Übungen zur Mathematik für Physiker I

Abgabe bis Donnerstag, den 12.11.2015, 10 Uhr in den Briefkästen

Blatt 3

Aufgabe 1. Bestimmen Sie Real- und Imaginärteil sowie Betrag von

(a)
$$\frac{1}{1-i}$$

(b)
$$\frac{2+i}{3-4i}$$

(c)
$$(1+i)^n$$
,

(a)
$$\frac{1}{1-i}$$
, (b) $\frac{2+i}{3-4i}$, (c) $(1+i)^n$, (d) $\left(\frac{1-i}{1+i}\right)^n$.

(*Hinweis:* Gegebenenfalls sind Polarkoordinaten nützlich.)

Aufgabe 2. Die Normalform einer kubischen Gleichung ist $z^3 + pz + q = 0$ mit $p, q \in \mathbb{R}$.

(a) Rechnen Sie nach, dass für $D:=\left(\frac{q}{2}\right)^2+\left(\frac{p}{3}\right)^3>0$ die Lösungen dieser kubischen Gleichung gegeben sind durch die Cardanischen Formeln

$$z_1 = u + v$$
, $z_2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)u + \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)v$, $z_3 = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)u + \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)v$

mit

$$u = \sqrt[3]{-\frac{q}{2} + \sqrt{D}}$$
, $v = \sqrt[3]{-\frac{q}{2} - \sqrt{D}}$.

Dabei ist $\sqrt[3]{a} = -\sqrt[3]{-a}$ für a < 0.

(b) Bestimmen Sie die Lösungen von $z^3 + 6z + 2 = 0$.

Aufgabe 3. Skizzieren Sie die folgenden Mengen:

(a)
$$\{z \in \mathbb{C} : |z - 1| \le |iz - 1|\}$$

(a)
$$\{z \in \mathbb{C} : |z-1| \le |iz-1|\},$$
 (b) $\{z \in \mathbb{C} : 0 < |z-1-i| \le 1\}.$

Aufgabe 4. Wir betrachten die auf der Rückseite beschriebene Konstruktion des regelmäßigen Fünfecks mit Zirkel und Lineal. Zeigen Sie:

- (a) Die Länge h := |0H| ist das Inverse des goldenen Schnittes, also $h = \frac{\sqrt{5}-1}{2}$.
- (b) Die Koordinaten $z_n = x_n + \mathrm{i} y_n$ der Eckpunkte A_n , mit n=1,2,3,4, sind gegeben durch

$$z_1 = \overline{z_4} = \frac{h}{2} + \frac{i}{2}\sqrt{3+h}$$
, $z_2 = \overline{z_3} = -\frac{1+h}{2} + \frac{i}{2}\sqrt{2-h}$.

(*Hinweis*: Für das Inverse des goldenen Schnittes gilt $h^2 = 1 - h$.)

(c) (Zusatzaufgabe, 2 Zusatzpunkte) Es gilt $z_1^n=z_n$ für n=2,3,4 und $z_1^5=1$. (*Hinweis:* Es genügt, $z_1^2=z_2$, $z_2^2=z_4$, $z_1z_4=1$ zu zeigen — warum?)

Konstruktion des regelmäßigen Fünfecks mit Zirkel und Lineal

- 1. Konstruiere in der Gaußschen Zahlenebene den Einheitskreis S mit Mittelpunkt 0 und Radius 1. Die Schnittpunkte des Kreises mit der x-Achse seien $A=1\in\mathbb{C}$ und $B=-1\in\mathbb{C}$.
- 2. Konstruiere das Lot L auf \overline{AB} durch 0 (y-Achse). Sei D einer der Schnittpunkte mit dem Einheitskreis S. Konstruiere den Mittelpunkt G von $\overline{0D}$.
- 3. Zeichne um G einen Kreisbogen mit Radius $|\overline{GB}|$. Der Schnittpunkt des Kreisbogens mit L(=y-Achse), welcher innerhalb S liegt, sei H.
- 4. Zeichne um B einen Kreisbogen mit Radius $|\overline{0H}|$. Die beiden Schnittpunkte mit S seien A_2 und A_3 .
- 5. Zeichne um A einen Kreisbogen mit Radius $|\overline{A_2A_3}|$. Die beiden Schnittpunkte mit S seien A_1 und A_4 , wobei A_1, A_2 auf der gleichen Seite von \overline{AB} liegen.

Dann sind (A, A_1, A_2, A_3, A_4) die Eckpunkte eines regelmäßigen Fünfecks.

