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Abstract. Let M and N be smooth manifolds. The calculus of embeddings

produces, for every k ≥ 1, a best degree ≤ k polynomial approximation to the
cofunctor taking an open V ⊂ M to the space of embeddings from V to N .

In this paper a description of these polynomial approximations in terms of

equivariant mapping spaces is given, for k ≥ 2. The description is new only
for k ≥ 3. In the case k = 2 we recover Haefliger’s approximation and the

known result that it is the best degree ≤ 2 approximation.

0. Introduction

Let M and N be smooth manifolds, without boundary for simplicity, dim(M) =
m and dim(N) = n where n > 3. The calculus of embeddings [10], [11], [3], [2]
produces certain ‘Taylor’ approximations Tkemb(M,N) to the space emb(M,N) of
smooth embeddings from M to N . In more detail, there are maps

ηk : emb(M,N)→ Tkemb(M,N),

one for each k ≥ 1, and there are maps rk : Tkemb(M,N)→ Tk−1emb(M,N) such
that rkηk = ηk−1. The map ηk is (1 −m + k(n −m − 2))–connected; therefore if
n > m+ 2 one has

emb(M,N) ' holim
k

Tkemb(M,N).

(Remark on notation: In this paper we use a calligraphic T for Taylor approxima-
tions and reserve the roman T for tangent spaces and the like.)

The method of embedding calculus is to relate emb(M,N) to spaces of embed-
dings emb(V,N) where V runs through the open subsets of M which are disjoint
unions of finitely many open balls. In particular, Tkemb(M,N) is defined as

holim
V ∈Ok

emb(V,N)

where Ok is the poset (ordered by inclusion) of open subsets of M which are
diffeomorphic to {1, 2, . . . , j} × Rm for some j ≤ k. The map ηk from emb(M,N)
to Tkemb(M,N) is determined by the restriction maps emb(M,N) → emb(V,N)
for V ∈ Ok.

This definition of Tkemb(M,N) is convenient in many respects, but from a geo-
metric point of view it is awkward; for example, there is no obvious action of the
(topological) group of diffeomorphisms M → M on Tkemb(M,N). Our goal here
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is to define by elementary geometric methods spaces Θk(M,N) for k ≥ 1, depend-
ing nicely on M and N , and to show that Θk(M,N) is homotopy equivalent to
Tkemb(M,N) for k ≥ 2. The construction Θ2(M,N) is already known, cf.§4 of [3].
It is Haefliger’s approximation [4] to emb(M,N), the homotopy pullback of

ivmapZ/2(M ×M,N ×N)yincl.

map(M,N)
f 7→ f×f−−−−−−−−−→ mapZ/2(M ×M,N ×N).

Here ivmapZ/2(M ×M,N × N) is the space of strictly isovariant smooth Z/2–
maps from M × M to N × N . (Definition: Let X,Y be smooth manifolds on
which a finite group G acts; a smooth G–map f : X → Y is strictly isovariant if
(Tf)−1(TY H) = TXH for every subgroup H of G, where Tf : TX → TY is the
differential of f .)

There are projection maps Θk+1(M,N)→ Θk(M,N) which model the canonical
projections Tk+1emb(M,N) → Tkemb(M,N), for k ≥ 2. These will be clear from
the definition of Θk(M,N) given below. In the case k = 1 one can proceed as fol-
lows. The recommended geometric substitute for T2emb(M,N) is still Θ2(M,N), as
defined above and below. The recommended geometric substitute for T1emb(M,N)
is the space of pairs (g, e) where g : M → N is continuous and e : TM → f∗(TN)
is a vector bundle monomorphism; we denote it here by Θ̄1(M,N) since it is a
refinement of Θ1(M,N). The recommended geometric substitute for the canonical
projection T2emb(M,N)→ T1emb(M,N) is the composition

Θ2(M,N)
proj.−−−−→ ivmapZ/2(M ×M,N ×N) v−−−−→ Θ̄1(M,N);

here v is obtained by restricting the strictly isovariant maps M ×M → N × N
to the diagonals, and keeping track of the induced map of normal bundles (of the
diagonals), which one identifies with the tangent bundles of the diagonals.

Terminology. Unless otherwise stated, smooth map from M to N will mean: a
Ck–map M → N for some fixed k � 0. Hence the space of smooth maps from
M to N is really the space of Ck–maps from M to N , with the compact–open
Ck–topology alias weak topology. See §2 of [5]. Similarly a smooth embedding from
M to N is to be understood as a Ck–embedding (= Ck–immersion which maps M
homeomorphically onto its image). The space of smooth embeddings from M to N
is defined as a subspace of the space of smooth maps from M to N . (In [11] and [3]
the preferred models for all kinds of mapping spaces and embedding spaces were
simplicial sets or geometric realizations of such. These models don’t go very well
with group actions, so we decided not to use them here.)

1. The geometric model

Fix M and N , as above. Let R and S be finite sets, R ⊂ S. Denote by
map(MS , NR) the space of smooth maps MS → NR. Call a smooth map f from
MS to NR admissible if, for every equivalence relation ρ on R, we have

(Tf)−1(TNR/ρ) = TMS/ρ

where Tf is the differential of f . Here S/ρ is short for the quotient of S obtained
by identifying elements x, y ∈ S whenever x, y ∈ R and xρy; we are using inclusions
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NR/ρ ⊂ NR and MS/ρ ⊂ MS . — Let amap(MS , NR) ⊂ map(MS , NR) be the
subspace consisting of the admissible maps.

Definition 1.1. Θk(M,N) :=

 holim
R,S⊂{1,...,k}

R⊂S

amap(MS , NR)


Σk

.

Remark 1.2. The space amap(MS , NR) depends contravariantly on the variable
R ⊂ {1, . . . , k} and covariantly on S ⊂ {1, . . . , k}. So we may regard

(S,R) 7→ amap(MS , NR)

as a functor on the poset whose elements are pairs (S,R) with R ⊂ S ⊂ {1, . . . , k},
the ordering being defined by

(S1, R1) ≤ (S2, R2) ⇔ S1 ⊂ S2 and R2 ⊂ R1.

The homotopy limit of this functor (which appears in 1.1) has a standard description
which we recall in section 2. There we also note that the standard description
simplifies to the following: the space of natural transformations

[0, 1]S\R −→ amap(MS , NR).

(Both domain and codomain are to be viewed as functors in the variable (S,R)
and we still assume R ⊂ S ⊂ {1, . . . , k}. Specifically we identify [0, 1]S\R with the
space of all maps f : {1, . . . , k} → [0, 1] which satisfy f(x) = 0 for all x ∈ R and
f(x) = 1 for all x /∈ S; this gives the functorial dependence on S and R.)

Theorem 1.3. Θk(M,N) ' Tkemb(M,N) for k ≥ 2.

Remark 1.4. This can be formulated with more precision, as follows. Let O =
O(M) be the poset of open subsets of M . For V ∈ O we have a map η̄k from
emb(V,N) to Θk(V,N) given by

g 7→
(
V S proj.−→ V R gR

−→ NR

)
R⊂S⊂{1,...,k}

.

This amounts to a natural transformation between cofunctors in the variable V ∈ O.
We will check (in section 3) that the cofunctor V 7→ Θk(V,N) is polynomial of
degree ≤ k, cf. [11], and that η̄k : emb(V,N) → Θk(V,N) specializes to a weak
homotopy equivalence for V ∈ Ok. This means that η̄k has the properties which
characterize the k–th Taylor approximation; so there exists a chain of weak homo-
topy equivalences under emb(V,N) relating Tkemb(V,N) to Θk(V,N), natural in
V ∈ O. Specializing this to V = M , we obtain 1.3.

Illustration. Here we show that η̄2 : emb(M,N) → Θ2(M,N) agrees with Hae-
fliger’s approximation to emb(M,N). The homotopy limit which appears in 1.1 is
the homotopy pullback of a diagram

amap(M ×M,N ×N)y
map(M,N)×map(M,N) −−−−→ map(M ×M,N)×map(M ×M,N)
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where the horizontal arrow is (f1, f2) 7→ (f1p1, f2p2) and the vertical arrow is
g 7→ (q1g, q2g), the pi and qi being appropriate projections. Taking fixed points
under the action of Σ2 now, we obtain the homotopy pullback of

ivmapZ/2(M ×M,N ×N)y
map(M,N) −−−−→ map(M ×M,N)

where the horizontal arrow is f 7→ fp1 and the vertical one is g 7→ q1g. It only
remains to observe

map(M ×M,N) ∼= mapZ/2(M ×M,N ×N) .

2. Homotopy limits, homotopy ends and edgewise subdivision

Let C be a small category. Recall that the limit of a functor F from C to spaces is
the space of all natural transformations from the constant functor c 7→ ∗ to F ; it is
topologized as a subspace of

∏
c F (c). The homotopy limit of F , denoted holimF ,

is the corealization (alias Tot) of the cosimplicial space

[i] 7→
∏

c0→c1→···→ci

F (ci)

where c0 → c1 → · · · → ci runs through the diagrams in C having that shape. See
[1] for motivation. There is a canonical inclusion lim F → holimF .

Most of this chapter is a digression on ends and homotopy ends, which are special
cases of limits and homotopy limits, respectively. The digression is useful because
the homotopy limit which appears in 1.1 is almost a homotopy end.

Starting with the category C, make another category C′ whose objects are the arrows
f : c1 → c2 in C; a morphism in C′ from f : c1 → c2 to g : d1 → d2 is a commutative
diagram

c1
f−−−−→ c2x y

d1
g−−−−→ d2.

There is a forgetful functor J : C′ → Cop × C, given on objects by the assignment
(f : c1 → c2) 7→ (c1, c2).

Definition 2.1. The end of a functor E from Cop × C to spaces (for example) is
defined by endE := lim EJ . The homotopy end of E is defined by

hoendE := holimEJ .

See [7] for more about ends. Our definition of end is somewhat different in spirit
from MacLane’s, but certainly equivalent.

Proposition 2.2. The homotopy end of E is homeomorphic to the corealization
alias Tot of the cosimplicial space

[i] 7→
∏

c0→c1→···→ci

E(c0, ci)

where c0 → c1 → · · · → ci runs through the diagrams in C having that shape.
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Example. Let Fa and Fb be functors from C to spaces; for simplicity assume that
Fa(c) is compact for all objects c in C. Let E(c0, c1) = map(Fa(c0), Fb(c1)) for
objects c0, c1 in C. Then E is a functor on Cop × C and endE can be identified
with the space of natural transformations from Fa to Fb. What is hoendE ? Using
the alternative definition of homotopy ends given in 2.2, we find that a point ω in
hoendE gives us, for each c in C, a map ω(c) : Fa(c) → Fb(c); for each morphism
g : c0 → c1 in C, a map ω(g) : ∆1 × Fa(c0) → Fb(c1) which is a homotopy from
ω(c1)Fa(g) to Fb(g)ω(c0); for each diagram

c0
g0−−−−→ c1

g1−−−−→ c2

in C, a map ω(g0, g1) : ∆2×Fa(c0)→ Fb(c2) which restricts to ω(g1)Fa(g0), ω(g1g0)
and Fb(g1)ω(g0) on di∆2×Fa(c0) for i = 0, 1, 2 respectively; and so on. Thus, ω is
a transformation Fa → Fb which is natural up to all higher homotopies.

Clearly proposition 2.2 is a special case of the following:

Proposition 2.3. For any functor F from C′ to spaces, holimF is homeomorphic
to the corealization of

[i] 7→
∏

c0→c1→···→ci

F (c0 → ci).

Here c0 → c1 → · · · → ci runs through the diagrams of the indicated shape in C,
and c0 → ci is the composite morphism in C, alias object in C′, determined by such
a diagram.

The proof will be given after lemma 2.4 and corollary 2.5, below.

The construction C 7→ C′ corresponds, via nerves, to a construction on simplicial
sets, the edgewise subdivision of Quillen and/or Segal, cf. [8]. Let U be the endofunc-
tor of the category of nonempty finite totally ordered sets given by U(S) = SopqS.
(Here q indicates a disjoint union with the lexicographic ordering, so that all el-
ements of the left hand summand are < than all elements of the right summand
summand.) Let X be a simplicial set, to be viewed as a contravariant functor
from nonempty finite totally ordered sets to sets. The edgewise subdivision of X is
X ◦U . (Admittedly this is the opposite of Segal’s edgewise subdivision of X, which
is X ◦ Uop, where Uop(S) = (U(S))op.)

Lemma 2.4. The nerve of C′ is isomorphic to the edgewise subdivision of the nerve
of C.

Proof. An i–simplex in the nerve of C′ is the same thing as a commutative diagram

c0 ←−−−− c1 ←−−−− · · ·· · · ←−−−− ci−1 ←−−−− ciyf0

yf1

yfi−1

yfi

d0 −−−−→ d1 −−−−→ · · ·· · · −−−−→ di−1 −−−−→ di

in C. Deleting the redundant arrows labelled f1, . . . , fi gives a subdiagram which
is an i–simplex in the edgewise subdivision of the nerve of C. �

Corollary 2.5. |C′| ∼= |C|.
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Proof. Segal [8] gives a natural homeomorphism h : |X◦U | → |X| for any simplicial
set X. We describe it briefly. By naturality, it suffices to look at the cases where X
is the nerve of the totally ordered set {0, . . . , i} for some i ≥ 0, so that |X| = ∆i.
In such a case h can be described or characterized as follows:

• It is linear on the (realizations of) the nondegenerate simplices of X ◦ U .
• The value of h on (the realization of) a 0–simplex of X ◦U alias 1–simplex

of X is the barycenter of the corresponding edge or vertex of |X| = ∆i. �

Proof of 2.3. Let Y1 be the disjoint union of

F (c′i)× V (c′0 → · · · → c′i)

where c′0 → · · · → c′i runs through the nondegenerate simplices in the nerve of C′,
and where V (c′0 → · · · → c′i) is the corresponding (open) cell of |C′|. Let Y2 be the
disjoint union of F (c0 → ci)× V (c0 → · · · → ci) where c0 → · · · → ci runs through
the nondegenerate simplices in the nerve of C, and again V (c0 → · · · → ci) is the
corresponding cell of |C|. Let p1 : Y1 → |C′| and p2 : Y2 → |C| be the projections.
(We do not put any topologies on Y1 or Y2.) Now the two spaces in 2.3 which we
have to compare can be identified, as sets, with subsets of the section sets of p1

and p2, respectively. Using this to label elements, we can write down the desired
homeomorphism as s 7→ (h(x) 7→ s(x)), where h comes from the proof of 2.5. �

We return to the homotopy limit in 1.1. Let C be the poset of subsets of {1, 2, . . . , k},
ordered by inclusion. Then C′ is the poset of pairs (R,S) withR ⊂ S ⊂ {1, 2, . . . , k},
with the ordering described in 1.2. The homotopy limit in 1.1 is the homotopy limit
of the functor on C′ given by (R,S) 7→ amap(MS , NR). By 2.3, we can also describe
it as the corealization of the cosimplicial space

[i] 7→
∏

S0⊂S1⊂···⊂Si

amap(MSi , NS0)

where S0 ⊂ S1 ⊂ · · · ⊂ Si runs through diagrams in C of the indicated shape. Since
C is a poset, this simplifies as follows:

Proposition 2.6. The homotopy limit in 1.1 is homeomorphic to the corealization
of the incomplete cosimplicial space (i. e. , cosimplicial space without degeneracy
operators)

[i] 7→
∏

S0(S1(···(Si⊂{1,...,k}

amap(MSi , NS0).

Here the strings S0 ( S1 ( · · · ( Si with fixed S0 = R and Si = S can be
regarded as the i–simplices of an incomplete simplicial set whose geometric realiza-
tion happens to be a cube [0, 1]S\R. Hence we obtain the statement made in 1.2:
The homotopy limit in 1.1 is homeomorphic to the space of natural transformations
from (S,R) 7→ [0, 1]S\R to (S,R) 7→ amap(MS , NR), assuming R ⊂ S ⊂ {1, . . . , k}.

Returning to the expression in 2.6, we proceed to take fixed points of the action of
Σk. Note that Σk also acts on the set of strings

S0 ( S1 ( · · · ( Si

(as in 2.6) for each i, and in each orbit of that action there is exactly one string of the
form {1, 2, . . . , k0} ⊂ {1, 2, . . . , k1} ⊂ · · · ⊂ {1, 2, . . . , ki} with k0 < k1 < · · · < ki.
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We will denote its stabilizer (alias isotropy) group by st(k0, . . . , ki). It is isomorphic
to

Σk0 × Σk1−k0 × · · · × Σki−ki−1 ;

it is contained in Σki
and projects to Σk0 , and so acts on amap(Mki , Nk0). Bearing

all this in mind, we have the following rather explicit description of Θk(M,N):

Proposition 2.7. The space Θk(M,N) defined in 1.1 is naturally homeomorphic
to the corealization of the incomplete cosimplicial space

[i] 7→
∏

0≤k0<k1<···<ki≤k

(
amap(Mki , Nk0)

)st(k0,...,ki)
.

3. Polynomial behavior

Here we show that the cofunctor V 7→ Θk(V,N) on O(M) is polynomial of degree
≤ k. See 1.4. The argument is standard; compare example 2.4 of [11]. Most of it
can be seen in the proof of the following easier statement:

Proposition 3.1. Let X be any space. For any k ≥ 0, the cofunctor V 7→
map(V k, X) on O(M) is polynomial of degree ≤ k.

Proof. Suppose given V ∈ O(M) and pairwise disjoint subsets A0, A1, . . . Ak of V
which are closed in V . For i ∈ {0, 1, . . . , k} let Vi : = V \Ai and for S ⊂ {0, 1, . . . , k}
let VS : =

⋂
i∈S Vi. By the pigeonhole principle we have

V k =
⋃

i∈{0,...,k}

(Vi)k .

This implies by lemma 3.2 below that the canonical projection from the homotopy
colimit of the (VS)k for nonempty S ⊂ {0, . . . , k} to V k is a homotopy equivalence.
Hence the map which it induces, from map(V k, X) to

map

 hocolim
S⊂{0,...,k}

S 6=∅

(VS)k, X

 ∼= holim
S⊂{0,...,k}

S 6=∅

map((VS)k, X),

is a homotopy equivalence. Therefore V 7→ map(V k, X) is polynomial of degree
≤ k. �

Lemma 3.2. For a paracompact space Z with open cover {Wα | α ∈ Λ}, the
canonical projection

p : hocolim
S⊂Λ

0<|S|<∞

⋂
α∈S

Wα −→ Z

is a homotopy equivalence.

Proof. Choose a partition of unity {ψα : Wα → I } subordinate to the open cover
{Wα}. Think of the domain of p as a quotient of∐

S⊂Λ

0<|S|<∞

∆(S)×
⋂

α∈S

Wα
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where ∆(S) denotes the simplex spanned by S, of dimension |S| − 1. We will
describe points in ∆(S) by their barycentric coordinates. — For z ∈ Z let S(z) =
{α ∈ Λ | z ∈Wα}. The formula

z 7→ ((ψα(z))α∈S(z), z) ∈ ∆(S(z))×
⋂

α∈S(z)

Wα

defines a section σ of p. A homotopy {ht} from σp to the identity is defined by

ht((y, z)) = (ty + (1− t)σ(z), z)

for y ∈ ∆(S) and z ∈
⋂

α∈S Wα. �

Proposition 3.3. Let K,L be finite sets, where K ⊂ L. Let G be any subgroup of
ΣK × ΣL\K . The cofunctor on O(M) given by

V 7→
(
amap(V L, NK)

)G

is polynomial of degree ≤ |L|.

Proof. Let ` := |L|. Suppose given V ∈ O(M) and pairwise disjoint subsets
A0, A1, . . . A` of V which are closed in V . For i ∈ {0, 1, . . . , `} let Vi : = V \ Ai

and for S ⊂ {0, 1, . . . , `} let VS : =
⋂

i∈S Vi. By the pigeonhole principle we have

V ` =
⋃

i∈{0,...,`}

(Vi)` .

Thus the (Vi)` constitute an open cover of V `; and moreover the cover is invariant
under the action of G on V `. Choose a subordinate partition of unity which is also
invariant under G. From the proof of 3.2, this choice of partition of unity gives us
a homotopy inverse σ∗ for the canonical map

map(V L, NK) −→ holim
S 6=∅

map((VS)L, NK)

where S runs through the nonempty subsets of L; more precisely, a strict left
inverse σ∗ and a homotopy {h∗t } showing that the left inverse is also a homotopy
right inverse. By inspection, σ∗ restricts to a G–map

amap(V L, NK) −→ holim
S 6=∅

amap((VS)L, NK)

and each h∗t restricts to a G–map

holim
S 6=∅

amap((VS)L, NK) −→ holim
S 6=∅

amap((VS)L, NK).

Hence σ∗ restricts to a homotopy inverse for the canonical map(
amap(V L, NK)

)G −→ holim
S 6=∅

(
amap((VS)L, NK)

)G
. �

Corollary 3.4. The cofunctor on O(M) given by V 7→ Θk(V,N) is polynomial of
degree ≤ k.

Proof. In addition to 3.3 use 2.7 and observe that corealization commutes with
homotopy (inverse) limits. �

Remark. The relevant homotopy limits in this proof are taken over the poset of
nonempty subsets of {0, 1, . . . , k}. Do not confuse {0, 1, . . . , k} with {1, . . . , k}; the
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numbers 0, 1, . . . , k serve as indices for k + 1 pairwise disjoint closed subsets Ai of
some open subset V of M , while {1, . . . , k} appears in the definition of Θk. Note
that a cofunctor on O(M) which is polynomial of degree ≤ ` with ` ≤ k is also
polynomial of degree ≤ k.

4. Behavior on finite sets

To complete the proof of 1.3 we must show that for every open V ⊂M which is
diffeomorphic to Rm × L for a finite set L of cardinality ≤ k, the canonical map

emb(V,N) −→ Θk(V,N)

is a weak homotopy equivalence. It is convenient to separate the task into a non–
tangential and a tangential part. The goal here is to establish the non–tangential
part:

Proposition 4.1. The canonical map emb(L,N) −→ Θk(L,N) is a homotopy
equivalence if L is a finite set of cardinality ≤ k.

For the moment suppose that L is any finite set, not necessarily of cardinality ≤ k.

Lemma 4.2. holim
R,S⊂{1,...,k}

R⊂S

amap(LS , NR) ∼= holim
g : S→L

S⊂{1,...,k}

emb(g(S), N).

Explanation. The homotopy limit is taken over the poset L≤k whose objects are
pairs (S, g) with S ⊂ {1, . . . , k} and g : S → L. The ordering is by inclusion over
L; that is, (S1, g1) ≤ (S2, g2) means S1 ⊂ S2 and g1 = g2 | S1.

Proof. By 2.6, the left hand term in 4.2 is homeomorphic to the corealization of
the incomplete cosimplicial space

[i] 7→
∏

S0(S1(···(Si⊂{1,...,k}

amap(LSi , NS0).

Fixing i and the string S0 ( S1 ( · · · ( Si for the moment, we have an easy
identification

amap(LSi , NS0) ∼=
∏

g : Si→L

emb(g(S0), N) ∼=
∏

g0,g1,...,gi

emb(g0(S0), N)

where the gr for 0 ≤ r ≤ i are maps Sr → L such that

(S0, g0) < (S1, g1) < · · · < (Si, gi)

in L≤k. Hence for fixed i we have an identification∏
S0(S1(···(Si

amap(LSi , NS0) ∼=
∏

(S0,g0)<(S1,g1)<···<(Si,gi)

emb(g0(S0), N).

Using these identifications for all i, one finds that the face operators are exactly the
ones that appear in the definition of the right hand term of 4.2. (For the present
purposes this can be and should be defined as the corealization of an appropriate
incomplete cosimplicial space, because the indexing category L≤k is a poset). �

Let Dk(L) be the set of functions f : L→ N = {0, 1, 2, . . . } which satisfy∑
x∈L

f(x) ≤ k .
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The support of f ∈ Dk(L) is

supp(f) := f−1({1, 2, 3, . . . }).
We view f 7→ supp(f) as a functor from the poset Dk(L), with the usual ordering,
to the poset of subsets of L. We are still assuming that L is a finite set.

Corollary 4.3. Θk(L,N) ∼= holim
f∈Dk(L)

emb(supp(f), N).

Proof. There is a map from the right hand side in 4.3 to the right hand side in 4.2,
induced by the functor L≤k → Dk(L) which takes (S, g) ∈ L≤k to fS,g : L → N
with fS,g(x) = |g−1(x)|. Note that supp(fS,g) = g(S). By inspection, the map is a
homeomorphism of the right hand side in 4.3 with the Σk–fixed points of the right
hand side in 4.2. �

Completion of the proof of 4.1 . The canonical map mentioned in 4.1 has now been
identified with the composition of the equally canonical maps

emb(L,N) −→ holim
J⊂L

emb(J,N) −→ holim
f∈Dk(L)

emb(supp(f), N).

The first of these is a homotopy equivalence because L is a terminal element in
the poset of subsets of L, alias initial object in the opposite poset. If |L| ≤ k the
second one is also a homotopy equivalence because it is induced by the functor
f 7→ supp(f) from Dk(L) to the poset of subsets of L; and that functor has a left
adjoint. The left adjoint takes a subset J of L to fJ ∈ Dk(L) with fJ(x) = 1 if
x ∈ J and fJ(x) = 0 if x /∈ J . �

5. Behavior on tubular neighbourhoods of finite sets

In this section we suppose that V is a tubular neighborhood of a finite set L ⊂M ,
with |L| ≤ k. The goal is to show:

Proposition 5.1. In this situation, the canonical map emb(V,N) −→ Θk(V,N) is
a homotopy equivalence.

The proof of 5.1 will take up the entire section. It uses the description of Θk(V,N)
given in 2.7. Therefore we begin with an investigation of the spaces amap(V S , NR)
and their symmetries, for R ⊂ S ⊂ {1, 2, . . . , k}. Denote by ajet(V S , NR;LS) the
space of 1–jets at LS of admissible maps V S → NR. (An element of that space is
an equivalence class of admissible maps V S → NR, two such maps being equivalent
if they agree to first order at all points of LS ⊂ V S .)

Lemma 5.2. The projection amap(V S , NR)→ ajet(V S , NR;LS) is an equivariant
homotopy equivalence, with respect to the action of ΣS\R ×ΣR. Furthermore there
is an equivariant and natural homotopy equivalence

ajet(V S , NR;LS) −→ map(LS\R, ajet(V R, NR;LR)).

Proof. For the first part, choose a complete riemannian metric on N . Also, choose
a riemannian metric on V such that each component becomes isomorphic as a
riemannian manifold to Rm with the standard metric. Next, let X be the space
of maps g : V S → NR which are admissible in a neighbourhood of LS . The map
which we are investigating is a composition

amap(V S , NR) ↪→ X −→ ajet(V S , NR;LS).
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Using the exponential maps for V S and NR determined by the riemannian metrics
on V and N one finds that X → ajet(V S , NR;LS) is an equivariant homotopy
equivalence. It remains to show that the inclusion amap(V S , NR) ↪→ X is also
an equivariant homotopy equivalence. This can be done by a shrinking argument.
That is, there is an equivariant homotopy inverse of the form g 7→ g◦hg,1 for g ∈ X.
Here

{hg,t | 0 ≤ t ≤ 1}
is a suitable equivariant smooth isotopy of embeddings V S → V S , relative to a
neighbourhood of LS and depending continuously on g ∈ X. It is assumed that
hg,0 is the identity and hg,1 has sufficiently small image, so that g ◦ hg,1 is indeed
admissible on all of V S . To construct {hg,t} simultaneously for all g ∈ X, use
partitions of unity, noting that X is metrizable.
For the second part, let p : V S → V R be the projection. An element of the space
ajet(V S , NR;LS) can be thought of as a map a : LS → NR together with linear
maps

bx : Tx(V S)→ Ta(x)(NR),

one for each x ∈ LS , subject to some conditions. An element of

map(LS\R, ajet(V R, NR;LR))

can be thought of as a map a : LS → NR together with linear maps

cx : Tp(x)(V R)→ Ta(x)(NR),

subject to some conditions. The equivariant homotopy equivalence that we need is
induced by the inclusions

Tp(x)(V R) =
∏
s∈R

Ts(x)V −→ Tx(V S) =
∏
s∈S

Ts(x)V. �

The maps given in 5.2 should be viewed as natural transformations of functors on
the poset with elements (S,R), compare 1.1:

amap(V S , NR) −→ ajet(V S , NR;LS) −→ map(LS\R, ajet(V R, NR;LR)).

The equivariance statement in 5.2 shows (with some inspection) that these natural
transformations respect the Σk–symmetries. This leads us to the next lemma:

Lemma 5.3. For S ⊂ {1, 2, . . . , k} and g ∈ LS ⊂ V S let ajet(V S , NS ; g) be the
space of 1–jets of admissible maps V S → NS at g. There is a Σk–equivariant
homeomorphism

holim
R,S⊂{1,...,k}

R⊂S

map(LS\R, ajet(V R, NR;LR)) ∼= holim
g : S→L

S⊂{1,...,k}

ajet(V S , NS ; g).

The proof resembles that of 4.2 and will be left to the reader. — For the next
lemma we resurrect the poset Dk(L) of section 4. For f ∈ Dk(L) let

S(f) :=
∐
x∈L

{1, . . . , f(x)} , Σ(f) =
∏
x∈L

Σf(x)

so that Σ(f) acts canonically on S(f). Let f \ : S(f)→ L be the evident projection;
then f \ ∈ LS(f) ⊂ V S(f).
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Lemma 5.4. holim
g : S→L

S⊂{1,...,k}

ajet
(
V S , NS ; g

)
Σk

∼= holim
f∈Dk(L)

(
ajet

(
V S(f), NS(f); f \

))Σ(f)

.

Proof. There is a straightforward map from right hand side to left hand side; by
inspection it is a homeomorphism. �

Now choose an embedding e : L → N , in other words, a base point in emb(L,N).
This of course makes each space emb(supp(f), N) for f ∈ Dk(L) into a pointed
space. For x ∈ L we abbreviate Tx := TxM and Te(x) := Te(x)N . Evaluation at f \

gives a map (
ajet

(
V S(f), NS(f); f \

))Σ(f)

−→ emb(supp(f), N).

Lemma 5.5. This map is a fibration, and its fiber over the base point is∏
x∈L

(
ahom

(
T f(x)

x , T
f(x)
e(x)

))Σf(x)

where ahom(...) denotes a space of linear and admissible maps. �

Again, the identification in 5.5 should be seen as an isomorphism of contravariant
functors, now in the variable f ∈ Dk(L). — Write ?⊗Rf(x) for ? f(x) and split Rf(x)

into irreducible representations of Σf(x). The cases f(x) = 0 and f(x) = 1 are easy;
when f(x) ≥ 2 there are two irreducible summands, the trivial one–dimensional
representation and the reduced permutation representation (of dimension f(x)−1),
both with endomorphism field R. See 5.7 below. This gives(

ahom
(
T f(x)

x , T
f(x)
e(x)

))Σf(x) ∼=


∗ if f(x) = 0
hom(Tx, Te(x)) if f(x) = 1
hom(Tx, Te(x))× hom](Tx, Te(x)) if f(x) ≥ 2

where hom](. . . ) denotes spaces of injective linear maps. For homotopy theoretic
purposes the contractible terms hom(Tx, Te(x)) are not of interest. This brings us
to the next lemma, which essentially completes the proof of 5.1. (A summary of
the entire proof will be given, though.)

Lemma 5.6. holim
f∈Dk(L)

∏
x∈L

f(x)≥2

hom](Tx, Te(x)) '
∏
x∈L

hom](Tx, Te(x)).

Proof. Note first of all that the functor on Dk(L) whose homotopy limit we are
interested in is contravariant; the induced maps are projection maps. — In the left
hand side interchange homotopy limit and product to get∏

x∈L

holim
f∈Dk(L)

f(x)≥2

hom](Tx, Te(x)).

Now it suffices to show that, for each x ∈ L, the poset of all f ∈ Dk(L) with
f(x) ≥ 2 has contractible classifying space. But clearly it has a minimal element.
(Here we are using the assumption k ≥ 2.) �
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Summary of proof of 5.1. Because of 4.1, it is enough to show that the following is
homotopy cartesian:

emb(V,N) res.−−−−→ emb(L,N)ycan.

ycan.

Θk(V,N) res.−−−−→ Θk(L,N).
So let e ∈ emb(L,N). We need to understand the homotopy fiber of the lower
horizontal map over the image of e. Using 5.2, 5.3, 5.4 and 4.3 we find that this is
homotopy equivalent to the appropriate homotopy fiber, or fiber, of the map

holim
f∈Dk(L)

(
ajet

(
V S(f), NS(f); f \

))Σ(f)

−→ holim
f∈Dk(L)

emb(supp(f), N)

given by evaluation at f \. Therefore by 5.5 and 5.6, its homotopy type is that of
the product ∏

x∈L

hom](Tx, Te(x)).

But that is also the homotopy type of the fiber of emb(V,N) → emb(L,N) over
e. Some inspection shows that the abstract homotopy equivalence between the two
fibers so obtained agrees with the canonical map between them. �

Lemma 5.7. Suppose i ≥ 2. Let ρ be the reduced permutation representation of
Σi on Ri/R. Then ρ is irreducible and has endomorphism field R.

Proof. Irreducibility is established in chapter 2, exercise 2.6 of Serre’s book [9]
on linear representations of finite groups. In fact this shows that the complexified
representation ρ ⊗R C is still irreducible. We learn from Serre’s book, chapter
13.2, paragraph about the three types of irreducible representations, that if the
complexification of an irreducible real representation is still irreducible, then the
original real representation has endomorphism field R. �
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