Definability in the infinitesimal subgroup of a simple compact Lie group

Martin Bays¹, Kobi Peterzil²

¹WWU Münster ²University of Haifa

Padova, 2017-09-14

$\mathsf{SO}_3(\mathbb{R}$

Theorem (Nesin-Pillay 1991)

- ▶ $X \subseteq SO_3(\mathbb{R})^n$ is definable in the pure group $(SO_3(\mathbb{R}); *)$ iff it is definable in the field $(\mathbb{R}; +, \cdot)$.
- ▶ More generally, same for any simple centreless compact linear algebraic group $G \leq GL_n(\mathbb{R})$.

Example

```
\{(A,B)\in SO_3(\mathbb{R}): det(A-B)>0\} is definable in (SO_3(\mathbb{R});*).
```

Sketch of proof:

- ▶ Define a copy of $SO_3(\mathbb{R})$ in (G; *);
- ► Reconstruct the field from the projective plane of involutions of $SO_3(\mathbb{R})$.
- ▶ See that this yields a bi-interpretation of (G; *) with $(\mathbb{R}; +, \cdot)$.

 SO_3^{00}

$$\begin{split} (\mathcal{R};+,\cdot) &:= (\mathbb{R};+,\cdot)^{\mathcal{U}} \succeq (\mathbb{R};+,\cdot) \\ 0 &\to \mathfrak{m} \to \mathcal{O} \xrightarrow{st} \mathbb{R} \to 0 \end{split}$$

$$1 \to SO_3^{00} \to SO_3(\mathcal{R}) \xrightarrow{st} SO_3(\mathbb{R}) \to 1$$

$$SO_3^{00} = SO_3(\mathcal{R}) \cap \begin{pmatrix} 1+\mathfrak{m} & \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & 1+\mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} & 1+\mathfrak{m} \end{pmatrix}$$

 $(SO_3^{00}; *)$ is interpretable in $(\mathcal{R}; +, \cdot, \mathcal{O}) \models RCVF$.

Problem

Which $(\mathcal{R};+,\cdot,\mathcal{O})$ -definable subsets of $(SO_3^{00})^n$ are $(SO_3^{00};*)$ -definable? Same question for G^{00} for $G \subseteq GL_n(\mathbb{R})$ compact?

- ► Lie algebra $\mathfrak{g}(\mathcal{R}) = so_3(\mathcal{R}) =$ $\left\{ \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} \right\} \cong \mathcal{R}^3 = \{(x, y, z)\}.$
- ▶ Infinitesimal Lie algebra: $\mathfrak{g}_{\mathfrak{m}} := st^{-1}(0) \cong \mathfrak{m}^3 \leq \mathcal{R}^3$.
- ▶ Matrix exponentiation yields a homeomorphism $\exp_{\mathfrak{m}}: \mathfrak{g}_{\mathfrak{m}} \xrightarrow{\sim} SO_3^{00}.$
- ▶ $\exp_{\mathfrak{m}}(X) * \exp_{\mathfrak{m}}(Y) = \exp_{\mathfrak{m}}(X + Y) + \epsilon$ where $\nu(\|\epsilon\|) \ge \nu(\|X\|) + \nu(\|Y\|)$.
- If X and Y are collinear then exp_m(X) * exp_m(Y) = exp_m(X + Y).
- ► For $x \in SO_3^{00}$ and $h \in SO_3(\mathcal{R})$, group conjugation $x \mapsto x^h := h * x * h^{-1}$ agrees with the matrix action of $SO_3(\mathcal{R})$ on \mathfrak{m}^3 :

$$\exp_{\mathfrak{m}}(X)^h = \exp_{\mathfrak{m}}(hX).$$

Main theorem

Theorem

 $G \subseteq GL_n(\mathbb{R})$ a simple compact linear algebraic group.

- (i) $X \subseteq (G^{00})^n$ is $(G^{00}; *)$ -definable iff it is $(\mathcal{R}; +, \cdot, \mathcal{O})$ -definable.
- (ii) Moreover, the interpretation of $(G^{00}; *)$ in $(\mathcal{R}; +, \cdot, \mathcal{O})$ can be completed to a bi-interpretation.

Example

 $\{(A,B) \in SO_3^{00} : \nu(\det(A-B)) > \alpha\}$ is definable in $(SO_3^{00};*)$.

Outline of proof:

- (I) Find an $(SO_3^{00}; *)$ -definable ordered interval J;
 - (II) apply o-minimal trichotomy to get a field K in J; (III) Find a copy of SO_3^{00} in G^{00} ;
- (IV) use adjoint representation to see the pair $G^{00} < G(\mathcal{R})$ in K, yielding a bi-interpretation.

(I): Finding an ordered interval

▶ Let
$$S := SO_3(\mathcal{R})$$
 and $S^{00} := SO_3^{00}$.

► Let
$$b \in S^{00} \setminus \{e\}$$
.

►
$$C_S(b) := \{h \in S : b^h = b\} \cong SO_2(\mathcal{R});$$

► $C_{S00}(b) := C_S(b) \cap S^{00} \cong SO_2^{00} \cong \mathfrak{m}.$

$$\triangleright C_{S^{00}}(b) := C_{S}(b) \cap S^{00} \cong SO_{2}^{00} \cong \mathfrak{m}.$$

$$\triangleright b^{S}b^{S} = \xi(S^{2}) \text{ where } \xi(h,h') = b^{h} * b^{h'}.$$

▶
$$b^S b^S = \exp_{\mathfrak{m}}(B)$$
 where $B \subseteq \mathfrak{m}^3$ is the closed ball of radius $||b^2||$.

$$(h, b^2]$$
.

Translating, get $(S^{00}; *)$ -definable interval
 $[e, p) \subset C_{S^{00}}(b)$, hence $J := (p^{-1}, p)$ as an ordered

interval.
• Explicitly:
$$p := b^2 h^{-1}$$
, then $(e, p) = h^{-1} X \cap b^2 X^{-1}$.

(II): Trichotomy

► $T_e(J^{S^{00}})$ spans \mathcal{R}^3 , so for appropriate $h_1, h_2 \in S^{00}$ and after shrinking J,

$$\phi: J^3 \to S^{00}; \phi(x_0, x_1, x_2) = x_0 * x_1^{h_1} * x_2^{h_2}$$

is a bijection with a neighbourhood of $e \in S^{00}$.

- ▶ (J;*,<) and ϕ are definable both in $(S^{00};*)$ and in $(\mathcal{R};+,\cdot)$.
- ▶ Pulling back the S^{00} group structure via ϕ puts "non-linear" structure on J at e.
- ▶ By the Peterzil-Starchenko o-minimal trichotomy, a real closed field $(K; +, \cdot)$ on an interval $e \in K \subseteq J$ is definable in this structure on J.
- ► So $(K; +, \cdot)$ is definable both in $(S^{00}; *)$ and in $(\mathcal{R}; +, \cdot)$.

(III): Finding an SO_3^{00} in G^{00}

- $\bullet \ \mathfrak{g}_0 := L(G)$
- h₀ ≤ g₀ Cartan subalgebra (i.e. maximal abelian).
 q := q₀ ⊗_ℝ C and h := h₀ ⊗_ℝ C.
- ► $X \in \mathfrak{g}$ an $\mathrm{ad}_{\mathfrak{h}}$ -eigenvector for a root $\alpha \in \mathfrak{h}^* \setminus \{0\}$;
- i.e. $[H, X] = \alpha(H)X$ for $H \in \mathfrak{h}$. • Set $U := X - \bar{X}$, $V := iX + i\bar{X}$.
 - Since G is compact, $U, V \in \mathfrak{g}_0$, and $[U, V] \in \mathfrak{h}_0$, and $\mathfrak{s} := \langle U, V, [U, V] \rangle \cong \mathfrak{so}_3$. Let $\mathfrak{s}' := \mathfrak{h}_0 + \mathfrak{s}$.
 - $\mathfrak{s}:=\langle U,V,[U,V]\rangle\cong \mathfrak{so}_3.$ Let $\mathfrak{s}':=\mathfrak{h}_0+\mathfrak{s}.$
 - ► Let $S, S' \leq G$ with $L(S) = \mathfrak{s}, L(S') = \mathfrak{s}'$. ► So $S \cong SO(3)$ or $S \cong Spin(3)$ and $S^{00} \cong SO(3)$
 - So S ≅ SO(3) or S ≅ Spin(3) and S⁰⁰ ≅ SO₃⁰⁰.
 Considering root space decomposition, calculate:
- $\mathfrak{s}'=C_{g_0}(C_{g_0}(\mathfrak{s}')), \ ext{and} \ \mathfrak{s}=[\mathfrak{s}',\mathfrak{s}']. \ ext{Deduce:} \ S'=C_G(C_G(S')) \ ext{and} \ S=(S',S')_1; \ S'^{00}=C_{G^{00}}(C_{G^{00}}(S'^{00})) \ ext{and} \ S^{00}=(S'^{00},S'^{00})_1.$
- So *S* is $(\mathcal{R}; +, \cdot)$ -definable, S^{00} is $(G^{00}; *)$ -definable.
- So S is (K; +, ·)-definable, S³⁰ is (G³⁰; *)-definable.
 (Trichotomy argument to find K works when S = Spin(3).)

(IV): Bi-interpretation

- ▶ $(K; +, \cdot)$ is definable both in $(G^{00}; *)$ and in $(\mathcal{R}; +, \cdot)$.
- ▶ Otero-Peterzil-Pillay: exists $(\mathcal{R}; +, \cdot)$ -definable isomorphism $\theta : (\mathcal{R}; +, \cdot) \xrightarrow{\sim} (K; +, \cdot)$.
- ▶ θ induces $\theta_G : G(\mathcal{R}) \xrightarrow{\sim} G(K)$.

Claim

$$\theta_G \!\!\upharpoonright_{G^{00}} : G(\mathcal{R})^{00} \xrightarrow{\sim} G(K)^{00}$$
 is $(G^{00}; *)$ -definable.

Proof of Main Theorem.

- ▶ \mathcal{O} is definable in $(\mathcal{R}; +, \cdot, G^{00})$,
- ▶ so $(\mathcal{R}; +, \cdot, \mathcal{O})$ is interpreted on K in $(G^{00}; *)$ via θ , since $G(K)^{00}$ is $(G^{00}; *)$ -definable by the claim.
- $\,\blacktriangleright\,$ ($\emph{G}^{00};*)$ is interpreted in $(\mathcal{R};+,\cdot,\mathcal{O})$ tautologically.
- ► The composed interpretations are θ and $\theta_G \upharpoonright_{G^{00}}$, which are definable in $(\mathcal{R}; +, \cdot, G^{00})$ resp. $(G^{00}; *)$.

L

Proof of claim

Claim

 $\theta_G \upharpoonright_{G^{00}} : G(\mathcal{R})^{00} \xrightarrow{\sim} G(K)^{00}$ is $(G^{00}; *)$ -definable.

Proof.

- Quotienting by the discrete centre, we may assume G is centreless. Let φ be a chart for G in J as above. (Exists by simplicity of G.)
- ▶ Differentiation in K yields via ϕ an adjoint embedding Ad : $G(\mathcal{R}) \to \operatorname{GL}_d(K)$.
- ▶ Ad is $(\mathcal{R}; +, \cdot)$ -definable.
- ► Ad $\upharpoonright_{G^{00}}$ is $(G^{00}; *)$ -definable.
- ▶ $\eta := \operatorname{Ad} \circ \theta_G^{-1} : G(K) \to \operatorname{GL}_d(K)$ is $(K; +, \cdot)$ -definable by purity, hence $(G^{00}; *)$ -definable.
- ► So $\theta_G \upharpoonright_{G^{00}} = \eta^{-1} \circ \operatorname{Ad} \upharpoonright_{G^{00}}$ is $(G^{00}; *)$ -definable.

