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+  AUTOMORPHISMS OF MANIFOLDS AND ALGEBRAIC K-THECRY
PART I

by Michael Weiss and Bruce Williams

Introduction. Let M be a compact topological manifold.
Denote by G(M) and TOP(M) the spdces'of self homotopy
equivalences and self homeomorphisms of M which are the
identity on oM. We want to investigate the difference
between G(M) and TOP(M), or G(M)/TOP(M)

Recall that Surgery theory, notably the Sullivan-Wall
long exact sequence, analyses G(M)/fBP(M). (Here fBP(M)
is the simplicial set of block homeomorphisms of M ;
its k-simplices are the self homeomorphisms of AF><M
which are the identity on AFxéNI and which preserve the

)
faces diA‘{ xM for 0O<is<k.) It remains to

understand TOP(M)/TOP(M).

Let fTOP(M) be the space of topological concordances

of M ; see Hatcher [1] or Waldhausen [1] . If the

stabilization maps
eTP M) — €TOPmuply — eTOP(mxp?) — ...

are all k-connected, then we say that k is in the
topological concordance stable range for M . The direct
limit €TOP(MX.Dw) of the spaces fTOP(Mx Dj) is an
infinite loop space. It determines a spectrum whose

suspension (!) we denote, for one reason and another,
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by .QEQSTOP(M) . We construct an action of Z, on SIEQSTOP(M).

We are particularly interested in the homotopy orbit

TOP(M) and its zeroth infinite loop

spectrum Sf A, Qs

5=

space, written Q(S:’AZ.QEQSTOP(M)). Here S™ plays the
5=

role of E22 , and the subscript + marks an added base point.

THEOREM A (topological version). There exists a map
$S: TOP(M)/TOP(M) —— Q(ST A, OWhsTOF (M)
5 =

which is (k+1)-connected if k is in the topological

concordance stable range for M .

Remark: Using Theorem A and the filtration of s~ by
skeletons Si, one obtains a spectral sequence for the
analysis of ﬂ;(faf(M)/TOP(M)) in the concordance stable
range.This is known and due to Hatcher [(2]. If we localize at
odd primes, then Theorem A is a result of Burghelea-~Lashof 11;

see also Burghelea-Fiedorowicz [1] and Hsiang-Jahren [1].

THEOREM A (smooth version).If M is smooth,then there is a map
~ o0
&S: DIFF(M)/DIFF(M) —> Q(S /\szi_r_stIFF(M))

which is (k+1)-connected if k is in the smooth

concordance stable range for M.

We hope the notation in the smooth version is
self-explanatory. The smooth versioﬁ can be used to
analyse G(M)/DIFF(M) , Jjust as the topological version can
be used to analyse G(M)/TOP(M). The proofs of the
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topological and smooth versions are identical, and we
will concentrate mostly on the topological case in this
introduction and throughout the paper. Note however that
concordance stability is better understood in the smooth
case. Kiyoshi Igusa has shown that if M is smooth and

k < dim(M)/3 approximately, then k 1is in the smooth and
in the topological concordance stable’range for M .

-

See Igusa Dz , [2]

Our proof of Theorem A proceeds by separating the
combinatorial aspects of fBb(M) from its geometrical
aspects. The method is:

Euclidean Stabilization.

Let TOPb(MxTRi) be the topological or simplicial group
of homeomorphisms f:MxRi —_— MXRi such that £f 1is
the identity on »MxR®, and
there exists an ¢&(f) > 0 with
||pr2f(m,z) -zl < &£) for all meM, ngRi,
where przzbdxmi —_— Ri is the projection.
We call f a bounded homeomorphism. The bounded theory
was introduced and first exploited by Anderson-Hsiang [1].
Of course there is also a block version fBPb(MXR;)

and we get a commutative diagram

TOP(M) —— TOPP(MxR') — TOPP(MxRZ) — ...

! ] 7

TOP(M) —— TOPP(MxR') —— TOPP(MxR%) — ...
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where the horizontal arrows are given by crossing with the

identity on T , or by Euclidean stabilization. Write

10PP(MxR®) = \U ToPP(M*RY) and TOPP(MxR™) = U TOPP(MxRY) .
i i

The next result implies that Euclidean stabilization kills

the difference between "honest" and blocked.

THEOREM B. The inclusion TOPP(MxR®) —— TOPP(MxR™)

is a homotopy equivalence.

The stabilization map TOP(M) <—» TOPP(MxR™) is
also close to being a homotopy equivalence; for example it
is so if M 1is simply connected. Therefore TOPb(Mxmfﬁ/TOP(M)
is approximately the same as fBP(M)/TOP(M) , and is much

easier to handle. Using Anderson-Hsiang theory we construct

TOP(M)

a spectrum (QWh with Zz—action whose O-connected

cover is .QEQSTOP(M)

and whose homotopy groups in
negative dimensions are the negative algebraic K-groups
of Zmy(M) . We then analyse TOPP(MxR™) /TOP(M)  in

terms of IQEQTOP(M)

and use combinatorial methods to
pick up the trifles lost through Euclidean stabilization.

This is summarized in the next result.
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THEOREM C. There exists a map
& : TOPP(MxR™)/TOP(M) ———> Q(ST AZZQW__i_lTOP(M))

which fits into a commutative square

TOP(M) /TOP(M) g > Q(sT /\ZZQY_J__LISTOP(M))

TOPP (M xR™) /TOP(M)
~ 1 5
TOPP (M x R™) /TOP(M)

a(s? Azznvr:hTOP(M))

The square is a homotopy pullback square if dim(M) 25

In future papers on this subject we want to use the
known relationship between concordance theory and algebraic
K-theory to obtain numerical results. |

| *

It is a pleasure to thank Steve Ferry, Erik Pedersen,
Bob Rigdon, Mark Steinberger, Bill Dwyer and Marcel Bokstedt
for conversations, and Ib Madsen for drawing our attention

to the theory of bounded homeomorphisms.

Leitfaden: Sections 2 and 3 contain the geometric
pért of the proof of Theorem A, and section £ contains the
necessary combinatorics. Sections 1 and 5 contain
introductory and supplementary material about bounded
homeomorphisms, for which we claim no originality. Sections O
and 6 are about language and should not be taken too

seriously.



O. PRELIMINARIES

Simplicial sets are popular in homotopy theory for two
different reasons. Firstly, many important spaces, such
as Eilenberg-Maclane spaces or classifying spaces in
K-theory, can be conveniently defined in simplicial
language. Secondly, certain necessary constructions
(of mapping objects, say) can be performed easily in
the category of simplicial sets when they are painful
in the category of topological spaces.

We are mostly interested in the secpnd aspect,
and we have found it necessary to introduce Yet another
substitute for the notion of space which does not suffer
from the combinatorial rigidity that simplicial sets
inevitably have. Our reason for avoiding rigidity is that
we wish to use the language of coordinate free spectra
in sections 2 and 3 ; in particular, some of our "spaces"
will come equipped with an action of the orthogonal
group 0(n) , and the action should be continuous. The
use of simplicial sets in this situation would obscure

even the simplest arguments.

0.1.DEFINITION. A fantasy space is a contravariant
set-valued functor Y on the category of topological

spaces and continuous maps, satisfying the sheaf condition:
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If X 1is a topological space with an open covering
{Uil ieJ} , and if for each ie€J an element s,
in Y(Ui) is given such that

S, = S in Y(U.AU.)
1|UiﬂUj JlUint i'v3
for all (i,3j)eJxJ, then there exists a unique

se Y(X) such that S|y, = 53 for all iedJ.
i

A continuous map between fantasy spaces' Y1 , Y2 is a
natural transformation Y1-—e Y2 . A pointed fantasy space
is a fantasy space Y together with a continuous map

* — > Y , where * is the constant one-point functor.

0.2.REMARKS. (i) The notion of quasi-space in
Kirby-Siebenmann (1] is very similar in character.
In Siebenmanns words, "a quasi-space is a sort of 'space'
of which we want to know only the sets of maps to it of
certain specified pleasant spaces". The same could be said
of fantasy spaces; see 0.3 Dbelow.

(ii) The category of fantasy spaces is a topos,
by definition of that word. See the introductions to

Johnstone [11 , Barr-Wells [1] and Wraith [1]

0.3.EXAMPLE . Every topological space Y can be regarded
as a fantasy space in the obvious way: Let Y(X) be the
set of continuous maps from X to Y , if X 1is another

topological space. The category of topological spaces and
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continuous maps is therefore contained in the category of
fantasy spaces and continuous maps, as a full subcategory
(by the Yoneda lemma). If U is a fantasy space and X
is a topological space, then U(X) can be identified
with the set of continuous maps from’ X to U.
0.4.EXAMPLES. (i) Let M be a compact topologiéal
manifold as in the introduction, and let V be a finite
dimensional real Hilbert space. Let TOPb(M><V) be the
fantasy space which to each topological space X
associates the set of locally bounded homeomorphisms

f: XxMxV —> X xMxV
preserving the projection to X , and restricting to the
identity on XxdM xV . ("Locally bounded" means that any
x e X has a neighbourhood UcX such that the set of
real numbers {d(z,f(z)) | z e UxMxV} is bounded.
Here d is the distance measured in the V-direction only.)

(ii) Suppose now that M 1is smooth. An element
f: XxM*xV —> XxMxV  of TOPP(MxV)(X) will be

called smooth if, for each point xeX , the restriction

£ {x}xMxV

< {xFx M=V

is smooth, and if the higher derivatives D(£f ), DZ(£,),...
vary continuously in x . (Each derivative Dn(fx) is a
continuous section of some vector bundle over {x} xMxV ;
letting x vary one obtains a section of some vector
bundle over XxMxV , and this is still required to be

continuous, for all n>0. We do not put any bounds
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n

on the higher derivatives.)
The smooth elements of TOPb(M xV)(=) define

a fantasy subspace DIFFb(M>(V) of ‘TOPb(M><V).

0.5.CONSTRUCTIONS with fantasy spaces. Since fantasy spaces
form a topos, practically all categorical constructions
can be performed with ihem. We mention a few explicitly.

(i) The product of an arbitrary family of fantasy
spaces 1s again a fantasy space.

(ii) Let Y be a fantasy space.-A fantasy
subspace A C Y 1is a subfunctor which is a fantasy
subspace in its own right.

(iii) Take A< Y as in (ii). The diagram
¥ « A — Y , where * 1is the one-point functor,
has a pushout in the category of fantasy spaces: Take
the contravariant functor which to a topological space X
associates the pointed set Y(X)ALA(X)* , and subject it
to the standard construction for converting presheaves
into sheaves. The resulting fantasy space YiLA* has
the required universal property.

The reader is warned that if A and Y happen to
be genuine topological spaces, then the pushout YJLA*
in the category of fantasy spaces will not usually agree

with the pushout YLLA* in the category of topological

_spaces. However, the fantasy version behaves much better
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than the topological version, and it would be unwise not
to use it. See section 6. There is a risk of confusion
here, but the consequences of such a confusion would be
.quit; harmless.
(iv) As an application of (iii), define the wedge
Y vy, of two pointed fantasy spacés Y, , ¥, by
taking Y = Y,rY, and A = ¥ux in (iii).
(v) Define the smash product Y, AY, of two
pointed fantasy spaces to be (Y, * YZ)iL(Y1v YZ)* .
(vi) To define the direct limit of a direct system
R R R Y, — Y, 4— - (ne 2)
of fantasy spaces, take the contravariant functor
X —— l%m Yn(X) and subject it to the standard
construction for turning presheaves into sheaves. (Again,
direct limits in this sense should not be confused with
direct limits in the category of topological spaces.)
(vii) 1If Y, and Y, are fantasy spaces, then the
rule which to every topological space X associates
the set of continuous maps X x Y1 —_— Y2 is a
contravariant functor with the sheaf property, or a
fantasy space. It is called the fantasy space of continuous
maps Y, — Y, , written map(Y1,Y2)- |
The definition is a little sloppy because the "set"
of continuous maps X x Y1 E— Y2 need not be a set.
But if Y1 is a genuine topological space, then it can
be identified with Y,(XxY,) and is therefore a set.

If Y1 and Y2 are both pointed, then we can
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similarly define the fantasy space of all pointed

continuous maps from Y, to Y, , written map, (Y,4,Y5).
(viii) If Y is a pointed fantasy space, let

QY = map,(S',Y) , using (vii). Note that

1 1

APY = map,(STAS'A...ASY, YY)

which is not quite the same as map*(Sn,Y) because
smash products are to be taken in the category of fantasy
spaces. But the difference is gquite inessential.

(ix) Suppose that J 1is a fantasy space with group
structure.(This means that the sets J(X) are groups,
and the maps J(X) — J(X') induced by continuous maps
X — X' are group homomorphisms.) Suppose further that
HcJ 1is a fantasy subspace which is also a subgroup.
The rule which to every topological space X associates
the set of left cosets J(X)/H(X) 1is then a contravariant
set-valued functor, but it need not have the sheaf
property. Now apply the standard construction for converting
presheaves into sheaves. The result is a fantasy space J/H.
For example, we could take J = TOPP(Mx(VeR)) and

H = TOPP(MxV) , or J = DIFFP(Mx (V®R)) and

H

DIFFb(M><V). In fact we will do so in section 1.

More generally, suppose that H is a fantasy space
with group structure acting on a fantasy space Y . Then
it is possible to define a fantasy orbit space Y/H in

the same way.



O0.6.REMARK. Let Y be a fantasy space and let X be a
topological space. To every fe Y(X) we can associate
a map of sets

£f° 1 X — Y(*) 3 x — f € Y({x}) 2 Y(*)

{x
Most of the fantasy spaces that wl w;ll encounter are
such that f° determines f , for arbitrary X and
feY(X). To specify a continuous map between fantasy
spaces with this property, say Y1 and Y2 , it is

sufficient to specify the map of sets Y1(*) — YZ(*)‘

0.7.DEFINITION. Two continuous maps fo,f1: Uu —Y
between fantasy spaces are homotopic if there exists a

continuous map f: UxI —— Y such that £

fiuxioy = fo

Homotopy is an equivalence relation. To check for
transitivity, suppose there are given two homotopies
h:Ux[0,1 — Y , h,: U x 2,31 —s Y
such that h_ connects fo with f1 and h, connects
f, with £, . Let p,: Ux [0,2[ — U = [0,1] ©be given by
p (u,t) = (u,min{t,1) and let p,: Ux 11,3] —> U x [2,3]

be given by p, (u,t) = (u,max{t,2}). Let h:Ux [0,3]

Y
be the unique continuous map which equals h p, on
Ux [0,2[ and h,p, on U ¥ 11,3]. Then h is a homotopy

connecting fo with f2 .




We can now say that a continuous map f:U — Y
between fantasy spaces is a weak homotopy equivalence
if f,: UX)/P —— Y(X)/m is an isomorphism for

all CW-spaces X, where n denotes the homotOpy relation.

0.8.DEFINITION. The materialization of a fantasy space Y

mat

is the simplicial set Y whose Kk-simplices are the

continuous maps Ak — Y , for all k >0.

It will be shown in a separate appendix (section 6 )
that there is a sufficiently well defined continuous map

from the geometric realization of Ymat

to Y which is

a weak homotopy equivalence. Moreover, all the constructions
in 0.5 behave well under materialization, in the sense
that they yield easily predictable homotopy types. The moral
is that we can pass freely from the world of fantasy spaces
to that of simplicial sets. We will in fact use fantasy

spaces when rigidity would be a hindrance, and simplicial

sets when combinatorial arguments are needed.



1.BOUNDED HOMEOMORPHISMS AND DIFFEOMORPHISMS

1.1

This section is a survey of results due in their final

form mostly to Anderson-Hsiang [1]

Hsiang-Sharpe [11 , Hatcher {1] ,

, With ideas from

Siebenmann 01

Edwards-Kirby [17 and M.Brown (unpublished). See

Madsen-Rothenberg [1] , [2} and Anderson-Pedersen

for recent applications of the bounded theory. The

(1]

controlled theory of Chapman [1] and Quinn [1],[2] is also

closely related.

We begin by stating two instrumental theorems:

an isotopy extension theorem, and a wrapping theorem

known under the name "belt buckle trick".

1.1.ISOTOPY EXTENSION THECREM. Let X ©be a topological

manifold, Vc X an open subset, C

a compact subset of V.

Suppose there is given a continuous family of embeddings

: V X

Jt

for te AP

such that jb is the inclusion for some b € AP .

Then there exists a continuous family

Jo : X X , with
such that Jt agrees with jt on C
Further, if jtléV is the inclusion

all t , then J

of homeomorphisms

teAn,

for all %, and Jb

e X <X

for

=idX.

£]3x ©can be the inclusion JdX c X for all t.
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Proof: See Siebenmann [2}, 6.5.III, 6.6, 2.3, 1.3.(0).

We also need a smooth version of 1.1: then {jt}
and {Jt} are families of smooth embeddings and diffeomorphisms
respectively, continuous in the (compact open) c™-topology.
Beware that e.g. a continuous family’bf smooth embeddings is
not a smooth family of smooth embeddings; therefore Thom's
smooth isotopy extension theorem does not apply directly.

However, Siebenmann's arguments can be easily adapted.

It would be useful to have an isotopy extension
theorem in the bounded case. Suppose for instance that X
in 1.1 is equipped with a proper map p:X ——»'Rk , that
C is closed instead of compact, and that the family of
embeddings {jt} satisfies a boundedness condition (which
means that Hp(jt(x)) - p(x)Il <€ for some €> 0 and all
xeV and tel?). Does a (bounded) extension {Jt} as
in 1.1 exist ? The answer is no; see Hirsch 1] ,ch.8 ex.9.
We will use the belt buckle trick as a substitute for the

missing isotopy extension theorems.

Define TOPP(MxR®) as in O.4. Suppose that H is a
finitely generated subgroup of the additive group TRn , and le
TOPb(MxTRn;H) 'c Topb(Mxmn) be the fantasy subspace
consisting of all bounded homeomorphisms which commute with
the translations MxR® —— MxR® ; (m,2) — (m,2z+h)

for arbitrary heH.



1.3

1.2.BELT BUCKLE THEOREM. Choose integers Jj,k,m>0. Write
TRj+k+m = 'm? xREXRE. The forgetful map

u: TOPb(MxTR‘j+k+m; Zk+m) - TOPb(MxTR‘j+k+m; Zk)
has a homotopy splitting

ws TQPb(MXTRj+k+m; Zk) TOPb(M>CRj+k+m; Z}<+m) ,

so that uw ® identity. Similarly, DIFFP(Mx RITE+D; 2K
is a homotopy retract of DIFFb(M>VR3+k+m;'Zk+m).

1.3.LEMMA (for the proof of 1.2). Let X ©be a topological
space. Let o_ , ﬁ_ . B+ be open embeddings
XxR — X=R such that
¥_(XxR) , B(XxR) < XxT-o,0] ,
°(+(XXTR) ’ /3+(XXTR) C Xx [O,+°°[ ’
x_ = f_
x, =B

Let XxRxZ/(«_, u;) be the quotient space obtained from

identity on X x J-e,-k]

for some k > 0.
identity on Xx [k,+e[

(XxR)xZ by identifying (d+(x,r),z) with («_(x,r),z+1)
for all z€ Z . Define XxTRx 7?-/([5’_ , /3+) similarly. Then
there is a canonical homeomorphism

X*RxZ/hn,q+) X*R*Z/Ul,ﬁ+)

which commutes with the translation (x,r,z) — (x,r,z+1).

Proof of 1.3. The canonical homeomorphism is the

composition of homeomorphisms

XARXZ/(x_,o,) 2 XxRxZ /(B_,e,) = X*RxZ/(B_,p,) -
To see for example that XxR*Z/(w_,ec, ) = XxR<Z/(f , ) ,
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note that the underlying sets cari both be identified with
((Xx®) - im(o<+)) x Z . The identity is then a homeomorphism.

Some choices will be needed in the proof of 1.2.
Choose homeomorphisms e_: R —— J+2,+[ and
e :R —— J-=,-2[ which are the identity on [+3,+e[
and on J-=,-3] respectively. Choose also a homeomorphism
s ‘IRXZ/(e_,e+)

of 7. (Here we use notation as in 1.3; the generator of 7

R commuting with the actions

acts on Rx Z/(e_,e+) by (r,z) — (r,z+1) and on R
by r — r+1 .) Choose A so that the composition
R ¥ Rx{0} < RxZ/(e_,e,) —2— R

agrees with the identity in a neighbourhood of 0eR

Proof of 1.2. (This is also given, in a slightly different
setting, in Madsen-Rothenberg [21, Part III.) We can assume
that m = 1. Let g be a point in TOPb(MxTR‘j+k+1; Zk) ,
and assume that g has bound <1 with regard to the last
coordinate.(This means that (pg(x) - p(x)ll €1 for all

Xe€ MxTRj+k+1, where p:M><‘rP\‘j+k"'1 ————> TR 1is the projection
to the last coordinate.) Put X = Mx®RI*K in 1.3, and

. . -1 -
x_ = idyxe_ , &, = idyxe ., p_=gxg , ﬁ+=go<+g

Then X=*Rx2/(B_,f,) = XXRxZ/(x_,e,)

¥ xx (Rxz/(e_je,)) % XxR by 1.3, and XxR = Mx RIHEHT
Therefore gx idz : XxTRx'/-’-/(d_,%,_) — X>xRxZ/(R_,R8,)

1

can also be regarded as a homeomorphism w(g) from

MxRITE*T ¢ itself. This defines the map w on the



subspace of 'TOPb(MxTRj+k+1;'Zk) consisting of all g

having bound s1 with regard to the last coordinate. But the

inclusion of this subspace is clearly a weak homotopy

equivalence, or a homotopy equivalence after materialization.
Showing that uw is homotopic to the identity

amounts to showing that the map g +—— uw(g)-g_1 is

nullhomotopic. This is an easy consequence of the fact

that uw(g)-g'1 agrees with the identity in a neighbourhood

of M’<Rj+k x {0} , by construction. (Use an Alexander trick,

which means pushing the two halves of uw(g)-g-1 towards

M x RITE x {+} and M x RITE « {-~} respectively, by

conjugating with suitable translations.) This completes the

proof in the topological case. The proof in the smooth case

is identical; of course the choices e e_ , A above

+ 14
have to be smooth.

1.4.NOTATION. We define TOPb(M>an) as in 0.4 and regard
it either as a fantasy space or as a simplicial set, using
the materialization functor. If n = 0, we simply write TOP(M).
Note that homeomorphisms in TOP(M) are the identity on oM.
Accordingly, TOP(M’<Dk) is the space of'homeomorphisms of
M xDX which are the identity on (MxDX). Relative versions
will be marked as such; for instance, if aoM is a
codimension zero submanifold of oM , We write TOP(M;Q M)
for the fantasy space (or simplicial set) of homeomorphisms
of M which are the identity on oM - JM .

If M is smooth, it is often technically convenient

to let DIFFP(MxR®) consist of all bounded diffeomorphisms
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£:MxR?: — - MxR®  which agree with the identity on
an infinitesimal neighbourhood of M x RP (which means
that the higher derivatives also agree on JdMxR® ).

For the rest of this section, we work in the
topological category; all statements have analogues in the
smooth category, with identical proofs. In fact, proofs
usually consist in applying a suitable Alexander trick
(isotoping perturbations towards e ) which works in the
smooth case as well as in the topological case because

there can be no isolated smoothing obstruction at o= .

We will often use the label "alex" in these situations.

A typical example is the map from TOPb(M><Dk KRP)

to .QKTOPb(MxTRk+n) defined as follows. Take a bounded

k kK R

homeomorphism f:M = D xJRn —— MxD R, and regard

it as a bounded homeomorphism f: M xTRk ~RY —s MKTRk xR
kan C MXIRK xRD

For zeﬂk,let trz:Mxmkxmn — MXRk‘Rn be

by extending trivially outside MxD

the translation by 2z . The map
tr_z-f~trz‘ if zeR

zZ
identity if 2z = =

is then a continuous map from ‘Rktj{m} to TOPb(MxTka1En),

Identifying 1RkLJ{m} with Sk, regard it as a k-fold

loop alex(f) in TOPb(MxTRk+n).



1.5.PROPOSITION. The map

alex: TOPP(M x D¥ xRP) FopP (Mx RE¥R)
is a weak homotopy equivalence.
Proof. We may assume that n = O , because otherwise

we know from 1.2 that R

k an) QkTOPb(M XTRk+n)

alex: TOPP(M x D
is a homotopy retract of another map y

alex: TOPP(M x DX xg%; 2P) —» o¥ToPP(M < RE*R; Z7)
defined by the same method. The latter will be a weak
homotopy equivalence if

alex: TOP®(M x (81)® «D¥) —— Q¥ropP(M « (s7)2xRY)
is (use covering space arguments). The factor (51)n can
be absorbed in the symbol M.

We may also assume that k = 1, because otherwise

2 plxp'xp? ... «xp!

e
R

, and the map can then be written
as a k-fold iteration.

When k =1 and n = 0, proceed as follows. Let E
be the space of all pairs (f,g) where f,g:MxR ——> MxR
are bounded homeomorphisms (equal to the identity on oMxR)
such that

glM X Jmoo, 1] = identity, glM x [z,+[ = fIM X [z,+]

for some 23>0 . (This is a fantasy space, of course;
the bounds on f and g are required to exist locally,

as in 0.4, and z is also required to exist locally.)
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Let EO < E be the subspace consisting of the pairs

(f,g) with f = id. Clearly E, ¥ TOP(MxD'). We will prove:

1.6.LEMMA. (i) E 1is contractible.

(ii) The diagram

E > E TOPP(M < R)

0 (£f,8) — £

is a fibration (after materialization, cf. end of section Q).

Proof of (i). If zemWm , let tr, : MxR Mx R

be the translation by z . The map

E ——E; (f,8) —0s ((tr_z-fg"1-trz)~g, g)
is the identity if 2z = O and becomes (f,8) — (g,g)
as 2z tends to +w , since f and g agree on M x {z}
for large =z ..Therefore E can be deformed into the
subspace E' consisting of all (f,g) with f = g
But E' is contractible, as is shown by the deformation

E' x [0,+=] — E' ; ((g,8),2) +— (trz-g-tr_z,trz-g-tr_ ).

z
(Remember that M x J-wo,0] = identity.)

Proof of (ii). Using the materialization functor, we

regard the map E — TOPb(M>ﬂR) as one of simplicial
groups. Our task is to show that it is a Kan fibration
of simplicial groups, which amounts to saying that it

maps onto the identity component of TOPb(Mxﬂi).
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But the identity component of any simplicial group is
generated by the simplices whose zeroth vertex is the
base point.

Suppose then that {f : MxR —— MxR | tea™}
is a typical n-simplex in TOPb(foR) ; let bea™ be
the zeroth vertex, and assume that f, = id. Apply the

b
isotopy extension theorem 1.1 with X = MxR

C = C_1 U CZ the union of two small closed tubular
neighbourhoods about M x {-1} and M x {2z} , for some
(large) real number z ; and V = V_, UV, the union
of two slightly larger open tubular neighbourhoods

about M x {-1} and Mx {2}. Specify the embeddings by

J¢

J = 1inclusion J = f
t!V_1 ! tIVZ thz

(They are indeed embeddings because z is considerably
larger than the uniform bound on {f } ). Now 1.1 yields
a family of (possibly unbounded) homeomorphisms

Jy : MxR —_—— 5 MxW® (tea ; Jp = identity )
restricting to the identity on oMxWR and equal

to jt on C , and we let

Iy on Mx[-1,z]
gt = ft on M x (z,+[ for teAn.
identity on M x]-eo,-1]

Then {(ft’gt) | tea™} is an n-simplex in E which
lifts {f | te A™}. This proves 1.6.




Completion of the proof of 1.5 : From 1.6 we get that
TOP(MxD') <> E; ¥ QTOP°(MxR) ,

but it is not clear that this homotopy equivalence

agrees with the map alex of 1.5.To prove this we need

the missing arrow in a commutative diagram

’\

TOP(Mx D) < E,
Cone on TOP(MxD') ----» E

l

sToP(MxD!) —21€X _ 7opP(MxR)

Write the cone on TOP(MxD') as TOP(MxD') A (rw,+e]
where -= serves as the base point of [Feo,+=]
Recall the definition of E as a space of certain pairs,

and define the missing arrow by

(tr_ -f-trz , £) if 220
fAaz +r-— R “ )
(tr _prEetr, tr_,-f-tr, ) if zx50
Here f£: M><D — M XD is a homeomorphism, 2z 1is a

real number. (or 4+, -» ) , and f is obtained from f

1

by extending trivially outside MxD' < MxR . The proof

of 1.5 1is finished.

There is a slight refinement of 1.5, as follows.
For simplicity take n =0 1in 1.5. Observe that
CﬁTOP(M) is contained in TOP(M><Dk) as the subgroup

consisting of all homeomorphisms M><Dk —_— Mx:Dk



k

preserving the projection to D" . Also,

a¥ror(M) < aXToPP(MxR¥)  because TOP(M) c TOPP(MxRX).

1. 7.PROPOSITION. There is a weak homotopy equivalence

alex: TOP(M x D¥)/c¥ToP(M) a¥ropP(m xTRk)/ﬂkTOP(M)fat
4

where TOP(M). . < TOP°(MxRK) is a subgroup

containing TCOP(M) as a deformation retract.

Proof. We work with fantasy spaces again. Note that the
map in 1.5 1s a group homomorphism (always use the

KropP(Mx®¥)  induced from the

multiplication on Q
multiplication on TOPP(M xR¥) ). It sends

a¥Top(M) < TOP(MxDX)  to the subgroup

Q“ToP(M),,, € OFTOPP(MxR¥) |, where TOP(M),,. consists
of all homeomorphisms in TOPb(M’ﬂRk) preserving the
projection to ‘Rk . The deformation retraction of

TOP(M)fat into TOP(M) 1is clear (use an Alexander trick),
and the composition

a¥rop(M)

k ~ K
map of 1.5 £ TOP(M)fat = NTTOP(M)

is homotopic to the identity.

Define the bounded concordance space ﬁb(M‘KRn)

to be the fantasy space of all bounded

homeomorphisms f: MxR™x D1 —— MxR%=xD which




v
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are the identity on MxR% x {~1] U (MxR*)x D’

If f is such a homeomorphism, i.e. a bounded concordance,
let df: Mx®R® — MxR®  be the restriction of f

to MxR"x (+1} 2 MxRP

1. 8 .PROPOSITION. There is a weak homotopy equivalence

alex: €°(MxRD) A(TOPP (M x 2+ /T0PP (M xRP)) .

Proof. Given a bounded concordance

£: MxRY) xD! —— (Mx®RP)xD ,

define a bounded homeomorphism f£:(MxRP)xR —— (MxR?) xR

by the rule
f=f on (M ><TRn)><D1
f=1id on (MxR®)x l-e,-1]
f = 9fxid on (MxR™) x F1,+e[

Then the formula zZ b— tr_z-f‘trz defines a map
from TRy {-e=,+=} to TOPb(M>an+1). Here tr, is
translation by =z , acting on the last factor of (MxR™)xR® .

If 2z = -, then tr_z-f-trz is the identity; if 2z = 4o ,

then tr__-f-tr, = 9df xid : (MxR")xR (M xR™) xR
Therefore {tr_z-f-trz | z € G-, +1} defines a loop
in TOPP(MAR®* 1) /TopP(MxR®) , which we call alex(f).
This defines the map.

To prove that it is a homotopy equivalence, let Y
be the homotopy fibre of the inclusion
TOPP(M xR?) «—— TOPP(M xR™ ). This is conveniently
defined as a fantasy space. The projection

Y Q(ToPP(M x R** 1) /T0PP(M x RP))




1.13

is a weak homotopy equivalence (see section 6). Also,
the map which we Jjust defined factors as

P (M xRD) Y -2, a(TorP(M xR™ 1) /TOPP (M<RD))

because for any bounded concordance f we can regard
{ tr_z-f'trz | z € [~oo,+]1 ] as a typical point in Y
’\

There is a strictly commutative diagram

ToPP(MxRE xD1) s €P(MxRP) —2 . TOPP(MxRD)
Ylalex =
QTOPP(Mx R V) <, ¥ > TOP?(M <RD)

in which the rows are fibrations up to homotopy (by 1.2).

Therefore the arrow in the middle is a homotopy equivalence.

1.9 .REMARK. There is a standard involution on ﬁb(MXIRn)
which consists in turning a concordance f upside down
and composing with (6f><D1)_1. Define an involution on
Q(TOPP(M xRP xR )/TOPP(M xR®)) by conjugating with the
flip ~jd: R —— R on the last factor of

MxR™ xR , and reversing loops. Then the map in 1.8

commutes with involutions.

1. 10.PROPOSITION. There is a weak homotopy equivalence
alex: €2(M x DK x RD) L RO (M rKT)
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Proof. Let X = Mx D'

, and dX = Mx{+1} =3X . Then

1
€°(M x DX xR™) = TOPP(X x D*xR™, 9,X xD*x®®)  and
eP(MxR¥P) = TOPP(XxREF?, 3 x < RE*?) ; see 1.4 for
notation in relative cases. Therefore 1.10 is a special
case of a relative version of 1.5, whose proof is similar
to that of the absolute version. Notk: the map in 1.10
is obtained in the usual way, by embedding Dk in Rk

and pushing off towards infinity in all possible directions.

So far we have not discussed stabilization maps
between concordance spaces. The stabilization map
€(M) —— €(MxDX)  is defined so as to fit into a

homotopy commutative diagram

€M) —= , TOP(MxD', Mx {+1})
ka

N

TOP(M x DX x D

A

T M xD%x {+1 U Mx3D¥ x DY)

~J

v

1

€(M x Dk) —= > TOP(Mx D* x D , M x D< x {(+1})

(Note that M ank xD1 is just a collar attached to

M x DX x {(+1} , which is why it can be ignored.)



An explicit description is as follows. Choose an

L
enbedding e: Dkx D1 —_— DkxD1 as in the picture:

e(sk—1 XD1)

_— T~

| =

t/ e(DX x D)

1 1

Given a concordance of M ,say f:MxD —— MxD

take products with Dk to obtain a homeomorphism
Mxe(D¥ xD') —s Mxe(D¥xD'). Extend this over all of

M x DK 1

x D in the evident way to obtain a concordance
of MxDX
There are similar stabilization maps
Eo2(MxRY) ——> €P(MxDX«R™®). In 1.11 and 1.12 below
we combine these with the deloopings given by 1.10 and 1

to construct a spectrum QWh(M)

.8
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1.11. DEFINITIONS. Let J be the category of finite
dimensional real Hilbert spaces; a morphism from V to W
will be a linear map V — W preserving the scalar product.
If V is in & , we let V® be the one-point
compactification of V ; it is a poi;ted space with base
point e .

Write F(V) = TOPP(M x (VR ))/TOPP(M x V)

If V1<—» V2 is a morphism in the category 3 , write
Vy,= V, @ v# and define an induced map F(V,) —> F(V,)
by taking the product with the identity on V1 . This
makes F into a functor.

Suppose that V and W are objects of d . For
any zeV let r,: VBWER ——> VBUWER be the
unique rotation which sends (0,0,1) € VBWOR to a
positive scalar multiple of (z,0,1) and which restricts

to the identity on the orthogonal complemenf of

{(az,0,b) | a,b € R} € VeWe®R . Define a continuous map
&: VEAF(W) —— F(VOW) by

6(z,f)

r_z'(idv»xf)-r‘z
O (oo, ) = base point
where £ is a point in TOPb(M x (W& R)). (See 0.6.)
We regard ¢ as a natural transformation between functcrs
in two variables V and W .
(Proof of continuity of & : Any doubts about
continuity must be due to the exceptional role played by

the point = in V° . There is another formula for ¢ in
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which o ¢ V¢ no longer appears exceptional, but Oe ve

does; the formula is

O(z,f) = (r_z-(1vx £f)-r,) (r ~(1V><f)-rm2)'1 ,

with r _ = 1limr (a>0) and f as before.)
o2 3o Az

—0Z,

The functor F and the binatural transformation &
form what is called a coordinate free spectrum; see section 2.
For the moment it is sufficient to observe that the spaces
F(RO), F(ﬁg), F(Rz), ... and the maps
6: EF®R®) 2 (R)°A F®R®) —— FR™)

constitute a spectrum in the usual sense. Call it flgg(m)

1.12.LEMMA. The diagram

‘éb(M xR™) stabilization ‘Gb(M % DX xR

:J*mo

1.8 QR xRPHE)
- Jm. .
QF®R™) © QOFFRPK) )

commutes up to a preferred homotopy.
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Proof: This is a consequence of two "infinitesimal principles"”
For the first, choose €>0 and let TOPP=&(MxRrKEHT)

consist of all bounded homeomorphisms in TOPb(MxTRk+1)

1C TRk+1
be the disk of radius 10¢ about the origin, and let

1
K+ K+1 o
y, MxR®"") be the space of embeddings

with bound <€ . (See the proof of 1.2.) Let 10&-D*

EpP= (M x 106D
j:Mx']Oa-DK+1 —_ Mx1Rk+1 with bound < ¢ (meaning
that J 1s ¢-close to the standard inclusion, the

Rk+1

distance being measured in the -direction only ).

First infinitesimal principle: The restriction map

My L peP=E(M x10e DK, MxrEHT)

res:TOszE(M xR
has a homotopy left inverse gq , so that q-res = id.
(Proof: Assume ¢=1. Inspection shows that the wrapping map
w: 0P (M xRE* Ty s op(M x (s1)¥*Y)  from the proof
of 1.2 factors through EMBP=1(Mx 10.-DK*1, mxg¥E+1)y,
But w has a homotopy left inverse.)
For the second infinitesimal principle, let
Kc 7Rk+1 = TRKGBTR be a closed smooth connected
codimension one submanifold without boundary. Suppose that
there exists a compact set CcK such that for all xeK-C
the tangent space 7T(x) of K at x contains the
vertical axis OeaR C TRk@TR . (Always regard <(x) as a
linear subspacevof ‘Rk+1.) Then 1Ek+1—1( has two components,
one of which has bounded image under the projection
TRkGTR ‘———»TRk; call this the interior component.
Such a K gives rise to two maps g4, &, from ¢(M)

to the space of maps of triads



X = map((D¥xD?,0¥xdD",0%«D") , (TOPP(MxRK*1),TORP(MxRE), %))
as follows. For xeK 1let n(x) be the inward normal

vector of K at x, of length € , where ¢ 1is very small.
Identify Kx D1 with a subset of Rk+1 by the rule

(x,v) —> x+v-n(x) for xeK and veD!. Given a point

in €(M), say f:M ><D1 —_— MXD1, we now define

E: MXTRR+1 —> M *YRKH in the expected way. Namely, .’ffv agrees

~N

with 1id,x £ on KX('MXD1) M’<(K’<D1)C MxTRk+1; it

K
agrees with the identity on M x (ext.comp.of TRk+1—(Kx D1))

1

and with Jdf xid on Mx(int.comp.of TRk+1-(K>< D1)).

Then the map

Kk+1

R — ToPP(MxRE*Yy 5 2 s tr_z-f-trz

Kup! — 1oPP(MxR¥*1), provided we

k+1

extends to a map D"xD

regard p¥x p’ as a compactification of ?Rk ®R' ¥ R

in the evident way. Call this extension g1(f)
Continuing with the same f , let f: MxR —o MxTR
be equalv to £ on MxD1, equal to the identity on MxJ-o,-1]

and equal to Jf xid on Mx[+1,+o[ . (See the proof of 1.8 .

k+1

For xeK identify Re®7r(x) with R by the rule

(v,2) Y z+v'n(x) , where veR and ze=T(x). Let
h: D1 —> RU {~o, +on} be an orientation preserving
homeomorphism. Then the following rule defines a map

from R to  ToPP(MxrK*T):

base point if y ¢ Kx D! < K+
Y —

T x-n(v)-n(x)’ (f *1d7(x)) " Tryin(v) - n(x)

if (x,v) ¢ KxD and y = x+v-n(x) .
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(Remember the identification Re@®T(x) = TRk+1.) Again, this
map extends over the compactification Dkx D1 of ‘RKEBRj H
call the extension gz(f).

Second infinitesimal principle: The maps

£1:85° ¢(M) —— X are homotopic.
(Proof: Applying the first infinitesimal principle, replace
spaces of bounded homeomorphisms by spaces of bounded
embeddings throughout. Since g is the width of a tubular
neighbourhood ¢f K , it can be taken arbitrarily small.
Note that all bounded homeomorphisms in sight have bound €.
The homotopy is then obvious, because}the maps res-g,
and res-g, Very nearly agree.)

In the application to 1.12, let K Dbe such that the

1—I{ contains the half-axis

interior component of TRk+
[0,+0[ < 0erR <= ﬂ{k@ﬂ{1 as a deformation retract.
Interoret 84 and g, as maps with target

¥+ (1opP (M xRE* 1) /T0PP(M xRX)) . Then g,, &, are
essentially the maps which 1.12 asserts to be homotopic,

so long as n=0 in 1.12. For n>0 the proof is similar ;
the idea is to absorb the factor 1Rn in the symbol M .

If this is unintelligible, the reader snould still be

able to prove 1.12 by a brutal verification.

In the corollary below, Q(E) denotes the zeroth
infinite loop space associated to a spectrum E , and SRE

is the n-fold suspension of E .
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1.13.COROLLARY. There are homotopy equivalences
asPan(m)  ® Lin €P(M DR

for n»-1, the limit being taken with respect to
stabilization. In particular, the loop space of Q(Q!Q(M))
is homctopy equivalent to %32 f(M><Dk) . (The limizt
should be interpreted as one of fantasy spaces, cf.0.5.(vi),

or as one of simplicial sets; it is also the homotopy limit.)

The next topic to be discussed is Theorem B.

Recall from the introduction that Tabb(MxJRn) is the
simplicial set whose k-simplices are the bounded
homeomorphisms Ak xMXTRn _ Akx M XTRn which preserve
the blocks d,ASxMxR™  for Osisk . This is truly

a simplicial set and not a fantasy space; but even the

fact that it is a simplicial set requires proof, because
the degeneracy operators are not obvious.

Let A be the category with objects [n] = {0,1,...,n}
for n >0, and with monotone maps as morphisms, so that
simplicial sets are contravariant functors from A to
the category of sets. Suppose that p:[k] — [J] 1is an
epimorphism in A . This induces a linear surjection
Pyt AF — AP sending vertices to vertices. Let V(p)
be the space of linear maps i:Aj —_ AF such that
Py-1 = id: Ap -——>AF . These maps 1 are not required to

send vertices to vertices, but they are determined by
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their effect on the vertices of Aj ;s therefore

vip) 2 IT (p) " Mtst)
s € [J]

The evaluation V(p)><Aﬁ -— AF s (i,2) — i(2) is onto.
Now if y is a Jj-simplex in Tabb(M><Rp) , then there
X . . * . ~_b n .

is a unique k-simplex p (y) in ;TOP " (MxR") making

the following square commutative:

V(p) x (Aj ’*M"TRn) —_— AkxMan

*
id x y p (y)

V(p) x (A9 xMxR®) —— 5 AKxMxRD

) ~
This defines the degeneracy operators in TOPb(M>an)

Interpret TOPb(MxTRn) as a simplicial set using
the materialization functor; then there is an inclusion
TOPP(M x R®) ©—s TOPP(MxR®) . Write TOPP(MxR™)
for the simplicial set L_J TOPb(M>ﬂRn) H similarly
TOPP(MxR™) = () TOPP(MxR®) . (See the introduction.)

1.14 ."THEOREM B". The inclusion of simplicial sets
b oo ~.b oo
TOP (MxR™) S&——— TOP (MxR")
is a homotopy equivalence. (Therefore so is the inclusion

TOPP(MXR™) /TOP(M) <— > TOP(M xR™)/TOP(M) .)

Procf. We will show that the inclusion induces an

isomorphism on Ty for all k>0. Fix k. Write
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i = Topb(Dk><M><Rm) ;s regard this as a fantasy space,

preferrably. Let X< X consist of all bounded

homeomorphisms in f preserving the projection to Dk

Clearly X 53.QFTOPb(M*ﬂ?m). There is a commutative square
T (%) (3 L &
(1) (2)
T, (TOPP (1 xR™)) (4) 7, (TOPP(M xR™) )

with horizontal arrows induced by inclusion and vertical
arrows defined ad hoc, but still obvious. Clearly (1)

is an isomorphism since X ® oKpopP(M xR™) ; clearly (2)
is onto. We will see in a moment that (3) is an

isomorphism, which forces (4) to be onto.

By 1.5, there is a homotopy equivalence

~n =) ~n oo
X = TOPP(DKx M xR®) —2 5 o¥TopP(MxR™*¥) |, so that

the inclusion X C»i corresponds to the inclusion
AXToPP (MxR ™) <= ¥TOPP(MxR™*E) ; see also 1.7.

Therefore (3) is an isomorphism and (4) is onto.

Injectivity of the homomorphism (4) can be proved by a

relative version of the argument which proves surjectivity.-

We leave this to the reader.
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1.15.REMARK. The homomorphism

~

b
= 'n—k(TOP (

T, (TOP(M)) ——> wk(T’é’pb(Mxm“)) M xR™))

induced by the inclusion can be factorized as follows:

im [’n’k(TOPb(MXTRk)) — Tx’k(TOPb(M xTRk“))J

Ty (TOP (1)) > (TOP(M XK™))

To define the 1ift, represent an element in ﬂk(TOP(M))
by a homeomorphism Ak><M __ . ¥xM whica is the
identity on 5(AF><M). This determines an element in
To(TOR(a8 x 1)) % T,(TOP(D* x M)) . Now use 1.5 to go
from  T,(TOP(D*xM)) to M, (TOP> (M xR%)). Checking that
the dotted arrow is an isomorphism is straightforward.
Using 1.7 1instead of 1.5, one obtains a relative

version in which all simplicial groups in the diagram

are divided by their common subgroup TOP(M).

1.16 .REMARK. There is a well known relationship between
bounded homeomorphisms/diffeomorphisms and lower algebraic
K-theory which is described in an appendix (section 5).

It will be used in proving Theorem C , but not in

proving Theorem A. It can also be used in giving a quick
proof of Theorem A when M is simply connected and

dim(M) > 5 .
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2. COORDINATE FREE SPECTRA

In constructing the map

, QR (M) ™)
A

TOP°(M x R™) /TOP(M) —o > Q(sT A
promised in the introduction, we shall make essential use
of the fact that the spectrum .QEQ(M) of 1.11 has the
structure of a coordinate free spectrum in the sense
of May [1] . In this section we give a definition of

coordinate free spectra, geared to our needs, and derive

a few basic consequences.

We investigate coyariant functors F from the
category & defined in 1.11 to a suitable category of
spaces — this could be the category of all topological
spaces, or (preferrably) the category of fantasy spaces. To
avoid distraction, let us be naive and work with ordinary
topological spaces in this section.

A functor_ F from 4 to the category of topological
spaces is continuous if, for arbitrary V,W in J , the map

Mor(V,W) x F(V) —— F(W) ; (g,x) > g,(x)
is continuous. Here Mor(V,W) is the space of morphisms

with the usual topology.

2.1.DEFINITION. A coordinate free spectrum consists of a
continuous functor
F: 4 —— category of pointed topological spaces

and a map




&: VA F(W) —— F(Vew)
natural in both variables V and W, such that the composition
F(W) £ {0}°AF(W) 2> F({o}@W) 2 F(V)

is the identity for all W in J .

We often write F instead of (F,&6). Note that the
spaces F(mo),F(ﬂg),F(Fg),... and th;‘suspension maps
sF(RY) ¥ (RHSAFP®R™) —2— F@®R™)
form a spectrum in the usual sense,with a generous definition
of that word. This will also be writtemn F .
Examples of coordinate free spectra are:
F(V) = v& = v&a\ s° (the sphere spectrum)
or more generally
F(V) = voA Y
where Y 1is a pointed CW-space. The maps & are obvious in

both cases.

2.2.PROPOSITION. Let (F,50) be a coordinate free spectrum and
let V,W,X be objects of J . Then the following diagram is

commutative up to a canonical homotopy:

Cc

VAG

VOAWCAR(X) ——— (Ve W)CAF(X)
o
[}

VAF(W®X) —2  , F(Vawex) .
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Proof: Fix veV, weW. For te[0,1], let v, ,w, € VOW
be defined by the equations

VitW, = VW

<vt,wt> =0 , where {,> 1is the inner product;

w, = ct(w+tv) , for suitable c¢, in R

t

So vy =V, Wy =W, but v, = 0, wy = V+w. Picture, with t=1/3:
’\

\')

Define £ : F(X) ——— F(Vew®X) to be the composition

V,w,t
F(X) F(VeweX)
W R
{vt}x{wt}xF(X) ”
<vt>°/\<wt>c/\F(X)
inclusion,
A
v OSAF(¢wy> ©X) o » F(V> @ W) @X)
Define  f£.: VOAWCAF(X) F(VOWEX) by
ft(V,W,x) = fv,w,t(x) in case V,w F .

Then fo is equal to the composition

VeAWCAF(X) — VeAR(WBX) —— F(VOWSX)
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and f1 is equal to the composition
VEANCAR(X) —— (VO W)AF(X) —2— F(VE W &X)

using the last clause of 2.1. So {f o<t<l} 4is the

¢l
required homotopy. Continuity is easily established by

w

observing that if one of v,w is large, then one of VoW

must be large for arbitrary te[o.l].

2.3.DEFINITION. An involution on a coordinate free spectrum
(F,6) is a natural transformation tw:F — F such
that twetw = identity, and such that the following diagram

is commutative for all V,W in ¢ :

VeAR (W) —2—— F(VeW)

VCAtw tw

VoAR(W) —S—~ F(VOW) .

For example, if F is the suspension spectrum associated with
a CW-space Y , so that F(V)==V°AY , then any involution on Y
determines an involution on F .A more interesting example

can be found in the next section,

Now suppose that P? is a smooth compact manifold with
boundary, smoothly embedded in a euclidean space ‘RN for some
large N. (Later we shall specialize by letting P =TRP" )
Write TP or just T for its tangent bundle. Note that the

tangent space T& of P at x¢P inherits an inner product
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from TRN. If F is a coordinate free spectrum, we can
therefore form a fibre bundle F(t) over P whose fibre
over xe€ P is Fer)

write PS°1 for the quotient P modulo oF
Let Q(PS°IAF) be the zero-th infinite loop space
associated with the spectrum pSoLF ¥ that is, Q(PSOLAF)
is the homotopy direct limit (=telescope) obtained from
the spaces .QP(PCOIAF@Rm)) by letting m tend to e .
(We use the compact open topology for loop spaces, and also
for the space of continuous sections of F(T) which occurs
in the next proposition.) From now on the notation r¢...)
will be used for the space of sections of the fibre

bundle "..."

2.4 .PROPOSITION. There is a Poincaré duality cum
stabilization map st: M(F(T)) — Q(PCCIAF)

Proof. This is obtained by composing two father obvious

maps. To describe the first, let v Dbe the normal bundle

of P% in TRN , with Thom space T(v) . Again, each fibre

v, of vV is a Hilbert space. Note that T(v) is the union,
but not the disjoint union, of the one-point compactifications
V; = vxLﬁw}. Any section s of F(t) determines a pointed

map T(v) —> F@®Y) ;

i}

g e vS s yas(x) € VIAR(T,) v 6(yas(x))e Flv@T,) ¥ F(RY)
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We have therefore constructed a map

(1): [M(F(t)) — space of pointed maps from T(v) to FURN).
The other map is a familiar Poincaré duality map. Take a
pointed map £f:T(v) — FCRN) . Then the composition

SNQHRNxﬂw} collapse T(v)c°l projection A £ PCOlAF(RN)

is an element in .QN(PCOIAF(RN)) C Q(PCOlAF) . (We hope
the notation T(V)COl is self—explanatory.) Therefore we have
constructed a map

(2): (space of pointed maps from T(v) to FORN)) — Q(PCO1AF).
Combining (1) and (2) gives the map in 2.4. By 2.2, it is
essentially independent of the integer N and the embedding

P;)RN

. Note that P°°L =P if P =¢ .

Suppose next that P! - U® are closed smooth manifolds,
with UT embedded in.TRN . Then it is reasonable to search
for a map P(FCEP)) —_ P(FCtU)) to fit into a
commutative diagram

r(rc?)) L rreY))

st st

Q(P+AF) inclusion N Q(U+AF)

Such a map exists, but it requires some preparation. Choose
a tubular neighbourhood of P in U , with fibres

orthogonal to P .

2.5.NOTATION. Let the orthogonal tubular neighbourhood be
given by a vector bundle r:E —~ P with zero section

i:P'——;E , and a smooth codimension zero embedding f:E —U
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such that f+i = inclusion: P — U .

We will also need an isometric isomorphism
o s f*(tU) — (ir)*f*(TU) of vector bundles over E ,
restricting to the identity over i(P)c< E. This can be
chosen at random, or it can be manufactured using parallel
transport in the Riemannian manifold U. In more detail,
any point x e E can be connected with ir(x) by a straight
line segment; the image of the segment under f 1is a path

in U along which tangent spaces can be transported.

'2.6.PROPOSITION. Any orthogonal tubular neighbourhood of P
in U gives rise to a map J: F(F(tp)) —_— F(FCtU))
making the square

rFEEP)) —— r(EEY)

} |

Q(P+AF) — Q(U+AF)

commutative up to a preferred homotopy.

Proof. Let s be a section of F(TP) . For xeP and zeE ,
let f(z)eU Dbe the image of 2z under f in 2.5.
Define j(s) by

j(s)(£(z)) = image of zAs(x) unaer the composition

F(=)~!

S AF(zE) 2 F(E@T) T FR(T)) F(zyz)) -
where o is the bundle isomorphism in 2.5. If yeU 1is not
of the form f£(z) as above, put Jj(s)(y) = base point.

This defines the map J

(Digression: If F is a coordinate free spectrum of

fantasy spaces, then the formula for j(s) does not give




a continuous section unless we insist that £:E — U

in 2.5 extend to an embedding f: E — U of the fibrewise

disk compactification E of E , and that o« be defined

over all of E . We call such a tubular neighbourhood regular.)
Commutativity of the square in 2.6 1is proved by

dividing the square into two, as suggested by the proof

’\
of 2.4. (Write map,(...) for spaces of pointed maps) .

r(r(ct)) J r(rcY))

l l

map, (T(vF),F®Y)) ——— map, (T(v"),F®RY))

l l

Q(P+AF) —~ Q(U+AF).

The vertical arrows in this diagram are defined in the proof

Fal

of 2.4., and the horizontal arrow in the middle is

composition with the collapsing map T(VU) —_ T(vP)

Commutativity is now easy to check.
Now let Tc U be the compact codimension zero
submanifold obtained by deleting the interior of a regular

tubular neighbourhood of P in U

2.7 .PROPOSITION. The diagram

r(r(e?)) I r(r@Yy) —XestHIetoR . (™))
lst lst : st
Q(P+AF) inclusion> Q(U+AF) collapse . Q(TCOIAF)

is commutative up to preferred homotopies.



Comment: Suppose given a diagram

A f .8 g . ¢
bk
Al ___f_'___, Bt ——— C!

b

of pointed spaces and continuous map§ such that gf = *
and g'f' = * . Suppose we wish to show that it is
sufficiently commutative for all practical purposes.
Then we need three homotopies. The two obvious ones are
{x: 3 £'p ™ qf and {y4d e g'q ¥ rg , with 0sts1.
These two give rise to a homotopy between maps from A to C',
* = g'f'p ¥ glaf ® rgf =*

or a map from A to C'. Clearly this map should be
equipped with a nullhomotopy {zt}

In proving 2.7, construct the homotopies {xt}
and {y,} 1in such a way that {g'x,} and {ytf} are

strictly zero. Then take {zt} to be zero also.

We shall need twisted versions of 2.4, 2.6 and 2.7
which are a little harder to state. In the situation of 2.4,

suppose that the smooth manifold Pn'C/RN comes equipped
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with a double covering g:g —> P , and suppose that the
coordinate free spectrum comes equipped with an involution
tw:F — F . Write <t for the tangent bundle of P, and
let Ftw(T) be the fibre bundle over P wnose fibre

over X €P 1is

() = F('rx)xzzg'1(x) :

where Z, acts on F(TY) by tw, and on g—1(x) by

permutation.

2.8.PROPOSITION. There is a stabilization map
rEY(z)) —— Q(§°°1AZZF) :

~col

with Z2 acting on P by covering translations and

on F by *tw.

The proof resembles that of 2.4 and is left to the
reader. Next, let P,U,T and F be as in 2.7, but suppose
that U is equipped with a double covering U—U

and that F is equipped with an involution tw.

2.9.PROPOSITION. There is a diagram, commgtative up to

nreferred nhomotopies,

P(FtW(,CP)) J F(Ftw(TU)) restriction ‘—-\(Ftw(TT))

st | lst lst

3 inclusion Y collapse  q¢pcol
Q(P+AZZF) Q(U+AZZF) (T Az,

F)
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We conclude this section with a few historical
remarkg. Coordinate free spectra were introduced by
May [1] and Puppe [1] . Our definition is slightly
different from May's ; it is more functorial, but does not
include the strict associativity that May requires.
However, the proof of 2.2 shows that associativity of
the suspension <& up to all higher coherences is
automatic in our version. We are content with that,
especially since our main example (in 1.11) does not
satisfy strict associativify.

The result in 2.4 is a reformulation of Poincaré
duality in the language of coordinate free spectra; in
particular, the map st defined there is a homotopy
equivalence if F 1is a coordinate free Q -spectrum.

This means that the adjoints F(¥) — (VF(VSW) of the
suspension maps 62 VEAF(W) —> F(V®W) are homotopy
equivalences for arbitrary V, W in 4 . We do not claim
any originality here: the same point of view is used e.g.
in Bsdigheimer's work on configuration spaces h]

A section space of the type discussed in 2.4 occurs

in Theorem 1 of Anderson-Hsiang [1, ; it is a very close

relative of the section spaces we are going to use.
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3. THE HYPERPLANE TEST

Let F Dbe the coordinate free spectrum defined in 1.11.
Its values F(V), for V in J , are fantasy spaces.

As we have indicated the results of section 2 can be
applied to F . They will be so apolied; when all the worx
has been done the reader may want to use the materialization

functor in order to see genuine maps between genuine spaces.

For V in 2 , we let -1: Mx(VeR) Mx (VER)
be the homeomorphism sending (m,v,r) to (m,-v,-1).

Define tw: F(V) — F(V) by tw(f) = (=1)-£-(-1) ,

where f is a point in TOPb(Mx (VEBR)) and represents

a point in F(V). Then tw 1is an involution as in 2.3.

Let T be the tangent bundle of RP® ; let RP" = s®
and assume that RP® is embedded in some ‘RN. By 2.8,
there is a Poincaré duality cum stabilization map

t
rFY(T)) —— Q(szZZF)

with 22 acting on S by the antipodal-map and on
F = IlEQ(M) by tw. This is of interest to us because

we want to compose it with the map in the next propositicen.

3.1.PROPOSITION (Hyperplane test). There is a continuous map
ropP(Mx®* 1y /ToP(M) —— > [(F(T))
where T is the tangent bundle of RP” .
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Proof. Let T be the tangent bundle of s? . We regard

TRn+1

s as a subset of , regardless of where RPH lives;

S0 %x<a1R is canonically and linearly identified with
Rn+1 , for each xe¢ st.

To each f in TOPb(MxTRn+1) we must associate a
section of Ftw(T) , or equivalently, an equivariant
section of F(T). For any x:eSn , We can regard f as an
element of TOPb(MX(’?"x ®R)) since %’xem = mn+1 ;
therefore we can regard f as an element of

F(%,) = TOP°(Mx (¥, ®R))/TOP° (M x &)

So f does give rise to a section of F(T); it is

equivariant. It depends only on the class of f modulo TOP(M).

Now compose 3.1 with 2.8 to get a continuous map

TopP (M xRP* 1) /TOP(M) —— (5P A, F)
2

3.2.PROPOSITION. The square

TOPP (M xR®) /TOP(M) —o Q(Sff'1 A, F)
2

inclusion inclusion

ToP(MxR™* 1) /TOP(M) ———— (5 A, F)

Z5

is commutative up to a preferred homotopy.

Proof. This follows from 2.6 , or rather its twisted version.

By inspection, the square
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TOPb(M xR™) /TOP(M) hyperplane test F(Ftw(tn-1))

(*) inclusion j of 2.5

TOPb(M’HRn+1)/TOP(M) hyperplane test = F(Ftw(fn))

is commutative up to a preferred homotopy, where ’rn-1 and

@ are the tangent bundles of ®e?™1  and RP®, respectively.

3,3.COROLLARY. The maps in 3.2 stabilize to yield a map
&: TOPP(M xR®)/TOP(M) ——> Q(ST A, F) = Q(ST A, QWB(M)).
+ 22 + 22 ==

This is the map promised in the introduction.
It is most suggestive to think of ® as a map between
towers of fibrations whose effect on each stage is, in some
sense, stabilization. This is the content of the next
next proposition, which 1is obtained by plugging together
two diagrams. The first is the one in 2.9 with P = RP?™
and U = RP® |, so that T is contractible , and T°°%= s%ys®
where Z2 acts by interchanging the wedge summands. The
second is the diagram (*) from the proof of 3.2. There
is only one reasonable way to plug these together. Note

that the composition

ToPP (1 x R™+ 1) /Top(M) —> T(FT¥(tY))
lrestriction

rE™Et) 2 F®RY
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agrees with the projection
b n+1 b n+1 By o n
TOP (M xR )/TOP(M) —— TOP (MxTR )/TOP (MxR™) = F(R™).

This proves what we want:

3.4 .PROPOSITION. The diagram L

TOPP(M xR™) /TOP(M) , Q(sfj‘1 /\ZZF)
10PP (M xR 1) /TOP(1M) ‘ a(s™ /\ZZF)

}

ToPP (M x R®+ 1) /TOPP (Mx RP) = F(R®) ———— Q(ZPF)

is commutative up to preferred homotopies. (The bottom
horizontal arrow is the inclusion

FR®) < lim  QF(®™) = @) ,
which may also be called stabilization.) Recall that three
homotopies are needed, as in 2.7. Both columns are

fibrations up to homotopy after materialization. (A diagram
f

of pointed spaces and maps X Y E .z , with gf = *,
is a fibration up to homotopy if the inclusion of X into |

the homotopy fibre of g is a homotopy equivalence.)

3.5.REMARK. Suppose that M is simply connected, dim(M) ' 5,
and that k 1is in the topological concordance stable range
for M . Then from 5.7 we know that F@R"™) is an
n-connected (n+1)-fold delooping of the concordance space
€(MxD"). (See also 1.10 and 1.8.) We also know from 5.7
that Q(=PF) is an n-connected (n+1)-fold delooping of the
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stabilized concordance space ¢(MxD"). By 1.12,

the map FR®) — Q(2PF) in 3.4 is just an (n+1)-fold
delooping of the usual stabilization map &(MxD") — €M xD7)
and is therefore (k+n+1)-connected by assumption on k , '
and a fortiori (k+1)-connected. An easy induction

using 3.4 now shows that & in 3.3 is (k+1)-connected.
Therefore Theorem A is proved for simply connected M with
dim(M) > 5, since then TOP(M)/TOP(M) ¥ TOPP(M xR™)/TOP(M)

by 1.14 and 5.7.

3.6.PHILOSOPHY. Here is some additional evidence
for Theorem A in the nonsimply connected case. In 1.15

we identified Wh(TSP(M)/TOP(M)) with
im [ﬁh(TOPb(Mx7Rn)/TOP(M)) —_— nh(TOPb(MXTRn+1)/TOP(M))}.
Go from there to

im {wn(C(si‘1 AZZQ‘._«_I?}}(M)) —_— 'n-n(Q(Si_l /\ZZQ@(M)))}

'
T QU] Az fins ()
by the hyperplane test. (The isomorphism labelled ! can
be deduced from a suitable definition of Postnikov covers,
such as in Dold {1, ; recall that QWwhs(M)  is the
C-connected Postnikov cover of QWh(M) .) The result is

a factorization
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T, (TOP(M) /TOP(M))  ==v--memeemenn > w*(o(szzznvv:hs(M)))

T, (TOPP(M x R™) /TOB(M)
I;

T (TOPP(M x &™) /TOP(M) — T(Q(ST A, Qun(M)))
h

which one would like to see induced by a map

&5 TOP(M) /TOP(M) — QST A, QWhs(M))
i

3.7.DIGRESSION. There is a slightly different way of
describing the connection between faP(M)/TOP(M) and
concordance theory, in the spirit of Weiss (11 . To keep
the discussion simple, let us concentrate on TSP(M)
rather than fEP(M)/TOP(M). Fix an integer n*0, and
regard Wh(TSP(M)) as a factor group of ﬂb(TOP(M><Dn)),
as in 1.15 . We will construct

(i) a fibration p:E —» sn-1 whose fibres are

homotopy equivalent to the topological concordance

space f(M'an‘1) :

(ii) an involution on the total space E , covering

?

the antipodal involution on SP-7

(iii) a map ¥ from TOP(M XxD%) +to the space of
equivariant sections of p
Write p: E— ®RPPV for the quotient of p:E — SB~7
by Z, ; accordingly write [(p) for the space of

equivariant sections of p, which is also the space of
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sections of P
In order to explain the connection with the approach
used so far, we also construct the missing homotopy

equivalence e in a commutative diagram

TOP(M x D7) = QnTOPb‘(M xR™)
(iv) k¢ hyperplane test of 3.1
e B
r(s) = - B(r(FTY(T)))

Here are the details.
(i): For each sesn'1 c R®, let < c R} ve
the subspace generated by s , let <sf' be the orthogonal
complement, and let D¢s> , D<sf‘ be the unit disks
in (s> and (sf‘ , respectively. We identify
D¢sy~ x D¢s>  with  D(s¥ +D<sd c rE.
Let Eg be the (fantasy) space of self-homeomorphisms
of MxDds> x D¢s> which are the identity on
M xD¢sH x {-s7 U 3(MxD¢sy ) xD<s> . Clearly
E, 2 €(MxD¢s) 2g(mxD*"1). Define p:E —> S°7

to be the fibre bundle such that p '(s) = E, for

n-1

all seS (This must be interpreted as a fibre bundle

with fantasy spaces as fibres, say.)

(ii): For feE_ , let Of: MxD¢sy — M xDcse™
be the restriction of £f o Mx D¢sy x {s} 2 Mx D¢sy .
The map
£ — (3f xid, )0 E

E  —— E

S -S i D¢s>
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is a homeomorphism (of fantasy spaces); letting s range

Sn-1

over gives an involution on E which covers the

antipodal involution on sn-1

(1ii): Take an element f in TOP(MxD%) ,
h

meaning a self-homeomorphism of MxD which is the

identity on 3(M xD?). For any s eSn-1, regard f as

an element of E . Dby extending f trivially outside

n

MxD — Mx(D¢s>*+D¢s>). This gives an equivariant

section V(f) of p:i:E — Sn"1
(iv): Recall how the homotopy equivalence

alex : TOP(M xD%) —= aPropP (M xR?)

was defined : Given fe TOP(MxD") , define

F: MxRY — MxR® by extending f trivially
outside M xD". Then the rule zZ — tr_2~f-trz ,
where z € R? and trz denotes translation by =z ,
defines a map from RE U {} to TOPb(MxTRn) , or an

n-fold loop in TOPb(M>an). This defines alex , as a ma

'y

between fantasy spaces.

Much the same method works if we pick f in the

Hy

space Eg defined above, for fixed s € Sn-1. Let
be equal to f on MxD<sy x D¢s» ; let it be equal
to ¢fxid on (MxD¢sY> ) x {ts | t 21} , and let it
be equal to the identity outside MxDs>" x {ts|t>-1}

Picture:
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f= £xid
here
S
(
f=f here
syt
= D<s»
;_v_\-%_,_/
¥ D¢s)t R
f=identity here
s>
Again, the rule z F——»_tr_z~f'trz defines a map

from  RPU{=}  to TOPP(Mx R%)/TOPP(M x ¢s>* ).
Letting s range over gn-1 , or rather over TRPn'1,
we obtain in this way a map of fibre bundles

E ——— "o

A

5 QPF ™ (z)
®pP] =, ®p*T
which is a homotopy equivalence on the fibres. It induces a

homotopy equivalence e:[(p) = P(Qthw(T)) = QPF(Ftw(T))-
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The digression shows that the article by Weiss (11
is about a very special case of Theorem A, with numerical
results: the case when M 1is smooth and equal to a point.
In this case G(*) and DIFF(*) are of course contractible,
but DE%F(*) is not; instead ﬂb(ﬁE?F(*)) is (obviously)
isomorphic to the group of pseudo-isotopy classes of
oriented diffeomorphisms of S‘j for all J»>0 , which is
in turn isomorphic to the group Gj+1
(3+1)-dimensional homotopy spheres if J*5 . Rather

of oriented smooth

amusingly this subverts the philosophy we used in the
introduction: that Thecrem A should be used to reduce the
study of the allegedly difficult space G(M)/DIFF(M)

to that of the allegedly easy space G(M)/DE%F(M) . Clearly
that philosophy is less appropriate in the smooth case

than in the topological case.

3.8.DIGRESSION. Here is another interesting point of view:
the map @ in 3.3 is a kind of Kahn-Priddy map.
(See Kahn-Priddy [11 or Segal [1] .) To explain why,
we shall reformulate the results of sections 2 and 2
in abstract (and sloppy) tTerms.

Let E bé a continuous functor from the category &
of 1.11 to the category of associative topological
monoids. We assume that WO(E(V)) is a group for each V

Examples:
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(1) E(V) = TOPP(M=xV)

(ii) E(V) = DIFF’(MxV) if M is smooth

(iii) E(V) = 0(V) = orthogonal group of V

(iv) E(V) = 6(V) = monoid of self-homotopy

equivalences of tge unit sphere S(V)z< V.
There are many others. With E we associate a coordinate
free spectrum F with involution by letting
F(V) = E(VeR)/E(V)

the involution tw and the suspension maps have been
defined explicitly in the special case when E(V) = TOPb(M><V),
but the definitions make sense in general. The hyperplane

test and 2.8 give a map

¢: E(R") := holim E®R™) Q(STAZZF)
of which 3.3 1is a special case.

Now concentrate on examples (iii) and (iv) Just
above. Clearly the spectrum F in example (iii) 1is the
sphere spectrum §P , with trivial involution. But the maps

o(VeRr)/o(v) G(VeRrR)/G(V)

are approximately (2dim(V))-connected for any V in &4
(See e.g. Wall [1],Cor.11.3.2 .) It follows that the
spectrum F in example (iv), stripped of its coordinate
free structure, is also a sphere spectrum §p with trivial

involution. Therefore in example (iv) we obtain

®:c

a(RP))
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where G c Q(SO) consists of the components of degree 1.

It is not difficult to see that composing ® with the

transfer from Q(RPT) to Q(ST) v Q(SO) results in

inclusion =- ¢4 : G — Q(SO) ,
where c, 1is the constant map with value 1 . So 2 1s

a Kahn-Priddy map. We will return to this point in a future

paper.




4. PROOF OF THEOREMS A AND C
In this section we work with simplicial sets (rather
than fantasy spaces); the word space will often be used

to mean simplicial set.

Let X ©be a pointed simplicial set with a filtration

FiltO(X) < Filt1(X) < FiltZ(X) c ...cX, so that
X = v Filti(X) .
i=0

Assume that Filti(X) contains the base point and has
the Kan property for all i (then so does X). Call an
n-simplex y in X positive if the corresponding
simplicial map fy: A — X is filtration preserving,
which means that

£ (i-skeleton of a™) <€ Filt,(X) for all i

The positive simplices form a simplicial subset
POSy <= ¢
which is still filtered if we let Filt,(P9°Xx) = P°SxnrFile,

Then Filti(posX) has the Kan property .for all i , and

i-skeleton of P°Sx c Filti(posx) for all 1i.

Now assume additionally that X is a simplicial group
and that Filti(X) is a simplicial subgroup for each 1i.

Then POSy is also a simplicial subgroup of X , and
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~)

(POSX) /F11t4(X) POS(X/Filty(X))

The isomorphism makes sense if we regard the simplicial
set X/FiltO(X) as filtered by simplicial subsets
Filti(x)/FiltO(X).

We can interpret X as a tower of fibrations
with stages Filti+1(X)/Filti(X) , and we can interpret
POSY as a tower of fibrations with stages

Filti+1(p°sX)/Filti(posX) . The inclusion map
. pos . pos ) .
Filt, ,( X)/Fllti( X) =« Fllti+1(X)/Fllti(X)

induces an isomorphism in wb for j>1i20 , whereas

m(Filt, ,(PO%%) /Filt, (POSx)) = o for j€1>»0.
This is clear from the definitions if the homotopy groups
in question are interpreted as relative homotopy groups
(of the inclusion maps Filt,(P9%X) < Filt, ,(P%%x)
and Filti(X)<»-Filti+1(X) ). So the stages of the tower

POSx are Postnikov covers of the stages of X

We now specialize by letting X = TOPb(MxTRm) ,
with filtration given by Filt,(X) = TOP°(Mx®Y) for i3 o0.

4.1.PROPOSITION. There is a map P°°&  mpaking the

following square commutative (up to a preferred homotopy):

POSTOPP(Mx R™) /TOP(M) - - - --.B.__. > Q(ST A, Quns(M))
S

[ |

TOP®(M x R™) /TOP(M) 2 > Q(sf/\zzmj_g(m))
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Proof. The spaces Q(S* AZ.QEQ(M)) and Q(S” A, QWhs(M))

have filtrations given by

: oo i-1
Filt, (Q(ST A QUB(H)) a(sy™! Ag aun(w))

Filti(Q(STAZZQWés(M)) | Q(si-1 /\22£2W=hs(M))

The map @ preserves filtrations; if we make the same
. . pos 3 . :
requirement for , then existence and essential
. Pos & . .
uniqueness of is a straightforward consequence

of obstruction theory. Suppose namely that we have already

constructed a 1lift

- pos .
Filti(posTOPb(MXTR )/TOB(M)) =-----> 2. a(s; 1/\ZQV_~I_1’_15(M))
,tE

| o

TOPP (M xRY) /TOP(M) 2 > (st Az QB 0)

In trying to extend this to a lift

pos &

Filt., . (PoSToPP(Mx®™)/TOP(M)) . Q(S* A, Qwns(M)
i+1 + 22 =

we encounter obstructions in the relative homotopy groups

3 Q(Si/\ZZQYJTk_ls(M)) _ Q(SiAZZQer_l(M)) )

for j> i. (We can say J > i because the 1i-skeleton of
POS7opP(M x®R™)/TOP(M) is contained in Filt(...) ,

where the 1ift is already defined.) But these relative
homotopy groups are zero (for J > i). Therefore obstructions
vanish and choices are unique up to contractible

indeterminacy.
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4.2.PROPOSITION. Write Bi for (i-1)-connected i-fold

deloopings. For any i3> 0, there is a diagram

- posz -
Filt, (POST0P°(M<R™)/TOP(M) @ (st~ A, Qubs(m))
S
i |
|
1) .
. b o pOSé R
Filt, ,(POST0p®(M<R™)/TOP(M) > o(si/\zzn*gs(m))
BX*1¢(Mmx pt) Bitte(mx p™)

(with €(Mx D7) = lim %(MX'DK) ) whose columns are
fibrations up to homotopy, and which is commutative up to
preferred homotopies. (Three homotopies {xet fyyt and

{zt} are required, as in the proof of 2.7 and 3.4.)

Proof. Note that Bi+1f(M><Dm) is the i-connected
Postnikov cover of Q(Ziﬂﬁg(M)). If we replace Bi+1f(Mx D™)
by Q(Z;QEQ(M)) in the diagram, then its existence and
commutativity up to three homotopies {xtg , {yt§ and {zt}
are obvious from the proof of 4.1 and from 3.4. '
It is not difficult to 1lift the two maps with target
a(ziaWn(M))  to the Postnikov cover Bi*le(mxp™)

The difficult thing is to lift {th and {zt% to

B}+16(M><Dm). Solution: Requiring the existence of a 1lif*%

of (zt} is tantamount to prescribing the 1ift of (yt}
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over the subspace Filti(posTOP...) c Filti+1(p°sTOP...).
The partial 1ift of ({y.} can then be extended over all

of Filt, (P®StoP...) because the inclusion

i+1
Filti(posTOP...) s Filti+1(p°sTOP...) is i-connected.

4,3.PROPOSITION. If k 1is in the topological concordance
stable range for M , then the map pos in 4.1
is (kx+1)-connected. If dim(M) > 5, the square in 2.1

is a homotopy pullback sguare.

Proof: If k 1is in the topological concordance stable
range for M , then the bottom horizontal arrow in diagranm 4.2
is (x+i+1)-connected and therefore (k+1)-connected.
Suppose for induction purposes that the top horizontal
arrow in the same diagram is (k+1)-connected; then so
is the middle horizontal arrow, which gives the induction
step. Letting 1 tend %o infinity we obtain the
connectivity claim in 4.3.

For the proof of the last sentence of 4.3, we make the
following observation. Suppose that W, X and Y are
commutative squares of pointed spaces and maps of the form

" — .

Lo

. — @

interpret W, X and Y as covariant functors from a

category X with four objects (the corners) to the
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category of pointed spaces. Suppose also that a natural
fibration up to homotopy

f

W s X g .Y

is given; this means that f and g ,are natural transformation:
such that W(c) _fr . X(c) 8 Y(c) is a

fibration up to homotopy (see 3.4) for each object ¢ in 7.
Suppose finally that W and Y are homotopy pullback

squares. Ig it true that X 1is a homotopy pullback square ?

The answer is yes if the upper left corners in W and Y

are connected.

Use this as follows: Assume that dim(M) 35 . Let

Filt, (POSTOPP(M x®™))/TOP(M) ——> Q(S]7 A, Quns(N)

o] N

TOPP(MxRY)/TOP(M) — (st A, Qun(u)
fpid

be the square from the proof of 4.1, and let

Bl+1€(MxDi) —_— 5 Bi+1€(Mx D7)

Di+1/Di = l {

TopP(mxRI* Yy /ropP (M xrY) — q(zihvn())

where the horizontal arrows are stabilization maps and

the vertical arrows are Postnikov covers. By 5.3

bl

the square Ei+1/E%_ is a homotopy pullback square.

By inductive assumption, so is 3. . Therefore so is O

i i+l ?
by the observation Just made, since 4.2 gives a natural
fibration up to homotopy o —— Di+1 Ui+1/Ca.

Letting i tend to infinity completes the proof.
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We see from 4.1 and 4.3 that all the things we
wanted to know about TOP(M)/TOP(M) are true for
pOSTOPb(MxTRm)/TOP(M). The moral is that we have to produce

the missing homotopy equivalence in a commutative diagram

POSpopP(M®™®) /TOP(M) -- -2 - - - > fB%(M)/TOP(M)

| [

b =) ol N N oo
TOP (MxR™) /TOP(M) <—=— TOP°(MxR”)/TOP(M)

This looks like a combinatorial problem. We will solve it
by constructing a bisimplicial set which contains
POSTOPO (M« R™) /TOP(M) and  TOP(M)/TOP(M) as its
vertical and horizontal O-skeleton, respectively, and
which is homotopy equivalent to both. We begin with a few

elementary facts about bisimplicial sets. See Waldhausen [2]

4.4 .DEFINITION. As usual we let A be the category with
objects [n] = {O,1,...Jﬁ for n>0, and with monotone
maps as morphisms. A bisimplicial set X. 1is a contravariant
functor from AxA to the category of sets; we write
¥k, 1 for the value of ¥ on ([kl,[3]). We can
interpret X as a contravariant functor

(k1 —— ¥[k,~]
from QA  to simplicial sets; in this case the
simplicial maps

(£xid)":  ¥[k,~] — ¥[m,-]



4.8

(induced by a monotone map f:[m] — [k]) are called
horizontal operators. See the picture below. We can also
regard ¥ as a contravariant funtor

[J] x[—’ J]
from A to simplicial sets; then the simplicial maps

(1d=x£)":  ¥[-,i] — %[ 1]

(with  f:[i] — [j] a monotone map) are called vertical
operators. Finally we call ¥[0,~] and ¥[-,0] the
vertical and horizontal O—sxeleton, respectively.

The geometric realization of

Il x&XK&JV/&J

k,j20
where v denotes the usual relations.
Picture:
horizontal
operator
- . vertical
vertical * } ¢ ¢ ¢ operator

O-skeleton ~

horizontal
O-skeleton
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The next two lemmas are standard knowledge;

formally, 4.6 1is a consequence of 4.5.

4.5.LEMMA.(i) Let g: 4 — ¥ be a map of bisimplicial
sets such that glk,-1: Uk,-] ——— ¥[k,-] is a
homotopy eqﬁivalence for each k (on geometric realizations).
Then g itself is a homotopy equivalence (on geometric
realizations).

(ii) Ditto, but with vertical and horizontal

interchanged.

A.6.LEMMA. (i) Let X be a bisimplicial set in which
all horizontal operators ¥[k,-] — ¥[n,-] are
homotecpy equivalences. Then x is homotopy equivalent
to its vertical O-skeleton ¥0,-] , i.e. the inclusion
is a homotopy equivalence.

(ii) Ditto, but with vertical and horizontal

interchanged.

4.7. EXAMPLE. Let &(n) be the bisimplicial group whose

(k,j)-bisimplices are the bounded homeomorphisms

£: afxad x M xrP AF xad x MxrD

such that

(i) f restricts to the identity on AF"A9><&M=<HP

(ii) pr+.f = pr, where pr 1is the projection to AF xaﬂ
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One can check by hand that the conditions in 4.6(i),(ii)
are satisfied by G(n) , and also by G = U G(n)
The composite homotopy equivalence e givgn by
ToPP(M*xR®) 2 6(n) [0,-1<>GB(n) «z> G(a)[-,0] £ ToP®(MxRP)
is homotopic to the identity on TOPb(M)(Rn) ; to put it
differently, the two evident inclusions of TOPY(MxR?)
into the geometric realization of &(n) are canonically
homotopic (and they are both homotopy equivalences by 4.6).
Sketch proof: Clearly ,e2 2 id. Construct a trisimplicial
group whose (k,J,i)-trisimplices are the bounded
self-homeomorphisms of Ak x A'j x Ai x M xR preserving the

k

projection to A *Cﬁ XAi. Find that e3 Y id also;

therefore e ¥ id.

4.8.EXAMPLE. Let 2Z(n) be the bisimplicial group whose
(k,J)-bisimplices are the bounded homeomorphisms

£: aAfxadxy xrD — AK xadx MxRD

such that
(i) f restricts to the identity on AN x ad x aMxR™
(ii) pry-f = pr, , where pr, is the projection to AJ
(111)  £(aaf xad xux®R?) = g, aFxadx mxr?
4 for Q < i<k, where di is the 1i-th face.

In other words, f 1is fibre preserving in the vertical
direction, but only block preserving in the horizontal
direction.

Again one can check by hand that JI(n) satisfies
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condition 4.6.(ii), meaning that all vertical operators
are homotopy equivalences. (Compare the homotopy groups.)
Now let A be the union of the I(n). Then all maps

in the commutative diagram

TOPP(MxR™) «—VYert. . g . BOTIZ:  opP(y xR7)
| | -

b oy . R . = [N P a0

TOP (MxR™) Tert L g5z TOP (MxR )

must be homotopy equivalences (on geometric realizations)
by Theorem B. (Arrows labelled vert. or horiz. are

inclusions of vertical or horizontal O0-skeletons.)

4.9. EXAMPLE. By construction, Z in the preceding
example is a filtered bisimplicial group; in particular,
each simplicial set  I[k,-] is filtered. Define a
bisimplicial group 3 in such a way that

8(k,-1 = POS(TTk,-1) for all k0.
In some sense 3 is the ideal compromise between

Tab(M) and pOSTOPb(MXTE”) , because

N co k] ~ ~
3r0,=1 & POSTopP(MxR™) and 3—-,0] ¥ TOR(¥)

4.10.PROPOSITION. The inclusions of the vertical and
horizontal 0O-skeletons,
POSTopP(MxR™) <« 3 and TOP(M) —— 3 ,

are both homotopy equivalences (on geometric realizations).
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We postpone the proof because it requires more
bisimplicial machinery. Instead, here is the proof of
theorems A and C, modulo 4.10. We look at the bisimplicial
set 3/G(0) of 4.9 and 4.7 . The inclusions of the
horizontal and vertical O-skeletons,

TOP(M) /TOP(M) ——  3/G(0)
and POSTopP(M x R™)/TOP(M) &——— 3/G(0)
are homotopy equivalences by 4.7 and 4.10. Therefore

TOP(M)/TOP(M) = POSpopP (M x R™) /TOP(M)
This is essentiaily what we had to prove, but we also
wanted the homotopy equivalence to fit into a homotopy

commutative diagram

POSTOPP(Mx R™) /TOP(M) €--==2- ---- > TOP(M)/TOP(:)
TOPP (M x R™) /TOP(M) ——— —»  TOP2(MxR™)/TOP(M)

Consider then the larger diagram

hor. ~
POSTORP (MxR™) /TOP(M) s 3/ G(0) ~—5—— TOP(M)/TOP(:1)

| o]

TOPP (11 x R™) /TOP(M) <

12

~ W -~
TOP™(Mx R™) /TOP(M)

~ |ver. (**) ¥ hor.

l

& /6(0) < > I/6(0)

12
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Deleting the arrow labelled i and inserting the
inclusion 3/6(0) ——  I/G(0) instead, we obtain a
strictly commutative diagram. Therefore commutativity of
square (*) up to a preferred homotopy is equivalent

to commutativity of square (**) wup to a preferred
homotopy. But we know from 4.7 tha; the vertical and
horizontal inclusions TOPb(M>me)/TOP(M) c EE(0)

are canonically homotopic; therefore (**) 1is indeed

commutative up to a preferred homotopy.

The machinery needed in proving 4.10 consists of

a lemma and two remarks. The lemma is a refinement of 4.0
for bisimplicial groups ¥ . Define

Nelk,-] = ) ker( d;: ¥[k,-] —— E[k-1,-1)

i=*0

where the di are the horizontal elementary face operators.
Then N¥[k,-] is a simplicial subgroup of  ¥[k,-1 for
each k>0 . Define similarly N¥[-,j] < x[-,J]
for all J=>0.

4.1 . LEMMA. (i) If N¥x[k,=! is contractible for all k> J,
then the condition in 4.6.(i) 1is satisfied.
(ii) If Nx[-,3j) 1is contractible for all J >0,

then the condition in 4.6.(ii) is satisfied.
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Proof (of (i)). Fix n3>»0. The zeroth vertex map
¥Xnh,-] — ¥[2,-] is a split surjection; we must prove
that its kernel W 1s a contractible simplicial group

(because then the degeneracy map ¥C,-] — X[n,-]

will be a homotopy equivalence, and since n was arbitrary
all horizontal cgerators will be homotopy equivalences).
Filter W as follows: For each j Dbetween 0 and n,

let I(j) be the set of injective morphisms _[j] — [n]

in A wnicn map 0O0e€ [J] to 0 e€[n]. Let

*
W, = m ker( £ : WC X¥X[n,-] — x[i,-] )
¢ feI(J)
Then W, =W and W, = {1} . There is a restriction map
. .
[ ] £7 s W /W > [ ] N[, -]
£feI(y) J £eI(J)

wnich is clearly injective. Using degenerac; operators and tne
v g = J b
group structure in wJ. 1 » one can easily show 1t Co be surjecs

Therefore the assumption in 4.11.(%1) implies contractidiiity

L.12.3EMARK. Suprcoze that ¥ is a bisimplicial group such
that N¥[k,-] is contractible for all k?>0. Then

T, (¥ [0,-1) ® ., (¥) by b4.11 and 4.6. The homomorphism




has the following explicit descripticn by transgreszicn. W

3

int¥lc,-] = /\ k2r( di:x[;c,—]

X[:'s:—l =1 ).

Then int¥Tx,-] < N¥(«,-] , and NX[k,-] is contractible if k>0,
so that

(a)  QNX[k,-]/int¥(x,-1) Ll int¥[k,-]
if k> 0. But the face operator do gives an injection

()  NX¥Mx,-]/int¥[k,-] —— intX[k-1,-] .
Putting (a) and (b) together we get transgression maps

int¥[<,-] ——mm— Q{int¥[k-i,-]) for k> 0.

Now represent an element in WK(I[—,O]) by a k-simplex
in X[-,0] with all faces at the base point. This is then zlso
a 0O-simplex in intI['_k,—]. and represents an element in
Tro(intx[k,——]). Pass from there to ’n‘k(intxto,—]) = TK(X[O,—])
by iterated transgression. It is not difficult to see that the =<uc

homotopy classes under consideration, in 11, (¥[-,0]) and
“ .

in TK(}',[C‘,—]} , have <he same imaze in WK(X)

4,13 .REMARK. For a géneraliza:ion of 4,12, suppose that U c X
is an inclusion of bisimplicial groups such that NU[L(,—] and
N¥[k,-]  are both contractible for all k> 0. Then we know that
U and ¥ satisfy condition U.6.(i), and therefore so does

XY = ¥/t . Again, the homomorphism
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b.16

7‘—*(:3 [O:—I )

e

Te(J[=,01)  —-- T (3)

can be described by transgression: For k2 0, let

NG [k, -]

"\ a7(vase point) ,
. 1
i+90

r'(‘ 7 = , \ d

Ll N 5

all i

R
—-—

o3

where the d, are the hnorizontal elementary face operators
(going from Y(x,-] to B[k-1,-1). Inspection of 4.11 shows that
the inclusion  NX[k,-]/NU(k,-] ——— NZ[k,-] is an

isomorphism of simplicial sets. Therefore NQEK,—I is

contractivle if k >0; therefore also the map
d,: NI (k,-]

0 NQ[k-1,-]

is 2 Kan fibration onto its image [3 We get transgression macs

k-1
int3k,-] ¥ 0, ;) < Aintlk-1,-1)

as before.

[Ers

Proof of 4.10: We will first show that N3[k,—|

contractible for all k >0. Note that

1}
T
O
@]

t]

- . @, N
N3k, (\x o™ x R, .'I’(QDAA*R ),

- . N TAX . ; - b .
lltravion of W™ ©y sucszaces R to maxe
sense of the superscript "pos". See 1.4 for relative notactior.
There is an obvious identification of simplicial sets

~

POSTORP (M x AKX R® Mxd oK x®®) 2 POSgd . k=1 e,

0
also, JWE(DOS€b(M ka-IXTE”)) is isomorphic to
1 3 - i+ \—1.
im ]’:rrj(’€b(MxD’( “xRY)) —— 'Trj(fb(Mka LR l,hl




[
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for any Jj >0, almost by definition. But the inclusion map
3

%b(Mx pk-1x Rj) fb(M KDK_IXIRJ+1) is nullhomectonic.
(By 1.8, it can be delooped t£o an inclusi?n map F(RJ) - :(RJ+1)H
where  F(V) = T2EU(~ 0Ly (vew))/mooP(m 2Kl ey pon any
finite dimensional real Hilbert sprace V . Replacing M by |
M x Dk—l in 1.11, we see that the inclusion F(RJ) —_— FCR5+1)
i{s nullhomotopic; in fact there are two essentially different |
nullhomotopies, giving fise to a map F(mﬁ) —_— QFCRJ+1) ) o
The conclusion is that NB(},—] has trivial homotopy groucs.
This proves one half of 4.10, namely, that the inclusion
30,-] —— 3 is a homctopy equivalence.
We now use U4.12 to check that the homomorphisn
T (3=,01) - TM(3) = T (300,-1)
is an isomorchism. Note that
int3fk,~1 = POS7opPu . A < rR)

so that

T (tre8k,-1) = im [TJ(TOPb(Z«IKAkxTRj) — %(Topb(r&x&‘m”l)
whereas
™1 (1ne3(k-1,-1) = in ry.—d,ﬂ(rv:.:b(:-zx&“"quu‘+l> — Ty (TR
The transgression ﬂ}(iﬂtS[K,—l) — 7}+l(in33ik-l,'z)

is then simply ottained from the Anderson -dsiang isomecrohiznm

- 4 .
K Tx RY l)) by passing

1 3 ~ .
(TP« A «R%)) ¥ L (10RP (i
J J
to factor groups. Using U4.12 we then find that the homomorphisms

'"’J'(TBJP(M)) = (36,01 ———— 7, (30,-D) =71’J.(posTOPb(MxZR°°)j
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have the following unsurprising description. Represent an

~o
element in ﬂk(TOP(M)) by a k-simplex with all faces at the

base point. This represents an element in 1 ﬂb(TOP(M><&K))
m k . I x . -
= 'No(LOP(M< DTy) = ‘WK(:Or (MxR™)) , and therefore an el=ment

in ‘Wk(pOSTOPO(Mx‘R”)). It is quite easy to check that this
AR s ,oos .
homomecrghism from 7 (TOP(M)) to T« TOP® (MxR¥)) is an

isomorphism. This proves the second half of 4.10.

L.14.REMARK. The last sentences of the proof glve an explicit
description of the isomorphism T*(TCTiP)) = ﬂg(pOSTOPb(MX1P“)).
Using 4.13 instead of 4,12 one obtains an equally explici
description of the isomorphism

T (TSP /T0P() F e (POSTORD (X R®)/TOR (1))

Since &S :70p(M)/TOP(M) ——> 2(S, A, QWhs(M))
u2 —
15 defined to be the composition of tne hcmotopy equivalence

TOP(M)/TOP(M) POSqapD (1x R® ) /TIP(M) with

POSg . POSToo0(uxR™),/TCP(M) 3(s, A, QWns(M)) ,
L
=S

-~ . p - Y~ A 2 ! .. —~ “a - . o
thiszs shows %hat She effz2zt of ¢ or hometapy grours 13 what

a it was supposed to be. (Return to 3.6.)
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5.APPENDIX: GEOMETRY AND LOWER K-THEORY

We need to recall the connection between bounded or controlls

. . o, ,.
geometry and lower algestraic K-theory, as dev

[¢)]
p—t

cceld by
Anderson-Hsiang (1] , Quinn [1], (2], Chapman [1] , and
Pedersen [1].

Let N be a manifold (with oN =¢) equipped with a
proper map pP:N —— }Rj . Assume that N has a bounded
fundamental group(oid); see Pedersen [1]. Pedersen investigates
equivalence classes of bounded h-cobordisms (W;N,N') over N ,

under the equivalence relation given by bounded homeomorphism

relative to N.

5.1.BOUNDED h-COBORDISM THEOREM. Suppose that dim(N) > 5. Eguivalenc
classes of bounded h-cobordisms over N are in one-one correspondan

with the elements of an algebraically defined group

Wh(m) ir § =0
n .
kl_ij) = KO(ZWﬁ J =1
7 therwiza
Kl_j(ﬁr) octher ,
which only depends on the fundamental group(oid) T = Wl(i). Tha

product h-cobordism corresponds to the neutral element.

See Pedersen [1] for details. Note that 7 must be finitely
presented since we assume it is bounded. For the definition of the
negative K-groups, see Pedersen [2]. In Pedersen's forrnulation it
1s such that the proof of 5.1 <can be quite analogcous to that of
the ordinary h-cobordism or s-cobordism theorem, which 1s

contained in 5.1 as a special case (J = 0).
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5.2.REMARKS. (i) Theorem 5.1 is valid in the smooth and
in the topological category.

(ii) There is a mild generalization to the case
where ON # @ ; in this case one classifies bounded
h-cobordisms over N , equipped with a bounded product
structure over ON . The obstruction groups (or classification

groups) are the same.

5.3.COROLLARY. Let M be a compact manifocld as in section 1.
If dim(M)+n > 5 , then |

b n - .
’n'j(f (MxR™)) H2+J._n('rr) | for 0<j<n ,
where T = T1(M).
Proof. Write MxDJxR® 9™V - N, keeping 3 fixed; then

T (EP(MAR™)) 2 (P x DIARTI)) = w (€P(MxR))
by 1.10. Here we regard N as a manifold with control

map equal to the projection p:N ——»7Rn'3'1. We will
describe an isomorphism

pr mo(£P(NxR)) ————» hcob(Nx[0,1])

where  hcob(Nx[0,1]) is the group of equivalence classes
of bounded h-cobordisms over NXCO,1] trivialized over
O(Nx[0,1] ). This reduces 5.3. to 5.1. (The group structure
in hcob(Nx{0,1]) can be defined by juxtaposition,

since Nx[0,70uUNx[1,2] = Nx[0,2] ¢ Nx[0,1].)

For the definition of (3, let f: NxD'xR — NxD'xTR
be a bounded concordance. Choose z>0 so large that
NxD'x{0} and f£(NxD'x{z}) are disjoint. Then the
region enclosed by N=<D1K{OF and f(N><D1X{z}) is a
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bounded h-cobordisms over Nx[0,z] = Nx[0,1]. It is

trivialized over d(Nx[0,1]) in the sense that there is

an identification

Nx D'x{0} UIN xD'x[0,2] US(NxDx{z3)

b
~ .

iid vidy !

NxD'x{0} USNx D'x [0,2] U NxD'x{z} Dl x J(NxD,2]).

Picture:

N"D1XTR NXD1X{O}\\ f(NxD x(z?)

Nx{~=1} xR Nx{-ﬂx{O} Nx{-1} x{z}

Nx(1}x® Z] £ Nx[0,z,

This is a provisional definition of the map 3 . We will

see below that [3(f) depends ohly on the component of £ .

It is clear that [(fg) = p(£) + fi(g) for arbitrary f, g
Suppose now that ﬁ(f) = 0 . We must show that f

belongs to the identity component of €P(NxR ) . By
assumption, the bounded h-cobordism over Nx0,1, % Nx 0,z
which we associated with f can be equipped with a bcunded
product structure extending the given product structure
over d(Nx[0,z]). With this information it is easy to

deform f into a bounded concordance g such that g 1is

the identity on Nx D1x{O}. The usual Alexander trick then
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deforms g into the identity concordance.
The surjectivity of [3 can be proved by an
Eilenberg swindle. Take any bounded h-cobordism ¥

over Nx{0,1], trivialized over o(Nx{0,1]) ; and take

another one which is inverse to », 58y M. Let My
be the bounded h-cobordism over Nx[i,i+1; given by
M if i 1is even
E {'f‘ if i is odd .

Let X = &jri , SO that X is a bounded h-cobordism over

Nx (J [E,i+1]) = NxR

x= (_J (K Y Pieq)

i even

Writing

and using a fixed bounded product structure on
Hi O M1 = MpU-M for all even i , one obtains a

bounded product structure 31:X = (NxR) x p! . Writing

R (M Fiq)

one obtains another bounded product structure
jotX —=— (N*R)xD' . Then £ = 35031077 is a bounded
concordance of NxR such that ((f) = M, as required.
To show that ﬁ(f) only depends on the component
of f we invoke a continuity principle which is implicit
in Pedersen [1],[2]. It states the following: Suppose that
a bounded h-cobordism (over a manifold L with control
map p:L -—»‘Rk , for some k >0) has a bounded product

structure over some open subset UcL ; suppose also
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3]
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that U contains the inverse image under p of a large
disk about the origin in”‘Rk. (Here "large" means large

in comparison with the various bounds satisfied by the
bounded h-cobordism and by the product structure over U.)
Then the algebraic invariant vy e Kq_k(71(L)) determined
by the bounded h-cobordism (see 5.1) is zero. Proof:
Inspection shows that BHS(y)= O , where BHS 1is the
Bass-Heller-Swan monomorphism from K1_x(’W1(L)) to
WhCW1(L)><Zk). See the definitions in pedersen [(2].

For a continuous path [0,1] —— Eb(NxTR) ; to— £
we now compare ﬁ(ft) and ﬁ(ft+s) = ﬁ(ft) + ﬂ(ft+é-fg1).
An application of 1.1 and the continuity principle just
formulated snows that ﬁ(ft+€-f£1) = 0 for arbitrary t
and sufficiently small €& . Therefore ﬂ(ft) is the same

for all t ¢[0,1].

5.4 .COROLLARY. If dim(M)+n >5 , then the homotopy set

To(ToPP(Mx B2 1) /T0PP(M «R®))  maps injectively to Ky _,(T)
where T = T,(M). (The homotopy groups T for 0<j<n

are covered by 1.8 and 5.3.)

Proof: Represent an element in ﬂb(TOPb(M>ﬂRn+1)/TOPb(M>an))

1 —_— D'/I KRn+1 .

by some bounded homeomorphnism £: MxRP
For sufficiently large z >0, the region enclosed by
MxTRnx{_z} and f(MxR®x{0}) is a bounded h-cobordism
over MxTRnx{—z}. Together with 5.1 this defines the map.

Injectivity is obvious.
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Let N be the manifold in 5.1 again. If (W;N,N")
is a bounded h-cobordism over N with torsion invariant
X € K1-j(v» , then it is also a bounded h-cobordism
over N' with torsion invariant ye Hﬂ_ij) , say.

Then y = (-1)®T(x) , where n = dim(N) and T is the
transposition or conjugation involution on K1_J(v').
It depends only on the first Stiefel-Whitney class
Wi T —— 22 of N or of N'

5.5.COROLLARY. Let M be a compact manifold as in section 1.
If dim(M)+n>5 and Jj20 , then there is a homomorphism

T, (TP QUR™M ) /TP (X R™)) ———— B (255 Ky (7))
which is an isomorphism if 3 >0 and a monomorphism if J = O.
Here Z, acts on K1_n(ﬂﬁ by (_1)m+n-1T , where
m = dim(M) and T = ‘W1(M)

This can also be written in the shape of a long
exact "Rothenberg" sequence relating the homotopy groups
of TOPP(MxR®) and TOPP(MxR™71). See 1.14 for notation.
Indication of proof: Suppose for notational
simplicity that n = O . Represent an element of
Wj(f8Pb(Mxﬂ2)/f8P(M)) by a Jj-simplex having all faces
at the base point. This can be represented in turn by a
bounded homeomorphism  f: A‘j xMxR —— A3 x M xR,
Then the region enclosed by f(ij Mx{0}) and A§><MK(—Z?
is an h-cobordism over A;x Mx{-z}, trivialized over
a(éjx Mx{-z}) , for large z>0 . It determines an element

x in Wh(w)= K(w). If j>O0 , we have to show that
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x4-(-1)j+m'1T(x) = 0 , because only then does x represent
an element in HJ(ZZ;Wh(W)). To this end observe that
x+—(—1)j+m'1T(x) is the Whitehead torsion of the
inclusion dOA§’<MX(O} e 5 X, where X = £(&°xHx{0})
is the top of the h-cobordism under considerafion.

But this Whitehead torsion is clearly gero, as can be seen
by applying =7 to X . This completes the description
of the homomorphism in 5.5 if n = 0 ; the arguments

for n>0 are analogous. Surjectivity (for §>0) can

be proved by a suitable Eilenberg swindle, and injectivity
can be proved by a relative version of the argument which

proves surjectivity.

The corollaries above are by no means new: 5.3 1is due
to Anderson-Hsiang [11 , and 5.5 1is implicit in
Anderson-Pedersen [1] . They are equally valid in the smooth
category (although we have only stated the topological
versions) because of 5.2.(i). We now state secondary
corollaries; again, it is understood that these are also

valid in the smooth category.

5.6.COROLLARY. Let M ©be a compact topological manifold. Then

’Tr_j(flw__l_l(M)) = K1_j(’T\'1(M)) for j=0
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Proof: By 1.13 we have 'rr_j(QV_l'____l'_l(M)) 2 1im Tro(Eb(Mx Dkfoj+1))
where the limit runs over k and is taken with respect
to stabilization. Therefore 5.6 follows from 5.3 (and

its proof).

5.7.COROLLARY. Suppose that M is simply connected.

Then (QWh(M) is O-connected. If also dim(M) > 5, then the
inclusion TOP(M) <—> fan(M*Rm) is a homotopy equivalence;
therefore TOP(M) = TOPP(MxR™) by 1.14. If dim(M)+n> 5
then TOPP(MxRP*1)/TOPP(MxR®) is n-comnected.

g

Proof: The groups K1_j({1}) vanish for j>0 ;
see Carter [1] ,[2], (3]

5.8.COROLLARY. With M as in 5.6, write
FR®) = ToPP(Mx R 1)/ToPP(MxR®)  as in 1.11.

Assume that dim(M)+n >5. Then the inclusion
F(R®) lin AKF@®M™E) = a(z"awn(M))

induces an isomorphism on ‘Wj for 0<j<n , and an
injection on T, . (The direct limit is one of fantasy

spaces, and is taken with respect to the maps G defined

in 1.11.)

Proof.Recall that 1.12 gives us a gocd understanding

of the maps b: FRY) —— QF(Rn+1) once the functor Q
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has been inflicted on them. It follows together with 5.3
TQFR™))  is

an isomorphism for 0<Jjsn. Injectivity of the map

that the induced map 13(F(mn))

ﬂb(FURn)) _ Wb(QF(Rn+1)) is harder to prove,

although 5.3 and 5.4 identify its source with a
subset of its target. Concepts seem tg fail at this point,
so we use a trick.

Write F®™;M) instead of F(®R®) , for greater
precision. Feel free to define and use relative versions,
such as F(R%; M,&OM) where BOM is a codimension zero
submanifold of M. See 1.4 for relative notation.

Step 1: The map & FGRn;Mka) ————»QFCRn+1;MKDk)

is an injection on T, if k>0 . (Proof: F(R%;MxDX) is

n+k,

homotopy equivalent to a union of components of .ﬂkFCR s M)
by 1.5. Again by 1.5, it is sufficient to know that
o} FCRn+k;M) —_— QFORn+1+k;M) is an injection on LI

which we do know.)
Step 2: The inclusion of IIFGRH+1,M <« DX ) in
QFGRn+1;Mx Dk,M xsk—1) is an injection on T, . (Proof:

Using 1.8 identify it with an inclusion map between

concordance spaces, say 1 . This has an obvious left homotopy

inverse r, so that ri® identity.)

Step 3: There is a commutative square
To(FR®M))  —2 s (FR™ T 5m))
; ls

mo(FREMx D M x sk ) B (PP Dk sk )
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where the vertical arrows are obtained by taking products
with p* , and the horizontal arrows are induced by
Now suppose for example that k = 4 . Then by 5.4 and
a suitable relative version of 5.4, the map ¥ is
injective and its image is contained in
1

in [TrOw(fR“;MxD"') —— T (F@™MxDt Mxs?)) |
because taking products with S3 annihilates thé‘algebraic
torsion invariant of any bounded h-cobordism. Using
steps 1 and 2, conclude that p-& is injective.

Therefore o 1is inJjective.

“w
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6 .APPENDIX: MATERIALIZATION

Let Y be a fantasy space. If Y £ @ , choose a base poiﬂt
in Y . Denote by [X,Y]pt the set of homotopy classes
of pointed maps from X to Y , where X is any pointed

4

connected CW-space. The contravariant functor C-,Yjpt
satisfies the conditions in Brown's representation
theorem (Brown [1] ); the conclusion is that there exist a?'
pointed connected CW-space X% and a pointed continuous
map 2 xY — v inducing an isomorphism on homotopy
groups. An obstruction theory argument then shows that

£ [—,Xu]pt |

is an isomorphism of functors on the category of all

"

. el
[_’Ylpt R

ey ¥

pointed connected CW-spaces. (The same argument is normaLl}%

used in proving Whiteheads theorem in homotopy theory.) o
Arguing for each path component of Y separately,

one can easily deduce that there exist a CW-space w4

and a continuous map gu: wd Y which is a weak

homotopy equivalence. See the definition preceding O0.8.

Call gu a CW-approximation of Y.

A more careful look at Brown's representation theorem

gives the following result. If g:¥ — Y is any

continuous map from a CW-space W to Y , then there exist

a CW-space w4 containing W , and a continuous map
gu: WY — v extending g which is a weak homotopy

equivalence. This can be used to show that CW-approximations

4
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of Y are sufficiently unique for all homotopy theoretic
purposes.(Given two approximations, construct a third
containing bcth of them, etc. .)

Now let Ymat be the simplicial set defined in 0.8,

matl. Let g%:wY% — vy

with geometric realization |Y
be a CW-approximation, and arrange WY to be the geometric
realization of a simplicial set. Then gu determines a
map WY — |Y®3%  wnich is simplicial. For if f£:aX —» wU
is a k=-simplex in wd , then guf: Ak —_ Y is a

k-simplex in Y®at

. A brutal check on homotopy groups,
which we leave to the reader, shows that this map

w4 f—lematl is a homotopy equivalence. Choosing a
homotopy inverse |ymat] _, yu , which is unique up to
contractible choice, and composing with gu we obtain

IYmatI

a continuous map — Y which is a weak

homotopy equivalence.

6.1.0BSERVATION. Suppose that Y 1is a fantasy space

and W, X are CW-spaces. Then

[W,l(map(X.Y))matl] = [W,map(X,Y)! = DVxx,Y] = [wxx, | ¥®%

This shows that the fantasy mapping spaces of 0.5.(vii)
have the right homotopy type. Square brackets denote

homotopy classes of maps.
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6.2.0BSERVATION. If ... Y

—_ Yn _ Y

n-1 n+1 — 0
is a direct system of fantasy spaces, with ne¢ 2 , then
( lim Y )®3% » 155 ymat
1~ n N—oo n

(See 0.5.(vi); the limit on the right is one of

. ’\
simplicial sets.)

©.3.PROPOSITION. Let HS— J be an inclusion map of
fantasy spaces with group structure. Define J/H as

in 0.5.(ix). Then the map Jgmat _, (J/H)mat is onto
with kernel H®2%, 5o that (J/m)®at z gmat ymat

Proof: Inspection.

6.4.PROPOSITION. Let A~—— Y be an inclusion map
of fantasy spaces. Write Y, for the fantasy space

quotient of Y by A (see 0.5.(iii)), and write (Ymat%j

mat po o APt e

for the simplicial set quotient of Y
the evident map from (Ymatlv to (Y,V)mat is a homotopy

equivalence of simplicial sets.

Proof. Compose the evident map l(Ymat)Vi — (Y.,)"eE
with the canonical weak homotopy equivalence

I(Iv)matl —> Y. . Our task is then to show that the

resulting map f:

(YmatLJl — Y, is a weak homotopy

equivalence.

Suppose then that g:Sk — Y, is a continuous map,
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for some k 20. We must factorize this through £ ,
up to homotopy. By definition of Y, there exists an
open covering {Vi} of S¥ and continuous maps

gyv; — ¥ such that the square

v, Y
11 i

K

s z Y,

commutes for each i , and such that for arbitrary 1i,J
we have:

either g, = g.
1|ViﬂVJ Jl\)’iﬂv‘j

J
Now choose a triangulation of Sk such that each simplex

or both gilViﬂVJ. and g.leiﬂV factor through AcCY,.

is contained in one of the Vi . Choose an ordering on the

set of vertices. This identifies Sk

with the geometric
realization of a simplicial set. Using this simplicial set
* structure on Sk , we see that the g; define a simplicial
map g from Sk to (Ymat),U . Namely, the restriction

of g; to any J-simplex in Vi gives a J-simplex in

Ymat mat)
n)

. The image Jj-simplex in (Y is well defined.
It is not difficult to see that g is the map we ‘
are looking for. Therefore
£, 55,1785 T —— [s%, v ]
is onto for every k20. A relative version of the same
argument shows that it is also injective. The usual obstruction

theory argument then shows that
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£,: X, (1225 ] —— [x, Y]
is a bijection for any CW-space X . This means that £

is a weak homctopy equivalence.
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