let A ⊆ R and let S ⊆ Rn × Rm be A-definable. Let π(S) be the

projection of S onto Rn. Then there exists an A-definable function f : π(S) → Rm

such that graph(f) ⊆ S.

Lemma 2.2.19 says that R has definable Skolem functions. It follows that if

A ⊆ R then dcl(A) is the domain of an elementary substructure of R. Consequently

o-minimal theories have unique prime models. The following lemma makes this state-

ment precise.

Lemma 2.2.20. Let A ⊆ R. Then there exists S, an elementary substructure of R
containing A, with the property that if M |= Th(〈R, (a)a∈A〉) then S embeds elemen-

tarily inM over A (and the domain of S is just dclR(A)). We call S the prime model

of R over A.

Notation 2.2.21. If R is an o-minimal expansion of a group and S is an elementary

extension of R and X ⊆ S then we write R〈X〉 to denote the prime model of S over

R ∪ X, i.e. the elementary substructure with domain dcl(R ∪ X). If X = {x} we

write R〈x〉 instead of R〈{x}〉.

Let us record one more consequence of lemma 2.2.19 which we will use throughout

this thesis. First we state a lemma which holds for all first-order theories.

Lemma 2.2.22. Let T be a first-order theory and suppose that T has the property

that for any formula φ(x̄, y) such that T |= ∀x̄∃yφ(x̄, y) there exists a function symbol

fφ such that T |= ∀φ(x̄, fφ(x̄)). Then T admits quantifier elimination and a universal

axiomatization.
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Proof. Model-complete universal theories admit quantifier elimination (see remark

2.3.5 below). Consequently it is sufficient to prove that if B |= T and A ⊆ B then

A 4 B. This is immediate from the Tarski-Vaught test.

Remark 2.2.23. It follows from lemma 2.2.19 and lemma 2.2.22 that if we let R′ be

the expansion of R by a function symbol for each 0-definable function Rn → R (for

varying n ≥ 0) then Th(R) has quantifier elimination and a universal axiomatization.

2.2.2.3 Types and embeddings

Let R be an arbitrary o-minimal structure and let A be a definably closed subset of

R. It follows immediately from the o-minimality of R that for any a ∈ R the type

of a over A is determined by its cut in A. Consequently, in the case that R expands

an ordered group and has a 0-definable non-zero element (so that the results from

section 2.2.2.2 hold) we have the following lemma.

Lemma 2.2.24. Let T be an o-minimal theory and let R,R′ |= T . Suppose that

A 4 R and A′ 4 R′ and that φ : A → A′ is an isomorphism. Suppose further that

a ∈ R and a′ ∈ R′ and the image of the cut in A made by a under φ is exactly the

cut in A′ made by a′. Then φ extends uniquely to an isomorphism φ+ between A〈a〉
and A′〈a′〉 such that φ+(a) = a′.

2.2.3 Differentiability in o-minimal expansions of fields

A more detailed development of the material in this section, including proofs, can be

found in [24].

Let R be an o-minimal structure and suppose that R expands an ordered field.

In the presence of this ordered field structure, given a definable f : (a, b)→ R and a

point c ∈ (a, b) we may consider the limit

lim
y→c

f(y)− f(c)

y − c
.

It follows from the monotonicity theorem for o-minimal structures that this limit

takes a value in R ∪ {±∞}. Just as in R we say that f is differentiable at c if the

limit exists in R (of course we don’t actually need to assume o-minimality in order to

make this definition). Note that it is immediate from the definition of the derivative

that if f is differentiable on (a, b) then its derivative f ′ : (a, b)→ R is definable.

It is an immediate consequence of o-minimality that the mean value theorem holds

in R under the additional assumption that the function is definable.
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Lemma 2.2.25 (Mean value theorem). Let f : [a, b] → R be definable, continuous

on [a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Of course we can also take partial derivatives of functions of many variables: let

U be an open definable subset of Rn and let f : U → R be definable. The function

f is said to be Cn at x̄ ∈ U , where n ≥ 1, if all its partial derivatives upto order n

exist and are continuous in a neighbourhood of x̄. Again it is immediate from the

definition of the derivative that for each i = 1 . . . n the partial derivative ∂f
∂xi

: U → R

is also definable. A definable function f = (f1, . . . , fm) : U → Rm is said to be Cn

at x̄ ∈ U if f1, . . . , fm are Cn at x̄. We say that f is Cn on U if it is Cn at x̄ for all

x̄ ∈ U . We will say that a definable function is smooth or C∞ if it is Cn for every

n ≥ 1. If X is an arbitrary definable set and f : X → Rm is a definable function, we

will say that f is Cn (or C∞) on X if there exists U , a definable open neighbourhood

of X, and g : U → Rm, a definable Cn (or C∞) map on U , such that g � X = f . If

we are working in an o-minimal expansion of the real field then we say a definable

function f is analytic on a definable set X if it is the restriction of a definable analytic

function on a open neighbourhood of X.

Stronger versions of the cell decomposition theorem hold in arbitrary o-minimal

expansions of fields. For each n ≥ 0 we define the collection of Cn cells in the same

way as we defined cells, with the additional requirement that all functions involved

should be Cn.

Theorem 2.2.26 (Cn cell decomposition). Take n ≥ 1 and let X be a 0-definable

subset of Rm and f : X → R be a 0-definable map. Then there exists a partition C

of Rm into Cn cells, compatible with X, such that if C ∈ C and C ⊆ X then f is Cn

on C.

Remark 2.2.27. Theorem 2.2.26 is often stated by the phrase “arbitrary o-minimal

expansion of fields admit Cn cell decomposition for every n”. Given R, an arbitrary

o-minimal expansion of a field, one can ask whether it admits C∞ cell decomposition,

i.e. does theorem 2.2.26 hold in R when Cn is replaced by C∞? In the same way, if

working in an arbitrary o-minimal expansion of the real field, one can ask whether

it has analytic cell decomposition. In [7], Rolin and Le Gal exhibit an o-minimal

expansion of the real field which does not have C∞ cell decomposition and so the

answers to these questions are not always yes. However, smooth and analytic cell

decomposition has been established in special cases. In this thesis we will use only

the fact that Rexp admits analytic cell decomposition [27].
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Theorem 2.2.28. Let X ⊆ Rm be definable and let f : X → Rn be a definable

function. For each k ≥ 1 there exists a definable subset Y of X (depending on k)

such that Y is open in X, the function f is Ck on Y , and Y is large in X (i.e.

dim(X \ Y ) < dim(X)).

Remark 2.2.29. Theorem 2.2.28 is a strong version of part (6) of lemma 2.2.13. Just

as part (6) of lemma 2.2.13 is proved using the cell decomposition theorem, lemma

2.2.28 is proved using theorem 2.2.26.

Notation 2.2.30. Let U be a definable open subset of Rn and let f = (f1, . . . , fm) :

U → Rm be a definable function. If f is C1 at x̄ we will use the notation

∂(f1, . . . , fm)

∂(xi1 , . . . , xik)
(x̄)

to denote the matrix 
∂f1

∂xi1
(x̄) . . . ∂f1

∂xik
(x̄)

...
. . .

...
∂fm
∂xi1

(x̄) . . . ∂fm
∂xik

(x̄)

 .

We write Jf (x̄) to denote ∂(f1,...,fm)
∂(x1,...,xn)

(x̄).

Many classical theorems of differential calculus go through for arbitrary o-minimal

expansions of fields.

Theorem 2.2.31 (Inverse function theorem). Let U be a definable open subset of Rm

and let f = (f1, . . . , fm) : U → Rm be a definable function. Let ā ∈ U and suppose

that f is C1 at U and that Jf (ā) is invertible. Then there exists a definable open

neighbourhood V of ā such that f(V ) is open and f is invertible on V with (definable)

C1 inverse. Furthermore if g denotes the inverse then for x̄ ∈ V we have

Jg(f(x̄)) = Jf (x̄)−1.

From this one deduces the implicit function theorem in the usual way.

Theorem 2.2.32 (Implicit function theorem). Let U be a definable open subset of

Rn × Rm and let f = (f1, . . . , fm) : U → Rm be a definable C1 function. Let ā =

(a1, . . . , an+m) ∈ U and suppose that f(ā) = 0 and the m×m matrix

∂(f1, . . . , fm)

∂(xn+1, . . . , xn+m)
(ā)
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is invertible. Then there exists V a definable open neighbourhood of (a1, . . . , an) and

W a definable open neighbourhood of (an+1, . . . , an+m) and a definable C1 function

φ : V → Rm such that

{x̄ ∈ Rn ×Rm : f(x̄) = 0} ∩ (V ×W ) = graph(φ).

Furthermore, for ȳ ∈ V

Jφ(ȳ) = −
(

∂(f1, . . . , fm)

∂(xn+1, . . . , xn+m)
(ȳ, φ(ȳ))

)−1(
∂(f1, . . . , fm)

∂(x1, . . . , xn)
(ȳ, φ(ȳ))

)
.

The usual Taylor’s theorem (with the Lagrange form for the remainder) goes

through for definable functions. Here we state a version, which we will use in chapter

3, for functions defined on the closed unit box. Let f : [0, 1]m → R be a definable

function. For the purposes of the statement of this lemma only (and contrary to our

previous convention), we will say that f is Cn if f has continuous partial derivatives

on [0, 1]m upto order n, where limits are taken to be one-sided when necessary.

Theorem 2.2.33 (Taylor’s Theorem on the closed unit box). Let f : [0, 1]n → R

be Cm+1 and definable. Then for all x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn) ∈ [0, 1]n there

exists z̄ on the line segment between x̄ and ȳ such that

f(ȳ) =
m∑
j=0

 1

j!

(
n∑
i=1

(yi − xi)
∂

∂xi

)j

f

 (x̄) +

 1

(m+ 1)!

(
n∑
i=1

(yi − xi)
∂

∂xi

)m+1

f

 (z̄).

2.2.4 Power functions and exponentials

The elementary results about power functions and exponentials in this section can be

found in [13].

2.2.4.1 Power Functions

Let F be an ordered field. A power function on F is an endomorphism of the multi-

plicative group of positive elements of F .

Example 2.2.34. For each q ∈ Q the map x 7→ xq : Pos(R) → Pos(R) is a power

function. Indeed, for any r ∈ R the map x 7→ xr : Pos(R) → Pos(R) (where

xr = exp(r log(x))) is a power function. Hence note that for any r ∈ R, the power

function x 7→ xr is definable in the o-minimal structure Rexp.
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Now let R be an o-minimal expansion of an ordered field and let f : Pos(R) →
Pos(R) be a definable power function.

Lemma 2.2.35.

1. f is identically equal to 1 or f is an automorphism of 〈Pos(R), ·〉.

2. f is differentiable with f ′(r) = f ′(1)f(r)
r

.

3. f is monotonic; if f ′(1) > 0 then f is strictly monotone increasing, if f ′(1) < 0

then f is strictly monotone decreasing and if f ′(1) then f is constantly 1.

Proof.

1. 〈Pos(R), ·, f〉 is an o-minimal expansion of a group and o-minimal expansions

of groups have no proper definable subgroups. The result follows.

2. Note that if r > 0 and h ∈ R is sufficiently small then

f(r + h)− f(r)

h
=
f(r)

r

(
f(1 + hr−1)− 1

hr−1
.

)
Consequently f is differentiable at r if and only if f is differentiable at 1. Since

f must be differentiable at all but finitely many points (lemma 2.2.28) we see

that f is everywhere differentiable with derivative as stated.

3. This is immediate from (2) and the mean value theorem for o-minimal structures

(lemma 2.2.25).

Remark 2.2.36. Note that the map x 7→ f(x)
x

is a definable power function. Conse-

quently, it follows from (2) that f is infinitely differentiable.

Given a definable power function f in R, we call f ′(1) its exponent and, following

the convention in R, if f ′(1) = r we denote f by xr. The following lemma justifies

this notation:

Lemma 2.2.37. Let f and g be definable power functions in R and suppose that

f ′(1) = g′(1). Then f = g.

Proof. Note that f
g

is a power function with exponent 0. The result follows from

lemma 2.2.35 (3).
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The next lemma states further elementary properties of power functions definable

in an o-minimal expansion of an ordered field R.

Lemma 2.2.38. Let xr, xs be power functions definable in R.

1. The product xr · xs is a (definable) power function with exponent r + s.

2. The quotient 1
xr

is a power function with exponent −r.

3. x 7→ 1 is a power function with exponent 0.

4. The composition (xr)s is a power function with exponent rs.

5. The compositional inverse of xr is a power function with exponent r−1.

6. The identity map x 7→ x is a power function with exponent 1.

Proof. Immediate.

It follows immediately from lemma 2.2.38 that for R an o-minimal expansion of

a field, the set of r ∈ R such that there exists a definable power function in R with

exponent r is a subfield of R. This field is called the field of exponents of R.

2.2.4.2 Exponentials

Let F be an ordered field. An exponential on F is a homomorphism from the additive

group of F to the multiplicative group of positive elements of F .

Example 2.2.39. The map x 7→ exp(x) : R → R is an exponential function on the

ordered field of real numbers. Note that exp is of course definable in the o-minimal

structure Rexp.

Now letR be an o-minimal expansion of a field and let f be a definable exponential

function on R.

Lemma 2.2.40.

1. If f is not identically equal to 1 then f is an isomorphism between 〈R,+〉 and

〈Pos(R), ·〉.

2. f is differentiable with f ′(x) = f ′(0)f(x).

3. f is monotonic; if f ′(0) > 0 then f strictly monotone increasing, if f ′(0) < 0

then f is strictly monotone decreasing and if f ′(0) = 0 then f is identically

equal to 1.
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Proof. The proof is similar to that of lemma 2.2.35.

Remark 2.2.41. It follows from (2) that a definable exponential function in an o-

minimal structure is in fact infinitely differentiable.

Lemma 2.2.42. If f and g are definable exponential functions in the structure R
and f ′(0) = g′(0) then f = g.

Proof. Note that f
g

is an exponential. Now use lemma 2.2.40 part (3).

Remark 2.2.43. Note that if R defines a non-trivial exponential f then for any r ∈ R
one obtains a definable exponential g in R such that g′(0) = r by setting

g(x) = f

(
rx

f ′(0)

)
.

Lemma 2.2.44. If R defines a non-trivial exponential function then R has field of

exponents R.

Proof. Let f be a non-trivial exponential function definable in R and let r ∈ R. The

map x 7→ f(rf−1(x)) : Pos(R)→ Pos(R) is a power function with exponent r.

Lemma 2.2.45. If f is a definable exponential function in the structure R and

f ′(0) > 0 then for all r ∈ R

f(x)

xr
→ +∞ as x→ +∞.

Proof. Let r ∈ R and let g(x) = f(x)
xr+1 . Then

g′(x) =
f(x)

xr+2
(xf ′(0)− r + 1) .

So g′ is eventually positive. Since g(x) is always positive we can find R > 0 such that

g(x) > R for large x. Therefore f(x)
xr

= xg(x)→ +∞ as x→ +∞.

We call an o-minimal expansion of a field exponential if it defines a non-trivial

exponential function.

Lemma 2.2.46. Let R be exponential o-minimal expansion of a field. Then R 0-

defines the exponential function f satisfying f ′(0) = 1.

Proof. Suppose that R defines a non-trivial exponential function. By remark 2.2.43,

R defines (with parameters) the unique exponential function f satisfying f ′(0) = 1.

Let φ(z̄, x, y) be a formula (without parameters) and let r̄ be a tuple in R such that

φ(r̄, x, y) defines the function f(x) = y. The set consisting of parameters ā such that

φ(ā, x, y) defines f(x) = y is 0-definable by a formula (with free variables z̄) saying
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φz̄(x, y) is the graph of an exponential function with derivative at 0 equal

to 1.

Let θ(z̄) be such a formula. Then ∃z̄(θ(z̄) ∧ φ(z̄, x, y)) defines f(x) = y without

parameters.

Corollary 2.2.47. Let R be an exponential o-minimal structure and let R′ ≡ R.

Then R′ is exponential.

2.2.4.3 Miller’s dichotomy and piecewise uniform asymptotics

We say that an o-minimal expansion of a field R is power-bounded if for all definable

functions f : R → R there exists k in the field of exponents of R such xk > f(x) for

all sufficiently large x. We say that R is polynomially bounded if R is power-bounded

and has Archimedean field of exponents (so that for any definable function f : R→ R

there exists n ∈ N such that xn > f(x) for all sufficiently large x). By lemma 2.2.45

an exponential o-minimal structure is not power-bounded. Perhaps surprisingly, the

converse holds.

Theorem 2.2.48 (Miller’s dichotomy [13]). Let R be an o-minimal expansion of a

field. If R is not power bounded then R is exponential.

Corollary 2.2.49. If R is a power-bounded and R′ ≡ R then R′ is power bounded.

Proof. This follows from corollary 2.2.47 and theorem 2.2.48.

We now restrict our attention to power-bounded o-minimal expansions of fields.

So let R be a power-bounded o-minimal expansion of a field with field of exponents

K. The next theorem tells us that every definable function f : R→ R is asymptotic

to a constant multiple of a definable power function xr (we call r the exponent at

∞ of f) and furthermore that a definable family of functions R → R can have only

finitely many different exponents at ∞.

Theorem 2.2.50 (Piecewise uniform asymptotics [13]). Let f : A × M → M be

definable, where A ⊆ Mn. Suppose that for all ā ∈ A the map x 7→ f(ā, x) is

ultimately non-zero. Then there exists k1, . . . , km ∈ K and a definable function b :

A → M such that for any fixed ā ∈ Mn there exists i ∈ {1, . . . ,m} such that the

function x 7→ f(ā, x) is asymptotic to b(a)xki.
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As a consequence of this theorem we see that if xr is definable in R, a power-

bounded o-minimal expansion of a field with field of exponents K, then xr is 0-

definable in R. Hence K is contained within the prime elementary submodel of R
and if R′ ≡ R then the isomorphism between their prime models restricts to an

isomorphism between their fields of exponents.

2.2.5 Valuation theory

Let F be any ordered field and let V be a convex subring of F (containing 1). One

easily sees that V is a valuation ring for F , i.e. for any x ∈ F \ {0} we have x ∈ V
or x−1 ∈ V . So the pair (F, V ) forms a valued field. We form the residue field and

value group in the usual way. Let us describe this process. The ring V has unique

maximal ideal µV given by

µV = {r ∈ F× : |r|−1 > x for all x ∈ V } ∪ {0};

note that µV is also convex in R. Since µV is a maximal ideal in V the quotient V/µV

is a field, which is known as the residue field and denoted by V . The image of r ∈ F
under the quotient map V → V is denoted by r̄. The group of units of V , denoted

Un(V ), is given by V \ µV . The quotient F×/Un(V ) is called the value group and

is denoted by ΓV . We let v denote the quotient map F× → ΓV . As is customary we

write ΓV as an additive group so we have

(v1) v(xy) = v(x) + v(y).

We give ΓV the structure of a totally ordered group by setting

v(x) ≥ 0 if and only if x ∈ V.

One checks easily that

(v2) v(x+ y) ≥ min{v(x), v(y)}.

We will make use of the following lemma which holds for any valued field.

Lemma 2.2.51. Let x1, . . . , xn ∈ F× be such that v(xi) ≤ v(xj) whenever i ≤ j and

suppose that x1 + . . .+ xn = 0. Then v(x1) = v(x2).

The following statement describes the interaction between the ordering on the

value group ΓV and the ordering on the field F :

v(x) ≥ v(y) if and only if |x| ≤ r|y| for some r ∈ V .
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Example 2.2.52. Let F be any ordered field and let Fin(F ) be the convex hull of

Q in F ; i.e. Fin(F ) = {x ∈ F : |x| < q for some q ∈ Q}. Then Fin(F ) is a convex

subring of F containing 1. If Fin(F ) = F we say that F is Archimedean, otherwise we

say that F is non-Archimedean. We call the elements of Fin(F ) finite, the elements

of the maximal ideal infinitesimals and the elements of F \ Fin(F ) infinite. Notice

that we have v(x) = v(y) if and only if there exists n,m ∈ N such that n|x| ≥ |y| and

m|y| ≥ |x|, i.e. if and only if x and y are in the same Archimedean class of F .

Now let R be a power-bounded o-minimal expansion of a field with field of ex-

ponents K and let V be a convex subring of R. If Un(V ) is closed under raising to

powers from K then one can give ΓV the structure of a K-vector space by setting

kv(x) = v(xk) for each x ∈ R× and k ∈ K. That this is well-defined follows from the

assumption that Un(V ) is closed under raising to powers from K.

2.2.5.1 T-convexity

We will now introduce the notion of a T -convex subring on an o-minimal expansion of

a field R. These will be convex subrings of R which respect the additional structure

on R. For a full development of the theory of T -convex subrings see [25], [23].

Notation 2.2.53. The ‘T ’ in the statement “V is a T -convex subring of R” is tacitly

assumed to be the theory of R. If we have already named the theory of R to be

something other than ‘T ’, for instance T ′, we will refer to a T ′-convex subring of R.

So let R be an o-minimal expansion of a field and let T be its theory. A convex

subring of V is said to be T -convex if for every 0-definable continuous function f :

R→ R we have that f(V ) ⊆ V .

Example 2.2.54. Let R be a polynomially bounded o-minimal expansion of a field

with an Archimedean prime model. Let T denote the theory of R. We claim that any

convex subring of R is T -convex. To see this let V be a convex subring of R and let

f : R → R be a 0-definable continuous function. Since R is polynomially bounded

and has Archimedean prime model there exists n,m ∈ N such that

T |= ∀x(|x| > m→ |f(x)| < |x|n).

Furthermore by theorem 2.2.11 there exists M ∈ N such that

T |= ∀x(|x| ≤ m→ |f(x)| ≤M).
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So

T |= ∀x(|f(x)| ≤ max{M, |x|n}).

Let a ∈ V then |f(a)| ≤ max{M, |a|n} ∈ V . So we are done.

There are convex subrings which are not T -convex.

Example 2.2.55. Let R be a non-Archimdean model of Texp. Let a be a positive

infinite element of R and let V be the convex hull of the subring of R generated by

a. Clearly this is a convex subring of R but it is not closed under exp so it is not a

Texp-convex subring.

The following theorem characterizes T -convex subrings.

Theorem 2.2.56 ( [25]). Let R be an o-minimal expansion of a field and let V be a

convex subring of R. Then V is T -convex if and only if V is the convex hull of an

elementary substructure of R.

That convex hulls of elementary substructures give T -convex subrings is straight-

forward. The reverse implication is a consequence of the following lemma.

Lemma 2.2.57. Let R be an o-minimal expansion of a field and let V be a T -convex

subring of R. Let

C = {R′ : R′ 4 R and R′ ⊆ V }

and consider C as partially ordered by inclusion (note that C is non-empty because it

contains the prime elementary submodel of R). Then S is maximal in C if and only

if S = V , i.e. the image of S under the residue map is V . Furthermore if S1 and S2

are maximal in C then there is a unique isomorphism h : S1 → S2 such that x = h(x).

Remark 2.2.58. Note that if R′ is a maximal amongst elementary substructures of

R contained in V then the map x 7→ x̄ : R′ → V is a ring isomorphism. Using

this isomorphism we can make V into a model of T . Lemma 2.2.57 tells us that this

process is in fact independent of our choice R′. From now on whenever we refer to a

residue field arising from a T -convex valuation ring we consider it as a model of T .
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2.2.5.2 The Valuation Inequality and the Valuation Property

In this section we state the Valuation Inequality and the Valuation Property for

power-bounded o-minimal theories.

Let T be a complete power-bounded o-minimal theory with field of exponents K.

Note that for any model R of T , if V is any T -convex subring of R then Un(V ) is

closed under raising to powers from K so we may consider the corresponding value

group as a K-vector space.

For the remainder of this section we fix the following notation. Let R,S |= T such

that R 4 S. Let VR, VS be T -convex subrings of R and S respectively and suppose

that

VS ∩R = VR (2.1)

(equivalently that 〈R, VR〉 ⊆ 〈S, VS〉). Let ΓR and V R denote the value group and

residue field of R with respect to VR. Likewise let ΓS and V S denote the value group

and residue field of S with respect to VS . It follows from our assumption (2.1) that we

can naturally consider ΓR as K-vector subspace of ΓS ; we denote the valuation map

by v. By the same assumption we may consider V R as a T -elementary substructure

of V S .

Theorem 2.2.59 (The Valuation Inequality, [23]). Suppose rk(S|R) <∞. Then

rk (S|R) ≥ rk
(
V R|V S

)
+ dimK (ΓR/ΓS) .

Remark 2.2.60. Consider the special case where S = R〈a〉 where a /∈ R, so that

rk(S|R) = 1. Then theorem 2.2.59 says that either V R = V S or ΓR = ΓS , i.e. for

a rank 1 extension either the value group doesn’t extend or the residue field doesn’t

extend. Notice that if we also have that v(a) /∈ ΓR then

ΓS = ΓR ⊕Kv(a).

We next state the Valuation Property for power-bounded o-minimal theories.

Theorem 2.2.61 (The Valuation Property, [19]). Suppose that S = R〈a〉 where a /∈
R. Suppose further that ΓS 6= ΓR. Then there exists r ∈ R such that v(a− r) /∈ ΓR.

Let us give a proof in the case that T = TRCF. First we prove a preliminary

lemma.
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Lemma 2.2.62. Let R, S be real-closed fields and suppose that R ⊂ S. Let VR and

VS be convex subrings of R and S respectively and suppose that VS ∩ R = VR. Let v

denote the common valuation. Let a ∈ S \ R and suppose that v(R(a)×) 6= v(R×).

Then there exists r ∈ R such that v(a− r) /∈ v(R×).

Proof. Since v(R(a)×) 6= v(R×) we must have q(X) ∈ R[X] such that v(q(a)) /∈
v(R×). Since R is real closed

q(X) =
∏
i

(X − ci)
∏
j

((X − dj)2 + h2
j)

for some ci, dj, hj ∈ R. Suppose that v(a− ci), v(a− dj) ∈ v(R×) for all i, j. Then for

some j we must have that v((a− dj)2 +h2
j) /∈ v(R×). By our assumption, v(a− dj) ∈

v(R×) and of course v(hj) ∈ v(R×) therefore we must have that v((a− dj)2 + h2
j) >

v(h2
j) and hence 0 < (a− dj)2 + h2

j < h2
j , which is a contradiction.

Proof of theorem 2.2.61 for the special case where T = TRCF. Let R and S be real-

closed fields such that R ⊆ S. Furthermore suppose that VR is a TRCF-convex subring

of R and VS is a TRCF-convex subring of S such that VS ∩ R = VR (note that, by

example 2.2.54, in fact any convex subring of a real closed field is TRCF-convex). Let v

denote the common valuation. Let a ∈ S\R and suppose that v(R〈a〉×) 6= v(R×). By

lemma 2.2.62 it will be sufficient to prove that v(R(a)×) 6= v(R×). Choose b ∈ R〈a〉×

such that v(b) /∈ v(R×). Since b ∈ R〈a〉 there exists p(X, Y ) ∈ R[X, Y ] \ {0} such

that p(a, b) = 0. Now

p(X, Y ) =
∑
j

qj(X)Y j

for some qj(X) ∈ R[X]. Since p(a, b) = 0, by lemma 2.2.51, there exists distinct

l,m ≥ 0 such that ql(a), qm(a) 6= 0 and v(ql(a)bl) = v(qm(a)bm). Since we are

assuming that v(b) /∈ v(R×) one easily deduces that there exists q(X) ∈ R[X] such

that v(q(a)) /∈ v(R×). Hence v(R(a)×) 6= v(R×).

2.2.6 Hardy fields

Let K be an ordered field and F be a ring of functions K → K containing all constant

functions and the identity function. We will say that a property P (x) holds ultimately

if P (x) holds for all sufficiently large x ∈ K. Now let I be the ideal of F consisting of

all those f ∈ F that are ultimately zero. We call H = F/I the ring of germs at +∞
of F. Notice that if f, g ∈ F then f + I = g + I if and only if f and g are ultimately

equal. Where no confusion should arise we will often not distinguish notationally
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between f ∈ F and its germ at +∞ (i.e. its coset in H). We consider K as a subfield

of H under the embedding which takes k ∈ K to the constant function x 7→ k. Now

suppose that H is a field. Notice this is the case if and only if for all f ∈ F \ I there

exists g ∈ F such that fg is ultimately equal to 1; in particular we must have that f is

ultimately non-zero. If we also know that for all f ∈ F the function f has ultimately

constant sign then H becomes an ordered field when we say that f < g if and only if

g−f is ultimately positive. We say that H is a Hardy Field if all f ∈ F are ultimately

differentiable and F is closed under differentiation (clearly this induces a derivation

on H). Notice that if K = R then assuming that f ∈ F is ultimately non-zero and

ultimately differentiable implies that f has ultimately constant sign.

Example 2.2.63. Let F = R(x), the ring of rational functions on R. Clearly R(x)

induces a Hardy field (and in this case I = {0}).

So let H be a Hardy field on the ordered field K and let V be the convex hull of

K in H. Clearly V is a convex subring of H and so induces a valuation on H. This

is called the canonical valuation on the Hardy field.

2.2.6.1 Hardy fields of definable functions in o-minimal expansions of
fields

Let R be an o-minimal expansion of a field. It follows from the o-minimality of R
that the ring of definable functions R→ R induces a Hardy field which we will denote

by H(R). Let v denote the canonical valuation on H(R). Notice that because all

definable functions must have a limit at∞ in R∪{±∞}, for all f, g ∈ H(R) we have

that v(f) = v(g) if and only if there exists r ∈ R such that f(x)/g(x)→ r as x→∞.

Let L be the language of R and let T be its L-theory. We next show that H(R)

carries a natural L-structure under which it becomes a model of T with R as an

elementary substructure. We give H(R) an L-structure as follows:

1. Given a constant symbol c of L we interpret as the constant function which

takes value c (as interpreted in R).

2. Given an n-ary function symbol F of L and f1, . . . , fn ∈ H(R) we interpret

F (f1, . . . , fn) as the germ at ∞ of the function x 7→ F (f1(x), . . . , fn(x)).

3. Given an n-ary relation symbol P of L and f1, . . . , fn ∈ H(R) we say that

(f1, . . . , fn) ∈ P if and only if (f1(x), . . . , fn(x)) ∈ P for all sufficiently large

x ∈ R. That this is well-defined follows from the o-minimality of R.
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Lemma 2.2.64. Considered as an L-structure, H(R) |= T .

Proof. Let S be a proper elementary extension of R and suppose S contains elements

which are larger than any element of R (one easily sees that such an S exists by a

compactness argument). Choose such an element a; so for all r ∈ R we have a > r.

Note that

R〈a〉 = {f(a) : f : R→ R is an R-definable function in R}. (2.2)

Let ia : H(R)→ R〈a〉 be given by ia(f) = f(a). To see that this map is well-defined

and injective we note that if f, g, definable unary functions on R, have the same germ

at ∞ then there exists r ∈ R such that

R |= ∀x(x > r → f(x) = g(x)), (2.3)

and if f and g have different germs then there exists r ∈ R such that

R |= ∀x(x > r → f(x) 6= g(x)). (2.4)

Now R 4 R〈a〉 (since R ⊆ R〈a〉 4 S and R 4 S implies R 4 R〈a〉), therefore we

see that (2.3) holds if and only if f(a) = g(a). By (2.2) the map ia is onto. A similar

argument shows that the L-structure is preserved under the mapping ia. So ia is an

L-isomorphism and hence H(R) |= T . Since ia preserves the embeddings of R in

H(R) and R〈a〉, and R 4 R〈a〉, the embedding of R in H(R) is elementary.

2.2.7 Some further examples of o-minimal structures

In this section we will give properties of some of the known o-minimal structures and

theories.

Example 2.2.65. Let TRCF be the theory of real-closed fields in the language

Lord = {+, ·, <, 0, 1}

, i.e. TRCF consists of those Lord sentences which are true for every real-closed field.

Since the property of being a real-closed field is first-order axiomatizable in Lord all

models of TRCF are real-closed (see for instance [10]). Now R |= TRCF. In example

2.2.4 we remarked that Th(R) has quantifier elimination. In fact TRCF has quantifier

elimination. From this one deduces that TRCF is complete (so TRCF = Th(R)) and

that all real-closed fields are o-minimal. We will now see that TRCF is polynomially

bounded with field of exponents Q. Let R |= TRCF and let f : R → R be definable
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and ultimately non-zero. It follows from the quantifier elimination that there exists a

p(X, Y ) ∈ R[X, Y ] \ {0} such that p(x, f(x)) = 0 for all sufficiently large x in R. Let

H(R) be the Hardy field of definable functions of R (see section 2.2.6). Identifying

f with its image in H(R) and denoting the identity function in H(R) by x we must

have p(x, f) = 0. Now p(X, Y ) is of the form∑
|α|≤N

aαX
α1Y α2 ,

where each α ∈ N2 and α = (α1, α2) and aα ∈ R. Since p(x, f) = 0 there exists

β, γ such that v(aβx
β1fβ2) = v(aγx

γ1fγ2), where aβ, aγ 6= 0 and v is the canonical

valuation on H(R). Using elementary properties of v one deduces that there exists

q ∈ Q such that v(f/xq) = 0. But this implies that there exists r ∈ R such that

f(x)/rxq → 1 as x→∞.

Example 2.2.66. For each n ≥ 0 let Fn consist of those functions f : Rn → R for

which there exists U an open neighbourhood of [0, 1]n and g : U → R such that g is

real analytic and f satisfies

f(x̄) =

{
g(x̄) x̄ ∈ [0, 1]n,
0 x̄ ∈ Rn \ [0, 1]n,

(let F0 = R). Let Ran = 〈R, (Fn)n≥0〉. A theorem of Gabrielov says that the comple-

ment of a subanalytic set is subanalytic. Observations made by van den Dries in [21]

show that Gabrielov’s theorem implies that Ran is model-complete in the language

described above and that the definable sets are precisely the finitely subanalytic sets.

In the same paper van den Dries makes the following additional observations. By a

theorem of  Lojasiewicz, all finitely subanalytic sets have finitely many connected com-

ponents, consequently Ran is o-minimal. Furthermore, using the Weierstrass prepa-

ration theorem, Puiseux’s theorem and the fact that subanalytic sets in R2 are in

fact seminanalytic one can show that Ran is polynomially bounded with field of expo-

nents Q. Furthermore, in [2] van den Dries and Denef prove the stronger result that

Ran admits quantifier elimination when expanded by a function symbol for the map

x 7→ x−1 (where we set 0−1 = 0). In [26] it is shown that Ran also has a universal

axiomatization when one expands the language by a function symbol for xq for each

q ∈ Q. We denote the resulting structure by RQ
an.

Example 2.2.67. Let Rexp = 〈R, exp〉. In [29] Wilkie proves that Rexp is model-

complete. This is equivalent to the statement that all definable subsets in Rexp are

projections of zero-sets of exponentials polynomials (see theorem 2.3.1). Khovanskii’s
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theorem [4] tells us that the zero-set of an exponential-polynomial must have finitely

many connected components. This implies the o-minimality of Rexp. Of course Rexp

is not polynomially bounded and has field of exponents R.

2.3 Model-completeness and quantifier

elimination

In this section we give some standard results relating to model-completeness and

quantifier elimination, all of which can be found in [16].

Throughout this section we will fix a theory T in a language L. Recall that we

say that T is model-complete if for any A,B |= T , if A ⊆ B then A 4 B.

Theorem 2.3.1. The following are equivalent:

1. T is model-complete.

2. If A |= T then T ∪Diag(A) is a complete theory.

3. If φ(x̄) is an L-formula then there exists an existential L-formula ψ(x̄) such

that T |= φ(x̄)↔ ψ(x̄).

4. If A,B |= T and A ⊆ B then for any quantifier-free L-formula φ(x̄, ȳ) and any

tuple ā in A, if B |= ∃ȳφ(ā, ȳ) then A |= ∃ȳφ(ā, ȳ).

5. Every diagram of the following type can be completed

C

A

⊆
??~~~~~~~~

⊆
// B

⊆

OO

where A,B, C |= T and C is |B|+-saturated.

6. Every diagram of the following type can be completed

C

A

4
??~~~~~~~~

⊆
// B

⊆

OO

where A,B, C |= T and C is |B|+-saturated.
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Remark 2.3.2. Statement (4) says that all models of T are existentially closed. This

is known as Robinson’s tests for model-completeness.

Theorem 2.3.3. The following are equivalent:

1. T admits quantifier elimination.

2. T is substructure-complete; i.e. if A |= T and B ⊆ A then T ∪ Diag(B) is a

complete theory.

3. Every diagram of the following type can be completed

C
4 // D

A

⊆

OO

⊆
// B

⊆

OO

where B, C |= T .

Corollary 2.3.4. T admits quantifier elimination if every diagram of the following

type can be completed

C

A

⊆
??~~~~~~~~

⊆
// B

⊆

OO

where B, C |= T and C is |B|+-saturated.

Remark 2.3.5. Notice that it follows immediately from theorem 2.3.1 (2) and theorem

2.3.3 (2) that a model-complete universal theory admits quantifier elimination.
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Chapter 3

A general model-completeness
result
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In this chapter we will recast a theorem of Wilkie from [29] in a more general sit-

uation. For the purposes of readability we reproduce Wilkie’s argument here making

the few necessary adjustments on the way but we stress that the majority of the proof

is identical to Wilkie’s original.

The results presented in this chapter and the next appear in a similar form in [3].

3.1 Wilkie’s theorem on restricted Pfaffian func-

tions

Let n ≥ 1 and let U be an open subset of Rn. For i = 1, . . . ,m let fi : U → R be

a C1 function. We say that (f1, . . . , fm) is a Pfaffian chain of length m if for each

i = 1, . . . ,m and each j = 1, . . . , n there exists pij(X1, . . . , Xn+i) ∈ R[X1, . . . , Xn+i]

such that for all x̄ = (x1, . . . , xn) ∈ U ,

∂fi
∂xj

(x̄) = pij(x̄, f1(x̄), . . . , fi(x̄)).

If C ⊆ R we say that (f1, . . . , fn) is a Pfaffian chain over C if the pij can be chosen to

have coefficients in C. We say that f : U → R is a Pfaffian function if it is a member

of a Pfaffian chain of length m for some m ≥ 1.

Example 3.1.1. The function exp : R → R satisfies exp′ = exp therefore (exp) is a

Pfaffian chain (taking n = 1, U = R, m = 1 and p11(X1, X2) = X2).

Example 3.1.2. Let f1, f2 : R→ R be given by

f1(x) =
1

1 + x2
,

f2(x) = arctan(x).

Then f ′2(x) = f1(x) and f ′1(x) = −2xf1(x) for all x ∈ R so (f1, f2) is a Pfaffian chain.

See [27] for a proof of the following fact.

Lemma 3.1.3. Let n ≥ 1 and let U be a open subset of Rn. Let f : U → R be a

Pfaffian function. Then f is analytic on U .

Now let n ≥ 1 and let U be an open neighbourhood of [0, 1]n. Let (f1, . . . , fm) be

a Pfaffian chain on U over C. For each i = 1 . . .m let gi : Rn → R be given by

gi(x̄) =

{
fi(x̄) x̄ ∈ [0, 1]n,
0 x̄ ∈ Rn \ [0, 1]n.
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Theorem 3.1.4 (Wilkie’s theorem on restricted Pfaffian functions [29]). The struc-

ture

R̃ = 〈R, g1, . . . , gm, (c)c∈C〉

is model-complete.

3.2 A generalization of Wilkie’s theorem on re-

stricted Pfaffian functions

We now state our generalization of Wilkie’s theorem on restricted Pfaffian functions.

Theorem 3.2.1. Let L be the first order language consisting of the language of or-

dered rings Lord = {+, ·, <, 0, 1}, m-ary function symbols f1, . . . , fl and a set C of

constants. Let T be a consistent (and possibly incomplete) L-theory satisfying:

1. T expands the theory of real closed fields.

2. For each i = 1, . . . , l we have that fi is C∞ on the unit box [0, 1]m and identically

zero outside it.

3. (f1, . . . , fm) is a Pfaffian chain over C (on [0, 1]m).

4. For each i = 1, . . . , l and each α ∈ Nm there exists cα,i ∈ C such that for all

x̄ ∈ [0, 1]m we have |f (α)
i (x̄)| < ci,α.

5. All models of T are o-minimal and polynomially bounded with field of exponents

Q.

Then T is model-complete.

Remark 3.2.2. The definition of Paffian chain for an ordered field is the obvious

generalization of the definition of Pfaffian chain for R.

Remark 3.2.3. Our notion of C∞ on [0, 1]m here is as defined before the statement of

theorem 2.2.33. With this definition in place it is clear what is meant by (3).

Remark 3.2.4. Conditions (1) - (4) can each be expressed by a scheme of L-sentences.

Let us now observe that theorem 3.2.1 implies theorem 3.1.4. We must check that

hypotheses (1)-(5) hold for the structure R̃ = 〈R, g1, . . . , gm, (c)c∈C〉. Hypothesis (1)

is clear since R is a real-closed field. To see that hypothesis (5) holds note that lemma

3.1.3 implies that R̃ is a reduct of Ran (see example 2.2.66). Since Ran is o-minimal

and polynomially bounded with field of exponents Q the result follows. Clearly (2)
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and (3) are satisfied. Now (4) may not be satisfied by R̃ but we may of course expand

C by constant symbols for all natural numbers so that (4) is satisfied. Since we are

just adding constants to name elements already interpreted by closed terms, model-

completeness in the expanded language implies model-completeness in the original

language. Thus R̃ is model-complete.

3.3 The proof of theorem 3.2.1

We will use Robinson’s test (see remark 2.3.2) to prove that T is model-complete.

So we take H,K |= T and suppose that H ⊆ K. We must show that any existential

formula with parameters from H which is true in K is also true in H.

Now, just as in section 2 of [29], we may assume that our existential formula is of

the form

∃x1, . . . ,∃xr
n∧
i=1

χ(x1, . . . , xr),

where each χi is of one of the following forms:

1. p(x1, . . . , xr) = 0 where p ∈ H[x1, . . . , xr],

2.
(∧

j∈S 0 < xij < 1
)
∧ fk(x′i1 , . . . , x

′
im) − xim+1 = 0, where S ⊆ {1, . . . ,m} and

1 ≤ i1, . . . , im+1 ≤ r and

x′ij =

{
xij j ∈ S,
0 or 1 j /∈ S.

We will break up the proof of theorem 3.2.1 into two lemmas (lemma 3.3.7 and lemma

3.3.8). First we introduce some terminology.

Definition 3.3.1. Let n, r ∈ N. An (n, r)-sequence is a sequence σ̄ = (σ1, . . . , σn) of

L-terms in variables x1, . . . , xr such that

1. for s = 1, . . . , n, the term σs has the form fi(y1, . . . , ym) for some i = 1, . . . , l

and y1, . . . , ym ∈ {0, 1, x1, . . . , xr},

2. if 1 ≤ s ≤ n and 1 < i ≤ l and σs is fi(y1 . . . , ym) then for some s′ with

1 ≤ s′ < s the term σs′ is fi−1(y1, . . . , ym).

Those variables which actually occur in some term of the (n, r)-sequence σ̄ are called

σ̄-bounded.

Remark 3.3.2. An (n, r)-sequence is naturally an (n, s)-sequence for any s ≥ r.
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Definition 3.3.3. Let σ̄ be an (n, r)-sequence. We define the natural domain of σ̄,

which we denote by Dr(σ̄), as
∏r

j=1 Ij where

Ij =

{
(0, 1) xi is σ̄-bounded,
K otherwise,

(where the interval (0, 1) is taken in K).

Note that Dr(σ̄) is open in Kr.

Definition 3.3.4. Let σ̄ be an (n, r)-sequence. We define M r(σ̄) to be the ring of

functions f : Dr(σ̄)→ K such that there exists a polynomial

p ∈ H[x1, . . . , xr, y1, . . . , yn]

with

f(x̄) = p(x̄, σ1(x̄), . . . , σn(x̄))

for all x̄ ∈ Dr(σ̄).

Remark 3.3.5.

1. If g ∈M r(σ̄) then g is smooth on Dr(σ̄).

2. By the definition of an (n, r)-sequence, M r(σ̄) is closed under partial differen-

tiation.

Clearly it is sufficient for us to prove that if σ̄ is an (n, r)-sequence, g1, . . . , gk ∈
M r(σ̄) and g1, . . . , gk have a common zero in Dr(σ̄) then they have one in Dr(σ̄)∩Hr.

Definition 3.3.6. Let σ̄ be an (n, r)-sequence. A point ā ∈ Dr(σ̄) is said to be

σ̄-definable if there exists g1, . . . , gr ∈M r(σ̄) such that

1. g1(ā) = . . . = gr(ā) = 0,

2. det
(
∂(g1,...,gr)
∂(x1,...,xr)

)
(ā) 6= 0.

It will be sufficient to prove the following two lemmas.

Lemma 3.3.7. For any (n, r)-sequence σ̄, every σ̄-definable point of Kr lies in Hr.

Lemma 3.3.8. Let σ̄ be an (n, r)-sequence and let g ∈ M r(σ̄) be such that there

exists ā ∈ Dr(σ̄) such that g(ā) = 0. Then there exists s ≥ r and b̄ ∈ Ks−r and

b̄′ ∈ Kr such that (b̄′, b̄) is σ̄-definable and g(b̄′) = 0.
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3.3.1 Proof of lemma 3.3.8

First let us set up some notation. Given σ̄ an (n, r)-sequence and g1, . . . , gk ∈M r(σ̄)

let

V (g1, . . . , gk) ={x̄ ∈ Dr(σ̄) : g1(x̄) = . . . = gk(x̄) = 0},

Vreg(g1, . . . , gk) ={x̄ ∈ V (g1, . . . , gk) : Jg1(x̄), . . . , Jgk(x̄) are K-linearly independent}.

The following lemma is a restatement of Theorem 4.9 in [29] but the proof given here

is based on the proof of Theorem 2.5 of [5].

Lemma 3.3.9. Let σ̄ be an (n, r)-sequence and let g1, . . . , gk ∈M r(σ̄). Suppose that

ā ∈ Vreg(g1, . . . , gk). Then one of the following holds:

1. k = r,

2. k < r and for any h ∈ M r(σ̄), if h vanishes at ā then h vanishes on U ∩
Vreg(g1, . . . , gk) for some definable open neighbourhood U of ā,

3. k < r and there exists h ∈M r(σ̄) such that ā ∈ Vreg(g1, . . . , gk, h).

Proof. Clearly if k 6= r then k < r. So suppose that k < r and that (2) does

not hold. So there exists h ∈ M r(σ̄) such that h vanishes at ā but h does not

vanish on U ∩ Vreg(g1, . . . , gk) for any definable open neighbourhood of ā. Now since

ā ∈ Vreg(g1, . . . , gk) there is some k × k submatrix of

∂(g1, . . . , gk)

∂(x1 . . . , xr)
(x̄)

whose determinant is non-zero when evaluated at ā. For ease of notation we assume

that this submatrix consists of the last k columns. Let ∆(x1, . . . , xr) be its deter-

minant. Note that ∆ ∈ M r(σ̄). For ȳ ∈ (y1, . . . , yr), let ỹ = (y1, . . . , yr−k). Now,

by the implicit function theorem for o-minimal expansions of fields (theorem 2.2.32)

there is a definable open neighbourhood U ⊆ Kr−k of ã and a smooth definable map

φ : U → Kk satisfying

(a) (ã, φ(ã)) = ā,

(b) {(ỹ, φ(ỹ)) : ỹ ∈ U} = W ∩Vreg(g1, . . . , gk) for some definable open neighbourhood

W ⊆ Kr of ā.
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Furthermore, if we write φ = (φ1, . . . , φk) then for ỹ ∈ U and j = 1, . . . , r − k
∂φ1

∂xj
...

∂φk
∂xj

 = −
(

∂(g1, . . . , gk)

∂(xr−k+1, . . . , xr)

)−1


∂g1

∂xj
...
∂gk
∂xj

 , (3.1)

where the left-hand side is evaluated at ỹ and the righthand-side at (ỹ, φ(ỹ)).

Now we may assume that ∆ has no zeros in W . Now consider the definable

function G : U → K given by

ỹ 7→ h(ỹ, φ(ỹ)).

Now G is not identically zero on U so, since K is polynomially bounded, by a theorem

of Miller in [12], there exists α ∈ Nr−k such that G∗ = ∂αG vanishes at ã but for

some j = 1, . . . ,m the partial derivative ∂G∗

∂xj
does not. Now by (3.1)

G∗(ỹ) =
h′(ỹ, φ(ỹ))

∆(ỹ, φ(ỹ))d

for some h′ ∈M r(σ̄) and some d ≥ 0. By the method of Lagrange multipliers

Jg1(ā), . . . , Jgk(ā), Jh′(ā),

are linearly independent over K if and only if the map ỹ 7→ h′(ỹ, φ(ỹ)) has non-zero

differential at ā. Since G∗(ã) = 0 and ∆(ā) 6= 0 this follows from the fact that
∂G∗

∂xj
(ã) 6= 0. So the result follows by taking h = h′.

We are now in a position to prove the following theorem:

Theorem 3.3.10. Let σ̄ be an (n, r)-sequence. Let g ∈ M r(σ̄) be such that the set

V (g) is non-empty and closed in Kr. Then there exists g1, . . . , gr ∈M r(σ̄) such that

Vreg(g1 . . . , gr) ∩ V (g) is non-empty; i.e. V (g) contains a σ̄-definable point.

Proof. For each ā ∈ V (g) let Iā = {h ∈ M r(σ̄) : h(ā) = 0}. Now M r(σ̄) is a finitely

generated algebra over a field and hence it is Noetherian. Therefore we may choose

b̄ ∈ V (g) such that Ib̄ is maximal in {Iā : ā ∈ V (g)}. Now choose g1, . . . , gn to be

generators for Ib̄ and let g′ =
∑n

i=1 g
2
i . So for ā ∈ V (g) we have

Iā = Ib̄ iff g′(ā) = 0. (3.2)

Now choose s ≤ r maximal such that there exists f1, . . . , fs ∈ M r(σ̄) with b̄ ∈
Vreg(f1, . . . , fs). Let f1, . . . , fs witness this fact. If s = r we are done. So assume for

a contradiction that s < r. We claim that V (g) ∩ V (g′) ⊆ Vreg(f1, . . . , fs). Well if
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ā ∈ V (g) ∩ V (g′) then Iā = Ib̄ so in particular ā ∈ V (f1, . . . , fs). Furthermore, there

exists an s×s submatrix of ∂(f1,...,fs)
∂(x1,...,xr)

which has non-vanishing determinant at b̄. Since

this determinant is an element of M r(σ̄) and Ib̄ = Iā it must also be non-vanishing

at ā. So ā ∈ Vreg(f1, . . . , fs). So the claim is proved.

Now let ā ∈ V (g) ∩ V (g′) and let h ∈ M r(σ̄) and suppose that we have ā ∈
Vreg(f1, . . . , fs, h). Then arguing as above we see that b̄ ∈ Vreg(f1, . . . , fs, h) which

contradicts the maximality of s. So, by applying lemma 3.3.9 we see that if ā ∈
V (g) ∩ V (g′) then there exists a definable open neighbourhood U of ā such that

g and g′ vanish identically on U ∩ Vreg(f1, . . . , fs). So for any ā ∈ V (g) ∩ V (g′)

there exists U a definable open neighbourhood of a such that V (g) ∩ V (g′) ∩ U =

Vreg(f1, . . . , fs)∩U . Now V (g)∩V (g′) is closed in Kr (since V (g) is closed in Kr). So

choose η̄ = (η1, . . . , ηr) ∈ Qr and choose ā ∈ V (g) ∩ V (g′) of minimum distance from

η̄. Let hη̄(x̄) =
∑r

i=1(xi− ηi)2. Since ā is a local minimum of hη̄ on V (g)∩ V (g′) and

V (g)∩V (g′) and Vreg(f1, . . . , fs) coincide in a neighbourhood of ā, we must have that ā

is a local minimum of hη̄ on Vreg(f1, . . . , fs). This implies that Jhη̄(ā) is in the K-linear

span of Jf1(ā), . . . , Jfs(ā). Now this holds for all η̄ ∈ Qr. But 1
2
(Jh0̄

(ā)− Jhη̄(ā)) = η̄

so Qr is contained in the linear span of Jf1(ā), . . . , Jfs(ā) which contradicts the fact

that s < r.

Proof of lemma 3.3.8. If V (g) is closed in Kr then the result follows from lemma

3.3.10 (taking s = r in the notation of lemma 3.3.8). Suppose that V (g) is not closed

in Kr. For each i = 1, . . . , r define fi, hi : K3r → K by

fi(x1, . . . , x3r) =

{
xixr+i − 1 xi is σ̄ -bounded,
xr+i − xi otherwise.

hi(x1, . . . , x3r) =

{
(xi − 1)x2r+i − 1 xi is σ̄ -bounded,
xr+i − xi otherwise.

Now let π : K3r → Kr be the projection map onto the first r coordinates. Then

π(V (g, f1, . . . , fr, h1, . . . , hr)) = V (g), (3.3)

(where on the left hand side we consider σ̄ to be an (n, 3r)-sequence). Furthermore

V (g, f1, . . . , fr, h1, . . . , hr) is closed in K3r (since all limit points of V (g) have been

‘pushed to ∞’). Let f ′ = g2 +
∑r

i=1(f 2
i + h2

i ) so V (f ′) = V (g, f1, . . . , fr, h1, . . . , hr).

Now apply lemma 3.3.10 to f ′. The result follows by (3.3).
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3.4 Proof of lemma 3.3.7

It remains to prove lemma 3.3.7. We do this by induction on n (the length of the

sequence σ̄). Let us first consider the base case, n = 0. So let ā = (a1, . . . , ar) ∈ Kr

and suppose we have p1, . . . , pr ∈ H[x1, . . . , xr] such that

1. p1(ā) = . . . = pr(ā) = 0,

2. det
(
∂(p1,...,pr)
∂(x1,...,xr)

)
(ā) 6= 0.

We must prove that ā ∈ Hr. We first recall a standard characterization of algebraic

closure for algebraically closed fields of characteristic 0 (see for instance [6]).

Fact 3.4.1. Let F be an algebraically closed field of characteristic 0 and let L be a

subfield of F . Let a ∈ F . Then a ∈ aclF (L) if and only if every derivation of F that

vanishes on L also vanishes on a.

Now let K be the algebraic closure of K and let δ be a derivation on K which

is zero on H. We must show that δ(ai) = 0 for i = 1, . . . , r. Then, for i = 1, . . . , r,

we have ai ∈ acl(H) ∩ K = H. Now, for each j = 1, . . . , r we have pj(ā) = 0 so

δ(pj(ā)) = 0. Now a simple calculation reveals that

δ(pj(ā)) =
r∑
i=1

δ(ai)
∂pj
∂xi

(ā).

Therefore 
∂p1

∂x1
(ā) . . . ∂p1

∂xr
(ā)

...
. . .

...
∂pr
∂x1

(ā) . . . ∂pr
∂xr

(ā)


 δ(a1)

...
δ(an)

 =

 0
...
0

 .

But by (2) this implies that δ(ai) = 0 for i = 1, . . . , r.

We must now do the inductive step. So let n ≥ 0 and suppose that for all r ≥ 1

and all (n, r)-sequences σ̄ every σ̄-definable point of Kr lies in Hr. Now let r ≥ 1

and let σ̄′ be an (n + 1, r)-sequence. We must prove that every σ̄′-definable point of

Kr lies in Hr. We do this in two steps. First we make a definition.

Definition 3.4.2. A point a ∈ K will be called H-bounded is |a| < r for some r ∈ H.

A tuple ā ∈ Kn will be called H-bounded if each of its coordinates is H-bounded.

(Part 1) Suppose that b̄ ∈ Kr is σ̄′-definable and H-bounded. Then b̄ ∈ Kr.

(Part 2) Suppose is b̄ ∈ Kr is σ̄′-definable. Then b̄ is H-bounded.
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3.4.1 Part 1

We first give two general results about smooth functions definable in o-minimal ex-

pansions of fields. So let M be an arbitrary o-minimal expansion of a field.

Theorem 3.4.3. Let U be a definable open subset of Mn and let f1, . . . , fn−1 : U →M

be definable and smooth. Suppose that for all ā ∈ V = {x̄ ∈ U : f1(x̄) = . . . =

fn−1(x̄) = 0} we have

det

(
∂(f1, . . . , fn−1)

∂(x2, . . . , xn)

)
(ā) 6= 0.

Then there exists N ∈ N such that for all b ∈ π(U) (where π is the projection map

onto the first coordinate) the set Vb = {ā ∈ Mn−1 : (b, ā) ∈ V } has at most N

elements.

Proof. By the uniform finiteness property for definable families in o-minimal struc-

tures (theorem 2.2.10) and the fact that all discrete sets definable in o-minimal struc-

tures are finite, it is sufficient to prove that the sets Vb are discrete.

So choose b ∈ π(U). Let ā ∈ Vb. By the implicit function theorem there is open

interval I in M containing b, an open definable neighbourhood W of ā and a smooth

map φ : I → W such that

1. I ×W ⊆ U ,

2. φ(b) = ā,

3. (x, ȳ) ∈ V ∩ (I ×W ) iff ȳ = φ(x).

Now W ∩ Vb = {ā} so Vb is discrete.

Theorem 3.4.4. Let n ∈ N with n ≥ 2, U a definable open subset of Mn and let

f1, . . . , fn−1 : U →M be smooth and definable. Suppose that

1. V (f1, . . . , fn−1) = {x̄ ∈ U : f1(x̄) = . . . = fn−1(x̄) = 0} is closed in Mn,

2. for all ā ∈ V (f1, . . . , fn−1)

det

(
∂(f1, . . . , fn−1)

∂(x2, . . . , xn)

)
(ā) 6= 0.

Then there exists a finite set P of pairs (I, φ) such that
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(i) for (I, φ) ∈ P we have that I is an open interval with endpoints in M ∪ {±∞}
and φ : I →Mn−1 is smooth and definable,

(ii) for each (I, φ) ∈ P, if sup I 6=∞ then ‖φ(x)‖ → ∞ as x→ sup I and similarly

for inf I,

(iii) V (f1, . . . , fn−1) =
⋃
{graph(φ) : (I, φ) ∈ P} and the union is disjoint.

Proof. The proof is almost exactly the same as the proof of Theorem 6.2 in [29]. To

obtain the uniform bound on the size of the fibres we use lemma 3.4.3. To replace

use of transfer from a theory expanding R̄ we use the o-minimality of M.

We call P as obtained in theorem 3.4.4 a parameterization of V . We now return

to our specific setting, including the assumption that the inductive hypothesis holds

upto n, and that σ̄′ = (σ̄, σn+1) is an (n+ 1, r)-sequence.

Lemma 3.4.5. Let f1, . . . , fr−1 ∈M r(σ̄) and suppose

1. V = V (f1, . . . , fr−1) is closed in Dr(σ),

2. for all ā ∈ V we have det
(
∂(f1,...,fr−1)
∂(x2,...,xr)

)
(ā) 6= 0.

Let ā = (a1, . . . , ar) ∈ Kr be H-bounded and suppose that ā ∈ V . Then there exists

γ1, γ2, β1, β2, B1, B2 ∈ H such that γ2 < γ1 < a1 < β1 < β2 and ‖(a2, . . . , ar)‖ <
B1 < B2 and there exists n ∈ N with n ≥ 1 and definable (in the sense of K) smooth

functions φj : (γ2, β2)→ Kr−1, for j = 1, . . . , n, such that

(i) for j = 1, . . . , n and x ∈ (γ2, β2) we have ‖φj(x)‖ < B1,

(ii) V ∩ ((γ2, β2)× {c̄ ∈ Kr−1 : ‖c̄‖ < B2}) =
⋃n
j=1 graph(φj) and the union is dis-

joint.

Furthermore, if V ∩Hr is closed in Hr then there exists, for j = 1, . . . , n, definable

(in the sense of H) smooth functions ψj : (γ2, β2) ∩H → Hr−1 such that (i) and (ii)

hold for ψj and H in place of φj and K when all quantifiers are interpreted in H. So

in particular if ā = (a1, . . . , ar) ∈ V is H-bounded and a1 ∈ H then ā ∈ Hr.

Proof. The proof is identical to that of lemma 6.3 in [29].
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We are now in a position to perform part 3.4. So let b̄ ∈ Kr be σ̄′-definable and

H-bounded. So, by definition,

b̄ ∈ Dr(σ̄′) (3.4)

and there exists g1, . . . , gr ∈M r(σ̄′) such that

g1(b̄) = . . . = gr(b̄) = 0, (3.5)

det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(b̄) 6= 0. (3.6)

We must prove that b̄ ∈ Hr. We do this under the following additional assumptions

which we will justify afterwards. Set V = V (g1, . . . , gr−1) (clearly we may assume

that r ≥ 2). We suppose

g1, . . . , gr−1 ∈M r(σ̄), (3.7)

V ⊆ Dr(σ̄′), (3.8)

V is closed in Kr and V ∩Hr is closed in Hr, (3.9)

det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(x̄) 6= 0 for all x̄ ∈ V , (3.10)

for all x̄ ∈ V, if gr(x̄) = 0 then det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(x̄) < 0. (3.11)

Let b̄′ = (b2, . . . , br). We apply lemma 3.4.5 to obtain γ1, γ2, β1, β2, B1, B2 ∈ H

such that γ2 < γ1 < b1 < β1 < β2, ‖b̄′‖ < B1 < B2 and definable (in K) smooth

φ1, . . . , φm : (γ2, β2)→ Kr−1 such that

1. for j = 1, . . . ,m and for x ∈ (γ2, β2) we have ‖φj(x)‖ < B1,

2. V ∩ ((γ2, β2)× {c̄ ∈ Kr−1 : ‖c̄‖ < B2}) =
⋃n
j=1 graph(φj) and the union is dis-

joint.

We also obtain definable (in H) smooth ψj : (γ2, β2) ∩H → Hr−1 satisfying (1) and

(2) when K is replaced by H.

Now let φ be one of the φj’s. Let f ∈ M r(σ̄′). Since we assume that V ⊆ Dr(σ̄′)

we may define f̄ : (γ2, β2) → Kr−1 by f̄(t) = f(t, φ(t)). Clearly f̄ is smooth and

definable in K. Furthermore, if we let

J(x1, . . . , xr) = det

(
∂(g1, . . . , gr−1, f)

∂(x1, . . . , xr)

)
, (3.12)

J1(x1, . . . , xr) = det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
, (3.13)
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then J, J1 ∈M r(σ̄′) and we see that for all t ∈ (γ2, β2) we have

df̄

dt
(t) = (−1)r+1J̄(t)J̄1(t)−1, (3.14)

where J̄(t) = J(t, φ(t)) and J̄1(t) = J1(t, φ(t)); by (3.10) this formula makes sense.

Lemma 3.4.6.

1. If t ∈ (γ2, β2) and ḡr(t) = 0 then dḡr
dt

(t) has the same sign as J̄1(t) if r is even

and the opposite sign if r is odd.

2. ḡr(t) has at most one zero on (γ2, β2).

Proof.

1. If gr(t) = 0 then by (3.11) and (3.14) the result follows.

2. This immediate from part 1.

Since the assumptions (3.7)-(3.11) all imply their counterparts for H in place of

K, lemma 3.4.6 holds in H when φ is replaced by one of the ψj’s. Now for f ∈M r(σ̄′)

we let f̄(φi; ·) be the definable (in K) function from (γ2, β2) to Kr−1 obtained as

above with φi in place of φ. Similarly we define f̄(ψi; ·). Now let i0 be the unique

number such that 1 ≤ i0 ≤ m and φi0(b1) = (b2, . . . , br). Suppose that J̄1(φi0 ; b1) > 0;

the other case will be similar. Let T = {i : 1 ≤ i ≤ m and J̄1(φi; b1) > 0}. By

(3.10), J̄1(φi; t) > 0 for all i ∈ T and all t ∈ (γ2, β2), and J̄1(φi; t) < 0 for all

i ∈ {1, . . . ,m}\T and all t ∈ (γ2, β2). So in particular J̄1(φi; γ1) > 0 for all i ∈ T and

J̄1(φi; γ1) < 0 for all i ∈ {1, . . . ,m}\T . Now it follows from lemma 3.4.5 that there is

some T ′ ⊆ {1, . . . ,m} such that {ψi(γ1) : i ∈ T ′} = {φi(γ1) : i ∈ T}. So J̄1(ψi; t) > 0

for all i ∈ T ′ and all t ∈ (γ2, β2)∩H. It follows that {ψi(t) : i ∈ T ′} = {φi(t) : i ∈ T}
for all t ∈ (γ2, β2) ∩ H. Now for each i = 1, . . . ,m the function ḡr(ψi; ·) has only

finitely many zeros on (γ2, β2), so we may choose γ3, β3 ∈ H such that γ2 < γ3 < γ1

and β1 < β3 < β2 and such that for no i = 1, . . . ,m does ḡr(φi; ·) have a zero at γ3 or

β3. Now assume that r is even, the case where r is odd is similar. By lemma 3.4.6, if

i ∈ T then ḡr(φi; ·) has a zero in (γ3, β3) iff ḡr(φi; γ3) < 0 and ḡr(φi; β3) > 0. Similarly

if i ∈ T ′ then ḡr(ψi; ·) has a zero in (γ3, β3) ∩H iff ḡr(ψi; γ3) > 0 and ḡr(ψi; β3) < 0.

Hence
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card{i ∈ T : ḡr(φi; ·) has a zero on (γ3, β3)}

= card{i ∈ T : ḡr(φi; γ3) < 0} − card{i ∈ T : ḡr(φi; β3) < 0}, (3.15)

and

card{i ∈ T : ḡr(ψi; ·) has a zero on (γ3, β3) ∩H}

= card{i ∈ T : ḡr(ψi; γ3) < 0} − card{i ∈ T : ḡr(ψi; β3) < 0}. (3.16)

By lemma 3.4.5 the two right-hand sides above are equal. Therefore if we have

that ā = (a1, . . . , ar) ∈ V is such that gr(ā) = 0, J1(ā) > 0, γ3 < a1 < β3 and

‖(a2, . . . , ar)‖ < B1 then ā ∈ Hr. Since b̄ is such a point the result follows.

We must now justify the additional assumptions (3.7)-(3.11). We do this by modi-

fying our functions g1, . . . , gr and our b̄ ∈ Kr in a number of steps. Each modification

will produce some s ≥ r, new functions f1, . . . , fs ∈ Ds(σ̄′) and a new tuple ā ∈ Ds(σ̄′)

such that the properties (3.4),(3.5) and (3.6) are preserved and such that b̄ is a subtu-

ple of ā. After each step we will revert to the original notation. Once all the steps are

complete the new g1, . . . , gr and b̄ will satisfy the additional assumptions (3.7)-(3.11)

and so by our above argument b̄ ∈ Hr. Since our original b̄ will be a subtuple of this

b̄ the proof will be complete.

Step 1 We may assume that for each i = 1, . . . , r, if xi is σ̄′-bounded then there

are variables y, z (which are not σ̄′-bounded) amongst x1, . . . , xr such that the

elements of M r(σ̄′) given by xiy
2 − 1, (1− xi)z2 − 1 occur amongst g1, . . . , gr.

To achieve this we take an i such that xi is σ̄-bounded. Define gr+1, gr+2 ∈
M r+2(σ̄′) by

gr+1(x1, . . . , xr+2) = xix
2
r+1 − 1,

gr+2(x1, . . . , xr+2) = (1− xi)x2
r+2 − 1.

Now let br+1 = b
− 1

2
i and let br+2 = (1− bi)−

1
2 (note that 0 < bi < 1 since xi is

σ̄′-bounded and b̄ is σ̄′-definable). We must show that (3.4), (3.5) and (3.6)

are satisfied by g1, . . . , gr+2 and b̃ = (b̄, br+1, br+2). Clearly (3.4) and (3.5) are

satisfied. A simple calculation shows that

det

(
∂(g1, . . . , gr+2)

(x1, . . . , xr+2)

)
(b̃) = 4 det

(
∂(g1, . . . , gr)

(x1, . . . , xr)

)
(b̄)b

1
2
i (1− bi)

1
2 ,

and so (3.6) is also satisfied. By repeated use of this process we see that the

assumption of step 1 is justified.

46



Step 2 We may assume that g1, . . . , gr−1 ∈M r(σ̄) and that gr is of the form

σn+1(x1, . . . , xr)− xe,

where xe is not σ̄′-bounded.

To achieve this, for each i = 1, . . . , r, we replace gi ∈M r(σ̄′) by g̃i ∈M r+1(σ̄)

where g̃i(x1, . . . , xr+1) is obtained by replacing each occurrence of σn+1 in

gi by xr+1. Now let g̃r+1(x1, . . . , xr+1) = σn+1(x1, . . . , xr) − xr+1 and b̃ =

(b1, . . . , br, σn+1(b1, . . . , br)).

Cleary g̃1, . . . , g̃r, gr+1 and b̃ satisfy (3.5) and (3.4). Furthermore, step 1 is

preserved. We must show that (3.6) is satisfied, ie. that

det

(
∂(g̃1, . . . , g̃r+1)

(x1, . . . , xr+1)

)
(b̃) 6= 0.

Observe that

∂(g̃1, . . . , g̃r+1)

∂(x1, . . . , xr+1)
(b̃) =


∂g̃1

∂x1
(b̃) . . . ∂g̃1

∂xr
(b̃) ∂g̃1

∂xr+1
(b̃)

...
...

...
∂g̃r
∂x1

(b̃) . . . ∂g̃r
∂xr

(b̃) ∂g̃r
∂xr+1

(b̃)
∂σn+1

∂x1
(b̄) . . . ∂σn+1

∂xr
(b̄) −1

 .

We now note that by the chain rule

∂gi
∂xj

(b̄) =
∂g̃i
∂xj

(b̃) +
∂g̃i
∂xr+1

(b̃)
∂σn+1

∂xj
(b̄),

for j = 1, . . . , r. Consequently, if for each i = 1, . . . , r we multiply row r + 1

by ∂g̃i
∂xr+1

(b̃) and add it to row i we obtain the matrix
∂g1

∂x1
(b̄) . . . ∂g1

∂xr
(b̄) 0

...
...

...
∂gr
∂x1

(b̄) . . . ∂gr
∂xr

(b̄) 0
∂σn+1

∂x1
(b̄) . . . ∂σn+1

∂xr
(b̄) −1

 ,

which has determinant equal to − det
(
∂(g1,...,gn)
∂(x1,...,xn)

)
(b̄), which is non-zero.

Hence (3.6) is satisfied.

Step 3 We may assume that for all ā ∈ Dr(σ̄′), if ā ∈ V then

det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(ā) 6= 0.
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To achieve this we first observe the following: by (3.6) we must have that

det

(
∂(g1, . . . , gr−1)

∂(x1, . . . , xi−1, xi+1, . . . , xr)

)
(b̄) 6= 0,

for some i = 1, . . . , r. By a coordinate permutation we may assume that i = 1.

(Strictly speaking we are now working with a new (n + 1, r)-sequence, new

functions g̃1, . . . , g̃r and a new tuple b̃. It is easy to see that these satisfy (3.5),

(3.6), (3.4), step 1 and step 2 and furthermore b̃ is just a permutation of b̄ so

we revert to the original notation.) Now let

h(x1, . . . , xr+1) = xr+1 det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(x1, . . . , xr)− 1.

Clearly h ∈M r+1(σ̄). Now set

br+1 =

(
det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(b1, . . . , br)

)−1

.

Clearly the sequence g1, . . . , gr−1, h, gr, (b̄, br+1) satisfy (3.5) and (3.4) and

steps 1 and 2 are preserved. A simple calculation shows that

det

(
∂(g1, . . . , gr−1, h, gr)

∂(x1, . . . , xr+1)

)
(b1, . . . , br, br+1) =

− det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(b1, . . . , br)b

−1
r+1,

which is non-zero. Finally, suppose that ā ∈ Dr+1(σ̄′) and g1(ā) = . . . =

gr−1(ā) = h(ā) = 0. Then ar+1 6= 0 and

det

(
∂(g1, . . . , gr−1, h)

∂(x2, . . . , xr+1)

)
(ā) = a−2

r+1,

so step 3 is satisfied.

Step 4 We may assume that for all ā ∈ Dr(σ̄′), if ā ∈ V and gr(ā) = 0 then

det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(ā) < 0.

Let h(x1, . . . , xr) ∈ M r(σ̄) be obtained from det
(
∂(g1,...,gr)
∂(x1,...,xr)

)
(x1, . . . , xr) by

replacing any occurrences of σn+1 by xe (as given by step 2). Now let

k(x1, . . . , xr+1) = xr+1h(x1, . . . , xr)− 1.
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Since gr(x1, . . . , xr) = σn+1(x1, . . . , xr) − xe and gr(b̄) = 0, if we set br+1 =

h(b̄)−1 then (3.5),(3.4), and steps 1 and 2 are satisfied by g1, . . . , gr−1, k, gr

and (b̄, bn+1). Let us see that steps 3 and 4 are satisfied. So suppose that

ā ∈ Dr+1(σ̄′) and g1(ā) = . . . = gr−1(ā) = k(ā) = gr(ā) = 0. By direct

calculation we see that

det

(
∂(g1, . . . , gr−1, k, gr)

∂(x1, . . . , xr, xr+1)

)
(ā) = − det

(
∂(g1, . . . , gr−1, gr, k)

∂(x1, . . . , xr, xr+1)

)
(ā)

= − det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(ā)h(ā)

= −h(ā)2.

Furthermore, h(a1, . . . , ar) 6= 0 since k(ā) = 0. So step 4 is satisfied. Further-

more, if ã = (ā, a) ∈ Dr+1(σ̄′) and

g1(ā) = . . . = gr−1(ā) = k(ã) = 0

then

det

(
∂(g1, . . . , gr−1, k)

∂(x2, . . . , xr+1)

)
(ã) = det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(ā)h(ā),

which is non-zero since step 3 holds for the g1, . . . , gr and k(ã) = 0. So step 3

is satisfied.

We now show that the assumptions of steps 1 - 4 imply (3.7) - (3.11). Cleary step 2

gives us (3.7). Together steps 1 and 2 give us (3.8). Condition (3.9) follows from step

1. Of course (3.10) follows from step 3 and (3.11) follows from step 4. So the proof

of part 1 is complete.

3.4.2 Part 2

We must now prove part 3.4, i.e. we must prove that all σ̄′-definable points are H-

bounded (recall that σ̄′ = (σ̄, σn+1) is an (n + 1, r)-sequence and we are assuming

that if µ̄ is an (n, s)-sequence for some s ≥ 1 then all µ̄-definable points of Ks lie in

Hs). So let b̄ ∈ Kr be σ̄′-definable. So

b̄ ∈ Dr(σ̄′) (3.17)

and we have functions g1, . . . , gr ∈M r(σ̄′) such that

g1(b̄) = . . . = gr(b̄) = 0, (3.18)
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det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(b̄) 6= 0. (3.19)

As in the proof of part 3.4 we may additionally assume that

g1, . . . , gr−1 ∈M r(σ̄) (3.20)

gr is of the form σn+1(x1, . . . , xr)− xe where xe is not σ̄′-bounded, (3.21)

and if we set V = {ā ∈ Dr(σ̄) : g1(ā) = . . . = gr−1(ā) = 0} then

V ⊆ Dr(σ̄′) and V is closed in Kr and V ∩Hr is closed in Hr, (3.22)

if ā ∈ V then det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(ā) 6= 0, (3.23)

if ā ∈ V and gr(ā) = 0 then det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(ā) 6= 0. (3.24)

Lemma 3.4.7. Let φ(x1, . . . , xr) be a formula in the language of ordered rings with

parameters from H. Suppose there exists ā ∈ V such that K |= φ(ā). Then there

exists c̄ ∈ V ∩Hr such that H |= φ(c̄).

Proof. Using quantifier elimination for the theory of real-closed fields and standard

logical equivalences we may assume that φ(x1, . . . , xr) is of the form

∃y1, . . . , ymp(x1, . . . , xr, y1, . . . , ym) = 0

where p ∈ H[x1, . . . , xr, y1, . . . , ym]. Now let g = p2 +
∑r

i=1 g
2
i ∈M r+m(σ̄). By lemma

3.3.8 there exists t ≥ 0 and c̄ = (c1, . . . , cr+m+t) ∈ Kr+m+t such that c̄ is σ̄-definable

and g(c1, . . . , cr+m) = 0. By our inductive hypothesis c̄ ∈ Hr+m+t. Furthermore,

since g(c1, . . . , cr+m) = 0 we have (c1, . . . , cr) ∈ V and H |= φ(c1, . . . , cr).

Now suppose for a contradiction that b̄ is not H-bounded.

Claim 3.4.8. b1 /∈ H.

Proof. Suppose that b1 ∈ H. Consider h(x1, . . . , xr) = x1 − b1. Then h(b̄) = 0,

h ∈M r(σ̄) and

det

(
∂(h, g1, . . . , gr−1)

∂(x1, . . . , xr)

)
(b̄) 6= 0

so b̄ is σ̄-definable and hence, by our inductive hypothesis, we have b̄ ∈ Hr, which

contradicts our assumption that b̄ is not H-bounded.

Now we may apply lemma 3.4.5 to obtain a parametrization {(Ij, ψj) : 1 ≤ j ≤ m}
of V ∩Hr. For j = 1, . . . ,m let Ij = (aj, cj) where aj ∈ H∪{−∞} and cj ∈ H∪{+∞}.
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Claim 3.4.9. If b1 is H-bounded then there exists j such that 0 < b1 − aj < α for

all α ∈ Pos(H) or 0 < cj − b1 < α for all α ∈ Pos(H).

Proof. Suppose that b1 is H-bounded. We claim that there exists j such that aj <

b1 < cj. Suppose not, then, since {(Ij, ψj) : 1 ≤ j ≤ m} is a parametrization of

V ∩Hr, there exists a, c ∈ H such that c < b1 < a but for no (d1, . . . , dr) ∈ V ∩Hr

do we have c < d1 < a. But this contradicts lemma 3.4.7. Now let a = max{aj :

1 ≤ j ≤ m, aj < b1} and let c = min{cj : 1 ≤ j ≤ m, b1 < cj} and suppose that

there exists α ∈ H such that α > 0 and a + α < b1 < c− α. Clearly, if aj < b1 < cj

then [a + α, c − α] ⊆ (aj, cj). Recall that, for o-minimal expansions of fields, the

image of a closed and bounded definable set under a continuous definable map is

closed and bounded (see theorem 2.2.11). Consequently, by theorem 3.4.4 applied

in H, there exists B ∈ H such that ‖d̄‖ ≤ B for all d̄ = (d1, . . . , dr) ∈ V ∩ Hr

with d1 ∈ [a + α, c − α]. Now let a′ = max({a + α} ∪ {cj : cj < b1}) and let

c′ = min({c− α} ∪ {aj : aj > c1}). Then there is no d̄ = (d1, . . . , dr) ∈ V ∩Hr such

that a′ < d1 < c′ and ‖d̄‖ > B. But this contradicts lemma 3.4.7 since b̄ is such a

point in V .

We now claim that we may assume that b1 > α for all α ∈ H. By claim 3.4.9, if

this is not already the case then we have one of the following

1. b1 < α for all α ∈ H,

2. there exists a ∈ H such that 0 < b1 − a < α for all α ∈ Pos(H),

3. there exists c ∈ H such that 0 < c− b1 < α for all α ∈ Pos(H).

Now define h ∈M r(σ̄) by

h(x1, . . . , xr+1) =


x1 + xr+1 case (1),
xr+1(x1 − a)− 1 case (2),
xr+1(c− x1)− 1 case (3).

Clearly, in each case there is a unique br+1 such that (b̄, br+1) satisfies g1(b̄, br+1) =

. . . = gr−1(b̄, br+1) = h(b̄, br+1) = gr(b̄, br+1) = 0 and br+1 > α for all α ∈ H. It is

easy to see that (3.17), (3.18), (3.20), (3.21), (3.22) and (3.24) all hold for the system

g1, . . . , gr−1, h, gr, (b̄, br+1). Furthermore if g1(x̄) = . . . = gr−1(x̄) = h(x̄) = 0 then

det

(
∂(g1, . . . , gr−1, h)

∂(x1, . . . , xr)

)
(x̄) 6= 0.

So we relabel the variables such that x1 becomes xr+1. Then (3.17)-(3.24) are satisifed

by the new system, and we revert to the original notation.
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Lemma 3.4.10. There exists S a finite subset of H ∩ [0, 1], B ∈ H and θ ∈ Q with

θ > 0 such that for any ā = (a1, . . . , ar) ∈ V , if a1 > B and j is such that xj is

σ̄′-bounded then there exists α ∈ S such that |aj − α| < a−θ1 .

Proof. By lemma 3.4.7 it is sufficient to prove this for all ā ∈ V ∩ Hr. So let P be

a parametrization of V ∩Hr in H. Let (I, ψ) ∈ P be such that sup I = +∞. Such

must exist by lemma 3.4.7 and the fact that b1 > α for all α ∈ H. Suppose that xl

is σ̄′-bounded. By (3.22) 0 < ψl(t) < 1 for all t ∈ I (where ψ = (ψ2, . . . , ψm)). Since

H is o-minimal and polynomially bounded there exists 0 < α < 1 and there exists

a positive rational θ and an element B ∈ H such that |ψl(t) − c| < t−θ for all t ∈ I
with t > B. Since there are only finitely many choices for (I, ψ) and for l the result

follows.

Lemma 3.4.11. There exists a positive integer µ and an element B′ ∈ H such that

if ā = (a1, . . . , ar) ∈ V ∩Hr with a1 > B′ then |gr(ā)| > a−µ1 .

Proof. As above let P be a parametrization of V ∩ Hr. Choose (I, ψ) ∈ P such

that sup I = +∞. Consider the definable map ḡr : I → H given by t 7→ gr(t, ψ(t)).

By (3.24) and o-minimality ḡr has only finitely many zeros, so by the fact that H is

o-minimal and polynomially bounded there exists a positive integer µ and an element

B ∈ H such that |ḡr(t)| > t−µ whenever t > B. Since there are only finitely many

choices for (I, ψ) the result follows.

Now gr(x1, . . . , xr) is of the form σn+1(x1, . . . , xr)− xe, and σn+1(x1, . . . , xr) is of

the form fi(y1, . . . , ym) for some i = 1, . . . , l and y1, . . . , ym ∈ {x1, . . . , xr, 0, 1}. Now,

working in K we apply theorem 2.2.33 to get that for each x̄ ∈ [0, 1]m, λ ∈ N with

λ ≥ 1 and t̄ ∈ Km such that x̄+ t̄ ∈ [0, 1]m

fi(x̄+ t̄) =
λ∑
j=0

 1

j!

(
m∑
l=1

tl
∂

∂xl

)j

fi

 (x̄) +Rλ, (3.25)

where

Rλ =

 1

(λ+ 1)!

(
m∑
l=1

tr
∂

∂xl

)λ+1

fi

 (x̄+ t̄′),

for some t̄′ on the line segment between x̄ and x̄ + t̄. Using hypothesis (4) from

theorem 3.2.1 we see that there exists Cλ a closed L-term (which does not depend on

x̄ or t̄) such that

|Rλ| < Cλ‖t̄‖λ+1.
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So, for all x̄ ∈ [0, 1]m and all t̄ ∈ Km such that x̄+ t̄ ∈ [0, 1]m,∣∣∣∣∣∣fi(x̄+ t̄)−
λ∑
j=0

 1

j!

(
m∑
l=1

tl
∂

∂xl

)j

fi

 (x̄)

∣∣∣∣∣∣ < Cλ‖t̄‖λ+1.

Now by hypothesis (3) for each λ ≥ 1 and all monomials π(x1, . . . , xm) of degree at

most λ there exists an L-term τλπ (x1, . . . , xm) such that

for all x̄ ∈ [0, 1]m and all t̄ ∈ Km such that x̄+ t̄ ∈ [0, 1]m we have∣∣∣∣∣λ!fi(x̄+ t̄)−
∑

monomials of degree≤λ

τλπ (x̄)π(t̄)

∣∣∣∣∣ < λ!Cλ‖t̄‖λ+1. (3.26)

Now recall that σn+1(x1, . . . , xr) is of the form fi(y1, . . . , ym) where y1, . . . , ym ∈
{x1, . . . , xr, 0, 1}. For w̄ = (w1, . . . , wr) ∈ Dr(σ̄′) let

w′i =


0 yi = 0,
1 yi = 1,
wj yi = xj

so that σn+1(w̄) = fi(w̄
′). Now let S, θ, B be as in lemma 3.4.10 and let µ,B′ be as

in lemma 3.4.11. Now let λ0 be an integer larger than µ+1
θ

. Now b1 > B so for each

i = 1, . . . ,m let ai ∈ S ∪ {0, 1} be such that |b′i − ai| < b−θ1 . So we have∣∣∣∣∣λ0!be −
∑

monomials of degree≤λ0

τλ0
π (ā)π(ā− b̄′)

∣∣∣∣∣ < λ0!Cλ0b
−θ(λ0+1)
1 , (3.27)

b1 > max{B′, 2Cλ} (3.28)

|b′i − ai| < b−θ1 , for i = 1, . . . ,m. (3.29)

Now (3.27) ∧ (3.28) ∧ (3.29) may be expressed as χ(b̄) where χ(x̄) is a formula in

the language of ordered rings with parameters from H. By lemma 3.4.7 there exists

c̄ ∈ V ∩Hr such that H |= χ(c̄). We may also apply (3.26) in H to get∣∣∣∣∣λ0!fi(c̄)−
∑

monomials of degree≤λ0

τλ0
π (ā)π(ā− c̄)

∣∣∣∣∣ < λ0!Cλ0c
−θ(λ0+1)
1 (3.30)

So

|fi(c̄)− ce| <2Cλ0c
−θ(λ0+1)
1 (3.31)

<2Cλ0c
−(µ+1)
1 (3.32)

<c−µ1 (3.33)

but this contradicts our choice of µ. So the proof is complete.
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Chapter 4

‘Uniform’ model-completeness for
o-minimal expansions of the real
field by power functions
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4.1 Overview

In this chapter we will use theorem 3.2.1 to prove a ‘uniform’ model-completeness

result for raising to real powers. We begin by reviewing existing results by Miller.

4.2 Results by Miller on raising to real powers

The results summarised in this section are contained in the paper [11]. Let R̃ be an

o-minimal expansion of R and suppose that R̃ is polynomially bounded with field

of exponents Q. Suppose further that R̃ admits quantifier elimination and has a

universal axiomatization (note that by remark 2.2.23 we can always ensure that this

is the case by expanding our language). Let K be a subfield of R and suppose that

for all k ∈ K there is some closed bounded interval Ik ⊆ Pos(R) such that xk �Ik is

definable in R̃ by a quantifier-free formula φk(x, y). Let R̃K = 〈R̃, (xk)k∈K〉, i.e. we

expand the language of R̃ by a function symbol fk for each k ∈ K and interpret fk

as the map

x 7→
{
xk x ∈ Pos(R),
0 x ∈ R \ Pos(R).

Theorem 4.2.1. Th(R̃K) admits quantifier elimination and is axiomatized by Th(R̃)

together with the universal closures of

(P1) (x ≤ 0→ fk(x) = 0) ∧ (x, y > 0→ fk(xy) = fk(x)fk(y)); k ∈ K,

(P2) (x > 1→ fk(x) > 1); k ∈ K with k > 1,

(P3) (fkl(x) = fk(fl(x)) ∧ fk+l(x) = fk(x)fl(x)); k, l ∈ K,

(P4) (x > 0→ fq(x) = xq); q ∈ Q,

(P5) (x ∈ Ik → φk(x, fk(x))); k ∈ K.

In particular Th(R̃K) has a universal axiomatization.

Remark 4.2.2. For theorem 4.2.1 we are assuming that R̃ is polynomially bounded

with field of exponents Q. In Miller’s paper he assumes instead that R̃ is of rational

type. It follows from theorem 2.2.59 that o-minimal theories which are polynomially

bounded with field of exponents Q are of rational type. In fact it is not difficult to

see that if T is the theory of an o-minimal expansion of the real field, then T is of

rational type if and only if T is polynomially bounded with field of exponents Q.
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Corollary 4.2.3. Let K be a subfield of R. Then 〈Ran, (x
k)k∈K〉 admits quantifier

elimination and has a universal axiomatization.

Proof. This immediate from theorem 4.2.1 and the fact that RQ
an admits quantifier

elimination, has a universal axiomatization and is polynomially bounded with field

of exponents Q (see example 2.2.66).

Corollary 4.2.4. Let S be a subset of R. Then 〈R, (xs)s∈S, (s)s∈S〉 is model-complete.

Sketch of proof. Note that for any r ∈ R, if we let f1, f2 : Pos(R) → R be given by

f1(x) = x−1 and f2(x) = xr then (f1, f2) is a Pfaffian chain. It follows from theorem

3.1.4 that 〈R, (xs �[1,2])s∈S, (s)s∈S〉 is model-complete. Combining this with theorem

4.2.1 one can deduce that 〈R, (xs)s∈S, (s)s∈S〉 is model-complete.

4.3 Statement of the theorem

For the statement of the main theorem of this chapter it will be helpful to clear about

the first order language we are using. First we fix some index set I. Let

L′ = Lord ∪ {(fi)i∈I , (ci)i∈I},

where the fi are unary function symbols and the ci are constant symbols. We will

consider L′-structures of the form

〈R, (xci)i∈I , (ci)i∈I〉,

i.e. for each i ∈ I we interpret the fi as a real power functions with exponent (the

interpretation of) ci. Now let C′ be class of all such L′-structures and let T ′ = Th(C′).

Theorem 4.3.1. T ′ is model-complete.

Remark 4.3.2. Clearly theorem 4.3.1 implies corollary 4.2.4. Furthermore, it is in

the following sense a ‘uniform’ version of theorem 4.2.4: let φ(x̄) be an L′-formula;

theorem 4.2.4 says that for any C ′ ∈ C′ there exists an existential L′-formula ψ(x̄)

such that Th(C ′) |= φ(x̄)↔ ψ(x̄). Theorem 4.3.1 says that there exists an existential

L′-formula such that T |= φ(x̄) ↔ ψ(x̄), so in particular Th(C ′) |= φ(x̄) ↔ ψ(x̄) for

all C ′ ∈ C′ (i.e. the same ψ(x̄) works for all C ′ ∈ C′).
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4.4 Preliminaries

Before proving that T ′ is model-complete, as an intermediate step, we introduce a

theory T .

Let I be the same index set as above and let L = Lord∪{(gi)i∈I , (ci)i∈I , a, b} where

the gi are new unary function symbols, the ci are the same constant symbols as in

L and a, b are new constant symbols (so L ∩ L′ = Lord ∪ {(ci)i∈I}). We will consider

L-structures of the form

〈R, (xci �[a,b])i∈I , (ci)i∈I , a, b〉,

i.e. for each i ∈ I we interpret gi as the power function with exponent (the inter-

pretation of) ci on the interval [a, b] and 0 outside of [a, b], and we also assume that

0 < a < b. We let C denote the class of all such L-structures and let T = Th(C).

Remark 4.4.1. The classes C′ and C are of course not elementary classes, i.e. there

are models of T ′ and T which are not in C′ and C respectively. In chapter 5 we study

a completion of T ′ (in the case that the index set I consists of one element) all of

whose models are non-Archimedean and hence not in C′.

We now state and prove a number of lemmas which will allow us to deduce facts

about the theories T , T ′ from properties of the theory Texp.

Lemma 4.4.2. Given an L′-formula φ(x̄) there is an Lexp-formula φ̃(x̄, ȳ) with the

property that for any C ′ ∈ C′ there exists a real tuple ā such that for any real tuple b̄

we have

C ′ |= φ(b̄) if and only if Rexp |= φ̃(b̄, ā).

Furthermore, if φ is an L′-sentence then

φ ∈ T ′ if and only if ∀ȳφ̃(ȳ) ∈ Texp.

Proof. We note that the family of functions

{xr : R→ R : r ∈ R}

is a definable family in Rexp (since xr = exp(r log(x))). Given the L′-formula φ(x̄)

let {i1, . . . , in} be the set of i ∈ I such that the function symbol fi or the constant

symbol ci occurs φ(x̄). Let y1, . . . , yn be free variables not already occurring in φ(x̄).

Let φ̃(x̄, y1, . . . , yn) be the formula obtained from φ(x̄) by replacing occurrences of

fij(x) by xyij and occurrences of cij by yij , for each j = 1, . . . , n. For a particular
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C ′ ∈ C′ we can clearly satisfy the first statement of the lemma by choosing ā to be

(the interpretations of) (ci1 , . . . , cin) in C ′. The second statement now follows since

φ ∈ T ′ if and only if C ′ |= φ for all C ′ ∈ C′

We have a very similar lemma for the class of L-structures C.

Lemma 4.4.3. Given an L-formula φ(x̄) there is an Lexp-formula φ̌(x̄, ȳ, u, v) with

the property that for any C ∈ C there exists reals 0 < r < s and a real tuple ā such

that for any real tuple b̄ we have

C |= φ(b̄) if and only if Rexp |= φ̌(b̄, ā, r, s).

Furthermore, if φ is an L-sentence then

φ ∈ T if and only if ∀ȳ, u, v(0 < u < v → φ̌(ȳ, u, v).

Proof. The proof follows that of lemma 4.4.2. We note that the family of functions

{xr �[a,b]: R→ R : r, a, b ∈ R with 0 < a < b}

is a definable family in Rexp. Given the L-formula φ(x̄) let {i1, . . . , in} be the set of

i ∈ I such that the function symbol gi or the constant symbol ci occurs φ(x̄). Let

y1, . . . , yn, u, v be free variables not already occurring in φ(x̄). Let φ̌(x̄, y1, . . . , yn, u, v)

be the Lexp-formula obtained by replacing occurrences of gij(x) by xyij �[u,v] and

occurrences of cij by yij , for each j = 1, . . . , n. For a particular C ∈ C we can clearly

satisfy the first statement of the lemma by choosing ā to be (the interpretations of)

(ci1 , . . . , cin) and r, s to be (the interpretations of) a, b in C. The second statement

now follows since φ ∈ T if and only if C |= φ for all C ∈ C

We now prove a lemma which tells us that all models of T ′ naturally induce models

of T .

Lemma 4.4.4. Let A′ |= T ′ and let c, d ∈ A with 0 < c < d. Let A be the natural

L-structure induced by A with respect to c, d, i.e. for each i ∈ I we interpret gi as

the restriction of xci to the interval [c, d]. Then A |= T .

Proof. For any L-formula φ(x̄) there is an L′-formula φ̂(x̄, y, z) such that if R′ |= T ′

and r, s ∈ R with 0 < r < s and R is the natural L-structure induced by R′ with

respect to r, s then φ(x̄) and φ̂(x̄, r, s) define the same set when interpreted in R
and R′ respectively. It follows that if φ is an L-sentence then T |= φ if and only if

T ′ |= ∀x∀y(0 < x < y → φ̂(x, y)). Now suppose φ ∈ T . We must prove that A |= φ.

It is sufficient to prove that A′ |= φ̂(c, d). But A′ |= T ′ so A′ |= ∀x∀y(0 < x < y →
φ̂(x, y)).
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As mentioned above, the aim of this chapter will be to prove that T ′ is model-

complete. We will first prove that T is model-complete.

4.5 Model-completeness of T

4.5.1 Models of T are o-minimal and polynomially bounded
with field of exponents Q

In this section we will use lemma 4.4.3 to prove that all models of T are polynomially

bounded with field of exponents Q.

In what follows we will sometimes denote the Lexp-formula φ̂(x̄, ȳ, u, v), produced

as in lemma 4.4.3, from the L-formula φ(x̄) simply as φ̂(x̄, w̄) (i.e. we will not dis-

tinguish notationally between free variables representing exponents and free variables

representing the interval of restriction).

Lemma 4.5.1. All models of T are o-minimal.

Proof. Let R |= T . To prove that R is o-minimal it is sufficient to show that every

definable subset of R which contains no intervals is finite. So let A be a definable

subset of R given by an L-formula φ(ā, x), where ā is some tuple in R, and suppose

that A contains no intervals. For the L-formula φ(ȳ, x) we produce an Lexp-formula

φ̂(ȳ, x, z̄) as in lemma 4.4.3. By the o-minimality of Texp and the uniform finiteness

property of o-minimal structures (theorem 2.2.10) we can choose N such that

Texp |= ∀z̄, ȳ
(
if φ′(z̄,ȳ)(x) contains no intervals then ∃≤Nxφ′(z̄,ȳ)(x)

)
.

So we have, for all S ∈ C,

S |= ∀ȳ (if φȳ(x) contains no intervals then ∃≤Nxφȳ(x))

and so

R |= ∀ȳ (if φȳ(x) contains no intervals then ∃≤Nxφȳ(x))

Hence

R |= ∃≤Nxφ(ā, x).

Remark 4.5.2. The same proof shows that all models of T ′ are o-minimal.

Lemma 4.5.3. All models of T are polynomially bounded with field of exponents Q.
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Proof. Note that for all S ∈ C we have that S is a reduct of Ran and hence is

polynomially bounded with field of exponents Q (example 2.2.66). Let φ(z̄, x, y) be

an L-formula. It will be sufficient to prove that there exists n ≥ 1 and q1, . . . , qn ∈ Q
such that

T |= ∀z̄∃w (if φz̄(x, y) defines a function f(x) = y then f(x) is asymptotic

to one of wxq1 , . . . , wxqn)

Let φ̂(z̄, x, y, w̄) be as given by lemma 4.4.3. Now for any real tuples ā, b̄, the Rexp-

definable set given by φ̂(b̄, x, y, ā) is also definable in some S ∈ C. Therefore, if

φ̂(b̄, x, y, ā) defines a function f(x) = y then f(x) must be asymptotic to cxq for some

c ∈ R and some q ∈ Q. So we have an Rexp-definable function P : Rl(w̄)+l(z̄) → R
which does the following: if φ̂(b̄, x, y, ā) defines a function f(x) = y then P (ā, b̄) is the

unique rational such that f(x) is asymptotic to some real multiple of xq and otherwise

P (ā, b̄) = 0. Since the image of P is contained in Q, by the o-minimality of Rexp, it

must be finite. Let {q1, . . . , qn} be the image of P . Then

T |= ∀z̄∃w (if φz̄(x, y) defines a function f(x) = y then f(x) is asymptotic

to one of wxq1 , . . . , wxqn).

4.5.2 Applying theorem 3.2.1 to obtain model-completeness
of T

Recall that it is our intention to prove that T is model-complete. To do this we must

modify our theory T so that theorem 3.2.1 is directly applicable. Let us first recall

some standard facts about changing languages.

Let L1, L2 be first order languages such that L1 ⊆ L2. Let T2 be an L2-theory

and let T1 be the L1-reduct of T2. We say that T2 is an extension by definitions of T1

if for each L2-formula φ there exists an L1-formula ψ such that T2 |= φ↔ ψ. Notice

that in this case every model of T1 naturally induces a model of T2 and vice-versa

and both have the same definable sets. Consequently all models of T1 are o-minimal

and polynomially bounded with field of exponents Q if and only if all models of T2

are o-minimal and polynomially bounded with field of exponents Q. Furthermore, it

is straightforward to prove that if L2 is an expansion of L1 by constants and function

symbols and T2 is an extension by definitions of T1 such that for each new function

symbol f and each new constant symbol c the formulas f(x) = y and x = c are
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equivalent (modulo T2) to existential L1-formulas then T2 is model-complete if and

only if T1 is.

We now perform the modifications. At each step it will follow from the above

discussion that the new theory is model-complete if and only if the old one is. Fur-

thermore at each stage we will preserve the property that all models are o-minimal

and polynomially bounded with field of exponents Q.

Step 1 Expand L by a new function symbol hi for each i ∈ I. Denote the extended

language by L∗. For each i ∈ I extend T by the L∗-sentence

∀x (hi(x) = fi(a+ (b− a)x))) .

Let T ∗ be the resulting extension of T .

Step 2 Let L∗∗ be the reduct of L∗ consisting of the language of ordered rings, the

function symbols hi, the constant symbols ci and a, b. Let T ∗∗ be the L∗∗-reduct

of L∗.

Step 3 Let L∗∗∗ be the expansion of L∗∗ by a single function symbol k. Let T ∗∗∗ be the

extension of T ∗∗ by the sentence

∀x∀y(k(x) = y ↔

((0 ≤ x ≤ 1 ∧ y(a+ (b− a)x) = 1) ∨ (¬(0 ≤ x ≤ 1) ∧ y = 0))).

Step 4 Finally we expand L∗∗∗ by constant symbols for all existentially definable points

and T ∗∗∗ by the appropriate sentences, ie. if φ(x) is an existential L∗∗∗-formula

such that T ∗∗∗ |= ∃!xφ(x) then we add a constant symbol cφ and a sentence

φ(cφ). Let L∗∗∗∗ and T ∗∗∗∗ be the resulting language and theory.

The language L∗∗∗∗ consists of +, ·, <, function symbols hi for each i ∈ I, a further

function symbol k and a set of constants C. We wish to apply theorem 3.2.1 to show

that for any language L̃ = {+, ·, <, hi1 , . . . , hin , k, (c)c∈C} ⊆ L∗∗∗∗ the L̃-reduct T̃

of T ∗∗∗∗ is model-complete. The model-completeness of T ∗∗∗∗ (and hence T ) would

clearly follow from this. We must check that the conditions (1)-(4) of theorem 3.2.1

hold for T̃ . Condition (1) follows from the definition of T and the fact that R is

real-closed. Condition (5) holds for T by lemma 4.5.1 and lemma 4.5.3 and hence

also holds for T ∗∗∗∗ by the discussion at the beginning of section 4.5.2. Condition

(2) follows from the fact that real power functions are smooth on (0,∞) and the

fact that in an expansion of a field the statement ‘f is differentiable at x’ is first
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order. Condition (3) holds because for any i ∈ I the interpretation of the sequence of

functions (hi, k) in a model of T ∗∗∗∗ is a Pfaffian chain. Finally, condition (4) holds

because power functions are monotonic so their value on a closed bounded interval of

the positive halfline is bounded by their value at one of the end points.

Hence T is model-complete.

4.6 Model-completeness of T ′

In this section we will prove that T ′ is model-complete. First we prove a preliminary

theorem.

4.6.1 A preliminary result

Let R be a power-bounded o-minimal expansion of an ordered field with field of

exponents K. Suppose also that R has a constant symbol for each element of its

domain. Let L be the language of R. Now let S be a subfield of R containing K and

suppose that for each s ∈ S there exists a power function fs on R with exponent s.

Note that we do not assume fs to be definable and indeed unless s ∈ K it cannot be.

Now assume that for each s ∈ S and each I a closed bounded interval of Pos(R) the

restriction of fs to I is definable in R. Denote this definable restriction by f Is . It is

easy to check that the functions fs satisfy the following (cf. theorem 4.2.1):

(P1) (x ≤ 0→ fs(x) = 0) ∧ (x, y > 0→ fs(xy) = fs(x)fs(y)); s ∈ S,

(P2) (x > 1→ fs(x) > 1); s ∈ S and s > 1,

(P3) (frs(x) = fr(fs(x)) ∧ fr+s(x) = fr(x)fs(x)); r, s ∈ S,

(P4) (x > 0→ fk(x) = xk); k ∈ K,

(P5) (a ≤ x ≤ b→ fs(x) = f
[a,b]
s (x)); s ∈ S, a, b ∈ R with 0 < a < b.

Now let R+ be the expansion of R by fs for each s ∈ S. Denote the language

of R+ by L+. The following theorem generalizes theorem 4.2.1 of Miller and we will

prove it using the same methods.

Theorem 4.6.1. Th(R+) is axiomatized by Th(R) and the universal closures of the

axiom schemes (P1)-(P5). Furthermore, if Th(R) admits quantifier elimination then

so does Th(R+).
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By taking an extension by definitions if necessary we may assume that Th(R)

admits quantifier elimination and is axiomatized by its universal theory (see remark

2.2.23).

Let T = Th(R) ∪ {(P1), . . . , (P5)}. We must prove that T is complete and

admits quantifier elimination. By remark 2.3.5 it will be sufficient to prove that T is

model-complete. We will use theorem 2.3.1 (6) to establish the model-completeness

of T .

Let B |= Th(R). Since Th(R) admits quantifier elimination and we have a con-

stant symbol in L for each element of R we must have that R occurs as an elementary

substructure of B (upto isomorphism). Define VB to be the convex hull of R in B so

that VB is a Th(R)-convex subring of B (see section 2.2.5.1). Denote the correspond-

ing valuation and value group by vB and ΓB respectively. In fact, we will often drop

the subscript and denote the valuation map by v. In what follows in this section, if

we talk about about a valuation on a structure B |= Th(R) we will always mean the

valuation with respect to the convex hull of R.

Now suppose that B expands to a model B+ of T . It follows from the axiom

schemes (P1)-(P4) that each fs is monotonic on Pos(B). Consequently, since R is

closed under each fs we have that Un(VB) is closed under each fs. Therefore the value

group ΓB has the structure of an S-vector space.

If we have A,B |= Th(R) such that A ⊆ B then clearly VB ∩ A = VA. Hence, we

can consider B as a valued field-extension of A. In this circumstance we will denote

the common valuation map by v.

Given A |= T we will denote its L-reduct by A−. Clearly A− |= Th(R).

Lemma 4.6.2. Let B |= T and let A be a substructure of B− (so A |= Th(R)).

Suppose further that there exists P ⊆ Pos(A) such that v(P ) = v(A) and fs(P ) ⊆ A

for all s ∈ S. Then fs(A) ⊆ A for all s ∈ S and 〈A, (fs �A)s∈S〉 |= T .

Proof. Since T has a universal axiomatization the second conclusion of the lemma

will follow from the first. So take a ∈ Pos(A). There exists p ∈ P with v(a) = v(p),

ie. a = up where u ∈ A and v(u) = 0. Since v(u) = 0 there exists b, c ∈ R such that

b < u < c. Now, for each s ∈ S

fs(a) =fs(up)

=fs(u)fs(p)

=f [b,c]
s (u)fs(p) ∈ A.

63



Lemma 4.6.3. Let A,B |= T and let φ : A− → B− be an L-embedding. If there

exists P ⊆ Pos(A) such that v(P ) = v(A) and φ(fs(p)) = fs(φ(p)) for all s ∈ S and

all p ∈ P . Then φ is an L+-embedding.

Proof. Let a ∈ Pos(A) and let s ∈ S. We must show that φ(fs(a)) = fs(φ(a)). Since

v(P ) = v(A) there exists u ∈ A with v(u) = 0 and p ∈ P such that a = up. Choose

b, c ∈ R such that u ∈ [b, c].

φ(fs(a)) =φ(fs(up))

=φ(fs(u))φ(fs(p))

=φ(f [b,c]
s (u))φ(fs(p))

=f [b,c]
s (φ(u))fs(φ(p))

=fs(φ(u))fs(φ(p))

=fs(φ(u)φ(p))

=fs(φ(a)).

By theorem 2.3.1 (6) , in order to prove that T admits quantifier elimination it is

sufficient to prove the following lemma:

Lemma 4.6.4. Let A,B |= T and suppose that A is a proper substructure of B. Let

B′ be a |B|+-saturated elementary extension of A. Then there exists C |= T such that

A ( C ⊆ B and C embeds into B′ over A.

Proof. Since both vB and v′B extend vA we may unambiguously denote the valuations

onA, B and B′ by v. Suppose first that v(A) = v(B). Choose x ∈ B\A. By saturation

we may choose y ∈ B′ \ A realizing the same cut in A as x. Let C = A−〈x〉 and let

C ′ = A−〈y〉. Since Th(R) admits quantifier elimination it follows from lemma 2.2.24

that there exists an L-isomorphism φ : C → C ′ that is the identity on A and sends x

to y. Since v(C) = v(A) we have v(C ′) = v(A). So by lemma 4.6.2 and lemma 4.6.3

C and C ′ expand to models of T and φ is an L+-embedding.

Now suppose that v(A) 6= v(B). Choose x ∈ Pos(B) such that v(x) /∈ v(A). By

saturation we may choose y ∈ B′ realizing the same cut in A as x. Now let κ be the

64



dimension of S as a K-vector space and let 〈eγ : γ < κ〉 be a K-basis for S. Define

xγ =xeγ ,

yγ =yeγ .

Now recursively define Cγ, C ′γ |= Th(R) as follows:

Cγ =


A− γ = 0
Cβ〈xβ〉 γ = β + 1⋃
β<γ Cβ γ a limit ordinal.

Similarly

C ′γ =


A− γ = 0
C ′β〈yβ〉 γ = β + 1⋃
β<γ C ′β γ a limit ordinal.

We must show the following:

1. Cκ expands to a model of T ,

2. there is an L+-isomorphism φ : Cκ → C ′κ which is the identity on A.

We first show that {v(xγ) : γ < κ} is K-linearly independent over v(A). For

suppose that this is not the case. Then there exists k1, . . . , kn ∈ K and γi1 , . . . , γin < κ

such that
n∑
i=1

kiv(xγi) ∈ v(A).

Now

n∑
i=1

kiv(xγi) =
n∑
i=1

v(xkiγi)

= v

(
n∏
i=1

xeγiki

)
= v

(
x
∑n
i=1 eγiki

)
.

Let r =
∑n

i=1 eγiki. Then v(xr) ∈ v(A) so v(x) ∈ v(A) which contradicts the choice

of x. In the same way we see that {v(yγ) : γ < κ} is K-linearly independent over

v(A).

Since Th(R) is a power-bounded theory with field of exponentsK, by the valuation

inequality (theorem 2.2.59), for each γ < κ we have v(C×γ+1) = v(C×γ )⊕Kv(xγ).
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Now let

P ={axs : a ∈ Pos(A), s ∈ S},

P ′ ={ays : a ∈ Pos(A), s ∈ S}.

We claim that v(P ) = v(Cκ) and v(P ′) = v(C ′κ). We will prove the former, the

latter being proved in the same way.

It is clearly sufficient to prove that for all γ < κ for any α ∈ Cγ there exists β ∈ P
such that v(β) = v(α).

γ = 0 This is clear since Pos(A) ⊆ P .

γ is a successor ordinal So γ = δ + 1 for some ordinal δ, and for all α ∈ Cδ
there exists β ∈ P such that v(β) = v(α). Now let α ∈ Cδ+1 = Cδ〈xδ〉. Now

v(C×δ+1) = v(C×δ )⊕Kv(xδ). Therefore there exists a ∈ A, r ∈ S and k ∈ K such

that v(α) = v(axr) + kv(xeδ). So v(α) = v(axr+qeδ) and axr+keδ ∈ P .

γ is a limit ordinal This is immediate.

Therefore, since fs(P ) ⊆ Cκ and fs(P
′) ⊆ C ′κ for all s ∈ S, by lemma 4.6.2, both

Cκ and C ′κ have expansions to models of T . It remains to prove (2). By lemma 4.6.3

it is sufficient to find an L-isomorphism φ : Cκ → Cκ′ such that φ is the identity on

A and such that φ(pr) = φ(p)r for all p ∈ P and r ∈ S. We recursively construct

L-isomorphisms 〈φγ : Cγ → C ′γ : γ ≤ κ〉 such that φα extends φβ whenever α > β and

each φα is the identity on A.

γ = 0 Let φ be the identity map.

γ is a successor ordinal So γ = β + 1 for some ordinal β. We suppose we have an

L-isomorphism φβ : Cβ → C ′β. By lemma 2.2.24 and the fact that Th(R) admits

quantifier elimination, to show that φβ extends to an L-isomorphism from Cβ+1

to C ′β+1 it is sufficient to prove that xβ and yβ realize corresponding (under φβ)

cuts in Cβ and C ′β respectively. So let c ∈ Cβ and suppose that xγ < c (note

that since x > 0 we must have c > 0). Choose a ∈ A and r ∈ S such that

v(c) = v(axr). Since 0 < xγ < c and v(xγ) 6= v(c) we have that v(xγ) > v(axr),

ie. eγv(x) > v(a)+rv(x). So v(a) < (eγ−r)v(x). Now suppose that eγ > r (the

other case is similar). Then v(x) > 1
eγ−rv(a). Now since y realizes the same cut

in A as x we have that v(y) > 1
eγ−rv(a). Now reversing the steps above we get

v(yγ) > v(ayr) = v(φ(c)). So yγ < φ(c).
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γ is a limit ordinal Take φγ to be the union of the φα’s for α < γ.

So we have constructed φ an L-isomorphism from Cκ to C ′κ which is the identity on

A. By lemma 4.6.3 it remains to prove that for all c ∈ P and all s ∈ S we have

φ(cs) = φ(c)s. Take such a c and write it as axr where a ∈ A and r ∈ S.

We first note the following: if r ∈ S then φ(xr) = yr. To see this we write r as

r =
∑n

i=1 kieγi for some ki ∈ K and γi < κ.

Now

φ(xr) = φ(x
∑n
i=1 kieγi )

= φ(
n∏
i=1

xkieγi )

=
n∏
i=1

φ(xeγi )ki

=
n∏
i=1

(yeγi )ki

= yr.

So

φ(cs) = φ(asxrs)

= φ(as)φ(xrs)

= asyrs,

and

φ(c)s = φ(axr)s

= φ(a)sφ(xr)s

= asxrs.

So T admits quantifier elimination. It remains to show that T is complete. To

see this we let A |= T . Now R+ embeds in A. By quantifier elimination for T

this embedding must be elementary. So in particular A and R+ are elementarily

equivalent. So T is complete.
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4.6.2 Model-completeness of T ′

Let L, C and T and L′, C′ and T ′ be as in sections 4.3 and 4.4. We are now in a

position to prove theorem 4.3.1

Proof of theorem 4.3.1. Let H,K |= T ′ and suppose that H ⊆ K. Let H+ and K+

be the expansions of H and K by constant symbols for elements of H. To prove the

model-completeness of T it will of course be sufficient to prove that H+ and K+ are

elementarily equivalent. Let

H+
res = 〈H, (xci �J)i∈I,J∈J, (r)r∈H〉,

K+
res = 〈K, (xci �J)i∈I,J∈J, (r)r∈H〉,

where J is the set of all closed bounded intervals of Pos(H).

By lemma 4.4.4, for each J = [aJ , bJ ] ∈ J we have

〈H, (xci �J)i∈I , aJ , bJ , (ci)i∈I〉 |= T

and

〈K, (xci �J)i∈I , aJ , bJ , (ci)i∈I〉 |= T.

So, since T is model-complete,

H+
res ≡ K+

res.

Now let

H+∗
res = 〈H+

res, (x
ci)i∈I〉,

K+∗
res = 〈K+

res, (x
ci)i∈I〉.

Clearly it is sufficient to prove that H+∗
res ≡ K+∗

res. This follows from the complete

axiomatization of Th(H+∗
res) over Th(H+

res) provided by theorem 4.6.1.
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Chapter 5

Raising to an infinite power
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5.1 Overview

In this chapter we will define the theory T∞. This will be a completion of T ′ (see

section 4.3). We will then establish some properties of T∞ - that it is model-complete

and decidable if and only if Texp = Th(Rexp) is decidable. Finally we find the field of

exponents of T∞.

5.2 Defining T∞

Let R be a non-Archimedean model of Texp and let λ be a positive infinite element of

R (see example 2.2.67 for the definition of Texp and example 2.2.52 for the definitions

of Archimedean, infinite etc.). Since R is exponential it defines a power function with

exponent λ (see lemma 2.2.44). Let

Rλ = 〈R, xλ, λ〉,

and let L denote the language of Rλ. Note that Rλ is a reduct of an o-minimal

structure and is therefore o-minimal.

We now show that the first order theory of Rλ does not depend on R, the choice

of non-Archimedean model of Texp, or λ, the choice of positive infinite element of

R. To see this take an L-formula φ(x̄). By replacing all occurrences of xλ by the

R-definable map (x, y) 7→ xy (where y is a new variable) and all occurrences of λ by

y we may (effectively) obtain an Lexp-formula φ′(x̄, y) such that for any tuple ā in R

we have

R |= φ′(ā, λ) if and only if Rλ |= φ(ā).

Now if φ is an L-sentence it follows from the o-minimality of Texp that R |= φ′(λ) if

and only if Texp |= ∃x∀y(y > x→ φ′(y)). So the theory of Rλ depends only upon the

theory Texp. Consequently we denote the theory of Rλ by T∞.

As an aside, note that for any r ∈ R and any L-sentence φ we have

Rexp |= φ′(r) if and only if 〈R, xr, r〉 |= φ.

So φ ∈ T∞ if and only if 〈R, xr, r〉 |= φ for all sufficiently large r ∈ R.

5.3 Particular constructions of models of T∞

In this section we describe a number of different methods of producing models of T∞.
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Example 5.3.1. For each r ∈ R let Rr be the L-structure

〈R, xr, r〉.

Choose (ai)i∈N, a sequence of real numbers which tends to infinity and U, a non-

principal ultrafilter over N. Now consider the ultraproduct∏
i∈N

Rai/U.

Since
∏

i∈N Rai/U is a reduct of the ultrapower

RN
exp/U

it is a model of T∞.

Example 5.3.2. Let S be an arbitrary real-closed field. For each n ∈ N let

Sn = 〈S,+, ·, <, xn, n〉.

Since TRCF is complete (see example 2.2.65) we have Sn ≡ Rn for each n ∈ N.

Therefore, for any U a non-principal ultrafilter on N, we have∏
n∈N

Sn/U ≡
∏
n∈N

Rn/U,

and so ∏
n∈N

Sn/U |= T∞.

Example 5.3.3. LetH = H(Rexp), the Hardy field of germs at +∞ of unary functions

definable in Rexp. We consider H as an Lexp-structure as in section 2.2.6.1. By lemma

2.2.64, when considered as an Lexp-structure we have that Rexp 4 H. Consequently,

if g is any positive infinite element of H = dom(H) then

〈H,+.·, <, xg, g〉

is a model of T∞. Note that g is just the germ at +∞ of an Rexp-definable function

which tends to +∞, and given any eventually positive Rexp-definable function f , the

map xg acts on f by sending f to the germ at +∞ of the function x 7→ f(x)g(x). Note

that any model of T∞ obtained in this way has a natural derivation coming from its

Hardy field structure.
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5.4 T∞ is model-complete

Let T ′ =
⋂
r∈R Th(Rr) (recall Rr = 〈R, xr, r〉). It follows from theorem 4.3.1 that T ′

is model-complete (note that the T ′ considered here coincides with the T ′ of section

4.3 in the case where the index set I in 4.3 is taken to be a one element set). For

the purposes of the following lemma we will let c denote the constant symbol in the

language L which we typically interpret as the exponent of the power function.

Lemma 5.4.1. T ′ ⊂ T∞ so T∞ is model-complete. Furthermore,

T ′ ∪ {c > n : n ∈ N} ` T∞.

Proof. It follows from the discussion at the end of section 5.2 that φ ∈ T∞ if and only

if φ ∈ Th(Rr) for all sufficiently large r ∈ R. Consequently T ′ ⊂ T∞. Furthermore, if

φ ∈ T∞ then for some N ∈ N we have

(c > N → φ) ∈ T ′.

The second conclusion of the lemma follows immediately.

5.5 Regarding decidability of T∞

In this section we will prove the following theorem.

Theorem 5.5.1. T∞ is decidable if and only if Texp is decidable.

Before proving theorem 5.5.1 let us put it in context by recalling the work of

Wilkie and Macintyre on the decidability of Texp

5.5.1 On the decidability of Texp

In [8] Wilkie and Macintyre (unconditionally) reduce the problem of proving the

decidability of Texp to that of obtaining a procedure P which does the following:

P terminates on input p(x1, . . . , x2n) ∈ Z[x1, . . . , x2n] if and only if the

function Rn → R given by

(x1, . . . , xn) 7→ p(x1, . . . , xn, exp(x1), . . . , exp(xn))

has a zero.
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They obtain such a procedure under the assumption of Schanuel’s Conjecture for

R.

Schanuel’s Conjecture for R. Let a1, . . . , an ∈ R be Q-linearly independent. Then

the field

Q (a1, . . . , an, exp(a1), . . . , exp(an))

has transcendence degree at least n.

So they establish the following theorem.

Theorem 5.5.2. If Schanuel’s Conjecture is true then Texp is decidable.

They also make a so-called ‘Weak Schanuel’s Conjecture’.

Weak Schanuel’s Conjecture (WSC). There exists an effective procedure which

given n ≥ 1 and f1, . . . , fn, g ∈ Z[x1, . . . , xn, exp(x1), . . . , exp(xn)] produces N ∈
N \ {0} such that for any r̄ ∈ Rn, if r̄ = (r1, . . . , rn) is a non-singular zero of the

system

f1(x1, . . . , xn, exp(x1), . . . , exp(xn)) = 0,

...

fn(x1, . . . , xn, exp(x1), . . . , exp(xn)) = 0,

then g(r̄) = 0 or |g(r̄)| > N−1.

They prove that (WSC) is in fact equivalent to the decidability of Texp.

Theorem 5.5.3. Texp is decidable if and only if Weak Schanuel’s Conjecture is true.

Remark 5.5.4. It follows from theorem 5.5.2 and theorem 5.5.3 that Schanuel’s Con-

jecture implies Weak Schanuel’s Conjecture.

5.5.2 The proof of theorem 5.5.1

One direction of Theorem 5.5.1 follows from the o-minimality of Texp.

Lemma 5.5.5. T∞ is decidable if Texp is decidable.

Proof. As remarked in section 5.1, given an L-sentence φ we can effectively obtain

an Lexp-formula φ′(y) such that T∞ |= φ if and only if Texp |= ∃z∀y(y > z → φ′(y)).

Since we are assuming that Texp is decidable the result follows.
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We must now prove the converse. So assume that T∞ is decidable. Using the

reduction of Wilkie and Macintyre, we will prove that Texp is decidable by exhibiting

a procedure P as described at the beginning of section 5.5.1.

Let us recall some terminology and standard results from non-standard analysis.

So let R̃ be an expansion of R and let M be a proper elementary extension of R̃. It

follows from the completeness of R that given x ∈ Fin(M) there exists a unique r ∈ R
such that x−r is infinitesimal; we denote this r by st(x). If r̄ = (r1, . . . , rn) ∈ Fin(M)n

then we write st(r̄) to denote (st(r1), . . . , st(rn)).

We now give two standard lemmas. Since the proofs are short we reproduce them

here.

Lemma 5.5.6. Let f : R → R be an definable function and suppose that f(x) → 0

as x→∞. Let r be a positive infinite element of M. Then f(r) is infinitesimal.

Proof. Let ε ∈ Pos(R). We must prove that |f(r)| < ε. Since f(r) → 0 as x → ∞
there exists R ∈ R such that

R̃ |= ∀x(x > R→ |f(x)| < ε).

Since M < R̃ we have

M |= ∀x(x > R→ |f(x)| < ε).

Hence |f(r)| < ε.

Lemma 5.5.7. Let C be a definable subset of Rn and f : C → R a definable con-

tinuous function. Let x̄ ∈ CM (the interpretation of C in M) and suppose that x̄ is

finite and st(x̄) ∈ C. Then f(x̄) is finite and st (f(x̄)) = f (st(x̄)).

Proof. It will be sufficient to prove that st(f(x̄)) = f(st(x̄)). Let ε ∈ Pos(R). We

must show that |f(x̄) − f(st(x̄))| < ε. Since f is continuous at st(x̄) there exists

δ ∈ Pos(R) such that

R̃ |= ∀ȳ(‖ȳ − st(x̄)‖ < δ → |f(ȳ)− f(st(x̄))| < ε).

Since M < R̃ we have

M |= ∀ȳ(‖ȳ − st(x̄)‖ < δ → |f(ȳ)− f(st(x̄))| < ε).

Hence |f(x̄)− f(st(x̄))| < ε.
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Now let R be a proper elementary extension of Rexp. Choose λ ∈ R to be positive

and infinite. Let

R′ = 〈R,+, ·, <, xλ, λ〉

so that R′ |= T∞. Let µ : R→ R be the R′-definable function given by x 7→ (1 + x
λ
)λ.

It follows from lemma 5.5.6 and the classical limit formula

lim
y→∞

(
1 +

x

y

)y
= exp(x),

where x, y are real and the limit is interpreted in R, that | exp(x)−µ(x)| is infinitesimal

for real values of x.

In what follows we will actually find it more convenient to work with the R′-
definable function given by

ε(x) =

{ (
1 + x

λ

)λ
x ≥ 0,(

1− x
λ

)−λ
x < 0.

Note that ε(−x) = ε(x)−1 for |x| < λ. It follows that |ε(x) − exp(x)| is infinitesimal

for real values of x. In fact we can prove the stronger statement that

| exp(x)− ε(x)| ≤ x2 exp(x)

2λ
, (5.1)

for all finite values of x. We defer the proof of this inequality to section 5.6 at the

end of this chapter.

Now for p(x1, . . . , x2n) ∈ Z[x1, . . . , x2n] let Fp, Gp be the maps given by

Fp(x1, . . . , xn) = p(x1, . . . , xn, exp(x1), . . . , exp(xn)),

Gp(x1, . . . , xn) = p(x1, . . . , xn, ε(x1), . . . , ε(xn)).

We wish to find an upper bound on the difference |Fp(r̄)−Gp(r̄)| which holds for

finite values of r̄. We will use the following standard identities which hold for any

commutative ring R.

Lemma 5.5.8. Let a1, . . . , an, b1, . . . , bn ∈ R. Then

n∏
i=1

ai −
n∏
i=1

bi =
n∑
j=1

(
(aj − bj)

j−1∏
i=1

ai

n∏
i=j+1

bi

)
.

Corollary 5.5.9. Let a, b ∈ R. Then

an − bn = (a− b)
n∑
j=1

aj−1bn−j+1.
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Lemma 5.5.10. Let p(x1, . . . , x2n) ∈ Z[x1, . . . , x2n]. For any r̄ ∈ Fin(R)n there exists

M ∈ R (depending on r̄ and p) such that

|Fp(r̄)−Gp(r̄)| ≤
M

λ
.

Notation 5.5.11. In the proof below we will use M in a series of inequalities. In

each case M stands for a positive real depending on r̄ and p, but not necessarily the

same positive real in each inequality where it occurs.

Proof of lemma 5.5.10. Using multi-index notation,

p(x1, . . . , x2n) =
∑

|α|,|β|<N

aα,βx̄
αȳβ,

where N is some positive integer, x̄ = (x1, . . . , xn), ȳ = (xn+1, . . . , x2n), α, β ∈ Nn

and aα,β ∈ Z. So

Fp(x̄) =
∑

|α|,|β|<N

aα,βx̄
α exp(x̄)β,

Gp(x̄) =
∑

|α|,|β|<N

aα,βx̄
αε(x̄)β.

Now fix r̄ ∈ Fin(R)n.

|Fp(r̄)−Gp(r̄)| ≤
∑

|α|,|β|<N

|aα,β| |r̄|α
∣∣exp(r̄)β − ε(r̄)β

∣∣ (5.2)

≤M
∑

|α|,|β|<N

∣∣exp(r̄)β − ε(r̄)β
∣∣ (5.3)

By corollary 5.5.9 and inequality (5.1), for each i = 1, . . . , n∣∣exp(ri)
βi − ε(ri)βi

∣∣ ≤ M

λ
. (5.4)

By lemma 5.5.8 and (5.4), for each β∣∣exp(r̄)β − ε(r̄)β
∣∣ ≤ M

λ
. (5.5)

It follows from (5.3) and (5.5) that

|Fp(r̄)−Gp(r̄)| ≤
M

λ
.
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Corollary 5.5.12. For any n ≥ 1, any p(x1, . . . , x2n) ∈ Z[x1, . . . , x2n] and any r̄ ∈
Fin(R)n

|Fp(r̄)−Gp(r̄)| <
1√
λ
.

Proof. Note that if M ∈ Fin(R) then M <
√
λ.

Corollary 5.5.13. Let n ≥ 1 and p(x1, . . . , x2n) ∈ Z[x1, . . . , x2n]. Then Fp has a

zero in Rn if and only if |Gp(r̄)| < 1√
λ

for some r̄ ∈ Fin(R)n.

Proof. Suppose that Fp(ā) = 0, where ā ∈ Rn. By corollary 5.5.12, |Gp(ā)| < 1√
λ
.

Now suppose that |Gp(r̄)| < 1√
λ
, where r̄ ∈ Fin(R)n. By lemma 5.5.7, Fp(r̄) −

Fp(st(r̄)) is equal to some infinitesimal µ. Now

|Fp(st(r̄))| ≤ |Fp(st(r̄))− Fp(r̄)|+ |Fp(r̄)−Gp(r̄)|+ |Gp(r̄)|

≤ µ+
1√
λ

+
1√
λ
.

So Fp(st(r̄)) is both real and infinitesimal and hence zero.

We are now in a position to give our effective procedure P which will terminate

if and only if Fp has a real zero.

For N ∈ N let φN be the L-sentence:

∃x̄ s.t. |x̄| ≤ N and |Gp(x̄)| < 1√
λ
.

Our procedure P is as follows: at stage N run the decision procedure for T∞ on φN .

If it halts with output TRUE then terminate. If it halts with output FALSE then go

to stage N + 1. By corollary 5.5.13, this procedure terminates if and only if Fp has a

real zero.

Remark 5.5.14. In fact we have shown Texp is decidable if the existential theory of

T∞ is decidable. Furthermore we can modify the above procedure to show that Texp

is decidable if the existential theory of T∞ is recursively enumerable. To see this we

first note that the set Λ of L-sentences of the form

∃x̄ s.t. |x̄| ≤ N and |Gp(x̄)| < 1√
λ

for fixed p and varying N ∈ N is recursive. Now given p we know that Fp has a

real zero if and only if Λ has non-empty intersection with the existential theory of

T∞. Let θ1, θ2, . . . be our recursive enumeration of the existential theory of T∞. Our

new procedure is as follows: at stage N we check whether θN is in Λ, if YES then

terminate, if NO then proceed to stage N + 1.

77



Theorem 5.5.15. The following are equivalent.

1. Texp is decidable.

2. T∞ is decidable.

3. The existential theory of T∞ is recursively enumerable.

4. The existential theory of Texp is recursively enumerable.

5. There is an effective procedure which, given n ≥ 1 and p ∈ Z[x1, . . . , x2n+1],

terminates if and only if for all sufficiently large real numbers r the function

p(x1, . . . , xn, x
r
1, . . . , x

r
n, r) has a zero in the positive orthant of Rn.

6. There is an effective procedure which, given n ≥ 1 and p ∈ Z[x1, . . . , x2n+1], ter-

minates if and only if for all sufficiently large integers d the polynomial function

p(x1, . . . , xn, x
d
1, . . . , x

d
n, d) has a zero in the positive orthant of Rn.

7. There is an effective procedure which, given n ≥ 1 and p ∈ Z[x1, . . . , x2n+1],

terminates if and only if for all positive integers d the polynomial function

p(x1, . . . , xn, x
d
1, . . . , x

d
n, d) has a zero in the positive orthant of Rn.

Proof. (1) implies (2) is lemma 5.5.5. Clearly (2) implies (3). By the remark following

theorem 5.5.1 we have (3) implies (1). So (1), (2) and (3) are equivalent. Clearly

(1) implies (4) and the converse follows from the reduction of Wilkie and Macintyre

mentioned at the beginning of section 5.5.1. Now (5) and (6) are equivalent because,

by the o-minimality of Rexp, the set of r ∈ R for which p(x1, . . . , xn, x
r
1, . . . , x

r
n, r) has

a zero in the positive orthant of Rn is a finite union of intervals and points. Since

an L-sentence is true in T∞ if and only if it is true in Tr for all sufficiently large

real r we see that (3) implies (5). To see that (5) implies (3) we first note that any

existential L-sentence can effectively be put in the form ∃x̄p(x̄, x̄λ, λ) = 0. Now we

again use the fact that an L-sentence is true in T∞ if and only if it is true for all

sufficiently large r. Additionally we note that given p ∈ Z[x1, . . . , x2n, x2n+1] we can

effectively produce p′ ∈ Z[x1, . . . , x2n, x2n+1] such that T∞ |= ∃x̄p(x̄, x̄λ, λ) = 0 if and

only if T∞ |= ∃x̄
(∧

i xi > 0 ∧ p′(x̄, x̄λ, λ) = 0
)
. Let us see now that (1) implies (7).

So assume that Texp is decidable. Given p(x1, . . . , x2n+1) ∈ Z[x1, . . . , x2n+1] and N a
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positive integer, let φN be the Lexp-sentence

N∧
d=1

(
∃x̄

(
n∧
i=1

xi > 0 ∧ p(x̄, x̄d, d) = 0

))

∧ ∀y > N

(
∃x̄

(
n∧
i=1

xi > 0 ∧ p(x̄, x̄y, y) = 0

))

Clearly if Texp |= φN then for all positive integers d the function p(x̄, x̄d, d) has a

zero in Pos(R)n. Furthermore, it follows from o-minimality that if for all positive

integers d the function p(x̄, x̄d, d) has a zero in Pos(R)n then for some positive integer

N we have Texp |= φN . Thus the following procedure is sufficient: at stage N run

the decision procedure for Texp on φN ; if FALSE proceed to stage N + 1, if TRUE

then terminate. Finally, we will prove that (7) implies (6). So assume that we have

a procedure P as described in (7). Given p(x1, . . . , x2n+1) let

qN(x1, . . . , x2n+1) =

(
N∏
k=1

(k − x2n+1)

)
p(x1, . . . , x2n+1).

So qN(x̄, x̄d, d) = 0 if and only if d ∈ {1, . . . , N} or p(x̄, x̄d, d) = 0. It follows that

given a positive integer N , the function p(x̄, x̄d, d) has a zero in Pos(R)n for all integers

d > N if and only if qN(x̄, x̄d, d) has a zero in Pos(R)n for all integers d. Thus our

procedure is as follows: at stage N run the first N stages of the procedure P on the

polynomials q1, . . . , qN . This terminates if and only if P terminates on qN for some

N and therefore is as required.

5.6 The proof of inequality (5.1)

We must prove that |ε(x) − exp(x)| ≤ x2 exp(x)
2λ

whenever x is finite. We first prove

two inequalities over R.

Lemma 5.6.1. Let x, y ∈ R with y > |x|. Then

exp(x) ≥
(

1 +
x

y

)y
.

Proof. By taking logs we see that it is sufficient to prove that

x

y
≥ log

(
1 +

x

y

)
.

This follows from the fact that z ≥ log(1 + z) whenever z > −1.
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Lemma 5.6.2. Let x, y ∈ R and suppose that x > 0 and y > max{x, 2}. Then

exp(x)−
(

1 +
x

y

)y
≤ x2 exp(x)

2y
.

Proof. Take x, y as in the statement of the lemma. We must prove that

exp(x)

(
1− x2

2y

)
≤
(

1 +
x

y

)y
. (5.6)

If x2

2y
≥ 1 then the result is clear so we assume in addition that x2

2y
< 1. Taking logs

we see that it is sufficient to prove that

x+ log

(
1− x2

2y

)
≤ y log

(
1 +

x

y

)
. (5.7)

We recall that for |a| < 1,

log(1− a) = −
∞∑
k=1

ak

k
. (5.8)

So (5.7) becomes

x−
∞∑
k=1

x2k

k2kyk
≤ y

∞∑
k=1

(−1)k+1xk

kyk
. (5.9)

We may rewrite this as

0 ≤
∞∑
k=1

x2k

k2kyk
+
∞∑
k=2

(−1)k+1xk

kyk−1
=
∞∑
k=1

(
x2k

k2kyk
+

x2k+1

(2k + 1)y2k
− x2k

2ky2k−1

)
. (5.10)

So it is sufficient to prove that

x2k

k2kyk
+

x2k+1

(2k + 1)y2k
− x2k

2ky2k−1
≥ 0 (5.11)

for k ≥ 1. So let k ≥ 1. Rearranging (5.11) we see that it is sufficient to prove that

(2k + 1)yk + k2kx− (2k + 1)2k−1y ≥ 0, (5.12)

i.e.

(2k + 1)y(yk−1 − 2k−1) + k2kx ≥ 0. (5.13)

Now since y > 2 we have

yk−1 − 2k−1 ≥ 0.

Furthermore, since y > x2

2
we have

yk−1 − 2k−1 ≥ x2k−2

2k−1
− 2k−1.
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So

y(yk−1 − 2k−1) ≥ x2

2

(
x2k−2

2k−1
− 2k−1

)
.

Therefore, it is sufficient to prove that

(2k + 1)
x2

2

(
x2k−2

2k−1
− 2k−1

)
+ k2kx ≥ 0. (5.14)

Rearranging we see that it is sufficient to prove that

x2k+1 − 22kx+
(k + 1)22k+2

2k + 3
≥ 0,

where k ≥ 0. So let

gk(x) = x2k+1 − 22kx+
(k + 1)22k+2

2k + 3
.

We must prove that gk(x) ≥ 0 for x > 0. If k = 0 this is immediate, so assume

k ≥ 1. We note that gk(0) > 0. Furthermore by differentiating we note that gk has

just one turning point for positive x at xk = 2

(2k+1)
1
2k

. Since gk(x) → ∞ as x → ∞
it remains to prove that gk(xk) ≥ 0. Rearranging and pulling out factors we see that

this reduces to proving

(k + 1)(2k + 1)
2k+1

2k ≥ 2k2 + 3k,

which follows since

(k + 1)(2k + 1)
2k+1

2k ≥ (k + 1)(2k + 1) = 2k2 + 3k + 1.

We now return to our structure R and deduce the inequality (5.1) on page 75.

Lemma 5.6.3. Let x ∈ R and suppose that x is finite. Then

| exp(x)− ε(x)| ≤ x2 exp(x)

2λ
.

Proof. If x = 0 then both sides of the inequality are equal to 0. Suppose x > 0. This

is immediate from lemmas 5.6.1 and 5.6.2 since they are both expressible as sentences
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in Lexp. Finally, suppose that x < 0. Let z = −x. Now

| exp(x)− ε(x)| =| exp(−z)− ε(−z)|

=
| exp(z)− ε(z)|

exp(z)ε(z)

=
exp(z)− ε(z)

exp(z)ε(z)

≤ z2 exp(z)

2λ exp(z)ε(z)

=
z2ε(−z)

2λ

≤z
2 exp(−z)

2λ

=
x2 exp(x)

2λ
.

5.7 The field of exponents of T∞

We prove that in any model 〈R, xλ, λ〉 of T∞ the field of exponents is Q(λ).1 This

will be a consequence of the following theorem about o-minimal expansions of the

real field with analytic cell decomposition.

Theorem 5.7.1. Let R̃ be an o-minimal expansion of the real field with analytic cell

decomposition. Let F : Rn → R be a definable function with the property that for all

r̄ ∈ Rn we have F (r̄) ∈ Q(r̄). Then we can decompose Rn into analytic cells such

that on each cell F is given by a rational function with coefficients from Q.

Proof. We first note that if X is a definable set in R̃ we can find a reduct of R̃ which

has a countable language, analytic cell decomposition and in which X is 0-definable.

Therefore we may assume that R̃ has a countable language and F is 0-definable.

Let C be a cell decomposition of Rn such that for each C ∈ C the function F is

analytic on C. Take C ∈ C of positive dimension. We will prove that the restriction

of F to C is given by a rational function with coefficients from Q. By lemma 2.2.18,

C has a generic point, ā say. By our assumption, there exists p(x̄) ∈ Q(x̄) such that

F (ā) = p(ā). Since ā is a generic point of C, the set of x̄ ∈ C such that F (x̄) = p(x̄)

has the same dimension as C. Note that since C is a cell it is definably connected

and hence connected (since we are working over R). Therefore, because F is analytic

on C we must have that F and p are identically equal on C.

1The argument given in this section is in large part due to Wilkie.
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Corollary 5.7.2. If 〈R, xλ, λ〉 |= T∞ then 〈R, xλ, λ〉 has field of exponents Q(λ).

Proof. Recall that L denotes the language of T∞. Let φ(x, y) be an L-formula and

suppose that φ(x, y) defines a function in models of T∞. Let φ′(x, y, z) be the Lexp-

formula corresponding to φ(x, y) (as in section 5.2). Note that for each r ∈ R,

if φ′(x, y, r) defines a function in Rexp then this function is also definable in Rr =

〈R, xr, r〉 and hence has some exponent at ∞. Since Rr has field of exponents Q(r)

[14], the exponent at ∞ of the function defined by φ′(x, y, r) must lie in Q(r). Let

P : R → R be the function, definable in Rexp, which does the following: if φ′(x, y, r)

defines a function f(x) = y then P (r) is the exponent of f at∞, otherwise P (r) = 0.

By theorem 5.7.1 and the fact that Rexp has analytic cell decomposition, P (r) is

piecewise (with finitely many pieces) a rational function with coefficients from Q. In

particular, there exists s(x) ∈ Q(x) such that for all sufficiently large r ∈ R, the

formula φ′(x, y, r) defines a function with exponent at ∞ given by s(r). Therefore if

R = 〈R, xλ, λ〉 |= T∞, the L-formula φ(x, y) defines a function in R with exponent at

∞ given by s(λ).
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Chapter 6

Extending exponentials
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6.1 Overview

Let R be an arbitrary power-bounded o-minimal expansion of a field by functions and

suppose that R defines a restricted exponential, i.e. a non-constant map E : P → P

satisfying

1. E(x) = 0 for x /∈ [0, 1],

2. E(x+ y) = E(x) E(y) for x, y ∈ [0, 1] such that x+ y ≤ 1.

We will also assume that

3. the right hand derivative of E at 0 is 1.

Note that, by the same argument as in lemma 2.2.46, E is in fact 0-definable in R. In

this section we will consider the following question. Under what circumstances can

we expand R to an exponential o-minimal structure?

Let K be the field of exponents of R and let P be the prime model of Th(R)

considered with its canonical embedding in R. Let V denote the convex hull of P in

R and let Γ denote the value group of R with respect to V . Clearly, if R expands

to an exponential o-minimal structure with exponential Ẽ, then, if Γ is non-trivial, it

must be infinite dimensional when considered as a K-vector space (if v(a) < 0 then

v(Ẽ(a)) < kv(a) for all k ∈ K). On the other hand, if R is a finite rank extension of

P then it follows from theorem 2.2.59 that Γ is finite-dimensional when considered as

a K-vector space. In light of this observation we instead ask the following question.

Question 6.1.1. Under what circumstances can we expand an elementary extension

of R to an exponential o-minimal structure?

Theorem 6.3.2 below will provide a partial solution to this question.

6.2 Background

One can consider the question 6.1.1 in the special case that R = R. In this case the

answer is ‘always’ (and indeed here we do not need to pass to an elementary exten-

sion). This is corollary 6.2.6 below. In fact, more is true. Let R̃ be any o-minimal

expansion of the real field (i.e. we do not assume that R̃ defines a restricted expo-

nential). Then the structure 〈R̃, exp〉 is o-minimal. This is because exp is definable

in the Pfaffian closure of R̃, which is known to be o-minimal [17]. In contrast, if we

are given R, an arbitrary power-bounded o-minimal expansion of a field, and we wish
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to expand (an elementary extension of) R to an exponential o-minimal structure we

must first construct an exponential function. To do this we will need the additional

assumption that R already defines a restricted exponential. Our methods will follow

those developed for the proof of theorem 6.2.5 below and so we recall them here.

Let E : R→ R be given by

E(x) =

{
exp(x) x ∈ [0, 1]
0 x ∈ R \ [0, 1]

Now consider the following two structures.

〈R, E〉,

〈R, E, exp〉.

The following axioms clearly hold for the structure 〈R, E, exp〉.

(E1) ∀x∀y(exp(x+ y) = exp(x) exp(y)),

(E2) ∀x∀y(x < y → exp(x) < exp(y)),

(E3) ∀x(x > n2 → exp(x) > xn);for all n ∈ N,

(E4) ∀x > 0∃y(exp(y) = x),

(E5) ∀x(0 ≤ x ≤ 1→ exp(x) = E(x)).

In fact, Ressayre proves that they are enough to axiomatize Th(〈R, E, exp〉) over

Th(〈R, E〉).

Theorem 6.2.1 ( [15]). Th(〈R, E, exp〉) is axiomatized by the axioms (E1)-(E5) and

Th(〈R, E〉)1 .

1It is immediate from Wilkie’s theorem on restricted Pfaffian functions (theorem 3.1.4) that
Th(〈R, E〉) is model-complete. In the same paper Wilkie uses this result to prove that Texp =
Th(Rexp) is model-complete. One can also deduce the model-completeness of Texp from that of
Th(〈R, E〉) by using a ‘with parameters’ version of theorem 6.2.1.

Theorem 6.2.2 ( [15]). Let A |= Th(〈R, E, exp〉) and let A′ denote its reduct to the language
Lord ∪ {E}. Then Th(〈A, (a)a∈A〉) is axiomatized by Th(〈A′, (a)a∈A〉) and (E1)-(E5).

To show that Texp is model-complete it is of course sufficient to prove that
Th(〈R, E, exp〉) is model-complete. So choose A,B |= Th(〈R, E, exp〉) and suppose that A ⊆ B. We
must prove that

〈A, (a)a∈A〉 ≡ 〈B, (a)a∈A〉.

But this is immediate from the model-completeness of Th(〈R, E〉) and theorem 6.2.2.
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Now consider the structures 〈Ran, exp〉 and 〈Ran, exp, log〉. Let Tan(exp) and

Tan(exp, log) denote their respective theories. In [26], van Den Dries, Macintyre and

Marker prove the following theorem.

Theorem 6.2.3 ( [26]). Tan(exp, log) admits quantifier elimination. Furthermore,

Tan(exp) is axiomatized by Tan together with (E1)-(E5).

Using this they are able to deduce the following theorem.

Theorem 6.2.4 ( [26]). Tan(exp) is o-minimal.

A key step in proof of this theorem is to establish the valuation property (theorem

2.2.61) for models of the theory Tan with respect to the valuation induced by the ring

of finite elements. In [28], van den Dries and Speissegger prove the valuation property

for (theories of) polynomially bounded o-minimal expansions of the real field. Using

this they are able to extend theorems 6.2.3 and 6.2.4.

Theorem 6.2.5. Let R̃ be a polynomially bounded o-minimal expansion of the real

field with field of exponents K and suppose that R̃ defines E = exp �[0,1]. Then

Th(〈R̃, exp〉) is axiomatized by Th(R̃), (E1)-(E5) and the axiom scheme

(E6) ∀x(exp(kx) = exp(x)k); for all k ∈ K.

Furthermore if Th(R̃) admits quantifier elimination then Th(〈R̃, exp, log〉) admits

quantifier elimination.

Theorem 6.2.6. Th(〈R̃, exp〉) is o-minimal.

6.3 Preliminaries

Let T be a complete power-bounded o-minimal theory expanding the theory of real

closed fields by functions. Let K be the field of exponents of T . For any A |= T let

VA be the convex hull of K. Note that VA is a convex subring of A. Let ΓA denote

the value group corresponding to VA and let vA denote the valuation map. Where it

should not cause any confusion, we will drop the subscripts.

Lemma 6.3.1. The following are equivalent:

1. There exists a model A of T such that the convex subring VA is T -convex in A.

2. For any model B of T the convex subring VB is T -convex in B.
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3. K is cofinal in the prime model of T .

Proof. (1)⇒ (2) Let f : B → B be a 0-definable continuous function in B. Since

VA is T -convex for A and continuous functions definable in o-minimal expansions of

ordered fields map closed bounded sets to closed bounded sets (theorem 2.2.11), for

each k ∈ Pos(K) there exists l ∈ Pos(K) such that

A |= ∀x(|x| < k → |f(x)| < l).

All points of K are 0-definable and so

B |= ∀x(|x| < k → |f(x)| < l).

Therefore VB is T -convex.

(2)⇒ (3) Let P be the prime model of T . Let a ∈ P , then a is 0-definable and

so the constant function which takes value a is 0-definable. Since VP is T -convex in

P , there exists k ∈ K such that a < k.

(3)⇒ (1) Clearly VP is T -convex for P .

From now on we will let P be the prime model of T and we will assume that K is

cofinal in P . Returning to the situation described in section 6.1 we will assume also

that R defines (and hence 0-defines) a non-constant restricted exponential with right-

hand derivative at 0 equal to 1. It immediately follows from this that E is differentiable

on (0, 1), and has left-hand derivative at 1, with the derivative at x ∈ [0, 1] given by

E(x).

The object of this chapter is to prove the following theorem.

Theorem 6.3.2. If R |= T there is an elementary extension S of R which supports

a (global) exponential function Ẽ which extends E. Furthermore the expansion of S
by this exponential function is o-minimal.

If we can find PẼ an o-minimal expansion of P with a global exponential Ẽ extend-

ing E then, given a modelR of T we take a sufficiently saturated elementary extension

S of PẼ. The L-reduct of S will then elementarily embed R. So the problem is to

get an exponential o-minimal expansion of P .
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6.4 Defining exponentiation on the whole of P

P is a power-bounded o-minimal expansion of a real closed field whose field of expo-

nents K is cofinal in P and which defines a restricted exponential E : [0, 1]→ P . We

extend E to a map Ẽ : P → P as follows:

Ẽ(x) =

{
E(x

k
)k x ≥ 0, k ∈ K and x

k
∈ [0, 1],

Ẽ(−x)−1 x < 0.

Lemma 6.4.1. Ẽ is well-defined.

Proof. Let k ∈ K and assume that k ≥ 1. Consider the definable maps f, g : [0, 1
k
]→

P given by f(x) = E(kx) and g(x) = E(x)k. Now f(0) = g(0) = 1, furthermore(
f(x)

g(x)

)′
= 0.

Using the mean value property of differentiable functions definable in o-minimal struc-

tures we see that f = g.

Now let x ≥ 0 and let k, l ∈ K such that 0 ≤ x
k
, x
l
≤ 1. Without loss of generality

we may assume k ≤ l. Let y = x
l
. Now l

k
y ≤ 1. By above E( l

k
y) = E(y)

l
k . Thus

E(x
k
)k = E(x

l
)l.

Remark 6.4.2. Note that it follows from the definition of Ẽ that its restriction to any

closed bounded interval of P is definable in P .

For the proof of the next lemma we will make frequent use of the fact that the

mean value theorem and the intermediate value theorem hold for functions definable

in o-minimal expansions of fields (see section 2.2.3).

Lemma 6.4.3. Ẽ : P → P satisfies the following properties.

1. If x ∈ [0, 1] and k ∈ K then Ẽ(kx) = E(x)k.

2. Ẽ(x)k = Ẽ(kx); for all k ∈ K.

3. Ẽ(x+ y) = Ẽ(x) Ẽ(y).

4. Ẽ is everywhere differentiable and satisfies Ẽ
′
= Ẽ.

5. x < y → Ẽ(x) < Ẽ(y).

6. x > k2 → Ẽ(x) > xk; for each k ∈ K with k ≥ 1.

7. x > 0→ ∃y(Ẽ(y) = x).
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Proof.

1. This is immediate from the definition of Ẽ.

2. Suppose x ≥ 0. Let k ∈ Pos(K). We want to show that Ẽ(kx) = Ẽ(x)k. Choose

l ∈ K such that l > x. Let y = x
l
. Now, using (1),

Ẽ(kx) = Ẽ(kly)

= E(y)kl

= Ẽ(ly)k

= Ẽ(x)k.

The other cases follow immediately.

3. We first consider the case where x, y ≥ 0. Choose k ∈ K such that x+y
k
∈ [0, 1].

Now

E

(
x+ y

k

)
= E

(x
k

)
E
(y
k

)
.

So by raising to the power k we see that

Ẽ(x+ y) = Ẽ(x) Ẽ(y).

Now suppose that x ≥ 0 and y < 0 and x+ y ≥ 0. Let z = x+ y. Then

Ẽ(x) = Ẽ(z − y)

= Ẽ(z) Ẽ(−y)

= Ẽ(z) Ẽ(y)−1.

So Ẽ(x+ y) = Ẽ(x) Ẽ(y). The other cases are similar.

4. Note that
Ẽ(x+ h)− Ẽ(x)

h
= Ẽ(x)

Ẽ(h)− 1

h
.

Since

lim
h↓0

Ẽ(h)− 1

h
= 1

we get

lim
h↓0

Ẽ(x+ h)− Ẽ(x)

h
= Ẽ(x).

One easily deduces that Ẽ has a (two-sided) derivative at each point using the

fact that Ẽ(−x) = Ẽ(x)−1.
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5. It is sufficient to prove that if x > 0 then Ẽ(x) > 1. Since Ẽ has positive

derivative at 0 there exists ε > 0 such that Ẽ(x) > 1 on (0, ε). Suppose for a

contradiction that Ẽ(x) < 1 for some x > 0. Let I = [0, x]. Since Ẽ is definable

on I we may choose y ∈ [ε, x] to be least such that Ẽ(y) = 1. But then the

derivative of Ẽ must have a zero on (0, y), that is there exists z ∈ (0, y) such

that Ẽ(z) = 0. But then Ẽ must take value 1 on the interval (0, y). This is a

contradiction.

6. Using the fact that both the intermediate value property and the mean value

property hold for functions definable in o-minimal expansions of fields we show

that for all x > 0, Ẽ(x) > 2x. Therefore Ẽ(x) > 1 + x2 for all x > 0. Let k ∈ K
and suppose that k ≥ 1. We have

Ẽ(k2) = Ẽ(k)k > (1 + k2)k = (1 + k−2)k(k2)k > (k2)k.

Furthermore, by differentiating Ẽ(x)
xk

, we see that this is increasing for x > k. So

if x > k2 then
Ẽ(x)

xk
>

Ẽ(k2)

(k2)k
> 1.

7. First consider the case where z ≥ 1. We must find y ∈ P such that Ẽ(y) = z.

Choose k ∈ K such that k > z. Then k > 1 so Ẽ(k) > k. Consider the P-

definable function f : [0, 1] → P given by f(x) = E(x)k. Now f(0) = 1 ≤ z <

Ẽ(k) = f(1), so by the intermediate value property for functions definable in

o-minimal structures there exists y ∈ (0, 1) such that f(y) = z, i.e. Ẽ(ky) = z.

The case where z < 1 follows immediately from the fact that Ẽ(−x) = Ẽ(x)−1.

By the above Ẽ is a bijection from P to Pos(P ). We let Log : P → P be given by

Log(x) =

{
Ẽ
−1

(x) x > 0,
0 x ≤ 0.

Now since Ẽ is P-definable on closed bounded intervals of P , Log is definable on

closed bounded intervals of P not containing 0. Furthermore since Ẽ(x)k = Ẽ(kx) for

all k ∈ K, k Log(x) = Log(xk) for all k ∈ K and x > 0.
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6.5 A quantifier elimination result

Let L be the language of P . We wish to prove that the expansion of P by Ẽ is o-

minimal. To this end we may harmlessly assume that each 0-definable map f : P n →
P in the structure P is given by a function symbol of L so that T admits quantifier

elimination and has a universal axiomatization (see remark 2.2.23).

Let PẼ be the expansion of P by Ẽ and LẼ the language of PẼ.

Let TẼ be the LẼ-theory obtained by adding the following axiom schemes to T .

(A1) ∀x∀y(Ẽ(x+ y) = Ẽ(x) Ẽ(y)),

(A2) ∀x(0 ≤ x ≤ 1→ Ẽ(x) = E(x),

(A3) ∀x(Ẽ(x)k = Ẽ(kx)); for all k ∈ K,

(A4) ∀x∀y(x < y → Ẽ(x) < Ẽ(y)),

(A5) ∀x(x > k2 → Ẽ(x) > xk); for each k ∈ K with k ≥ 1,

(A6) ∀x(x > 0→ ∃y(Ẽ(y) = x)).

Remark 6.5.1. Of course it follows from lemma 6.4.3 that PẼ |= TẼ.

Let LẼ,Log be the expansion of LẼ by the unary function symbol Log and let TẼ,Log

be TẼ together with the following axiom.

(A7) ∀x((x > 0→ Ẽ(Log(x)) = x) ∧ (x < 0→ Log(x) = 0)).

We will prove the following theorem, which is a generalization of Theorem B of [28].

The proof will closely follow the methods used in section 4 of [26].

Theorem 6.5.2.

1. TẼ,Log admits quantifier elimination and a universal axiomatization.

2. TẼ axiomatizes Th(PẼ).
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6.5.1 Technical lemmas

From now onwards a map v defined on a model A of T will be the valuation map

induced by the convex hull of the prime model.

Lemma 6.5.3. Let M |= TẼ and let A be an L-substructure of M. Then Ẽ maps

{x ∈ A : v(x) ≥ 0} bijectively to {x ∈ Pos(A) : v(x) = 0}.

Proof. Let y ∈ {x ∈ A : v(x) ≥ 0}. We will first show that Ẽ(y) ∈ A. Since

Ẽ(−y) = Ẽ(y)−1 it is sufficient to consider the case when y ≥ 0. Now v(y) ≥ 0 so

y = kz for some k ∈ K and z ∈ [0, 1] ∩ A. But Ẽ(y) = Ẽ(z)k = E(z)k ∈ A. We must

now show that v(Ẽ(y)) = 0. Now 1 ≤ Ẽ(y) ≤ Ẽ(k) = Ẽ(1)k < l for some l ∈ K since

VA is T -convex. So v(Ẽ(y)) = 0. The injectivity of this map is clear. It remains to

prove that it is surjective. So let y ∈ {x ∈ Pos(A) : v(x) = 0}. We first consider

the case when y ≥ 1. As in part 7 of lemma 6.4.3 we find c ∈ [0, 1] and k ∈ K such

that y = E(c)k = Ẽ(kc). Now v(kc) = v(k) + v(c) = v(c) ≥ 0. Now suppose that

0 < y < 1. Find x ∈ A with v(x) ≥ 0 such that Ẽ(x) = 1
y
. Then Ẽ(−x) = y.

Lemma 6.5.4. Let M,N |= TẼ, and suppose that A is an L-substructure of M. Let

σ : A → N be an L-embedding. Let a ∈ Pos(A) and suppose that v(a) = 0. Then

σ(Log(a)) = Log(σ(a)).

Proof. We consider the case when a ≥ 1, the case where 0 < a < 1 follows from the

fact that Log(x−1) = −Log(x) for x > 0. Now, just as in part 7 of lemma 6.4.3 we

find c ∈ [0, 1] and k ∈ K such that a = E(c)k. Now

σ(Log(a)) = σ(Log(E(c)k))

= σ(kc)

and,

Log(σ(a)) = Log(σ(E(c)k))

= Log(σ(E(c))k)

= k Log(σ(E(c))

= k Log(E(σ(c)))

= kσ(c)

= σ(kc).

93



Lemma 6.5.5. Let M |= TẼ. Let x ∈ Pos(M) and suppose that v(x) < 0. Then

1. v(Ẽ(x)) < v(x).

2. v(x) < v(Log(x)) < 0

Proof.

1. If v(x) < 0 then x > k for all k ∈ K, so Ẽ(x) > x2 > kx for all k ∈ K.

2. Since x ∈ Pos(M), x = Ẽ(y) for some y ∈ M . By lemma 6.5.3 we must have

that v(y) < 0. By (1) we have v(y) > v(Ẽ(y)), i.e. v(Log(x)) > v(x). If

v(Log(x)) ≥ 0 then by lemma 6.5.3, v(x) = 0 which is a contradiction, so

v(Log(x)) < 0.

6.5.2 Proof of theorem 6.5.2

We will say that an L-substructure A of a model of TẼ is Log-closed if for all a ∈ A
we have Log(a) ∈ A. We prove the following embedding theorem.

Theorem 6.5.6. Suppose that M |= TẼ and A is an L-substructure of M which

is Log-closed. Let N be an |M|+-saturated model of TẼ and σ : A → N an Log-

preserving embedding of L-structures. Then σ extends to a Log-preserving embedding

of M into N .

Let us see now how theorem 6.5.6 implies theorem 6.5.2

Proof of theorem 6.5.2 assuming theorem 6.5.6.

1. In order to show that TẼ,Log has quantifier elimination we will use corollary

2.3.4. So we let M |= TẼ,Log and suppose that A is an LẼ,Log-substructure

of M. Furthermore, we take N to be an |M|+-saturated model of TẼ,Log and

suppose that σ : A → N is an LẼ,Log-embedding. We must prove that σ extends

to an LẼ,Log-embedding ofM into N . Theorem 6.5.6 tells us that σ extends to

σ′, a Log-preserving embedding of L-structures. Since Log is surjective on M
the map σ′ must in fact be an LẼ,Log-embedding. In order to see that TẼ,Log has

a universal axiomatization we note that axiom (A6) follows from axiom (A7).
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2. We must prove that TẼ is complete. Let M |= TẼ and let M′ be its natural

expansion to an LẼ,Log-structure. Since LẼ,Log (and indeed L) has constants

for all 0-definable elements of P and since TẼ,Log has quantifier elimination we

must have that PẼ,Log occurs as an elementary substructure ofM′. Cleary then

M≡ PẼ.

So it remains to prove theorem 6.5.6. We will do this via a number of lemmas.

For B an L-substructure of C |= TẼ and x ∈ C, we will denote by B(x) the subfield of

C generated by B and x and by B〈x〉 the L-substructure of C generated by B and x.

Lemma 6.5.7. Let M, N , A, σ be as in the statement of theorem 6.5.6. Suppose

that x ∈ M \ A and v(A(x)) = v(A). Let A′ = A〈x〉. Then A′ is Log-closed and σ

may be extended to an Log-preserving embedding of A′ into N .

Proof. By theorem 2.2.61 we must have that v(A′) = v(A). Let x ∈ Pos(A′). We

want to show that Log(x) ∈ A′. Choose y ∈ Pos(A) with v(y) = v(x). Now Log(x) =

Log(x/y) + Log(y). Since A is Log-closed Log(y) ∈ A′ and by lemma 6.5.3, since

v(x/y) = 0, Log(x/y) ∈ A′ and therefore Log(x) ∈ A′.
Now let y ∈ N realize the image under σ of the cut made by x in A. By lemma

2.2.24, we can extend σ to an L-embedding σ0 : A′ → N by sending x to y.

It remains to prove that σ0 is Log-preserving. Let w ∈ Pos(A′). We may choose

z ∈ Pos(A) and a ∈ Pos(A′) such that v(z) = v(w) and v(a) = 0 and w = az. As in

the proof of lemma 6.5.3 we may choose k ∈ K and b ∈ [1,E(1)] ∩ A so that a = bk.

Now

σ0(Log(w)) = σ0(Log(z) + Log(bk))

= σ0(Log(z) + k Log(b))

= σ0(Log(z)) + σ0(k Log(b))

= Log(σ0(z)) + k Log(σ0(b))

= Log(σ0(z)σ0(b)k)

= Log(σ0(w)).

Lemma 6.5.8. LetM, N , A, σ be as in theorem 6.5.6. Suppose that v(A(x)) 6= v(A)

for all x ∈ M \ A. Let x ∈ A and suppose that Ẽ(x) /∈ A. Let A′ = A〈Ẽ(x)〉. Then

A′ is Log-closed and σ may be extended to an Log-preserving embedding σ0 : A′ → N
with σ0(Ẽ(x)) = Ẽ(σ(x)).
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Proof. We first show that v(Ẽ(x)) /∈ v(A). Suppose that v(Ẽ(x)) = v(a) where

a ∈ Pos(A). Let b = Log(a), so b ∈ A. Now Ẽ(x) = a Ẽ(x − b). So v(Ẽ(x − b)) =

v(Ẽ(x)) − v(a) = 0. Since x − b ∈ A, by lemma 6.5.3, Ẽ(x − b) ∈ A and hence

Ẽ(x) ∈ A, which is a contradiction.

We must show that A′ is Log-closed. Let g = v(Ẽ(x)). By theorem 2.2.59 we

have v(A′) = v(A) ⊕Kg. Let y ∈ A′, then v(y) = v(a) + kg = v(a Ẽ(kx)) for some

a ∈ A and b ∈ K. So there exists b ∈ A′ with v(b) = 0 such that y = ba Ẽ(kx).

Now since v(b) = 0, by lemma 6.5.3 applied to A′ we have Log(b) ∈ A′. Therefore

Log(y) = Log(b) + Log(a) + kx ∈ A′.
We wish to extend our embedding so that σ0(Ẽ(x)) = Ẽ(σ(x)). In order to show

that this can be done it is sufficient to prove that Ẽ(σ(x)) realises the image under σ

of the cut of Ẽ(x) over A. Let w ∈ Pos(A) then

w < Ẽ(x)⇔ Log(w) < x

⇔ σ(Log(w)) < σ(x)

⇔ Log(σ(w)) < σ(x)

⇔ σ(w) < Ẽ(σ(x))

It remains to prove that σ0 is Log-preserving. Let y ∈ A′. As above we can find

a ∈ A, b ∈ A′ with v(b) = 0 and k ∈ K such that y = ba Ẽ(kx). Furthermore, as in

part 7 of lemma 6.4.3, we may choose c ∈ A′ with 1 ≤ c ≤ Ẽ(1) and k ∈ K such that

b = ck. Now

σ0(Log(y)) = σ0(Log(b) + Log(a) + kx)

= σ0(k Log(c)) + σ(Log(a)) + σ(kx)

= kσ0(Log(c)) + Log(σ(a)) + σ(kx)

= k Log(σ0(c)) + Log(σ(a)) + σ(kx)

= Log(σ0(ck)σ(a)σ(Ẽ(kx)))

= Log(σ0(y)).

Lemma 6.5.9. Let M, N , A and σ be as in theorem 6.5.6. Suppose that A is closed

under Ẽ and v(A(x)) 6= v(A) for all x ∈ M \ A. Let x ∈ M \ A. Then there is

a Log-closed B |= T such that A(x) ⊆ B ⊆ M and a Log-preserving L-embedding

σ0 : B → N extending σ.
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Proof. Since v(A) 6= v(A(x)), by lemma 2.2.62 there exists a ∈ A such that v(x−a) /∈
v(A). Replacing x by x− a we may assume that v(x) /∈ v(A). Replacing x by x−1 if

necessary we may also assume that v(x) < 0. We will choose elements β0, β1, . . . ∈ A
and x0, x1, . . . ∈ Pos(M). For all n we will have v(xn) < 0 and v(xn) /∈ v(A) (*). We

begin by letting x0 = x. Suppose that we have chosen x0, x1, . . . , xn satisfying (*). We

see that v(A(Log(xn)) * v(A); otherwise, by the maximality of A with value group

v(A), we must have Log(xn) ∈ A and thus xn ∈ A which is a contradiction. By 2.2.62

there exists βn ∈ A such that v(Log(xn)− βn) /∈ v(A). Let xn+1 = |Log(xn)− βn|, so

that Log(xn) = βn + εnxn+1, where εn = ±1. We claim that

v(xn) < v(Log(xn)) ≤ v(xn+1) < 0 (6.1)

1. v(xn) < v(Log(xn)): this follows immediately from lemma 6.5.5.

2. v(Log(xn)) ≤ v(xn+1): now xn+1 = |Log(xn) − βn|; it follows that v(xn+1) ≥
min{v(Log(xn)), v(βn)}. Hence it is sufficient to prove that v(Log(xn)) ≤ v(βn).

Suppose v(βn) < v(Log(xn)). Then v(xn+1) = v(βn) ∈ v(A), which is a contra-

diction.

3. v(xn+1) < 0: suppose that v(xn+1) ≥ 0. By lemma 6.5.3, v(Ẽ(xn+1)) = 0. Now

v(xn) = v(Ẽ(βn)) + v(Ẽ(xn+1)) = v(Ẽ(βn)) ∈ v(A), which is a contradiction.

We now show that v(x0), . . . , v(xn), . . . areK-linearly independent over v(A). Suppose

that

v(xm) =

(
n∑

i=m+1

kiv(xi)

)
+ v(w) = v

(
w

n∏
m+1

xki

)
,

for some ki ∈ K and w ∈ A. Then there is c ∈M with v(c) = 0, such that

xm = cw

n∏
i=m+1

xkii ,

So

Log(xm) = Log(c) + Log(w) +
n∑

i=m+1

ki Log(xi),

therefore

εmxm+1 = Log(c) + Log(w)− βm +
n∑

i=m+1

ki Log(xi).

So

v(xm+1) ≥ min{v(Log(c)), v(Log(w)− βn), v(Log(xm+1)), . . . , v(Log(xn)},
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with equality if all terms on the right-hand side are distinct. By (6.1)

v(xm+1) < v(Log(xm+1)) < . . . < v(Log(xn)) < 0.

Furthermore, since v(c) = 0, v(Log(c)) ≥ 0. Therefore v(xm) = v(Log(w) − βn) ∈
v(A), contradiction.

Now let A0 = A and An+1 = An〈xn〉 for n ≥ 0. Let B =
⋃
n≥0An. Since T has a

universal axiomatization, B |= T . Let y ∈ N realize the image under σ0 of the cut of

x over A. Now define a sequence (yn) in N by setting y0 = y and yn+1 = Log(yn)−σ(βn)
εn

.

We claim that yn realises the image under σ of the cut of xn over A. Suppose this is

true for yn. We will assume here that εn = 1 (the case where εn = −1 is similar). Let

w ∈ A.

w < xn+1 ⇔ w + βn < xn+1 + βn

⇔ Ẽ(w) Ẽ(βn) < xn

⇔ Ẽ(σ(w)) Ẽ(σ(βn)) < yn (since σ is Log-preserving and Ẽ(w), Ẽ(βn) ∈ A)

⇔ Ẽ(σ(w)) < yn Ẽ(−σ(βn))

⇔ σ(w) < Log(yn)− σ(βn) = yn+1

We now show that we can extend σ to an L-embedding σn : An → N by setting

σn(xi) = yi. For n = 1 this follows from above. So we assume that we have such an

L-embedding from An to N . We must show that yn+1 realises the image under σn of

the cut of xn+1 over An.

Now, by theorem 2.2.59 and the fact that v(x1), . . . , v(xn−1) are K-linearly inde-

pendent over v(A) we have v(An) = v(A)⊕Kv(x1)⊕. . .⊕Kv(xn−1). Let w ∈ Pos(An).

We may choose a ∈ Pos(An) with v(a) = 0, b ∈ Pos(A) and k1, . . . , kn ∈ K such that

w = ab
n−1∏
i=0

xkii .

Let m be least such that km 6= 0. Let c = a−
1
km , d = b−

1
km , ri = − ki

km
for i ≤ n− 1

and rn = 1
km

. We assume that km < 0. The other case is similar. Now

w < xn+1 ⇔ xm > cd
n∏

i=m+1

xrii

⇔ εmxm+1 > Log(c) + Log(d)− βm +
n∑

i=m+1

ri Log(xi).
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Now, v(xm+1) < v(Log(xi)) < v(Log(c)) for all i ≥ m+ 1. Furthermore, since

Log(d)− βm ∈ A, v(xm+1) 6= v(Log(d)− βm). Therefore

w < xn+1 ⇔ εmxm+1 > Log(d)− βm
⇔ εmym+1 > Log(σ0(d))− σ0(βm).

Since σn is an L-embedding

σn(w) = σn(a)σn(b)
n∏
i=1

ykii .

As above we see that σn(w) < yn+1 ⇔ εmym+1 > Log(σ0(d))− σ0(βm) and so indeed

yn+1 realises the image under σn of the cut of xn+1 over An.

Now let σ′ =
⋃
σn : B → N . It remains to prove that B is Log-closed and σ′ is

Log-preserving. Let w ∈ An+1. As above we may choose a ∈ An+1 with v(a) = 0,

b ∈ A and k1, . . . , kn ∈ K such that

w = ab
n∏
i=0

xkii .

Then Log(w) = Log(a) + Log(b) +
∑n

i=0 kixi. Now Log(a) ∈ An+1 since v(a) = 0,

Log(b) ∈ A0 and Log(xi) ∈ Ai. So Log(w) ∈ An+1. Furthermore

σn+1(Log(w)) = σn+1(Log(a)) + σ0(Log(b)) +
n∑
i=0

kiσn+1 Log(xi)

= Log(σn+1(a)) + Log(σ0(b)) +
n∑
i=0

kiσn+1(βi + εixi+1)

= Log(σn+1(a)) + Log(σ0(b)) +
n∑
i=0

ki(σn+1(βi) + εiyi+1)

= Log(σn+1(a)) + Log(σ0(b)) +
n∑
i=0

ki Log(yi)

= Log(σn+1(w)).

Proof of Theorem 6.5.6. Choose B maximal such that

1. B is a Log-closed L-substructure of M containing A,

2. σ extends to a Log-preserving L-embedding σ′ : B → N .
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We want to show that B = M. Suppose not. If there exists x ∈ M \ B such that

v(x) ∈ v(B) then lemma 6.5.7 provides a contradiction to the maximality of B. So

for all x ∈M \B we have v(x) /∈ v(B). If there exists x ∈ B such that Ẽ(x) /∈ B then

lemma 6.5.8 gives us a contradiction to the maximality of B. So B is closed under Ẽ.

But then applying lemma 6.5.9 we again contradict the maximality of B. So we must

have B =M.

6.6 The o-minimality of PẼ

In this section we prove that PẼ is o-minimal. The methods used will be very similar

to those used in [26] apart from at one important stage where the authors use the

local compactness of the real line. We give some additional arguments to complete

the proof in our more general setting.

6.6.1 Fields of germs at infinity

We will let G be the ring of germs at +∞ of (not necessarily definable) functions

f : P → P . We will not distinguish notationally between a function f and its germ

at +∞. This clearly does not cause any problems when talking about properties of f

which hold for all sufficiently large x. We will say that a subfield N of G is a G-field

if for all f ∈ N , ultimately (i.e. for all sufficiently large x) f(x) has constant sign.

So a G-field forms an ordered field. For each primitive2 n-ary function F of P we

define F : Gn → G by setting F (f1, . . . , fn) equal to the germ at +∞ of the map

x 7→ F (f1(x), . . . , fn(x)). We say that a G-field N is a P-field if it is closed under FG

for all primitive functions F of P . If N is a P-field and f ∈ G then we define

N〈f〉 = {t(f1, . . . , fn, f) : f1, . . . , fn ∈ N and t is an L-term}.

Of course if N is a P-field we can give it an L-structure by interpreting the

primitive n-ary function F on N as the restriction of F on Gn.

Lemma 6.6.1. Let N be a P-field. Then, with its natural L-structure, N |= T . Fur-

thermore, if φ(x1, . . . , xn) is an L-formula and f1, . . . , fn ∈ N then N |= φ(f1, . . . , fn)

if and only if P |= φ(f1(x), . . . , fn(x)) for all sufficiently large x ∈ P .

Proof. Let P+ = 〈P , (f)f∈PP 〉, i.e. P+ is the structure expanding P by a function

symbol for every (not necessarily definable in P) function P → P . Let M be an

2By a primitive function of P we mean a function that is the interpretation of a function symbol.
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elementary extension of P+ containing a element a which is positive and infinite with

respect to P . We define a map ia : N →M by ia(f) = f(a). To show that this map

is well-defined we must show that if f, g : P → P have the same germ at +∞ in P

then f(a) = g(a). Since f, g have the same germ at +∞ there exists m ∈ P such that

M |= ∀x > m(f(x) = g(x)).

Therefore f(a) = g(a). We now must show that ia is an L-embedding. Let F be an

n-ary function symbol of L and let f1, . . . , fn ∈ N , then

ia(F (f1, . . . , fn)) = F (f1(a), . . . , fn(a))

= F (ia(f1), . . . , ia(fn)).

Furthermore, if f, g ∈ N and f < g, then there exists m ∈ P such that

M |= ∀x > m(f(x) < g(x)).

So f(a) < g(a). So ia : N → ia(N) is an L-isomorphism and hence ia(N) is an

L-substructure of M. Since T has a universal axiomatization in the language L,

ia(N) |= T and hence N |= T . Since T also admits quantifier elimination ia(N) is an

L-elementary substructure ofM. Thus the map ia is an L-elementary embedding ofN

intoM. Furthermore if b is another positive infinite element of M then the evaluation

map ib : N → ib(N) is also an L-isomorphism. So, using the notation in the statement

of the lemma, if N |= φ(f1, . . . , fn) then M |= φ(f1(c), . . . , fn(c)) for all positive

infinite elements c ∈ M . This implies that M |= ∃y∀x(x > y → φ(f1(x), . . . , fn(x)).

Since (P , (f)f∈PP ) 4M we have (P , (f)f∈PP ) |= ∃y∀x(x > y → φ(f1(x), . . . , fn(x)),

so for all sufficiently large x ∈ P we have P |= φ(f1(x), . . . , fn(x)). To establish the

converse, consider ¬φ.

Let N be a P-field and let f ∈ G. We say that f is comparable to N if for all

g ∈ N , f(x)− g(x) has ultimately constant sign.

Lemma 6.6.2. Let N be a P-field and suppose that g ∈ G is comparable to N . Then

N〈g〉 is a P-field.

Proof. Let t(x1, . . . , xn+1) be an L-term and f1, . . . , fn ∈ N . We must show that

t(f1(x), . . . , fn(x), g(x)) has ultimately constant sign. We may assume that g /∈ N .

We let M, a and ia be as in lemma 6.6.1. Since g is comparable to N , g determines

a cut in N . It is straightforward to see that g(a) realizes the image of this cut under

ia. Since T is o-minimal there are h0, h1 ∈ N ∪ {±∞} such that h0 < g < h1
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and t(f1, . . . , fn, y) has constant sign for y ∈ (h0, h1) ∩ N . We will assume that

t(f1, . . . , fn, y) > 0 for all y ∈ (h0, h1) ∩N and prove that t(f1(x), . . . , fn(x), g(x)) is

ultimately positive. The other cases are similar. Now

ia(N) |= ∀y(ia(h0) < y < ia(h1)→ t(ia(f1), . . . , ia(fn), y) > 0).

So

M |= ∀y(ia(h0) < y < ia(h1)→ t(ia(f1), . . . , ia(fn), y) > 0).

Therefore

M |= t(ia(f1), . . . , ia(fn), g(a)) > 0.

This is true for all positive infinite elements a. Hence t(f1(x), . . . , fn(x), g(x)) is

ultimately positive.

6.6.2 Rings of functions

Let O be the ring of all functions f : P → P . We will call a subring Q of O locally

P if:

1. Q is closed under the primitive functions of P , i.e., if f1, . . . , fn ∈ Q and F :

P n → P is a primitive function of P , then the function x 7→ F (f1(x), . . . , fn(x))

is in Q.

2. the germs at +∞ of functions in Q form a P-field.

3. if f ∈ Q then there exists a1, . . . , an ∈ P such that a1 < . . . < an and if I is a

closed bounded interval of P not containing ai for any i = 1, . . . , n, then f is

P-definable and continuously differentiable on I.

We will say thatQ, a locally P subring of O, is specially locally P if it also satisfies:

4. if f ∈ Q and q : P → P is a rational function then f ◦ q ∈ Q (we make our

rational functions totally defined by setting them to 0 at points of discontinuity).

Note that the ring of P-definable functions f : P → P is specially locally P .

If Q is a subring of O and f ∈ O we will let

Q〈f〉 = {t(f1, . . . , fn, f) : f1, . . . , fn ∈ Q and t is an L-term}.

Lemma 6.6.3. Let f1, . . . , fn : P → P and let S be a definable subset of P n. Let

a ∈ P and suppose that the functions x 7→ f1(a − 1
x
), . . . , x 7→ fn(a − 1

x
) lie in a

P-field. Then there exists ε ∈ P such that ε > 0 and (f1(x), . . . , fn(x)) ∈ S for all

x ∈ (a− ε, a) or (f1(x), . . . , fn(x)) /∈ S for all x ∈ (a− ε, a).
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Proof. Apply lemma 6.6.1 to the functions x 7→ f1(a− 1
x
), . . . , x 7→ fn(a− 1

x
).

Lemma 6.6.4. Suppose f : P → P lies in a subring Q of O that is specially locally

P. Then the sets {x ∈ P : f(x) > 0} and {x ∈ P : f(x) = 0} are the unions of

finitely many intervals and points.

Proof. Since f lies in a locally P subring of O we may choose −∞ = a0 < . . . < an =

+∞ such that f is P-definable on closed bounded subintervals of P not containing

any ai. Let X = {x ∈ P : f(x) > 0}. It is sufficient to prove that X ∩ (ai, ai+1) is a

union of finitely many intervals and points. By lemma 6.6.3 for all x sufficiently close

to ai and for all x sufficiently close to ai+1 we have that f(x) has constant sign (here

we use that Q is closed under right composition with rational functions). So choose

I = [c, d] a closed bounded subinterval of (ai, ai+1) such that f(x) has fixed sign on

(ai, c) and (d, ai+1). Now f(x) is P-definable on I so the result follows.

Lemma 6.6.5. Let Q be locally P and let f ∈ Q. Then Q〈Ẽ(f)〉 and Q〈Log(f)〉
satisfy properties 1. and 2. in the definition of being locally P.

Proof. That property 1 is satisfied is immediate from the definitions of Q〈Ẽ(f)〉 and

Q〈Log(f)〉.
By Lemma 6.6.2 it is sufficient to prove that germs at +∞ of Ẽ(f),Log(f) are

comparable to the germs at +∞ of functions in Q. We first consider Q〈Ẽ(f)〉. We

show that for each g ∈ Q the sign of Ẽ(f(x))− g(x) is ultimately constant. We may

assume that Ẽ(f) /∈ Q. Let

Ω = {h ∈ Q〈Ẽ(f)〉 : h has arbitrarily large zeros}.

Now since f and g lie in Q which is locally P , for all sufficiently large x, y with

x < y f and g are P-definable on [x, y]. Furthermore, in o-minimal expansions of

fields the image of a closed, bounded set under a continuous definable function is

closed and bounded. Since Ẽ is definable on any closed bounded subinterval of P
we see that Ẽ(f)− g is P-definable on [x, y]. Consequently for a sufficiently large x,

Ẽ(f) − g satisfies the mean value property and the intermediate value property on

(x,∞). Therefore, in order to show that the sign of Ẽ(f) − g is ultimately constant

it is sufficient to prove that Ẽ(f) − g /∈ Ω. Suppose then for a contradiction that

Ẽ(f) − g has arbitrarily large zeros. Then h = 1 − g Ẽ(−f) ∈ Ω. Therefore h′ ∈ Ω.

Now h′ = Ẽ(−f)(f ′g − g′) so f ′g − g′ ∈ Ω ∩ Q = {0}. So f ′ = g′

g
= Log(g)′. By o-

minimality of P , on each closed bounded interval with sufficiently large left end point

there exists r ∈ P such that Ẽ(f) = rg for some r ∈ P . But clearly we must have the
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same r on each such interval. So for all sufficiently large x we have Ẽ(f(x)) = rg(x).

Since Ẽ(f)− g ∈ Ω, r = 1 and so Ẽ(f) ∈ Q, which is a contradiction.

Now we consider Q〈Log(f)〉. Let g ∈ Q. We assume that Log(f) /∈ Q. Then f

must be ultimately positive. As above let

Ω = {h ∈ Q〈Log(f)〉 : h has arbitrarily large zeros}.

Since Log is P-definable on any closed bounded subinterval of Pos(P ), in order to

prove that the sign of Log(f)− g is ultimately constant it is sufficient to prove that

Log(f)− g /∈ Ω. If h = Log(f)− g ∈ Ω then h′ = f ′

f
− g′ ∈ Ω∩Q = {0}. As above we

see that there exists r ∈ P such that for all sufficiently large x we have g = Log(f)+r

and that in fact r = 0. So g = Log(f) ∈ Q which is a contradiction.

Lemma 6.6.6. Let Q be specially locally P and let 〈fα : α < κ〉 be a κ-sequence of

functions from Q. We recursively define a sequence 〈Qα : α < κ〉 by

1. Q0 = Q,

2. Qα+1 = Qα〈Ẽ(fα)〉,

3. Qλ =
⋃
β<λQβ; for λ a limit ordinal.

Then for each α, Qα is locally P and
⋃
α<κQα is locally P.

Proof. We prove that each Qα is locally P by transfinite induction. That
⋃
α<κQα is

locally P is an immediate consequence.

α = 0 By assumption.

α a successor ordinal Let β + 1 = α. Properties 1 and 2 follow from lemma 6.6.5.

We must establish property 3 for Qβ〈Ẽ(fβ)〉. Take g ∈ Qβ〈Ẽ(fβ)〉. Then

g = t(f1, . . . , fn, Ẽ(fβ)) for some f1, . . . , fn ∈ Qβ and some L-term t. We must

find a1, . . . , an ∈ P such that g is P-definable and continuously differentiable

on closed bounded intervals of P not containing any ai. We consider first the

case where g = Ẽ(fβ). Since fβ lies in Q there exists a1 < . . . < an such that

fβ is P-definable and continuously differentiable on closed bounded intervals

of P not containing any ai. We show that the same a1, . . . , an will do for g.

Let I be a closed bounded subinterval of P not containing any ai. Now fβ is

P-definable and continuous on I and so fβ(I) is closed and bounded. Therefore

Ẽ is P-definable on fβ(I). Thus g is P-definable on I. Since Ẽ is C∞, g is

continuously differentiable at all x /∈ {a1, . . . , an}.
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Now consider the case where g is a general element of Qβ+1 so that g =

t(h1, . . . , hn, Ẽ(fβ)) for some h1, . . . , hn ∈ Qβ and t an L-term. We may certainly

choose −∞ = a1 < . . . < an = +∞ such that each hi and Ẽ(fβ) are P-definable

and continuously differentiable on closed bounded intervals not containing any

ai. Then, since t is an L-term, g is P-definable on closed bounded intervals not

containing any ai. Let

C = {x ∈ P n+1 : t is not continuously differentiable at x},

D = {x ∈ P : g is not continuously differentiable at x}.

It remains to prove that D is finite. Suppose, for a contradiction, that D is

infinite. Then X = D∩ (ai, ai+1) is infinite for some i. Since g is P-definable on

any closed bounded subinterval of (ai, ai+1), X cannot contain an interval. For

the same reason we must have that one of the endpoints of (ai, ai+1) is a limit

point of X. Without loss of generality we assume that ai+1 is. Now consider the

sequence 〈kγ : γ < κ〉 of functions from P to P given by kγ(x) = fγ(ai+1 − 1
x
).

Since Q is specially locally P we have kγ ∈ Q for each γ < κ. Let Q′γ be defined

as Qγ but with fγ’s being replaced by kγ’s. By our inductive hypothesis and

lemma 6.6.5 the germs at +∞ of functions in Q′β+1 form a P-field, furthermore

h1(ai+1 − 1
x
), . . . , hn(ai+1 − 1

x
), Ẽ(fβ(ai+1 − 1

x
)) ∈ Q′β+1. Now, by lemma 6.6.3,

for some ε > 0 we must have that (h1(x), . . . , hn(x), Ẽ(fβ(x))) ∈ C for all

x ∈ (ai+1 − ε, ai+1). By the o-minimality of P and theorem 2.2.28 we have

dim(C) < n+ 1. We now consider

C1 = {x ∈ C : t : C → P is not continuously differentiable at x}.

Again, by o-minimality, dim(C1) < dim(C). By lemma 6.6.3 for some ε1 > 0

we must have that (h1(x), . . . , hn(x), Ẽ(fβ)) ∈ C1 for all x ∈ (ai+1 − ε1, ai+1).

Continuing in this way we obtain a finite set Y ⊆ P n with the property that

(h1(x), . . . , hn(x), Ẽ(fβ)) ∈ Y for all x sufficiently close to ai+1. We conclude

that (h1(x), . . . , hn(x), Ẽ(fβ)) becomes constant as x approaches ai+1. This

contradicts the supposition that ai+1 is a limit point for X.

α a limit ordinal This is immediate.

Lemma 6.6.7. Let Q be specially locally P and let 〈fα : α < κ〉 be a sequence of

functions from Q. We recursively define a sequence Qα by
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1. Q0 = Q,

2. Qα+1 = Qα〈Log(fα)〉,

3. Qλ =
⋃
β<λQβ, for λ a limit ordinal.

Then for each α, Qα is locally P and
⋃
α<κQα is locally P.

Proof. The proof is almost identical to the proof of lemma 6.6.6 except at the point

where we assume that Qβ is locally P and must prove that for Log(fβ) there exists

c1, . . . , cn such that Log(fβ) is P-definable and continuously differentiable on closed

bounded intervals not containing any ci. By our inductive hypothesis we can find

such a1, . . . , am for the function fβ. Now Log is continuously differentiable except at

0 and definable on any closed bounded intervals of P not containing 0. We must show

that fβ has only finitely many isolated zeros. This follows from lemma 6.6.4. Let

b1, . . . , bk be the isolated zeros of fβ. Then Log(fβ) has property 3 of being locally P
with respect to the points a1, . . . , am, b1, . . . , bk.

Lemma 6.6.8. Let Q be specially locally P and let f ∈ Q. Then there exists Q′ which

is specially locally P and contains Ẽ(f), similarly there exists Q′′ which is specially

locally P and contains Log(f).

Proof. Let 〈pα : α < κ〉 be an enumeration of the rational functions of P . We now

apply lemma 6.6.6 to the sequence 〈f ◦ pα : α < κ〉. So
⋃
α<κQα is specially locally

P and contains Ẽ(f). We find Q′′ by applying lemma 6.6.7 in the same way.

Theorem 6.6.9. PẼ,Log is o-minimal.

Proof. By lemma 6.6.8 and the fact that the ring of P-definable functions is specially

locally P any term definable function in PẼ,Log lies in a locally P subring of O. The

o-minimality of PẼ,Log now follows from quantifier elimination and lemma 6.6.4.
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Chapter 7

Future Work
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There is one particular line of work arising from this thesis that I feel is especially

worthy of pursuit. In chapter 5, we prove that the theory Texp is decidable if the

existential part of T∞ is recursively enumerable. So a natural question to ask is: can

one prove that the existential part of T∞ is recursively enumerable?

As indicated in chapter 5, Wilkie and Macintyre prove that Texp is decidable if

the existential part of Texp is recursively enumerable, and then prove that this is the

case under the assumption of Schanuel’s conjecture. In recent work [1] Bays, Kirby

and Wilkie prove the following Schanuel-type statement.

Theorem 7.0.10. Let F be an exponential field and let λ ∈ F be exponentially

transcendental. Let x̄ ∈ F n be such that exp(x̄) is multiplicatively independent. Then

trd (exp(x̄), exp(λx̄)/λ) ≥ n,

i.e. the field extension Q (λ, x̄, exp(λx̄)) /Q (λ) has transcendence degree at least n.

We won’t give the general definition of exponential algebraicity,1 but in the special

case of R |= Texp, an element a ∈ R is exponentially algebraic over A ⊆ R if and

only if a ∈ dcl(A), and so a is exponentially transcendental if and only if a is not

0-definable. Applying theorem 7.0.10 in R one gets the following statement.

Corollary 7.0.11. Let λ ∈ R \ dcl{∅} and let x̄ ∈ Pos(R)n be multiplicatively inde-

pendent. Then

trd
(
x̄, x̄λ/λ

)
≥ n.

Notice that dcl{∅} ⊆ Fin(R), so if R is non-Archimedean and λ is positive infinite

then λ is exponentially transcendental. Consequently the Schanuel condition holds

in models of T∞.

Given this, one might hope to emulate the result of Macintyre and Wilkie (that

the existential part of Texp is recursively enumerable if Schanuel’s conjecture holds)

to prove outright that the existential part of T∞ is recursively enumerable (and hence

Texp is decidable). Indeed, in a forthcoming paper, Jones and Servi use corollary

7.0.11 and the methods of Wilkie and Macintyre to prove that the structure 〈R, xr〉 is

decidable if r is both exponentially transcendental and the cut of r in Q is recursive

(note that for models of T∞ the cut of the exponent of the power function is trivially

recursive).

Unfortunately complications arise. The work of Macintyre and Wilkie (and sub-

sequently Jones and Servi) makes essential use of the fact that

1Exponentially transcendental means not exponentially algebraic.
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1. Q is dense in R, the domain of the standard model,

2. if q̄ ∈ Qn and P (x̄, exp(x̄)) ∈ Q[x̄, exp(x̄)], then one can effectively determine

the sign of P (q̄, exp(q̄)).

Let P be the prime model of T∞. In order to apply the method of Macintyre

and Wilkie to T∞ it seems that one must find a subset D of P which is recursively

enumerable, dense in P and has the property that given p̄ ∈ D one can effectively

determine the sign of a power-polynomial (defined in analogy to exponential poly-

nomial) evaluated at p̄. As a first step towards finding such a D, one would like to

prove that if P = 〈P, xλ, λ〉, then the sequence λ, λλ, λλ
2
, . . . is cofinal in P .
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