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Abstract. The goal of assembly is to approximate homotopy invariant functors

from spaces to spectra by homotopy invariant and excisive functors from spaces to
spectra. We show that there exists a best approximation, characterized by a universal

property.

1. The Ordinary Assembly Map

We adopt a very category theoretic point of view in describing assembly maps. It
has been formulated explicitly by Quinn in the appendix to [Q], and more implicitly
in Quinn’s thesis, in [QGF], in [And] and in articles of Waldhausen, e.g. [Wa1],
[Wa2]. See also [QAB]. From this point of view, the goal of assembly is: Given a
homotopy invariant functor F from spaces to spectra, to approximate F from the
left by an excisive homotopy invariant functor F%.

In this section, all spaces are homotopy equivalent to CW–spaces, all pairs of
spaces are homotopy equivalent to CW–pairs, and all spectra are CW–spectra.

A functor F from spaces to spectra is homotopy invariant if it takes homo-
topy equivalences to homotopy equivalences. A homotopy invariant F is excisive
if F (∅) is contractible and if F preserves homotopy pushout squares (alias homo-
topy cocartesian squares, see [Go1], [Go2]). The excision condition implies that F
preserves finite coproducts, up to homotopy equivalence. Call F strongly excisive
if it preserves arbitrary coproducts, up to homotopy equivalence.

If F is strongly excisive, then the functor π∗F from spaces to graded abelian
groups is a generalized homology theory—it has Mayer–Vietoris sequences, and
satisfies the strong wedge axiom. Conversely, homotopy theorists know that any
generalized homology theory satisfying the strong wedge axiom is isomorphic to
one of the form π∗F where F (X) = X+ ∧ Y and Y is a fixed spectrum. Such an
F is of course strongly excisive.

1.1. Theorem. For any homotopy invariant F from spaces to spectra, there exist a
strongly excisive (and homotopy invariant) F % from spaces to spectra and a natural
transformation

α = αF : F % −→ F

such that α : F %(∗) → F (∗) is a homotopy equivalence. Moreover, F % and αF

can be made to depend functorially on F .
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Preliminaries. We are going to use homotopy colimits in the proof. Here is a
description: Let Z be a functor from a small category C to the category of spaces.
For n ≥ 0 let [n] be the ordered set {0, 1, . . . , n} ; we view this as a category, with
exactly one morphism from i to j whenever i ≤ j, and no morphism from i to j if
i > j. The homotopy colimit of Z, denoted hocolim Z, is the geometric realization
of the simplicial space

n 7→
∐

G:[n]→C

Z(G(0))

where the coproduct must be taken over all covariant functors G from [n] to C. We
hope the face and degeneracy maps are obvious. See [BK] for more details. It is
often convenient to use informal notation for a homotopy colimit, e.g.

hocolim
C in C

Z(C)

instead of hocolim Z. This is particularly true when the values of the functor have
“names” and the functor as such has not been named.

A special case of special interest: When Z(C) is a point for every C in C, then
clearly hocolimZ is the classifying space of C. (We shall also say: the nerve of C ;
strictly speaking, the nerve of C is a simplicial set, and the classifying space of C is
the geometric realization of the nerve of C.) More generally, when Z is a constant
functor, then hocolim Z is the product of the classifying space of C with the constant
value of Z. In some examples below, C is the category of faces of an incomplete
simplicial set ; then the classifying space of C is the barycentric subdivision of the
incomplete simplicial set. (An incomplete simplicial set is a simplicial set without
degeneracy operators.)

In general, a key property of homotopy colimits is their homotopy invariance.
Suppose that f : Z → Z ′ is a natural transformation between functors from C to
spaces. If fC from Z(C) to Z ′(C) is a homotopy equivalence for every C in C, then
f∗ from hocolim Z to hocolim Z ′ is a homotopy equivalence.

Variations: The above formula for hocolim Z remains meaningful when Z is a
functor from C to spaces or spectra. Bear in mind that the geometric realization of
a simplicial pointed space or simplicial spectrum [n] 7→ Xn is given by a formula of
type

(∐
n ∆n

+ ∧Xn

)
/ ∼ where ∼ stands for the usual relations.

First proof of 1.1. For a space X, let simp(X) be the category whose objects are
maps ∆n → X where n ≥ 0, and whose morphisms are commutative triangles

∆m f∗−→ ∆n

↘ ↙
X

where f∗ is the map induced by a monotone injection f from {0, 1, . . . ,m} to
{0, 1, . . . , n}. Let FX from simp(X) to spectra be the covariant functor sending
g : ∆n → X to F (∆n), and let

F %(X) := hocolim FX .
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For each g : ∆n → X in simp(X) we have g∗ : F (∆n) → F (X). Letting g vary,
we regard this as a natural transformation from FX to the constant functor with
value F (X). It induces

α : F %(X) −→ F (X) .

Clearly α is a homotopy equivalence when X is a point. For arbitrary X, and
g : ∆n → X in simp(X), we have the map ∆n → ∗ which induces F (∆n)→ F (∗),
a homotopy equivalence. We regard this as a natural transformation from FX to
the constant functor with value F (∗) ; by the homotopy invariance of homotopy
colimits, the induced map of homotopy colimits is a homotopy equivalence

F %(X) −→ |simp(X)|+ ∧ F (∗) .

It is an exercise to show that | simp(X)| ' X. Thus F %(X) is related to X+∧F (∗)
by a chain of natural homotopy equivalences. �

Second proof of 1.1. We compose F with the geometric realization functor from
incomplete simplicial sets to spaces, and henceforth assume that F is a functor
from incomplete simplicial sets to spaces. For an incomplete simplicial set X, we
define simp(X) much as before: objects are the simplicial maps ∆n → X, for
arbitrary n. (These are in bijection with the simplices of X.) We define FX from
simp(X) to spectra much as before. We let

F %(X) = hocolim FX

as before, and we define α : F %(X) → F (X) as before. Then we observe that
F %(X) has a natural filtration:

F %(X) =
⋃
k

F %(Xk)

where Xk is the k–skeleton. Applying the homotopy invariance of F to the constant
map from a simplex to a point, one finds that

F %(Xk)/F %(Xk−1) '
∨
z

Sk ∧ F (∗)

where z runs over the k–simplices of X. Hence the natural filtration of F %(X)
leads to a spectral sequence converging to the homotopy groups of F %(X), with

E2
p,q = Hp(X;πqF (∗))

as E2–term. But if the E2–term is already homotopy invariant, then so is the
E∞–term, which implies the homotopy invariance of F %. Also, we see that α :
F %(X) → F (X) is a homotopy equivalence for X = ∗. Further, we see that the
functor

X 7→ F %(Xk)/F %(Xk−1)
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takes squares of simplicial sets of the form

X1 ∩ Y2 −−−−−−→ X1y y
X2 −−−−−−→ X1 ∪X2

to homotopy pushout squares, and preserves arbitrary coproducts (up to homotopy
equivalence). Using induction on k, we conclude that the functors

X 7→ F %(Xk)

have these properties, too ; then F % itself has these properties. Together with
homotopy invariance this implies that F % is strongly excisive. �

1.2. Observation. F %(X) is naturally homotopy equivalent to X+ ∧ F (∗).

This is clear from the first proof of 1.1. We have not included it in Theorem 1.1
because it does not generalize well, as we shall see. In fact, our first proof does not
generalize well ; that is why we have a second proof.

1.3. Observation. If F is already excisive, then α : F %(X)→ F (X) is a homo-
topy equivalence for any X which is homotopy equivalent to a compact CW–space.
If F is strongly excisive, then α is a homotopy equivalence for all X.

Proof. By arguments going back to Eilenberg and Steenrod it is sufficient to verify
that α is a homotopy equivalence for X = ∗. �

We want to show that α = αF is the “universal” approximation (from the left)
of F by a strongly excisive homotopy invariant functor. Suppose therefore that

β : E −→ F

is another natural transformation with strongly excisive and homotopy invariant
E. The commutative square

E% αE−−−−→ Eyβ%

yβ

F % αF−−−−→ F

in which the upper horizontal arrow is a homotopy equivalence by 1.3, shows that
β essentially factors through αF . Note that if β : E(∗) → F (∗) happens to be a
homotopy equivalence, then αE : E%(X)→ E(X) and β% : E%(X)→ F %(X) are
homotopy equivalences for all X, by the usual Eilenberg–Steenrod arguments.

Applications. Carlsson and Pedersen [CaPe] have used this “universal” approxima-
tion property to identify their forget control map with the assembly map for linear
algebraic K-theory. Similarly Rosenberg [Ro] has used the “universal” approxi-
mation property to identify the Kasparov index map β with the assembly map in
L-theory after localizing at odd primes. Ranicki has a construction of an assem-
bly map for homotopy invariant functors from simplicial complexes to spectra [Ra,
12.19]. His construction may be identified with the one above by universality.
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In many applications to geometry, assembly is the passage from local to global.
For example, the normal invariant of a surgery problem f : M → N (with closed
n–manifolds M and N , where n ≥ 5, and some bundle data which we suppress) is
an element in πnF %(N), where F is the functor taking a space X to the L-theory
spectrum L(Zπ1(X)) (details below). The normal invariant vanishes if and only if
the surgery problem is bordant to another surgery problem f1 : M1 → N where
f1 is a homeomorphism. The image of the normal invariant under assembly is the
surgery obstruction ; it vanishes if and only if the surgery problem is bordant to
another surgery problem f1 : M1 → N where f1 is a homotopy equivalence.

For another illustration, we mention the Whitehead torsion of a homotopy equiv-
alence f : X → Y between compact euclidean neighborhood retracts. This is an
element in the cokernel of α∗ : π1F

%(Y )→ π1F (Y ), where F is the functor taking
Y to the algebraic K-theory spectrum K(Zπ1(Y )) (details below). The torsion of f
depends only the homotopy class of f , and it vanishes when f is a homeomorphism.
This is of course the topological invariance of Whitehead torsion, due to Chapman.
See [Ch] and [RaYa].

2. Examples

2.1. Linear K-theory. Recall that Quillen has defined a functor K : Exact →
Spectra where Exact is the category of exact categories. Alternatively, one can
note that an exact category M determines a category with cofibrations and weak
equivalences in the sense of Waldhausen by letting the cofibrations be the ad-
missible monomorphisms and letting the isomorphisms be the weak equivalences.
Then Waldhausen’s S• construction yields a functor K which is naturally homo-
topy equivalent to Quillen’s K. Let Spaces∗ be the category of spaces homotopy
equivalent to CW-spaces which are equipped with nondegenerate base points. Then
K(Zπ1(X, ∗)) is a functor from Spaces∗ to Spectra. In order to apply the construc-
tion of the assembly map from section 1 we have to show that this functor factors
through the functor Spaces∗ → Spaces which forgets basepoints. The point of view
is due to Quinn [QA], but the language we use is that of Lück and tom Dieck, [Lü,
ch. II], [tD]. See also [Mitch].

Following a suggestion of MacLane [MaL], we use the word ringoid to mean a
small category in which all morphism sets come equipped with an abelian group
structure, and composition of morphisms is bilinear. Notice that a ringoid with one
object is just a ring.

Any small category C gives rise to a ringoid ZC having the same objects as C.
The set of morphisms from x0 to x1 in ZC is the free abelian group generated by
the set of morphisms from x0 to x1 in C.

In particular, taking C to be the fundamental groupoid π1(X) of a space X, as
in [Spa], we obtain a ringoid Zπ1(X). Objects in Zπ1(X) are points of X, and a
morphism from y0 to y1 is a finite formal linear combination Σng · g, where the g
are path classes beginning in y0 and ending in y1, and the ng are integers.

Let R be a ringoid. A left R–module is a covariant functor from R to abelian
groups which is homomorphic on morphism sets; a right R–module is a left Rop–
module. A left R–module is free on one generator if it is representable (that is,
isomorphic to a morphism functor hom(x,−) for some object x in R). It is finitely
generated free if it is isomorphic to a finite direct sum of representable ones, and
just free if it is isomorphic to an arbitrary direct sum of representable ones. It is
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projective if it is a direct summand of a free one, and finitely generated projective
if it is a direct summand of a f. g. free one.

Left R–modules form an abelian category in which the morphisms are natural
transformations. Exercise for the reader: prove that a left R–module P is projective
if and only if any R–module epimorphism with target P splits. The subcategory PR

of finitely generated projective modules is then an exact category. For a space X,
let K(X) = K(PR) where R = Zπ1(X). Since a homotopy equivalence between
spaces induces an equivalence between their fundamental groupoids, our functor K
is a homotopy functor and section 1 yields an assembly map for linear algebraic
K-theory.

2.2. A-theory. Since Waldhausen has shown that his functor X 7→ A(X) is a
homotopy functor [Wa1, Prop. 2.1.7] we can directly apply Section 1 to get an
assembly map for A-theory. (We use boldface notation, A(X), for the spectrum
associated with the infinite loop space A(X).)

2.3. L-theory. Recall that Ranicki [Ra, Ex. 13.6] [Ra, Ex. 1.3] has defined
functors

L• : {additive categories with chain duality} −→ Spectra ,

{rings with involution} −→ {additive categories with chain duality} .

We write L for the first functor, rather than L•, to be consistent. The second
functor sends a ring R with involution j to the triple (PR, T, e) where

• PR is the category of f.g. projective left R-modules;
• T is the functor PR → PR which sends a module M to homR(M,R) where

the involution j is used to convert this right R-module to a left R-module;
and
• e is the inverse to the natural equivalence η : id→ T 2 that maps a module

M to T 2(M) by taking the adjoint of the pairing

homR(M,R)×M → R

which maps (f,m) to j(f(m)).

If X is a space with base point ∗, then Zπ1(X, ∗) is equipped with the standard
involution that takes an element g ∈ π1(X, ∗) to g−1. Thus we again get a func-
tor Spaces∗ → Spectra which we have to factor through the forgetful functor
Spaces∗ → Spaces.

A ringoid with involution is a ringoid R together with a ringoid isomorphism

j : R −→ Rop

such that the composite functor R
j−→ Rop jop

−→ R is the identity. Notice that a
ringoid with involution, with one object, is just a ring with involution.

For any space X, the ringoid Zπ1(X) has a standard involution. The involution
is trivial on objects, and maps

∑
ngg : x0 −→ x1 (a typical morphism) to∑
ngg

−1 : x1 −→ x0.
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Thus we are done if we can show Ranicki’s functor

{rings with involution} → {additive categories with chain duality}

factors through the category of ringoids with involution.
Henceforth we assume the ringoid R comes equipped with an involution j. Then

a left R–module P can also be regarded as a right R–module P t (compose with
j−1 = jop). Similarly a right R–module P can also be regarded as a left R–module.

Notice that for any object x in R, the functor homR(x,−) is a left R-module,
and homR(−, x) is a right R-module. For any two left R-modules, M and N , let
HOMR(M,N) be the abelian group of natural transformations from M to N .

For any left R-module M , consider the contravariant functor from R to abelian
groups which sends an object x to HOMR(M,homR(x,−)). We let T (M) be the
left module obtained by using j to make this functor covariant. Notice that if M =
homR(y,−), then the Yoneda lemma implies T (M) is just homR(−, y) converted
into a left module via j. Explicitly, T (M)(x) ∼= hom(j(x), y) ∼= hom(j(y), x). Thus
T sends f.g. free modules to f.g. free modules and f.g. projective modules to f.g.
projective modules.

Fix a left R-module M . Then for any pair of objects x and y in R, we get the
pairing

HOMR

(
M,homR(y,−)

)
×M(x)→ homR(x, y)

which sends (f,m) to j(f(m)). The adjoints of these pairings determine a natural
transformation from the identity functor to T 2. If we restrict this natural transfor-
mation to the category of f.g. projective modules it is a natural equivalence, and we
let e be the inverse natural transformation. Then (PR, T, e) is an additive category
with (0-dimensional) chain duality and we are done.

2.4. The Novikov Conjecture. The Novikov conjecture, for a homotopy in-
variant functor F from spaces to spectra and a discrete group π, is the hypothesis
that

α∗ : π∗F
%(Bπ)⊗Q −→ π∗F (Bπ)⊗Q

is injective. It was originally formulated by Novikov for the L-theory functor, 2.3
above, and for all groups. The L-theory Novikov conjecture has been verified for
many groups with a finite dimensional classifying space. See [RaNo] for details.
Bökstedt, Hsiang and Madsen [BHM] proved the Novikov conjecture for the alge-
braic K-theory functor, 2.1 above, and all groups π such that Hi(Bπ; Z) is finitely
generated for all i.

3. Easy Variations

3.1. Variation. We can still do assembly when the functor F is defined on the
category of spaces over a reference space B. (For example, B could be BG, the
classifying space for stable spherical fibrations.) By abuse of notation, a map be-
tween spaces over B is a homotopy equivalence if it becomes a homotopy equivalence
when the reference maps to B are omitted. A square of spaces over B is a homotopy
pushout square if it becomes a homotopy pushout square when the reference maps
are omitted. We call F homotopy invariant if it takes homotopy equivalences (over
B) to homotopy equivalences. We call a homotopy invariant F excisive if it takes
the empty set to a contractible spectrum and if it takes homotopy pushout squares
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(over B) to homotopy pushout squares. We call it strongly excisive if in addition it
preserves arbitrary coproducts up to homotopy equivalence. — For any homotopy
invariant F defined on spaces over B we have

α : F % −→ F ,

natural in F , where F % is homotopy invariant, strongly excisive and

α : F %(∗ ↪→ B) −→ F (∗ ↪→ B)

is a homotopy equivalence for any point ∗ in B. If F is already strongly excisive,
then α is a homotopy equivalence for all spaces over B. Prove this using the methods
developed in the second proof of 1.1.

Example: Classical twisted L-theory. Let B = K(Z/2, 1). Then a map X → B
determines a double covering w : X\ → X. Unfortunately w does not, as one might
expect, determine an involution on the ringoid Zπ1(X). But it does determine an
involution on an equivalent category Zwπ1(X). The objects of Zwπ1(X) are the
points of X\, not X ; a morphism from x0 to x1 in Zwπ1(X) is the same as a
morphism from w(x0) to w(x1) in Zπ1(X). The involution is trivial on objects,
and maps

∑
ngg : x0 −→ x1 (a typical morphism) to∑

sign(g) · ngg
−1 : x1 −→ x0,

where the sign of a path class g from w(x0) to w(x1) is +1 if g lifts to a path class
from x0 to x1 in X\, and −1 otherwise. — Refining 2.3 we let L(X→B) be the
L-theory spectrum of the ringoid with involution Zwπ1(X).

Example: Tate Cohomology and the Ξ transformation. Let B = BG, the classifying
space for stable spherical fibrations. Any map X → B determines an action of Z/2
on a spectrum A(X→B) which is homotopy equivalent to Waldhausen’s A-theory
spectrum A(X). See [Vog3] and [WW2]. Thus we can consider the functor sending
X to the Tate cohomology spectrum

ĤH(Z/2;A(X→B))

(see [WW2] for details). In [WW2] we construct a natural transformation

Ξ : L(X c1−→B1) −→ ĤH(Z/2;A(X c−→B))

where c1 is the composition of c with the Postnikov projection B → B1 = K(Z/2, 1).
Together with the appropriate assembly maps, Ξ is used to study automorphisms
of manifolds. See [WW1], [WW3] for the manifolds.

3.2. Example. Let G be a topological group with classifying space BG, and
suppose that G acts on a spectrum T . For a space over BG, say f : X → BG, let
Xf be the pullback of

X
f−→ BG ← EG.

The functor from spaces over BG to spectra given by

(f : X → BG) 7→ Xf
+ ∧G T

is strongly excisive. (The example is “typical”, but we shall not go into details.)
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3.3. Variation. There is a variant of assembly which applies to functors defined
on pairs of spaces. Let F be such a functor, from pairs (X, Y ) to spectra. We
call F homotopy invariant if it takes homotopy equivalences of pairs to homotopy
equivalences. We call a homotopy invariant F excisive if it takes the empty pair
to a contractible spectrum, and if it takes homotopy pushout squares of pairs to
homotopy pushout squares. (A square of pairs

(X1, Y1) −−−−→ (X2, Y2)y y
(X3, Y3) −−−−→ (X4, Y4)

is a homotopy pushout square if the two squares made from the Xi and the Yi,
respectively, are homotopy pushout squares.) Finally F is strongly excisive if it
is excisive and respects arbitrary coproducts, up to homotopy equivalence. — For
any homotopy invariant F from pairs of spaces to spectra, there exist a strongly
excisive (and homotopy invariant) F % from pairs of spaces to spectra and a natural
transformation

α = αF : F % −→ F

such that
α : F %(∗, ∅)→ F (∗, ∅) , α : F %(∗, ∗) −→ F (∗, ∗)

are homotopy equivalences. Moreover, F % and αF can be made to depend func-
torially on F . If F is already strongly excisive, then α is a homotopy equivalence
for every pair (X, Y ). Here is a brief description of F %: For a pair (X, Y ) we have
simp(Y ) ⊂ simp(X), and we define F %(X, Y ) as the homotopy pushout (double
mapping cylinder) of

hocolim
g:∆n→X

F (∆n, ∅)←− hocolim
g:∆n→Y

F (∆n, ∅) −→ hocolim
g:∆n→Y

F (∆n,∆n)

where the homotopy colimits are to be taken over simp(X), simp(Y ) and simp(Y ),
respectively.

3.4. Remark. Let T be a spectrum ; then the functor
X 7→ X+ ∧ T

is homotopy invariant and strongly excisive. Any homotopy invariant and strongly
excisive functor F from spaces to spectra has this form, up to a chain of natural
homotopy equivalences (observations 1.2 and 1.3). The appropriate T is of course
F (∗). Next, let f : T1 → T2 be a map of spectra. Then the functor

(X, Y ) 7→ homotopy pushout of
(
Y+ ∧ T2

f∗←− Y+ ∧ T1 ↪→ X+ ∧ T1

)
is strongly excisive. Any strongly excisive functor F from pairs of spaces to spectra
has this form, up to a chain of natural homotopy equivalences. The appropriate T1

is F (∗, ∅), the appropriate T2 is F (∗, ∗), and the appropriate f is induced by the
inclusion of (∗, ∅) in (∗, ∗).

It follows that a strongly excisive F defined on pairs need not take every collapse
map (X, Y ) → (X/Y, ∗) to a homotopy equivalence. It does, however, if F (∗, ∗)
is contractible ; then F has the form (X, Y ) 7→ (X/Y ) ∧ F (∗, ∅) up to a chain of
natural homotopy equivalences.

Equivariant versions of assembly are currently being developed by J. Davis and
W. Lück [DaLü].
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4. Assembly with Control

For the purposes of this section, a control space is a pair of spaces (X̄,X) where
X̄ is compact Hausdorff, X is open dense in X̄, and X is an ENR. Informally, the set
X̄ rX is the singular set, whereas X is the nonsingular set. A morphism of control
spaces is a continuous map of pairs f : (X̄,X)→ (Ȳ , Y ) such that f−1(Y ) = X.

It seems that the use of control in topology began with Connell and Hollingsworth
[CoHo]. For a survey of applications until 1986, see [QLA]. Through the influence
of [Q], controlled topology led to bounded algebra and controlled algebra, [QA],
[PW1], [PW2], [ACFP], and a plethora of functors from control spaces to spectra.
Most of these have some homotopy invariance properties, i. e., they take homotopy
equivalences to homotopy equivalences ; some of them also have excision properties
[PW1], [PW2] [Vog1], [Vog2]. For applications, see also [CaPe] and [DWW], and
many others.

Our goal here is roughly the following. Suppose that F is a homotopy invariant
functor (details follow) from control spaces to spectra. We want to construct an-
other functor F % from control spaces to spectra, homotopy invariant and excisive
(details follow), and a natural transformation

α : F %(X̄,X) −→ F (X̄,X)

which is a homotopy equivalence for (X̄,X) = (∗, ∗). Moreover we would like
to say that F %(X̄,X) is related to X• ∧ F (∗, ∗) by a chain of (weak) homotopy
equivalences. Here X• is the one–point compactification, usually not homotopy
equivalent to a CW–space, so that X•∧F (∗, ∗) is usually not homotopy equivalent
to a CW–spectrum. (Hence we must allow weak homotopy equivalences in the
chain.)

4.1. Terminology. Two morphisms f0, f1 : (X̄,X) → (Ȳ , Y ) between control
spaces are homotopic if they agree on X̄ r X and if they extend to a continuous
one–parameter family of morphisms ft : (X̄,X) → (Ȳ , Y ), where 0 ≤ t ≤ 1,
and all ft agree on X̄ r X. A morphism f : (X̄,X) → (Ȳ , Y ) is a homotopy
equivalence if there exists another morphism g : (Ȳ , Y )→ (X̄,X) such that gf and
fg are homotopic to the identity. Note that a homotopy equivalence restricts to a
homeomorphism of the singular sets.

A commutative square in the category of control spaces is a homotopy pushout
square if the underlying square of nonsingular sets is a proper homotopy pushout
square (details follow) in the category of locally compact spaces. Details: Recall
that a map between locally compact spaces is proper if it extends to a continuous
map between their one–point compactifications. A commutative square of locally
compact spaces and proper maps

X1 −−−−→ X2y y
X3 −−−−→ X4

is a proper homotopy pushout square if the resulting proper map from the homotopy
pushout of X3 ←− X1 −→ X2 to X4 is a proper homotopy equivalence.



ASSEMBLY 11

4.2. More terminology. A covariant functor F from control spaces to CW–
spectra is homotopy invariant if it takes homotopy equivalences to homotopy equiv-
alences. A homotopy invariant F is excisive if it takes homotopy pushout squares of
control spaces to homotopy pushout squares of spectra, and F (∅, ∅) is contractible.

Suppose that F is homotopy invariant and excisive, and let (X̄,X) be a control
space with discrete but possibly infinite X. For any y ∈ X, we have a homotopy
equivalence

F (X̄ry, Xry) ∨ F (y, y) −→ F (X̄,X)

by excision, and hence a projection F (X̄,X) → F (y, y), well defined up to homo-
topy. We call F pro–excisive if these projection maps induce an isomorphism

πnF (X̄,X) −→
∏
y∈X

πnF (y, y) (n ∈ Z) .

In the following example, let (—)CW be the standard CW approximation pro-
cedure replacing arbitrary spectra by CW–spectra. In detail, if Y = {Yn | n ∈ Z}
is a spectrum with structure maps ΣYn → Yn+1, then the geometric realizations of
the singular simplicial sets of the Yn form a CW–spectrum (Y )CW . Note that the
functor π∗ does not distinguish between Y and (Y )CW .

Example. The functor (X̄,X) 7→ (X• ∧ S0)CW is homotopy invariant and pro–
excisive. Here S0 is the sphere spectrum. Proof: Transversality and Thom–
Pontryagin construction lead to an interpretation of πn(X• ∧ S0) = πs

n(X•) as
the bordism group of stably framed smooth n–manifolds equipped with a proper
map to X. This in turn leads to Mayer–Vietoris sequences from homotopy pushout
squares of control spaces. Excision follows, and then pro–excision is clear. Warn-
ing: Be sure to use the correct topology on X•. Note that X could be any ENR,
such as the universal cover of a wedge of two circles, or a countably infinite discrete
set.

4.3. Proposition. Suppose that Y is a CW–spectrum. Suppose also that Y is an
Ω–spectrum (details below), or the suspension spectrum of a CW–space. Then the
functor (X̄,X) 7→ (X• ∧ Y )CW is homotopy invariant and pro–excisive.

Proof. First suppose that Y is a suspension spectrum Σ∞Y0. If the CW–space Y0

is finite–dimensional, then we can use the preceding example and induction on the
dimension of Y0 to prove that (X̄,X) 7→ (X• ∧ Y )CW is homotopy invariant and
pro–excisive. If Y0 has infinite dimension, we reduce to the finite dimensional case
by observing that

πn(X• ∧ Y ) ∼= πs
n(X• ∧ Y0) ∼= πs

n(X• ∧ Y n+1
0 )

where Y n+1
0 is the (n + 1)–skeleton of Y0.

Now suppose that Y is an arbitrary CW–spectrum. Then

πn(X• ∧ Y ) := colim
k

πn+k(X• ∧ Yk) ∼= colim
k

πn+k(X• ∧ Σ∞Yk) .

Using the suspension spectrum case of 4.3, which we have established, we deduce
immediately that the functor (X̄,X) 7→ (X• ∧ Y )CW is homotopy invariant and
excisive. Furthermore, for a control space (X̄,X) with discrete X, we have

πn(X• ∧ Y ) = colim
k

πn+k(X• ∧ Yk) ∼= colim
k

∏
x∈X

πn+k(Yk) .
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Here we want to exchange direct limit and product to get∏
x∈X

colim
k

πn+k(Yk) ∼=
∏
x∈X

πn(Y ) .

In general this is not permitted. But it is clearly permitted if Y is an Ω–spectrum—
the adjoints of the structure maps ΣYk → Yk+1 are homotopy equivalences Yk →
ΩYk+1. �

4.4. Theorem. Suppose that F is a homotopy invariant functor from control
spaces to CW–spectra. Suppose also that F behaves like a pro–excisive functor on
the category of control spaces (X̄,X) with discrete X (details follow). Then there
exists a pro–excisive functor F % from control spaces to CW–spectra, and a natural
transformation α = αF : F % → F such that

α : F %(∗, ∗)→ F (∗, ∗)

is a homotopy equivalence. The construction can be made natural in F .

Details. The extra hypothesis on F means that F takes a homotopy pushout square
of control spaces with discrete nonsingular sets to a homotopy pushout square of
spectra, and that, for any (X̄,X) with discrete X, the homomorphisms

πnF (X̄,X) −→
∏
y∈X

πnF (y, y)

(defined as in 4.2) are isomorphisms. Carlsson [Car] has shown that functors of
type “controlled algebraic K-theory” satisfy this condition. (Carlsson seems to
have been the first to realize that this requires proof.)

4.5. Construction. The following teardrop construction will be needed in the
proof of 4.4. Let f : X → Y be a proper map of ENR’s, where Y is the nonsingular
set of a control space (Ȳ , Y ). We note that the diagram of control spaces

(Ȳ , Y )
collapse−−−−−−→ (Y •, Y )

f←− (X•, X)

has a limit (=pullback) in the category of control spaces ; its nonsingular set is
canonically identified with X, and we denote it by (X̄,X).

4.6. Notation. Suppose that X is the geometric realization of an incomplete
simplicial set (simplicial set without degeneracies). Then
• Xn is the set of n–simplices in X.
• Xn is the n–skeleton.
• For each monotone injection f : [m]→ [n], we write Xf to mean ∆m×Xn.

There is a characteristic map from Xf to X, via ∆n×Xn. Note that this
depends on f , not just on m and n. When f equals id : [n]→ [n], we write
X[n] instead of Xf .

Proof of 4.4. Let C be the category of all control spaces. A key observation is
that F is sufficiently determined by its restriction to a certain subcategory C′,
which we now describe. An object in C′ is a control space (X̄,X) where X is the
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geometric realization of an incomplete simplicial set. Then X is a CW–space, and
we require additionally that X have small cells, which means the following: For
every z ∈ X̄rX and neighbourhood U of z in X̄, there exists another neighborhood
W of z in X̄ such that any (open) cell of X intersecting W is contained in U . Note
also that since X is an ENR, the underlying incomplete simplicial set must be locally
finite, finite dimensional and countably generated. A morphism in C′, say from
(X̄,X) to (Ȳ , Y ), is a morphism of control spaces whose restriction to nonsingular
sets is given by a simplicial map. Note that any finite diagram (=finitely generated
simplicial subset of the nerve) in C′ has a colimit.

The standard way to attempt recovery of a functor from its restriction to a sub-
category is by Kan extension, here: homotopy Kan extension. Hence the following
claim: for every (Ȳ , Y ) in C, the canonical map

hocolim
(X̄,X)→(Ȳ ,Y )
(X̄,X) in C′

F (X̄,X) −→ F (Ȳ , Y )

is a homotopy equivalence. The homotopy colimit is taken over the category whose
objects are objects in C′ with a reference morphism to (Ȳ , Y ), and whose morphisms
are morphisms in C′, over (Ȳ , Y ). We denote this category by (C′ ↓(Ȳ , Y )).

To prove this claim, we observe that the canonical map in question is a natural
transformation of functors in the variable (Ȳ , Y ). Since every (Ȳ , Y ) in C is a
retract of some object (X̄,X) in C′ (with a retraction morphism (X̄,X)→ (X̄,X)
which need not belong to C′), it is enough to check the claim when (Ȳ , Y ) is already
in C′. Since any finite diagram in (C′ ↓(Ȳ , Y )) has a colimit, we have, almost from
the definition,

colim
(X̄,X)→(Ȳ ,Y )

π∗F (X̄,X)
∼=−→ π∗

(
hocolim

(X̄,X)→(Ȳ ,Y )
F (X̄,X)

)
.

Hence our claim is proved if we can show that the canonical homomorphism

colim
(X̄,X)→(Ȳ ,Y )

π∗F (X̄,X) −→ F (Ȳ , Y )

is an isomorphism. But this is obvious. We conclude that homotopy invariant
functors on C are sufficiently determined by, and can be recovered from, their
restriction to C′. From now on we regard 4.4 as a statement about functors on C′.

For (X̄,X) in C′ and a monotone injection f : [m] → [n], we have the char-
acteristic map Xf → X which we can use to compactify Xf (teardrop). This
compactification is understood in the following definition:

F %(X̄,X) := hocolim
f

F (X̄f , Xf ) .

The homotopy colimit is taken over the category whose objects are monotone in-
jections f : [m] → [n], with arbitrary m,n ≥ 0 ; a morphism from f to g is a
commutative square of monotone injections

[m]
f−−−−→ [n]y x

[p]
g−−−−→ [q] .
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We can now proceed as in the second proof of 1.1. The filtration of X by skeletons
Xk leads to a filtration of F %(X̄,X) by subspectra F %(X̄k, Xk). Here another
teardrop construction is understood. By inspection,

F %(X̄k, Xk)
/
F %(X̄k−1, Xk−1) ' Sk ∧ F (X̄[k], X[k]) .

From our extra hypothesis on F , we then get isomorphisms

πn

(
F %(X̄k, Xk)

/
F %(X̄k−1, Xk−1)

)
'

∏
x∈Xk

πn−kF (∗, ∗)

for n ∈ Z, and this shows immediately that F % is homotopy invariant and excisive,
and even pro–excisive. (Imitate the second proof of 1.1 ; use homology with locally
finite coefficients to describe the E2–term of the appropriate spectral sequence
converging to π∗F

%(X̄,X).) Finally the assembly map

α : F %(X̄,X) −→ F (X̄,X)

is obvious, and it is an isomorphism when (X̄,X) = (∗, ∗). �

4.7. Observation. If F in 4.4. is already pro–excisive, then the assembly α from
F %(X̄,X) to F (X̄,X) is a homotopy equivalence for every (X̄,X).

Proof. Fix F , homotopy invariant and pro–excisive. We lose nothing by restricting
F to C′ (see proof of 4.4). When (X̄,X) = (∗, ∗), the assembly α is an isomorphism
by 4.4. By pro–excision, assembly is then an isomorphism for any (X̄,X) where X
is discrete. For arbitrary (X̄,X) in C′, we can argue by induction on skeletons: X
is the strict and homotopy pushout of a diagram

Xk−1 ←− ∂∆k×Xk
⊂−→ ∆k×Xk .

Each of the spaces in this diagram has a canonical (teardrop) compactification ; two
of the spaces in the diagram have dimension < k, the third is homotopy equivalent
(with control) to a discrete space. Note that we use the condition on small cells at
this point. �

4.8. Corollary. If F in 4.4. is pro–excisive then there exists a chain of natural
weak homotopy equivalences

F (X̄,X) ' . . . ' X• ∧ F (∗, ∗)Ω

where F (∗, ∗)Ω is an Ω–spectrum envelope of F (∗, ∗).

Proof. We may restrict to C′. We may also assume F is a functor from control
spaces to CW–Ω–spectra. Here it is understood that the morphisms in the category
of CW–Ω–spectra are functions, not maps, in the language of [Ad, III§2]. Reason
for making this technical assumption: the category of CW–Ω–spectra has arbitrary
and well-behaved products whereas the category of CW–spectra does not. Writing
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〈' and '〉 for weak homotopy equivalences going in the direction indicated, we
have

F (X̄,X) 〈' F %(X̄,X)

= hocolim
f

F (X̄f , Xf )

'〉 hocolim
f :[m]→[n]

F (X̄n, Xn)

'〉 hocolim
f :[m]→[n]

∏
y∈Xn

cofiber
[
F (X̄n r y, Xn r y) −→ F (X̄n, Xn)

]
〈' hocolim

f :[m]→[n]

∏
y∈Xn

F (y, y)

∼= hocolim
f :[m]→[n]

∏
y∈Xn

F (∗, ∗) .

The first '〉 is induced by the projections pf : Xf → Xn, for f from [m] to [n],
where Xn must be compactified in such a way that pf extends to a morphism of
control spaces restricting to a homeomorphism of the singular sets. Again, this uses
the small cells condition. The second of the weak homotopy equivalences labelled
〈' is an inclusion, and it is a weak homotopy equivalence by excision.

We conclude that a homotopy invariant and pro–excisive functor F on C′ is
determined, up to a chain of weak homotopy equivalences, by what it does to the
control space (∗, ∗). Hence such an F is related by a chain of natural weak homotopy
equivalences to the functor

(X̄,X) 7→ X• ∧ F (∗, ∗)Ω

whose CW–approximation is homotopy invariant and pro–excisive by 4.3.
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[Lü]: W. Lück, Transformation Groups and Algebraic K-Theory, Lect. Notes in Math., vol. 1408,

Springer-Verlag, Berlin, New York, 1989.
[MaL]: S. MacLane, Categories for the Working Mathematician, Graduate Texts in Math., vol. 5,

Springer-Verlag, Berlin, New York, 1971.

[Mitch]: B. Mitchell, Rings with several objects, Adv. in Math. 8 (1972), 1–161.
[PW1]: E.K. Pedersen and C. Weibel, A nonconnective delooping of algebraic K-theory, Proc.

1983 Rutgers Conf. on Algebraic Topology, Lecture Notes in Math., vol. 1126, Springer-Verlag,

Berlin, New York, 1985, pp. 166–181.
[PW2]: E.K. Pedersen and C. Weibel, K-theory homology of spaces, Proc. 1986 Int. Conf. Alge-

braic Topology, Arcata, Lecture Notes in Math., vol. 1370, Springer-Verlag, Berlin, New York,
1989.

[Q]: F. Quinn, Ends of maps II, Invent. Math. 68 (1982), 353–424.

[QA]: F. Quinn, Geometric algebra, Proc. 1983 Rutgers Conf. on Algebraic Topology, Lecture
Notes in Math., vol. 1126, Springer-Verlag, Berlin, New York, 1985, pp. 182–198.

[QAB]: F. Quinn, Assembly maps in bordism-type theories, these proceedings.

[QGF]: F. Quinn, A geometric formulation of surgery, Topology of Manifolds, Proceedings 1969
Georgia Topology Conf., Markham Press, Chicago, 1970, pp. 500–511.

[QLA]: F. Quinn, Local algebraic topology, Notices Amer. Math. Soc. 33 (1986), 895–899.

[Ra]: A. Ranicki, Algebraic L-theory and Topological Manifolds, Cambridge Tracts in Math.,
Cambridge Univ. Press, Cambridge, 1992.

[RaNo]: A. Ranicki, On the Novikov Conjecture, these proceedings.

[RaYa]: A. Ranicki and M. Yamasaki, Controlled K-theory, Topology and its Appl. 61 (1995),
1–59.

[Ro]: J. Rosenberg, Analytic Novikov for topologists, these proceedings.
[Spa]: E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

[tD]: T. tom Dieck, Transformation Groups, Studies in Math., vol. 8, De Gruyter, Berlin, New

York, 1987.
[Vog1]: W. Vogell, Algebraic K-theory of spaces, with bounded control, Acta Math. 165 (1990),

161–187.

[Vog2]: W. Vogell, Continuously controlled A-Theory, Preprint, SFB 343 at Bielefeld University,
Germany, 1992, 11 pp.

[Vog3]: W. Vogell, The involution in the algebraic K-theory of spaces, Proc. 1983 Rutgers Conf.

on Algebraic Topology, Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin, New York,
1985, pp. 277–317.

[Wa1]: F. Waldhausen, Algebraic K-theory of Spaces, Proc. 1983 Rutgers Conf. on Algebraic

Topology, Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin, New York, 1985, pp. 318–
419.

[Wa2]: F. Waldhausen, Algebraic K-theory of spaces, concordance, and stable homotopy theory,
Proc. 1983 Princeton Conf. on Alg. Topology and Alg. K-Theory, Annals of Math. Studies,

vol. 113, Princeton Univ. Press, Princeton, 1987, pp. 392–417.

[WW1]: M. Weiss and B. Williams, Theory: I, K-Theory 1 (1988), 575–626.
[WW2]: M. Weiss and B. Williams, Theory: II, J. Pure and Appl. Algebra 62 (1989), 47–107.

[WW3]: M. Weiss and B. Williams, Theory: Finale, Preprint, 1994, 62pp.

Dept. of Mathematics, Univ. of Michigan, Ann Arbor, MI 48109-1003, USA

E-mail address: msweiss@math.lsa.umich.edu

Dept. of Mathematics, Univ. of Notre Dame, Notre Dame, IN 46556, USA

E-mail address: bruce@bruce.math.nd.edu


