
HOMOLOGY OF SPACES OF SMOOTH EMBEDDINGS

MICHAEL S. WEISS

Abstract. It is shown how the methods of the calculus of embeddings can be used to

calculate, or help with the calculation of, the homology of spaces of smooth embeddings.

1. Introduction

The modest purpose of this note is to supply the proof of Lemma 5.2.1 in [8], restated below
as Theorem 2.2. (It was always intended to be short, but the referee’s comments have made it
even shorter.) Some familiarity with [8] or [23] and [10] will be assumed.

The context of Theorem 2.2 is as follows. The calculus of embeddings as described in [22],
[23], [10] was originally intended as a tool for calculating homotopy types of spaces of smooth
embeddings emb(M,N), where Mm and Nn are smooth, without boundary for now. It
aimed to describe the homotopy type of the space emb(M,N) in terms of the homotopy types
of the spaces emb(U,N), where U runs through the open subsets of M which are tubular
neighbourhoods of finite subsets of M . It soon became clear that there are a tangential and
a nontangential part to the analysis. The tangential part is captured by the inclusion of
emb(M,N) in the space of smooth immersions, imm(M,N), together with the homotopy
theoretic description of imm(M,N) which is the main result of immersion theory [15], [12],
[11]. The nontangential part aims to describe the homotopy fibers of that inclusion in terms of
spaces of embeddings emb(S, N) where S runs through the honest finite subsets of M .

The basic ‘Ansatz’, suggested by Gromov’s view of immersion theory [11], is to view the
space emb(M,N) as just one value of a good cofunctor V 7→ emb(V,N), where the variable V
is an element of the poset O(M) of open subsets of M . In general, a cofunctor F from O(M)
to spaces is good if

• it takes any inclusion U ↪→ V which is invertible up to smooth isotopy (as an abstract
embedding) to a weak homotopy equivalence F (V ) → F (U) ;

• for a monotone union
⋃

Vi (where Vi ⊂ Vi+1 for i = 0, 1, 2, . . . ), the canonical map
from F (

⋃
Vi) to holimi F (Vi) is a weak homotopy equivalence.

For the analysis of good cofunctors on O(M), there is a theory of best polynomial (or Taylor)
approximations. So, among the good cofunctors on O(M), there are some which are polyno-
mial; and for each good cofunctor F on O(M) and each r ≥ 0, there is an essentially unique
best approximation ηr : F → TrF of F by a cofunctor TrF which is polynomial of degree
≤ r . (The point is that TrF (V ) can be described, by definition or otherwise, in terms of spaces
emb(U,N) where U runs through the open subsets of M which are tubular neighbourhoods
of subsets of M or cardinality ≤ r .) When F is ρ–analytic, convergence takes place:

F (V ) '−−−−−→ holim
r

TrF (V )
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for any V ∈ O(M) which has a smooth proper Morse function with critical points of index
< ρ only. If F (V ) is based, then so is each TrF (V ) and the homotopy equivalence just above
implies a spectral sequence converging to π∗F (V ), with E2 –term consisting of the homotopy
groups of the forgetful maps TrF (V ) → Tr−1F (V ) for r ≥ 0 (by convention T−1F (V ) = ∗).

All of this applies to the functor V 7→ emb(V,N) because it is (n− 2)–analytic by the main
theorem of [10], which relies on much earlier work by Goodwillie [3], [4], [5] and forthcoming
work by Goodwillie and Klein [7]. See also [9]. In view of the above explanations it should not
come as a surprise that in this case the E1 –page is closely related to the homotopy groups of
certain mixed configuration spaces of M and N . These are spaces of triples (R,S, f) where
R and S are finite subsets of M and N respectively, of a fixed cardinality, and f : R → S is
a bijection.

To repeat, this theory was originally developed with the good cofunctor V 7→ emb(V,N)
in mind. Comparison with the somewhat different–looking, but equally calculus–inspired work
of Vassiliev [16], [17], [18], [19] and Kontsevich [13] on the homology of spaces of embeddings
emb(S1, Rn) suggested however that V 7→ Ω∞(emb(V,N)+ ∧HZ) might be another cofunctor
from O(M) to spaces worth looking at. Here HZ is the Eilenberg–MacLane spectrum associ-
ated with Z , so that π∗Ω∞(emb(V,N)+∧HZ) is the integer homology of emb(V,N). This led
to the question: if F is a ρ–analytic cofunctor from O(M) to spaces, what are the goodness
and analyticity properties of the cofunctor λJF given by V 7→ Ω∞(F (V )+ ∧ J) where J is a
fixed spectrum, bounded from below ?

It turns out that λJF is only ‘half’ good — it does take isotopy equivalences to weak
homotopy equivalences, but does not behave well with respect to monotone unions. To fix
this one can use the taming of λJF , a good cofunctor which agrees with λJF up to natural
homotopy equivalence on tame elements of O(M) (those which are interiors of compact smooth
codimension zero submanifolds of M ). See [8, §4.1] for the details. Theorem 2.2 below states
that the taming of λJF has good analyticity properties if F does, and if the ‘first few’ Taylor
approximations to F vanish. The example one should have in mind is

F (V ) := hofiber [ emb(V,N) → imm(V,N) ]

where imm(...) denotes spaces of smooth immersions. (We assume that a base point in
imm(M,N) has been selected.) Here T1F vanishes and F is (n − 2)–analytic with excess
3− n . Theorem 2.2 implies that the taming of λF := λHZF is (n/2− 1/2)–analytic provided
n/2 − 1/2 > m . If M is the interior of a compact smooth manifold, there is no need to dis-
tinguish between λF (M) and the tame version. Hence the Taylor tower leads in this case to a
second quadrant spectral sequence of the form

E1
−p,q = πq−p(Lp(λF )(M)) ⇒ Hq−pF (M) = Hq−p(emb(M,N))

where Lp(λF ) is the p–th homogeneous layer of the taming of λF . There is a very explicit
description of E1

−p,q in the case where M is closed and oriented: E1
−p,q = 0 for p < 0 and

E1
−p,q

∼= Hpm+q(Xp, Yp; Z±)

for p ≥ 0, where Xp is the space of subsets S of M having cardinality p , and Yp is the space
of pairs (S, z), with S ∈ Xp and z ∈ hocolim∅6=R⊂S F (R). Here F (R) is an abbreviation for
hofibre [emb(R,N) → imm(R,N)] . Although Yp is not a subspace of Xp , it maps forgetfully
to Xp and so can be viewed as a subspace of a mapping cylinder homotopy equivalent to Xp ;
hence the “pair” notation. The coefficients are untwisted integer coefficients Z+ when m is
odd. When m is even use Z− , integer coefficients twisted by means of the composition

π1Xp → Σp → Z/2 = aut(Z).
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This example is discussed in somewhat greater generality in [8, 5.2.2]. (Unfortunately some
errors appear there in the explicit description of E1

−p,q .) It is also explained in [8, §5] how the
above spectral sequence can be seen as a “twice generalized” Eilenberg–Moore spectral sequence,
and how it appears to agree with the spectral sequences found by Vassiliev and Kontsevich in
the case where dim(M) = 1. This suspected agreement has recently been confirmed by Volic
[20], [21].

2. Estimates

We assume from now on M is smooth, possibly with boundary, and O(M) is the poset of
open subsets of M containing ∂M . The concept of a ρ–analytic cofunctor from O(M) to
spaces was originally defined in [10] for ρ ∈ Z . In the revised definition of [8, 4.1.11], any
ρ ∈ R is allowed. It is still true that, if F is ρ–analytic and V has a smooth proper Morse
function with critical points of index < ρ only, then F (V ) ' holimr TrF (V ). For more precise
estimates see [8, 4.2.1].

Proposition 2.1. Let F be a good cofunctor on O(M) and let J be a (−1)–connected CW–
spectrum. Suppose that F is ρ–analytic with excess c ≥ 0 , where ρ ∈ Z and ρ > m . Then the
taming of λJF is also ρ–analytic with excess c .

Proof. This is a straightforward application of Goodwillie’s dual Blakers–Massey theorem for
cubes, [6, 2.6]. In detail: Suppose given a tame V ∈ O and pairwise disjoint closed subsets
Ai of V , for i ∈ {1, . . . , k} . Suppose also that the closures of the Ai in V̄ are disjoint
smoothly embedded disks of codimension qi , respectively, with boundary in ∂V̄ . For U ⊂ S ,
let AU be the union of the Ai taken over i ∈ U . It is enough to show that the k–cube
{F (V r AU ) |U ⊂ S} is (k − 1 + kρ + c −

∑
i qi)–cocartesian. Our assumption on F implies

that for nonempty T ⊂ S , the |T |–cube {F (V r AU ) |S r T ⊂ U ⊂ S} is bT –cartesian, where

bT = |T |ρ + c−
∑
i∈T

qi.

According to [6, 2.6] our full k–cube is then p–cocartesian where p is the minimum of the
numbers k−1+

∑
α bT (α) , taken over the partitions of S into disjoint nonempty subsets T (α).

Clearly the minimum is attained when the partition has only one part, and is therefore equal
to k − 1 + bS = k − 1 + kρ + c−

∑
i qi . �

Theorem 2.2. Let F be a good cofunctor on O(M) and let J be a (−1)–connected CW–
spectrum. Suppose that Tr−1F ' ∗ for some r > 0 , and F is ρ–analytic with excess c < 0 ,
where ρ + c/r > m . Then the taming of λJF is (ρ + c/r)–analytic with excess 0 .

Proof. As in the proof of proposition 2.1, select a tame V ∈ O and pairwise disjoint closed
subsets Ai of V , where i ∈ {1, . . . , k} . Suppose again that the closures of the Ai in V̄ are
smoothly embedded disks of codimension qi , respectively, with boundary in ∂V̄ . It suffices to
show that the k–cube

{F (V r AU ) |U ⊂ S}
is [[k − 1 + k(ρ + c/r) −

∑
i qi]]–cocartesian, where [[a]] = min{b ∈ Z | b ≥ a} for a ∈ R . Let

S = {1, . . . , k} , and for T ⊂ S let ΣT be the sum of all qi for i ∈ T . By [6, 2.6] it suffices to
check that, for nonempty T ⊂ S , the subcube

(1) {F (V r AU ) | S r T ⊂ U ⊂ S }
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is [[(ρ + c/r)|T | − ΣT ]]–cartesian. Without loss of generality, T = S ; otherwise replace V by
the complement in V of a thickening of ASrT and renumber the elements of T . What we have
to prove, therefore, is that

(2) the k–cube {F (V r AU ) |U ⊂ S } is [[(ρ + c/r)k − ΣS ]]–cartesian.

By the analyticity of F , and our assumption c < 0, this is certainly true if k ≥ r . We can
therefore argue by downward induction on k . That is to say, we can concentrate on a particular
k < r , and assume that statement (2) is established with k + 1 in place of k . (At the same
time we will argue by upward induction on q1 . The induction beginning is postponed, so we
are reducing to the situation where q1 = 0, and then similarly qi = 0 for i = 2, . . . , k .)

Assuming that q1 > 0, we can extend the inclusion Ā1 → V̄ to an embedding of Ā1×[0, 1] in
V̄ , taking ∂Ā1 to ∂V̄ and avoiding Āi for i ∈ {2, . . . , k} . Identify the image with Ā1 × [0, 1].
Let B0 = A1 × {0} , B1 = A1 × {1} and Bi = Ai for i ∈ {2, . . . , k} . Let C1 = A1 r (B0 ∪B1)
and Ci = Ai for i ∈ {2, . . . , k} . By our standing assumption, the (k + 1)–cube

(3) {F (V r BR) | R ⊂ {0} ∪ S }

is [[(ρ + c/r)(k + 1)−ΣS − q1]]–cartesian and consequently [[(ρ + c/r)k −ΣS ]]–cartesian, since
ρ + c/r > m ≥ q1 . By inductive assumption, since codim(C1) = codim(A1) − 1, the k–cube
{F (V r (B0 ∪ B1 ∪ CU )) |U ⊂ S } is [[(ρ + c/r)k − ΣS + 1]]–cartesian. This last fact implies
easily that the k–cube

(4) {F (V r (B0 ∪BU )) | U ⊂ S }

is [[(ρ + c/r)k − ΣS ]]–cartesian: namely, for U ⊂ {2, . . . , k} the inclusion

V r (B0 ∪B1 ∪ C{1}∪U ) −→ V r (B0 ∪B1 ∪ CU )

is an isotopy right inverse for the inclusion V r (B0 ∪B{1}∪U ) → V r (B0 ∪BU ). Combining
the estimates for the cubes (3) and (4), we conclude using [6, 1.6] that {F (V r BU ) |U ⊂ S }
and hence {F (V r AU ) |U ⊂ S } are [[(ρ + c/r)k − ΣS ]]–cartesian cubes.

This leaves the induction beginning, i.e., the special case of statement (2) in which qi = 0 for
i = 1, 2, . . . , k . In this case the Ai are all m–dimensional and V is the disjoint union of some
tame open V ′ ⊂ M with A1, . . . , Ak . We will proceed by upward induction on the number of
handles in a fixed handle decomposition of the closure of V ′ . (Again the induction beginning
is postponed, so we are reducing to the situation where V ′ = ∅ .) Let therefore A0 ⊂ V ′ be the
“cocore” of one of the handles, of codimension q0 . Thus A0 is diffeomorphic to a euclidean
space and the inclusion A0 → V ′ extends to a smooth embedding of a disk into the closure of
V ′ . By our standing assumption, the (k + 1)–cube

(5) {F (V r AR) |R ⊂ {0} ∪ S }

is [[(ρ+ c/r)(k +1)− q0]]–cartesian, hence [[(ρ+ c/r)k]]–cartesian. By the inductive assumption
involving numbers of handles, the k–cube

(6) {F ((V r A0) r AU ) |U ⊂ S }

is [[(ρ + c/r)k]]–cartesian. We combine the estimates for cubes (5) and (6) and use [6, 1.6] to
deduce that the k–cube {F (V r AU ) |U ⊂ S } is [[(ρ + c/r)k]]–cartesian.

Finally we have to look at the special case of statement (2) in which qi = 0 for all i and V
is equal to the (disjoint) union of the Ai . Here the hypothesis Tr−1F ' ∗ comes in: the spaces
F (V r AU ) = F (ASrU ) are all contractible since ASrU is a disjoint union of at most k open
balls, where k < r . �
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