Projective geometries arising from Elekes-Szabó problems

Martin Bays Joint work with Emmanuel Breuillard

13-11-2018 Oxford

Elekes-Szabó

- Suppose *f* ∈ ℂ[*X*, *Y*, *Z*] is an irreducible polynomial in which each of *X*, *Y*, *Z* appears.
- Set $V := \{(x, y, z) \in \mathbb{C}^3 : f(x, y, z) = 0\}.$
- ► Consider intersections with finite "grids" $A \times B \times C$ with $|A|, |B|, |C| \le N \in \mathbb{N}$.
- We have

$$|V \cap (A \times B \times C)| \leq O(N^2).$$

► Say *V* "admits no powersaving" if for no $\epsilon > 0$ do we have

$$|V \cap (A \times B \times C)| \leq O(N^{2-\epsilon}).$$

► Example: if f(x, y, z) = z - x - y then arithmetic progressions A = B = C := [-m, m] witness that *V* admits no powersaving.

Theorem (Elekes-Szabó 2012)

V admits no powersaving iff V is in co-ordinatewise algebraic correspondence with the graph of addition on a 1-dimensional algebraic group.

Pseudofinite dimension

Hrushovski "On Pseudo-Finite Dimensions" (2013)

- $\mathcal{U} \subseteq \mathbb{P}(\omega)$ non-principal ultrafilter.
- $K := \mathbb{C}^{\mathcal{U}}$.
- X ⊆ Kⁿ is internal if X = ∏_{s→U} X_s for some X_s ⊆ Cⁿ, and pseudofinite if each X_s is finite.
- ► For X internal, set $|X| := \lim_{s \to U} |X_s| \in \mathbb{R}^U \cup \{\infty\}.$
- $|X| \in \mathbb{R}^{\mathcal{U}}$ if X is pseudofinite, $|X| := \infty$ else.

• Fix
$$\xi \in \mathbb{R}^{\mathcal{U}}$$
 with $\xi > \mathbb{R}$.

Definition (Coarse pseudofinite dimension δ)

For X internal,

$$\delta(X) = \delta_{\xi}(X) := \operatorname{st} \left(\log_{\xi}(|X|) \right) \in \mathbb{R}_{\geq 0} \cup \{-\infty, \infty\}.$$

▶ Note that internality is closed under cardinality quantifiers: if $R \subseteq K^n \times K^m$ is internal and $\alpha \in \mathbb{R}^{\mathcal{U}}$, then $\{\overline{y} \in K^n : \exists_{\geq \alpha} \overline{x}. R(\overline{x}, \overline{y})\}$ is internal.

\mathcal{L}_{int} monster

- \mathcal{L}_{int} : predicate for each internal $X \subseteq K^n$.
- $\mathbb{K} \succ K$ monster model in \mathcal{L}_{int} .
- For $\phi \in \mathcal{L}_{int}$, set $\delta(\phi) := \delta(\phi(K))$.
- ▶ δ has a unique extension to $(\mathcal{L}_{\mathsf{int}})_{\mathbb{K}}$ such that

 $egin{aligned} & \mathsf{tp}(\overline{b})\mapsto \delta(\phi(\overline{x},\overline{b})) \ & \mathcal{S}_{\overline{y}}(\emptyset) o \{-\infty\}\cup \mathbb{R}\cup \{\infty\} \end{aligned}$

is well-defined and continuous for each $\phi(\overline{x}, \overline{y}) \in \mathcal{L}_{int}$.

► Explicitly,
$$\delta(\phi(\overline{x},\overline{a})) := \sup\{q \in \mathbb{Q} : \mathbb{K} \vDash \exists_{\geq \xi^q} \overline{x}. \phi(\overline{x},\overline{a})\}.$$

\mathcal{L}_{int} monster

- \mathcal{L}_{int} : predicate for each internal $X \subseteq K^n$.
- $\mathbb{K} \succ K$ monster model in \mathcal{L}_{int} .
- For $\phi \in \mathcal{L}_{int}$, set $\delta(\phi) := \delta(\phi(K))$.
- ▶ δ has a unique extension to $(\mathcal{L}_{\mathsf{int}})_{\mathbb{K}}$ such that

 $egin{aligned} & \mathsf{tp}(\overline{b})\mapsto \delta(\phi(\overline{x},\overline{b})) \ & \mathcal{S}_{\overline{y}}(\emptyset) o \{-\infty\}\cup \mathbb{R}\cup \{\infty\} \end{aligned}$

is well-defined and continuous for each $\phi(\overline{x}, \overline{y}) \in \mathcal{L}_{int}$.

- ► Explicitly, $\delta(\phi(\overline{x},\overline{a})) := \sup\{q \in \mathbb{Q} : \mathbb{K} \vDash \exists_{\geq \xi^q} \overline{x}. \phi(\overline{x},\overline{a})\}.$
- For Φ a partial type, $\delta(\Phi) := \inf\{\delta(\phi) : \Phi \vDash \phi\}$.
- $\delta(a/C) := \delta(\operatorname{tp}(a/C)).$

Fact

For $C \subseteq \mathbb{K}$ small and $a, b \in \mathbb{K}^{<\omega}$,

- (Invariance): $a \equiv_C b \Longrightarrow \delta(a/C) = \delta(b/C)$.
- (Additivity): $\delta(ab/C) = \delta(a/bC) + \delta(b/C)$.
- (Existence): A partial type Φ over C has a realisation a ∈ Φ(K) with δ(a/C) = δ(Φ).

acl⁰

For *V* a variety over \mathbb{K} , eliminate the imaginary to consider elements of $V(\mathbb{K})$ as tuples from \mathbb{K} , i.e. $V(\mathbb{K}) \subseteq \mathbb{K}^{<\omega}$.

Definition

Superscript 0 means: reduct to $ACF_{\mathbb{C}}$. ($\mathbb{C} \leq \mathbb{C}^{\mathcal{U}} = K \prec \mathbb{K}$)

- ► $d^0(A/B) := \operatorname{trd}(\mathbb{C}(A, B)/\mathbb{C}(B))$ (for $A, B \subseteq \mathbb{K}^{<\omega}$)
- acl⁰(B) := {a ∈ K^{<ω} : d⁰(a/B) = 0} = field-theoretic algebraic closure of C(B) in K^{<ω}.

Remark

$$a\in {
m acl}^0(B)\Longrightarrow \delta(a/B)=0.$$

Coherence (1-dimensional version)

Definition

 $P \subseteq \mathbb{K}$ is **coherent** if for any tuple $\overline{a} \in P^{<\omega}$,

$$\delta(\overline{a}) = d^0(\overline{a}).$$

In other words, δ is equal on $P^{<\omega}$ to the dimension function of the pregeometry (*P*; acl⁰).

Coherence (1-dimensional version)

Definition

 $P \subseteq \mathbb{K}$ is **coherent** if for any tuple $\overline{a} \in P^{<\omega}$,

$$\delta(\overline{a}) = d^0(\overline{a}).$$

In other words, δ is equal on $P^{<\omega}$ to the dimension function of the pregeometry (*P*; acl⁰).

Lemma

Say an irreducible complex variety $V \subseteq \mathbb{A}^n$ "admits no powersaving" if for no $\epsilon > 0$ do we have a bound

$$|V(\mathbb{C})\cap\prod_{i}A_{i}|\leq O(N^{\dim(V)-\epsilon}),$$

for $A_i \subseteq \mathbb{C}$ with $|A_i| = N$. Then V admits no powersaving iff there exists a generic point $\overline{a} \in V(\mathbb{K})$ with $\{a_1, \ldots, a_n\}$ coherent.

Coarse general position

Definition

 $a \in \mathbb{K}^{<\omega}$ is in coarse general position (or is cgp) if for any $B \subseteq \mathbb{K}$,

$$d^0(a/B) < d^0(a) \Longrightarrow \delta(a/B) = 0.$$

Any $a \in \mathbb{K}$ is cgp.

Definition

Let W be an irreducible variety over \mathbb{C} . A \mathbb{K} -definable set $X \subseteq W(\mathbb{K})$ with $\delta(X) \in \mathbb{R}_{>0}$ is **cgp** if for any $W' \subsetneq W$ proper subvariety over \mathbb{K} ,

 $\delta(X\cap W')=0.$

If X is cgp, then any $a \in X$ is cgp.

Coherence

Definition

- $P \subseteq \mathbb{K}^{<\omega}$ is coherent if
 - every $a \in P$ is cgp, and
 - for any tuple $\overline{a} \in P^{<\omega}$, $d^0(\overline{a}) = \delta(\overline{a})$.

Then (P; acl⁰) is a pregeometry, and if $d^0(a)$ is constant for $a \in P$, then δ is proportional on $P^{<\omega}$ to its dimension function.

Example

Let *G* be a complex semiabelian variety, e.g. $G = (\mathbb{C}^{\times})^n$. Let $\gamma \in G(\mathbb{C})$ generic. Let $X := \prod_{s \to \mathcal{U}} \{-s \cdot \gamma, \dots, s \cdot \gamma\}$, and set ξ such that $\delta(X) = \dim(G)$. Then *X* is cgp, since $|X \cap W'| < \aleph_0$ by uniform Mordell-Lang. Now $\delta(X^3 \cap \Gamma_+) = 2\delta(X)$. Let $(a, b, c) \in X^3 \cap \Gamma_+$ with $\delta(abc) = 2\delta(X)$. Then $\{a, b, c\}$ is coherent.

Szemerédi-Trotter bounds

Suppose $a, e \in \mathbb{K}^{<\omega}$ satisfy (working over some $C \subseteq \mathbb{K}$): If $e' \equiv e$ and $e' \equiv_a^0 e$ but $e' \neq e$, then $\delta(a/ee') = 0$.

Lemma (Trivial bound)

Assume such a e' exists (i.e. $e \notin dcl(a)$)). Then $\delta(a/e) \leq \frac{1}{2}\delta(a)$.

Proof.

Take $e' \equiv_a e$ with $e' \neq e$ and $\delta(e'/ab) = \delta(e'/a)$. Then $0 = \delta(a/ee') = \delta(aee') - \delta(ee') = 2\delta(ab) - \delta(a) - \delta(ee') \ge 2\delta(a/e) - \delta(a)$.

Szemerédi-Trotter bounds

Suppose $a, e \in \mathbb{K}^{<\omega}$ satisfy (working over some $C \subseteq \mathbb{K}$): If $e' \equiv e$ and $e' \equiv_a^0 e$ but $e' \neq e$, then $\delta(a/ee') = 0$.

Lemma (Trivial bound)

Assume such a e' exists (i.e. $e \notin dcl(a)$)). Then $\delta(a/e) \leq \frac{1}{2}\delta(a)$.

Proof.

Take
$$e' \equiv_a e$$
 with $e' \neq e$ and $\delta(e'/ab) = \delta(e'/a)$.
Then $0 = \delta(a/ee') = \delta(aee') - \delta(ee') = 2\delta(ab) - \delta(a) - \delta(ee') \ge 2\delta(a/e) - \delta(a)$.

Lemma (Szemerédi-Trotter bound due to Elekes-Szabó)

Assume $\delta(e) > \frac{1}{2}\delta(a) > 0$. Then $\delta(a/e) < \frac{1}{2}\delta(a)$.

Hrushovski: Szemerédi-Trotter bounds correspond to modularity.

Modularity

Recall

- A geometry is a pregeometry with $cl(\emptyset) = \emptyset$ and $cl(\{x\}) = \{x\}$.
- The geometry of a pregeometry (P; cl) is $({cl(x) : x \in P}; cl)$.

Definition

- A geometry (P, cl) is modular if for a, b ∈ P and C ⊆ P, if a ∈ cl(bC) \ cl(C) then there exists c ∈ cl(C) such that a ∈ cl(bc).
- Say a, b ∈ P are non-orthogonal if a ∈ cl(bC) \ cl(C) for some C ⊆ P.

Fact (Veblen-Young co-ordinatisation theorem)

The modular geometries of dimension ≥ 4 in which every two points are non-orthogonal are precisely the projective geometries $\mathbb{P}_F(V)$ of vector spaces of dimension ≥ 4 over division rings.

Linearity

Lemma

Suppose $P \subseteq \mathbb{K}^{<\omega}$ is coherent, $a_1, a_2, b_1, \dots, b_n \in P$, and:

•
$$d^0(a_1) = k = d^0(a_2);$$

•
$$a_1 \in \operatorname{acl}^0(a_2\overline{b}) \setminus \operatorname{acl}^0(\overline{b}) \text{ and } a_1 \notin \operatorname{acl}^0(a_2).$$

Let $e := \mathsf{Cb}^{\mathsf{ACF}}(\overline{a}/\mathbb{C}(\overline{b}))$. Then $d^0(e) = k$.

Moreover, e is cgp, so $\{e\}$ is coherent.

Linearity

Lemma

Suppose $P \subseteq \mathbb{K}^{<\omega}$ is coherent, $a_1, a_2, b_1, \dots, b_n \in P$, and:

•
$$d^0(a_1) = k = d^0(a_2);$$

►
$$a_1 \in \operatorname{acl}^0(a_2\overline{b}) \setminus \operatorname{acl}^0(\overline{b})$$
 and $a_1 \notin \operatorname{acl}^0(a_2)$.

Let $e := \operatorname{Cb}^{\operatorname{ACF}}(\overline{a}/\mathbb{C}(\overline{b}))$. Then $d^0(e) = k$. Moreover, e is cgp, so $\{e\}$ is coherent.

Proof.

By cgp and canonicity, if $e' \equiv e$ and $e' \equiv \frac{0}{a} e$ but $e' \neq e$, then $\delta(\overline{a}/ee') = 0$. But $\delta(\overline{a}/e) \geq \delta(\overline{a}/\overline{b}) = d^0(\overline{a}/\overline{b}) = \frac{1}{2}d^0(\overline{a}) = \frac{1}{2}\delta(\overline{a})$. So by the Szemerédi-Trotter bounds, we have $\delta(e) \leq \frac{1}{2}\delta(\overline{a})$. Now $e \in \operatorname{acl}^0(\overline{b})$ and \overline{b} is coherent, and it follows that $d^0(e) \leq \delta(e)$. So $d^0(e) \leq \delta(e) \leq \frac{1}{2}\delta(\overline{a}) = k$.

Linearity

Lemma

Suppose $P \subseteq \mathbb{K}^{<\omega}$ is coherent, $a_1, a_2, b_1, \dots, b_n \in P$, and:

•
$$d^0(a_1) = k = d^0(a_2);$$

•
$$a_1 \in \operatorname{acl}^0(a_2\overline{b}) \setminus \operatorname{acl}^0(\overline{b}) \text{ and } a_1 \notin \operatorname{acl}^0(a_2).$$

Let
$$e := \operatorname{Cb}^{\operatorname{ACF}}(\overline{a}/\mathbb{C}(\overline{b}))$$
. Then $d^0(e) = k$.

Moreover, e is cgp, so $\{e\}$ is coherent.

Proof.

It remains to show that *e* is cgp. Suppose $B \subseteq \mathbb{K}^{<\omega}$ and $e \not\perp^0 B$; we show $\delta(e/B) = 0$. Let $\overline{a}' = a'_1 a'_2$ such that $\overline{a}' \equiv_e \overline{a}$ and $\overline{a}' \bigsqcup_e^{\delta} B$. So $e \in \operatorname{acl}^0(\overline{a}')$. Then $\overline{a}' \not\perp^0 B$. So since \overline{a}' is coherent, $\delta(\overline{a}'/B) \leq \delta(a'_i) = k$. Meanwhile, $\delta(\overline{a}'/e) = \delta(\overline{a}') - \delta(e) = d^0(\overline{a}') - d^0(e) = k$. So $\delta(e/B) = \delta(\overline{a}'/B) - \delta(\overline{a}'/B) = \delta(\overline{a}'/B) - \delta(\overline{a}'/e) \leq k - k = 0$.

Modularity of coherence

Definition

For $P \subseteq \mathbb{K}^{<\omega}$, $\operatorname{ccl}(P) := \{x \in \operatorname{acl}^0(P) : \{x\} \text{ is coherent}\}.$

Lemma

If P is coherent, so is ccl(P).

Proposition

Suppose P = ccl(P) is coherent. Then the geometry of $(P; acl^0)$ is modular.

Projective subgeometries in ACF

```
Define \mathbb{P}(\mathbb{K}) := {acl^0(x) : x \in \mathbb{K}}.
```

Example

Suppose *G* is a 1-dimensional complex algebraic group and $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ is a subfield. $G(\mathbb{K})/G(\mathbb{C})$ is naturally an *F*-vector space. Let $B \subseteq G(\mathbb{K})$ be a set of independent generics, and set $V := \langle B/G(\mathbb{C}) \rangle_F$. Define $\eta : \mathbb{P}_F(V) \to \mathbb{P}(\mathbb{K})$ by $\eta(\langle x/G(\mathbb{C}) \rangle_F) := \operatorname{acl}^0(x)$. Then η embeds $\mathbb{P}_F(V)$ as a subgeometry of $\mathbb{P}(\mathbb{K})$.

Theorem (Evans-Hrushovski 1991)

Any projective subgeometry of $\mathbb{P}(\mathbb{K})$ of dimension at least 3 arises in this way.

Projective geometries fully embedded in ACF^{eq} Define $\mathbb{P}(\mathbb{K}^{<\omega}) := {acl^{0}(x) : x \in \mathbb{K}^{<\omega}}.$

Definition

 $\eta: \mathbb{P}_F(V) \to \mathbb{P}(\mathbb{K}^{<\omega})$ is a *k*-dimensional full embedding if for all $\overline{b} \in \mathbb{P}_F(V)^{<\omega}$, we have $d^0(\eta(\overline{b})) = k \cdot \dim_{\mathbb{P}_F(V)}(\overline{b})$.

Example

If *G* is a complex abelian algebraic group, $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ a division subring, $B \subseteq G(\mathbb{K})$ independent generics, and $V := \langle B/G(\mathbb{C}) \rangle_F$. Then $\eta(\langle x/G(\mathbb{C}) \rangle_F) := \operatorname{acl}^0(x)$ is a dim(*G*)-dimensional full embedding.

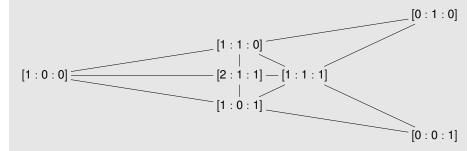
Theorem ("Higher Evans-Hrushovski")

Suppose V is a vector space of dimension at least 3 over a division ring F, and $\eta : \mathbb{P}_F(V) \to \mathbb{P}(\mathbb{K}^{<\omega})$ is a k-dimensional full embedding. Then there are G and embeddings $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ and $V \leq G(\mathbb{K})/G(\mathbb{C})$ such that η is as in the example.

Projective geometries fully embedded in ACF^{eq}

Proof idea.

Abelian group configuration yields G.



Version due to Faure of the fundamental theorem of projective geometry (semilinearity of projective morphisms) yields embeddings $F \hookrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ and $V \hookrightarrow G(\mathbb{K})/G(\mathbb{C})$.

Elekes-Szabó consequences

Definition

Say a <u>finite</u> subset *X* of a variety *W* is τ -**cgp** if for any proper subvariety $W' \subsetneq W$ of complexity $\leq \tau$, we have $|X \cap W'| < |X|^{\frac{1}{\tau}}$.

Definition

If $V \subseteq \prod_i W_i$ are irreducible complex algebraic varieties, with $\dim(W_i) = m$ and $\dim(V) = dm$, say *V* admits a powersaving if for some τ and $\epsilon > 0$ there is a bound

$$\left|\prod_{i} X_{i} \cap V\right| \leq O(N^{d-\epsilon})$$

for τ -cgp $X_i \subseteq W_i$ with $|X_i| \leq N$.

Lemma

V admits no powersaving iff exists coherent generic $\overline{a} \in V(\mathbb{K})$.

Elekes-Szabó consequences

Definition

 $H \leq G^n$ is a **special subgroup** if *G* is a commutative algebraic group and $H = \ker(A)^o$ for some $A \in \operatorname{Mat}(F \cap \operatorname{End}(G))$ for some division subalgebra $F \leq \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$.

Theorem

 $V \subseteq \prod_i W_i$ admits no powersaving iff it is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Proof.

 \Longrightarrow : Take coherent generic; apply modularity of coherence and "higher Evans-Hrushovski".

 \Leftarrow : see below.

Sharpness

Fact (Amitsur-Kaplansky)

Any division subring $F \subseteq Mat_n(\mathbb{C})$ has finite dimension over its centre.

Corollary

Any finitely generated subring of a division subring $F \subseteq \text{End}^0(G)$ is contained in a finitely generated subring $\mathcal{O} \subseteq F$ which is **constrainedly filtered**: there are finite $\mathcal{O}_n \subseteq \mathcal{O}$ such that

 $\begin{array}{ll} (\mathsf{CF0}) & \mathcal{O}_n \subseteq \mathcal{O}_{n+1}; \bigcup_{n \in \mathbb{N}} \mathcal{O}_n = \mathcal{O} \\ (\mathsf{CF1}) & \exists k. \forall n. \mathcal{O}_n + \mathcal{O}_n \subseteq \mathcal{O}_{n+k}; \\ (\mathsf{CF2}) & \forall a \in \mathcal{O}. \exists k. \forall n. a \mathcal{O}_n \subseteq \mathcal{O}_{n+k}; \\ (\mathsf{CF3}) & \forall \epsilon > 0. \frac{|\mathcal{O}_{n+1}|}{|\mathcal{O}_n|} \leq O(|\mathcal{O}_n|^{\epsilon}). \end{array}$

(e.g. $\mathbb{Z} = \bigcup_{n} [-2^{n}, 2^{n}]$ is constrainedly filtered.) Let " $X_{k} := \prod_{s \to \mathcal{U}} (\sum_{i=1}^{s} \mathcal{O}_{s-k}\gamma_{i})$ " with $\gamma_{i} \in G$ generic independent. Then $X := \bigcap_{k} X_{k}$ is an \mathcal{O} -submodule and $\delta(X) = \delta(X_{0})$ and X is cgp. So any special subgroup defined using \mathcal{O} admits no powersaving.

Application: Generalised sum-product phenomenon

Corollary

Let $(G_1, +_1)$ and $(G_2, +_2)$ be one-dimensional non-isogenous connected complex algebraic groups, and for i = 1, 2 let $f_i : G_i(\mathbb{C}) \to \mathbb{C}$ be a rational map. Then there are $\epsilon, c > 0$ such that if $A \subset \mathbb{C}$ is a finite set lying in the range of each f_i , then setting $A_i = f_i^{-1}(A) \subseteq G_i(\mathbb{C})$ we have

$$\max(|A_1 + A_1|, |A_2 + A_2|) \ge c|A|^{1+\epsilon}.$$

Proof.

Else, considering $\{(x, y, f_1^{-1}(x) +_1 f_1^{-1}(y), f_2^{-1}(x) +_2 f_2^{-1}(y)) : x, y \in \mathbb{C}\}$, get group (G; +) such that Γ_{+_i} is in co-ordinatewise correspondence with Γ_+ , i = 1, 2. But then (by Ziegler) G_i is isogenous to G.

Similarly in higher dimension, with a cgp assumption.

Application: Intersections of varieties with approximate subgroups

Theorem

 $\Gamma \leq G(\mathbb{K}) \ a \ \emptyset - \land -definable \ subgroup \ of \ a \ 1-dimensional \ algebraic group \ G, \ with \ \delta(\Gamma) = \dim(G).$ Then any coherent tuple $\overline{\gamma} \in \Gamma^n$ is generic in a coset of an algebraic subgroup of G^n .

Similarly in higher dimension, with a cgp assumption.

Corollary

Let G be a commutative complex algebraic group. Suppose V is a subvariety of G^n which is not a coset of a subgroup. Then there are $N, \epsilon, \eta > 0$ depending only on G and the complexity of V such that if $A \subseteq G$ is a finite subset such that A - A is τ -cgp and $|A + A| \le |A|^{1+\epsilon}$ and $|A| \ge N$, then $|A^n \cap V| < |A|^{\frac{\dim(V)}{\dim(G)} - \eta}$.

Diophantine connection

Example

G = E complex elliptic curve. $E[\infty] := \bigcup_m E[m]$ torsion subgroup. Suppose $V \subseteq E^n$ is an irreducible closed complex subvariety such that $V(\mathbb{C}) \cap E[\infty]$ is Zariski dense in V. Let $d := \dim(V)$. By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for any $\epsilon > 0$, for arbitrarily large $r \in \mathbb{N}$,

 $|V(\mathbb{C})\cap E[r!]^n|\geq |E[r!]|^{d-\epsilon}.$

Suppose conversely that we only know this consequence of Manin-Mumford on the asymptotics of the number of torsion points in V. Then V has a coherent generic non-standard torsion point, and so by above theorem V is a coset. Similarly for Mordell-Lang.

Relaxing general position

Remark

V := graph of $(a_1, b_1) * (a_2, b_2) = (a_1 + a_2 + b_1^2 b_2^2, b_1 + b_2),$ $X_i := \{-N^4, \dots, N^4\} \times \{-N, \dots, N\} \subseteq \mathbb{C}^2 =: W_i.$ Then $|X_i^3 \cap V| \ge \Omega(|X_i|^2)$, but not in coarse general position, and V is not in co-ordinatewise correspondence with the graph of a group operation.

Thanks

Thanks

(Bonus slides follow)

Elekes-Szabó consequences; detailed statement

Definition

 $a \in W(\mathbb{K})$ is **dcgp** if $a \in X \subseteq W(\mathbb{K})$ for some \emptyset -definable cgp X.

Theorem

Given $V \subseteq \prod_i W_i$, TFAE

- (a) V admits no powersaving.
- (b) Exists coherent generic $\overline{a} \in V(\mathbb{K})$ with a_i dcgp in W_i .
- (c) Exists coherent generic $\overline{a} \in V(\mathbb{K})$.
- (d) *V* is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Proof.

- $(a) \Leftrightarrow (b)$: ultraproducts.
- $(b) \Longrightarrow (c)$: clear.
- $(c) \Longrightarrow (d)$: modularity of coherence + "higher Evans-Hrushovski".
- $(d) \Longrightarrow (b)$: see below.

Example

- G := (ℂ[×])⁴.
 Q ⊗_Z End(G) ≅ Q ⊗_Z Mat₄(Z) ≅ Mat₄(Q).
 H_Q = (ℚ[i, j, k] : i² = j² = k² = -1; ij = k; jk = i; ki = j) embeds in Mat₄(Q) via the left multiplication representation.
- $\mathcal{H}_{\mathbb{Z}} = \mathbb{Z}[i, j, k] \subseteq \mathcal{H}_{\mathbb{Q}}$ acts on *G* by endomorphisms:

$$n \cdot (a, b, c, d) = (a^{n}, b^{n}, c^{n}, d^{n});$$

$$i \cdot (a, b, c, d) = (b^{-1}, a, d^{-1}, c);$$

$$j \cdot (a, b, c, d) = (c^{-1}, d, a, b^{-1});$$

$$k \cdot (a, b, c, d) = (d^{-1}, c^{-1}, b, a).$$

Then

$$V := \{ (x, y, z_1, z_2, z_3) \in G^5 \\ : z_1 = x + y, \ z_2 = x + i \cdot y, \ z_3 = x + j \cdot y \}$$

is a special subgroup of G^5 .

Example (continued)

- V := {(x, y, z₁, z₂, z₃) ∈ G⁵ : z₁ = x + y, z₂ = x + i ⋅ y, z₃ = x + j ⋅ y} is a special subgroup of G⁵.
- "Approximate H_Z-submodules" witness that V admits no powersaving:
- ► $H_N := \{n + mi + pj + qk : n, m, j, k \in [-N, N]\} \subseteq \mathcal{H}_{\mathbb{Z}}$
- ▶ $g \in G$ generic
- $\blacktriangleright X_N := H_N \cdot g = \{h \cdot g : h \in H_N\} \subseteq \mathcal{H}_{\mathbb{Z}} \cdot g \subseteq G.$
- Then (by uniform Mordell-Lang), for W ⊊ G proper closed of complexity ≤ τ, |W ∩ H_Zg| ≤ O_τ(1).
- So $\forall \tau$. $\forall N >> 0$. X_N is τ -cgp in G.
- But $i \cdot X_N = X_N = j \cdot X_N$, so $|X_N^5 \cap V| \ge \Omega(|X_N|^2)$.