Definability in the infinitesimal subgroup of a simple compact Lie group

Martin Bays ${ }^{1}$, Kobi Peterzil ${ }^{2}$

${ }^{1}$ WWU Münster
${ }^{2}$ University of Haifa

Padova, 2017-09-14

$\mathrm{SO}_{3}(\mathbb{R})$

Theorem (Nesin-Pillay 1991)

- $X \subseteq \mathrm{SO}_{3}(\mathbb{R})^{n}$ is definable in the pure group $\left(\mathrm{SO}_{3}(\mathbb{R}) ; *\right)$ iff it is definable in the field $(\mathbb{R} ;+, \cdot)$.
- More generally, same for any simple centreless compact linear algebraic group $G \leq G L_{n}(\mathbb{R})$.

Example

$\left\{(A, B) \in \mathrm{SO}_{3}(\mathbb{R}): \operatorname{det}(A-B)>0\right\}$ is definable in $\left(\mathrm{SO}_{3}(\mathbb{R}) ; *\right)$.

Sketch of proof:

- Define a copy of $\mathrm{SO}_{3}(\mathbb{R})$ in $(G ; *)$;
- Reconstruct the field from the projective plane of involutions of $\mathrm{SO}_{3}(\mathbb{R})$.
- See that this yields a bi-interpretation of $(G ; *)$ with $(\mathbb{R} ;+, \cdot)$.

SO_{3}^{00}

$$
\begin{gathered}
(\mathcal{R} ;+, \cdot):=(\mathbb{R} ;+, \cdot)^{\mathcal{U}} \succeq(\mathbb{R} ;+, \cdot) \\
0 \rightarrow \mathfrak{m} \rightarrow \mathcal{O} \xrightarrow{\text { st }} \mathbb{R} \rightarrow 0 \\
1 \rightarrow \mathrm{SO}_{3}^{00} \rightarrow \mathrm{SO}_{3}(\mathcal{R}) \xrightarrow{\text { st }} \mathrm{SO}_{3}(\mathbb{R}) \rightarrow 1 \\
\mathrm{SO}_{3}^{00}=\mathrm{SO}_{3}(\mathcal{R}) \cap\left(\begin{array}{ccc}
1+\mathfrak{m} & \mathfrak{m} & \mathfrak{m} \\
\mathfrak{m} & 1+\mathfrak{m} & \mathfrak{m} \\
\mathfrak{m} & \mathfrak{m} & 1+\mathfrak{m}
\end{array}\right)
\end{gathered}
$$

$\left(\mathrm{SO}_{3}^{00} ; *\right)$ is interpretable in $(\mathcal{R} ;+, \cdot, \mathcal{O}) \vDash R C V F$.

Problem

Which $(\mathcal{R} ;+, \cdot, \mathcal{O})$-definable subsets of $\left(\mathrm{SO}_{3}^{00}\right)^{n}$ are $\left(\mathrm{SO}_{3}^{00} ; *\right)$-definable?
Same question for G^{00} for $G \subseteq G L_{n}(\mathbb{R})$ compact?

- Lie algebra $\mathfrak{g}(\mathcal{R})=\mathrm{so}_{3}(\mathcal{R})=$

$$
\left\{\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right)\right\} \cong \mathcal{R}^{3}=\{(x, y, z)\}
$$

- Infinitesimal Lie algebra: $\mathfrak{g}_{\mathfrak{m}}:=\mathrm{st}^{-1}(0) \cong \mathfrak{m}^{3} \leq \mathcal{R}^{3}$.
- Matrix exponentiation yields a homeomorphism $\exp _{\mathfrak{m}}: \mathfrak{g}_{\mathfrak{m}} \xrightarrow{\sim} \mathrm{SO}_{3}^{00}$.
- $\exp _{\mathfrak{m}}(X) * \exp _{\mathfrak{m}}(Y)=\exp _{\mathfrak{m}}(X+Y)+\epsilon$ where $v(\|\epsilon\|) \geq v(\|X\|)+v(\|Y\|)$.
- If X and Y are collinear then $\exp _{\mathfrak{m}}(X) * \exp _{\mathfrak{m}}(Y)=\exp _{\mathfrak{m}}(X+Y)$.
- For $x \in \mathrm{SO}_{3}^{00}$ and $h \in \mathrm{SO}_{3}(\mathcal{R})$, group conjugation $x \mapsto x^{h}:=h * x * h^{-1}$ agrees with the matrix action of $\mathrm{SO}_{3}(\mathcal{R})$ on \mathfrak{m}^{3} :

$$
\exp _{\mathfrak{m}}(X)^{h}=\exp _{\mathfrak{m}}(h X)
$$

Main theorem

Theorem

$G \subseteq \mathrm{GL}_{n}(\mathbb{R})$ a simple compact linear algebraic group.
(i) $X \subseteq\left(G^{00}\right)^{n}$ is $\left(G^{00} ; *\right)$-definable iff it is ($\mathcal{R} ;+, \cdot, \mathcal{O}$)-definable.
(ii) Moreover, the interpretation of $\left(G^{00} ; *\right)$ in $(\mathcal{R} ;+, \cdot, \mathcal{O})$ can be completed to a bi-interpretation.

Example

$\left\{(A, B) \in \mathrm{SO}_{3}^{00}: v(\operatorname{det}(A-B))>\alpha\right\}$ is definable in $\left(\mathrm{SO}_{3}^{00} ; *\right)$.

Outline of proof:
(I) Find an $\left(\mathrm{SO}_{3}^{00} ; *\right)$-definable ordered interval J;
(II) apply o-minimal trichotomy to get a field K in J;
(III) Find a copy of SO_{3}^{00} in G^{00};
(IV) use adjoint representation to see the pair $G^{00} \leq G(\mathcal{R})$ in K, yielding a bi-interpretation.

(I): Finding an ordered interval

- Let $S:=\mathrm{SO}_{3}(\mathcal{R})$ and $S^{00}:=\mathrm{SO}_{3}^{00}$.
- Let $b \in S^{00} \backslash\{e\}$.
- $C_{S}(b):=\left\{h \in S: b^{h}=b\right\} \cong \mathrm{SO}_{2}(\mathcal{R})$;
- $C_{S^{00}}(b):=C_{S}(b) \cap S^{00} \cong \mathrm{SO}_{2}^{00} \cong \mathfrak{m}$.
- $b^{S} b^{S}=\xi\left(S^{2}\right)$ where $\xi\left(h, h^{\prime}\right)=b^{h} * b^{h^{\prime}}$.
- $b^{S} b^{S}=\exp _{\mathfrak{m}}(B)$ where $B \subseteq \mathfrak{m}^{3}$ is the closed ball of radius $\left\|b^{2}\right\|$.
- $b^{S} b^{S} \cap C_{S^{00}}(b)$ is the interval $\left[b^{-2}, b^{2}\right]$.
- By definable choice for the $(\mathcal{R} ;+, \cdot)$-definable map ξ, $X:=b^{S^{00}} b^{S^{00}} \cap C_{S^{00}}(b)$ contains some interval (h, b^{2}].
- Translating, get ($\left.S^{00} ; *\right)$-definable interval $[e, p) \subseteq C_{S^{\circ 0}}(b)$, hence $J:=\left(p^{-1}, p\right)$ as an ordered interval.
- Explicitly: $p:=b^{2} h^{-1}$, then $(e, p)=h^{-1} X \cap b^{2} X^{-1}$.

(II): Trichotomy

- $T_{e}\left(J^{S^{00}}\right)$ spans \mathcal{R}^{3}, so for appropriate $h_{1}, h_{2} \in S^{00}$ and after shrinking J,

$$
\phi: J^{3} \rightarrow S^{00} ; \phi\left(x_{0}, x_{1}, x_{2}\right)=x_{0} * x_{1}^{h_{1}} * x_{2}^{h_{2}}
$$

is a bijection with a neighbourhood of $e \in S^{00}$.

- $(J ; *,<)$ and ϕ are definable both in $\left(S^{00} ; *\right)$ and in ($\mathcal{R} ;+, \cdot)$.
- Pulling back the S^{00} group structure via ϕ puts "non-linear" structure on J at e.
- By the Peterzil-Starchenko o-minimal trichotomy, a real closed field ($K ;+, \cdot$) on an interval $e \in K \subseteq J$ is definable in this structure on J.
- So $(K ;+, \cdot)$ is definable both in $\left(S^{00} ; *\right)$ and in $(\mathcal{R} ;+, \cdot)$.

(III): Finding an SO_{3}^{00} in G^{00}

- $\mathfrak{g}_{0}:=L(G)$
- $\mathfrak{h}_{0} \leq g_{0}$ Cartan subalgebra (i.e. maximal abelian).
- $\mathfrak{g}:=\mathfrak{g}_{0} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathfrak{h}:=\mathfrak{h}_{0} \otimes_{\mathbb{R}} \mathbb{C}$.
- $X \in \mathfrak{g}$ an ad $_{\mathfrak{h}}$-eigenvector for a root $\alpha \in \mathfrak{h}^{*} \backslash\{0\}$; i.e. $[H, X]=\alpha(H) X$ for $H \in \mathfrak{h}$.
- Set $U:=X-\bar{X}, V:=i X+i \bar{X}$.
- Since G is compact, $U, V \in \mathfrak{g}_{0}$, and $[U, V] \in \mathfrak{h}_{0}$, and $\mathfrak{s}:=\langle U, V,[U, V]\rangle \cong \mathrm{so}_{3}$. Let $\mathfrak{s}^{\prime}:=\mathfrak{h}_{0}+\mathfrak{s}$.
- Let $S, S^{\prime} \leq G$ with $L(S)=\mathfrak{s}, L\left(S^{\prime}\right)=\mathfrak{s}^{\prime}$.
- So $S \cong \mathrm{SO}(3)$ or $S \cong \operatorname{Spin}(3)$ and $S^{00} \cong \mathrm{SO}_{3}^{00}$.
- Considering root space decomposition, calculate: $\mathfrak{s}^{\prime}=C_{g_{0}}\left(C_{g_{0}}\left(\mathfrak{s}^{\prime}\right)\right)$, and $\mathfrak{s}=\left[\mathfrak{s}^{\prime}, \mathfrak{s}^{\prime}\right]$. Deduce: $S^{\prime}=C_{G}\left(C_{G}\left(S^{\prime}\right)\right)$ and $S=\left(S^{\prime}, S^{\prime}\right)_{1}$; $S^{\prime 00}=C_{G^{00}}\left(C_{G^{00}}\left(S^{\prime 00}\right)\right)$ and $S^{00}=\left(S^{\prime 00}, S^{00}\right)_{1}$.
- So S is $(\mathcal{R} ;+, \cdot)$-definable, S^{00} is $\left(G^{00} ; *\right)$-definable.
- (Trichotomy argument to find K works when $S=\operatorname{Spin}(3)$.

(IV): Bi-interpretation

- $(K ;+, \cdot)$ is definable both in $\left(G^{00} ; *\right)$ and in $(\mathcal{R} ;+, \cdot)$.
- Otero-Peterzil-Pillay: exists $(\mathcal{R} ;+, \cdot)$-definable isomorphism $\theta:(\mathcal{R} ;+, \cdot) \xrightarrow{\sim}(K ;+, \cdot)$.
- θ induces $\theta_{G}: G(\mathcal{R}) \xrightarrow{\sim} G(K)$.

Claim
$\theta_{G} \upharpoonright_{G^{00}}: G(\mathcal{R})^{00} \xrightarrow{\sim} G(K)^{00}$ is $\left(G^{00} ; *\right)$-definable.
Proof of Main Theorem.

- \mathcal{O} is definable in $\left(\mathcal{R} ;+, \cdot, G^{00}\right)$,
- so $(\mathcal{R} ;+, \cdot, \mathcal{O})$ is interpreted on K in $\left(G^{00} ; *\right)$ via θ, since $G(K)^{00}$ is $\left(G^{00} ; *\right)$-definable by the claim.
- $\left(G^{00} ; *\right)$ is interpreted in $(\mathcal{R} ;+, \cdot, \mathcal{O})$ tautologically.
- The composed interpretations are θ and $\theta_{G} \upharpoonright_{G 00}$, which are definable in $\left(\mathcal{R} ;+, \cdot, G^{00}\right)$ resp. $\left(G^{00} ; *\right)$.

Proof of claim

Claim

$$
\theta_{G} \upharpoonright_{G^{00}}: G(\mathcal{R})^{00} \xrightarrow{\sim} G(K)^{00} \text { is }\left(G^{00} ; *\right) \text {-definable. }
$$

Proof.

- Quotienting by the discrete centre, we may assume G is centreless. Let ϕ be a chart for G in J as above. (Exists by simplicity of G.)
- Differentiation in K yields via ϕ an adjoint embedding $\mathrm{Ad}: G(\mathcal{R}) \rightarrow \mathrm{GL}_{d}(K)$.
- Ad is $(\mathcal{R} ;+, \cdot)$-definable.
- $\operatorname{Ad~}_{G^{00}}$ is $\left(G^{00} ; *\right)$-definable.
- $\eta:=\mathrm{Ad}_{\circ} \theta_{G}^{-1}: G(K) \rightarrow \mathrm{GL}_{d}(K)$ is $(K ;+, \cdot)$-definable by purity, hence ($G^{00} ; *$)-definable.
- So $\theta_{G} \Gamma_{G^{00}}=\eta^{-1} \circ A d{ }_{G^{00}}$ is $\left(G^{00} ; *\right)$-definable.

