Prof. Dr. R. Wulkenhaar Dr. R. Brüske

SS 06

Übungen zur Mathematik für Physiker II

Abgabe: Donnerstag, 01.06.06, vor der Vorlesung in den Briefkästen

Blatt 8

Aufgabe 1. Die lineare Abbildung $F: \mathbb{R}^n \to \mathbb{R}^n$ sei erklärt durch

$$F(e_i) = \sum_{\substack{j=1 \ j \neq i}}^{n} e_j \quad (1 \le i \le n) .$$

- (a) Zeige Sie: F ist ein Isomorphismus.
- (b) Berechnen Sie $F^{-1}(e_i)$ $(1 \le i \le n)$.

Aufgabe 2. Es sei H der reelle Vektorraum definiert durch

$$\mathbb{H} := \left\{ q = \left(\begin{array}{cc} a & -\bar{b} \\ b & \bar{a} \end{array} \right) \in M(2 \times 2, \mathbb{C}) : a, b \in \mathbb{C} \right\} .$$

(a) Zeigen Sie, daß (e_0, e_1, e_2, e_3) mit

$$e_0=1_{\mathbb{H}}=\left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight) \;, \quad e_1=\left(egin{array}{cc} 0 & -\mathrm{i} \\ -\mathrm{i} & 0 \end{array}
ight) \;, \quad e_2=\left(egin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}
ight) \;, \quad e_3=\left(egin{array}{cc} -\mathrm{i} & 0 \\ 0 & \mathrm{i} \end{array}
ight)$$

eine Basis von \mathbb{H} ist.

- (b) Zeigen Sie, daß für das Matrixprodukt gilt: $q_1 \cdot q_2 \in \mathbb{H}$ für alle $q_1, q_2 \in \mathbb{H}$.
- (c) Zeigen Sie, daß durch $C: \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix} \mapsto \begin{pmatrix} \bar{a} & \bar{b} \\ -b & a \end{pmatrix}$ eine lineare Abbildung $C: \mathbb{H} \to \mathbb{H}$ definiert wird.
- (d) Es sei $\bar{q} := C(q)$ für $q \in \mathbb{H}$. Berechnen Sie die Matrixprodukte $\bar{q} \cdot q$ und $q \cdot \bar{q}$ für beliebiges $q \in \mathbb{H}$.
- (e) Zeigen Sie, daß $\mathbb{H}^* := \mathbb{H} \setminus \{0\}$ eine Gruppe ist mit neutralem Element $1_{\mathbb{H}}$. Dazu genügt es, das zu $q \in \mathbb{H}^*$ inverse Element $q^{-1} \in \mathbb{H}^*$ explizit anzugeben.

Aufgabe 3. Es sei die Matrix $E_{ij} \in M(n \times n, \mathbb{R})$ erklärt durch $E_{ij}e_k = \delta_{jk}e_i$. Man zeige:

- (a) Die E_{ij} bilden eine Basis von $M(n \times n, \mathbb{R})$.
- (b) Es gilt $E_{rs}E_{ij} = \delta_{si}E_{rj}$. Berechne

$$\sum_{i=1}^{n} E_{ii} , \sum_{j=1}^{n} E_{ij} , \left(\sum_{i=1}^{n} E_{ij}\right)^{2} , \left(\sum_{j=1}^{n} E_{ij}\right)^{2} .$$

Aufgabe 4. Auf dem Ring $M(n \times n, \mathbb{R})$ der $n \times n$ -Matrizen über \mathbb{R} sei eine Abbildung

$$T: M(n \times n, \mathbb{R}) \to \mathbb{R}$$
, $T: A = (a_{ij}) \mapsto \sum_{i=1}^{n} a_{ii}$

erklärt. Zeigen Sie:

- (a) T ist \mathbb{R} -linear.
- (b) T(AB) = T(BA) für alle $A, B \in M(n \times n, \mathbb{R})$.
- (c) Bestimmen Sie $\dim(\operatorname{im}(T))$ und $\dim(\ker(T))$ und geben Sie eine Basis von $\ker(T)$ an. (Tip: Aufgabe 3.)

Aufgabe 5. Zeigen Sie: Es gibt keine $A, B \in M(n \times n, \mathbb{R})$ mit $AB - BA = E_n$. Tip: Aufgabe 4.