Übung zur Mathematik für Physiker III

Abgabe: Bis 11.12.2012, 12 Uhr in den Briefkästen

Blatt 9

Aufgabe 1. Prüfen Sie, ob die folgenden 1-Formen ω geschlossen sind, und berechnen Sie die Kurvenintegrale $\int_c \omega$. Nutzen Sie dabei nach Möglichkeit Wegunabhängigkeit:

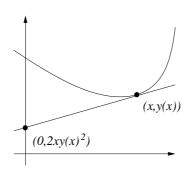
(a)
$$\omega = (e^x \sin y - 2y \sin x) dx + (e^x \cos y + 2 \cos x) dy$$

 $c: [0, 2\pi] \to \mathbb{R}^2, \quad t \mapsto (2 \cos t, 3 \sin t).$

(b)
$$\omega = (2xy^3 - y^2 \cos x)dx + (1 - 2y \sin x + 3x^2y^2)dy$$

 $c : [0, 1] \to \mathbb{R}^2, \quad t \mapsto (\frac{\pi}{2}t^2, t).$

Aufgabe 2. Bestimmen Sie eine differenzierbare Funktion $y:]0, \infty[\to \mathbb{R}$ so, dass für jeden Punkt (x, y(x)) der zugehörigen Kurve diejenige Tangente, welche die Kurve in (x, y(x)) berührt, die y-Achse im Punkt $(0, 2xy^2)$ schneidet (s. Bild). (*Hinweis:* Die zu lösende DGL kann durch einen integrierenden Faktor der Form y^{-2} in eine exakte Form gebracht werden.)



Aufgabe 3. Prüfen Sie die folgenden DGL auf Exaktheit, bestimmen Sie bei Bedarf einen integrierenden Faktor μ der Form $\mu = \mu(t)$ und lösen Sie die DGL:

(a)
$$(2t+3) + (2x(t)-2)x'(t) = 0$$
.

(b)
$$(t^2 + x(t)) - tx'(t) = 0$$
 für $t > 0$.

Aufgabe 4. (a) Finden Sie eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}, x+iy \mapsto u(x,y)+iv(x,y), \text{ mit } u(x,y)=x^2-y^2-x. \text{ (Erraten erlaubt.)}$

- (b) Finden Sie eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}, x+iy \mapsto u(x,y)+iv(x,y),$ mit $v(x,y)=-\sin(x)\sinh(y)=-\sin(x)\frac{\mathrm{e}^y-\mathrm{e}^{-y}}{2}$. (Erraten erlaubt.)
- (c) Bestimmen Sie alle Punkte $z \in \mathbb{C}$, in denen die Funktion $f: z \mapsto |z|^4 2|z|^2$ die Cauchy-Riemannschen DGL erfüllt, also komplex differenzierbar ist. Wo ist diese Funktion holomorph?