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Abstract

In the arithmetic of function fields Drinfeld modules play the role that elliptic curves take on in the
arithmetic of number fields. As higher dimensional generalizations of Drinfeld modules, and as the
appropriate analogues of abelian varieties, G. Anderson introduced pure t-motives. In this article
we study the arithmetic of the latter. We investigate which pure t-motives are semisimple, that is,
isogenous to direct sums of simple ones. We give examples for pure t-motives which are not semi-
simple. Over finite fields the semisimplicity is equivalent to the semisimplicity of the endomorphism
algebra, but also this fails over infinite fields. Still over finite fields we study the Zeta function and
the endomorphism rings of pure t-motives and criteria for the existence of isogenies. We obtain
answers which are similar to Tate’s famous results for abelian varieties.
Mathematics Subject Classification (2000): 11G09, (13A35, 16K20)

Introduction

In the last decades the Arithmetic of Function Fields has acquired great impetus caused by Drin-
feld’s [Dr1, Dr2] invention of the concepts of elliptic modules (today called Drinfeld modules) and
elliptic sheaves in the 1970s. Both are analogues of elliptic curves. The latter live in the Arithmetic
of Number Fields, like their higher dimensional generalizations abelian varieties. In [BH1, Ha1] we
claimed that pure Anderson motives (a slight generalization of the pure t-motives introduced by An-
derson [An1]) and abelian τ -sheaves should be viewed as the appropriate analogues for abelian varieties
and higher dimensional generalizations of elliptic sheaves or modules. We want to further support this
claim in the present article by developing the theory of pure Anderson motives over finite fields.

To give the definition of pure Anderson motives let C be a connected smooth projective curve over
Fq, let ∞ ∈ C(Fq) be a fixed point, and let A = Γ(C r {∞},OC ). For a field L ⊃ Fq let σ∗ be the
endomorphism of AL := A ⊗Fq L sending a ⊗ b to a ⊗ bq for a ∈ A and b ∈ L. Let c∗ : A → L be an
Fq-homomorphism and let J = (a⊗ 1− 1⊗ c∗(a) : a ∈ A) ⊂ AL. A pure Anderson motive M = (M, τ)
of rank r, dimension d and characteristic c∗ consists of a locally free AL-module M of rank r and an
AL-homomorphism τ : σ∗M := M ⊗AL,σ∗ AL → M with dimL coker τ = d and Jd · coker τ = 0, such
that M possesses an extension to a locally free sheafM on C ×Fq L on which τ l : (σ∗)lM→M(k ·∞)
is an isomorphism near∞ for some positive integers k and l. The last condition is the purity condition.
The ratio k

l equals d
r and is called the weight of M . Anderson’s definition of pure t-motives [An1]

is recovered by setting C = P1
Fq

and A = Fq[t]. In the first two sections we recall the definition of

morphisms and isogenies between pure Anderson motives as well as some facts from [BH1]. Also for
an isogeny f between pure Anderson motives we define the degree of f as an ideal of A (2.8) which
annihilates coker f (2.10). If M is a semisimple (see below) pure Anderson motive over a finite field, the
degree of any isogeny f : M →M is a principal ideal and has a canonical generator (7.3). In particular
f has a canonical dual.

∗The second author acknowledges support of the Deutsche Forschungsgemeinschaft in form of DFG-grant HA3006/2-1
and SFB 478
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Next we address the question whether every pure Anderson motive is semisimple, that is, isogenous
to a direct sum of simple pure Anderson motives. A pure Anderson motive is called simple if it has
no non-trivial factor motives. This question is the analogue of the classical theorem of Poincaré-Weil
on the semisimplicity of abelian varieties. By giving a counterexample (Example 6.1) we demonstrate
that the answer to this question is negative in general. On the positive side we show that every pure
Anderson motive over a finite base field becomes semisimple after a field extension whose degree is a
power of q (6.15), and then stays semisimple after any further field extension (6.16). Let Q be the
function field of C. Then the endomorphism Q-algebra QEnd(M ) := End(M ) ⊗A Q of a semisimple
pure Anderson motive is semisimple (2.7) and over a finite field also the converse is true (6.11). This
is false however over an infinite field (6.13).

Like for abelian varieties the behavior of a pure Anderson motive M over a finite field is controlled
by its Frobenius endomorphism π (defined in 5.2). If M is semisimple we determine the dimension and
the local Hasse invariants of its endomorphism Q-algebra QEnd(M ) in terms of π (6.5, 9.1). We define
a Zeta function ZM for a pure Anderson motive M (Definition 7.6) and we show that it satisfies the
Riemann hypothesis (7.8), and has an expression in terms of the degrees deg(1 − πi) for all i if M is
semisimple (7.7). We prove the following isogeny criterion.

Theorem 8.1. Let M and M ′ be semisimple pure Anderson motives over a finite field and let π,
respectively π′, be their Frobenius endomorphisms. Then the following are equivalent:

1. M and M ′ are isogenous.

2. The characteristic polynomials of π and π′ acting on the v-adic Tate modules of M , respectively
M ′, coincide for some (any) place v ∈ SpecA.

3. There exists an isomorphism of Q-algebras QEnd(M) ∼= QEnd(M ′) mapping π to π′.

4. ZM = ZM ′ .

In the last section we sketch a few results for the question, which orders of QEnd(M ) occur as
the endomorphism rings of pure Anderson motives (10.7, 10.11). There is a relation between the
breaking up of the isogeny class of a semisimple pure Anderson motive into isomorphism classes, and
the arithmetic of QEnd(M). We indicate this by treating the case of pure Anderson motives defined
over the minimal field Fq. In this case QEnd(M ) is commutative (10.11). Many of our results parallel
Tate’s celebrated article [Tat] on abelian varieties over finite fields. To prove them, a major tool are the
Tate modules and local shtuka attached to pure Anderson motives, which we recall in Sections 4 and
3, and the analogue [Tag, Tam] of Tate’s conjecture on endomorphisms. These local structures behave
like in the classical case of abelian varieties, local shtuka playing the role of the p-divisible groups of the
abelian varieties. The only difference is that p-divisible groups are only useful for abelian varieties in
characteristic p, whereas the local shtuka at any place of Q are important for the investigation of abelian
τ -sheaves and pure Anderson motives. One of the aims of this article is to demonstrate the utility of
local shtuka. For instance we apply them in the computation of the Hasse invariants of QEnd(M) in
Theorem 9.1. We also used them in [BH1] to reprove the standard fact that the set of morphisms
between two pure Anderson motives is a projective A-module (1.3). Scattered in the text are several
interesting examples displaying various phenomena (6.1, 6.13, 9.4, 9.5). Note that there is a two in one
version [BH2] of the present article and [BH1] on the arXiv.
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Notation

In this article we denote by

Fq the finite field with q elements and characteristic p,
C a smooth projective geometrically irreducible curve over Fq,
∞ ∈ C(Fq) a fixed Fq-rational point on C,
A = Γ(C r {∞},OC ) the ring of regular functions on C outside ∞,
Q = Fq(C) = Quot(A) the function field of C,
Qv the completion of Q at the place v ∈ C,
Av the ring of integers in Qv. For v 6=∞ it is the completion of A at v.
Fv the residue field of Av. In particular F∞ ∼= Fq.

For a field L containing Fq we write

CL = C ×Spec Fq SpecL,

AL = A⊗Fq L,

QL = Q⊗Fq L,

Av,L = Av⊗̂FqL for the completion of OCL
at the closed subscheme v × SpecL,

Qv,L = Av,L[ 1v ]. Note that this is not a field if Fv ∩ L ) Fq,

Frobq : L→ L for the q-Frobenius endomorphism mapping x to xq,

σ = idC × Spec(Frobq) for the endomorphism of CL which acts as the identity on the points and on
OC and as the q-Frobenius on L,

σ∗ for the endomorphisms induced by σ on all the above rings. For instance
σ∗(a⊗ b) = a⊗ bq for a ∈ A and b ∈ L.

σ∗M = M ⊗AL,σ∗ AL for an AL-module M and similarly for the other rings.

For a divisor D on C we denote by OCL
(D) the invertible sheaf on CL whose sections ϕ have divisor

(ϕ) ≥ −D. For a coherent sheaf F on CL we set F(D) := F ⊗OCL
OCL

(D). This notation applies in
particular to the divisor D = n · ∞ for n ∈ Z.

We will fix the further notation π, F,E, µπ, πv , Fv, Ev , and χv in formula (6.1) on page 15.
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1 Pure Anderson Motives and Abelian τ-Sheaves

Pure Anderson motives were introduced by G. Anderson [An1] under the name pure t-motives in the
case where A = Fp[t]. They were further studied in [BH1]. To give their definition let L be a field
extension of Fq and fix an Fq-homomorphism c∗ : A → L. Let J ⊂ AL be the ideal generated by
a⊗ 1− 1⊗ c∗(a) for all a ∈ A.

Definition 1.1 (pure Anderson motives). A pure Anderson motive M = (M, τ) of rank r, dimension d,
and characteristic c∗ over L consists of a locally free AL-module M of rank r and an injective AL-module
homomorphism τ : σ∗M →M such that

1. the cokernel of τ is an L-vector space of dimension d and annihilated by Jd, and
2. M extends to a locally free sheaf M of rank r on CL such that for some positive integers k, l

the map τ l := τ ◦ σ∗(τ) ◦ . . . ◦ (σ∗)l−1(τ) : (σ∗)lM → M induces an isomorphism (σ∗)lM∞ →
M(k · ∞)∞ of the stalks at ∞.

We call ε := ker c∗ ∈ SpecA the characteristic point of M and we say that M has finite charac-
teristic (respectively generic characteristic) if ε is a closed (respectively the generic) point. The ratio
wt(M, τ) := k

l equals d
r and is called the weight of (M, τ); see [BH1, Proposition 1.2].

Definition 1.2. (Compare [PT, 4.5])

1. A morphism f : (M, τ) → (M ′, τ ′) between Anderson motives of the same characteristic c∗ is a
morphism f : M →M ′ of AL-modules which satisfies f ◦ τ = τ ′ ◦ σ∗(f).

2. If f : M →M ′ is surjective, M ′ is called a factor motive of M .
3. A morphism f : M →M ′ is called an isogeny if f is injective with torsion cokernel.
4. An isogeny is called separable (respectively purely inseparable) if the induced morphism

τ : σ∗ coker f → coker f is an isomorphism (respectively is nilpotent, that is, if for some n the
morphism τ ◦ σ∗τ ◦ . . . ◦ (σ∗)nτ is zero).

We denote the set of morphisms between M and M ′ by Hom(M,M ′). It is an A-module.

If M and M ′ are pure Anderson motives of different weights then Hom(M,M ′) = {0} by [BH1,
Corollary 3.5]. This justifies the terminology pure. The following fact is well known. A proof can be
found for instance in [BH1, Theorem 9.5].

Theorem 1.3. Let M and M ′ be pure Anderson motives over an arbitrary field L. Then Hom(M,M ′)
is a projective A-module of rank ≤ rr′. The minimal polynomial of every endomorphism of a pure
Anderson motive M lies in A[x].

Corollary 1.4. ([BH1, Corollary 5.4]) Let f : M →M ′ be an isogeny between pure Anderson motives.
Then

1. there exists an element a ∈ A which annihilates coker f ,
2. there exists a dual isogeny f∨ : M ′ →M such that f ◦ f∨ = a · idM ′ and f∨ ◦ f = a · idM .

Next we come to the notion of abelian (τ -)sheaves. It was introduced in [Ha1] in order to construct
moduli spaces for pure Anderson motives. We briefly recall the results from [BH1] on the relation
between pure Anderson motives and abelian τ -sheaves. Although our primary interest is on pure
Anderson motives we present abelian τ -sheaves here because they can have characteristic point ε =
∞ ∈ C in contrast to pure Anderson motives, and many results for the later extend to this more general
situation. Moreover, some results are proved most naturally via the use of abelian τ -sheaves (e.g. 9.1
and 7.3 below). The fact that ε =∞ is allowed for abelian τ -sheaves was crucial for the uniformization
of the moduli spaces of pure Anderson motives in [Ha1] and the derived consequences on analytic
uniformization of pure Anderson motives. Let L ⊃ Fq be a field and fix a morphism c : SpecL → C.
Let J be the ideal sheaf on CL of the graph of c. Let r and d be non-negative integers.
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Definition 1.5 (Abelian τ -sheaf). An abelian τ -sheaf F = (Fi,Πi, τi) of rank r, dimension d and
characteristic c over L is a collection of locally free sheaves Fi on CL of rank r together with injective
morphisms Πi, τi of OCL

-modules (i ∈ Z) of the form

· · · −−−−→ Fi−1
Πi−1−−−−→ Fi Πi−−−−→ Fi+1

Πi+1−−−−→ · · ·
xτi−2

xτi−1

xτi

· · · −−−−→ σ∗Fi−2
σ∗Πi−2−−−−−→ σ∗Fi−1

σ∗Πi−1−−−−−→ σ∗Fi σ∗Πi−−−−→ · · ·

subject to the following conditions:

1. the above diagram is commutative,
2. there exist integers k, l > 0 with ld = kr such that the morphism Πi+l−1 ◦ · · · ◦Πi identifies Fi

with the subsheaf Fi+l(−k · ∞) of Fi+l for all i ∈ Z,
3. cokerΠi is an L-vector space of dimension d for all i ∈ Z,
4. coker τi is an L-vector space of dimension d and annihilated by J d for all i ∈ Z.

We call ε := c(SpecL) ∈ C the characteristic point and say that F has finite (respectively generic)
characteristic if ε is a closed (respectively the generic) point. If r 6= 0 we call wt(F) := d

r the weight of
F .

Remark. 1. If F is an abelian τ -sheaf and D a divisor on C, then F(D) := (Fi(D),Πi⊗ 1, τi⊗ 1) is an
abelian τ -sheaf of the same rank and dimension as F .

2. Let F be an abelian τ -sheaf and let n ∈ Z. We denote by F [n ] := (Fi+n,Πi+n, τi+n) the
n-shifted abelian τ -sheaf of F whose collection of F ’s, Π’s and τ ’s is just shifted by n.

Definition 1.6. A morphism f between two abelian τ -sheaves F = (Fi,Πi, τi) and F ′ = (F ′
i ,Π

′
i, τ

′
i)

of the same characteristic c : SpecL → C is a collection of morphisms fi : Fi → F ′
i (i ∈ Z) which

commute with the Π’s and the τ ’s, that is, fi+1 ◦Πi = Π ′
i ◦ fi and fi+1 ◦ τi = τ ′i ◦ σ∗fi. We denote the

set of morphisms between F and F ′ by Hom(F ,F ′). It is an Fq-vector space.

For example, the collection of morphisms (Πi) : F → F [ 1 ] defines a morphism between the abelian
τ -sheaves F and F [ 1 ].

Definition 1.7. Let F and F ′ be abelian τ -sheaves and let f ∈ Hom(F ,F ′) be a morphism. Then f
is called injective (respectively surjective, respectively an isomorphism), if fi is injective (respectively
surjective, respectively bijective) for all i ∈ Z. We call F an abelian factor τ -sheaf of F ′, if there is a
surjective morphism from F ′ onto F .

If F = (Fi,Πi, τi) is an abelian τ -sheaf of rank r, dimension d, and characteristic c : SpecL → C
with ε = im c 6=∞ then

M(F) := (M, τ) :=
(
Γ(CL r {∞},F0) , Π

−1
0 ◦ τ0

)
(1.1)

is a pure Anderson motive of the same rank and dimension and of characteristic c∗ : A→ L. Conversely
we have the following result.

Proposition 1.8. ([BH1, Theorem 3.1]) Let (M, τ) be a pure Anderson motive of rank r, dimension
d, and characteristic c∗ : A → L over L. Then (M, τ) = M(F) for an abelian τ -sheaf F over L of
same rank and dimension with characteristic c := Spec c∗ : SpecL → SpecA ⊂ C. One can even find
the abelian τ -sheaf F with k, l relatively prime.
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2 Isogenies and Quasi-Isogenies

We recall the basic facts about isogenies from [BH1].

Proposition 2.1. ([BH1, Proposition 5.1]) Let f : F → F ′ be a morphism between two abelian τ -
sheaves F = (Fi,Πi, τi) and F ′ = (F ′

i ,Π
′
i, τ

′
i). Then the following assertions are equivalent:

1. f is injective and the support of all coker fi is contained in D×SpecL for a finite closed subscheme
D ⊂ C,

2. f is injective and F and F ′ have the same rank and dimension,
3. F and F ′ have the same weight and the fiber fi,η at the generic point η of CL is an isomorphism

for some (any) i ∈ Z.

Definition 2.2. 1. A morphism f : F → F ′ satisfying the equivalent conditions of Proposition 2.1
is called an isogeny. We denote the set of isogenies between F and F ′ by Isog(F ,F ′).

2. An isogeny f : F → F ′ is called separable (respectively purely inseparable) if for all i the
induced morphism τi : σ∗ coker fi → coker fi+1 is an isomorphism (respectively is nilpotent, that
is, τi ◦ σ∗τi−1 ◦ . . . ◦ (σ∗)nτi−n = 0 for some n).

The endomorphism rings of abelian τ -sheaves are finite rings. But if we allow the (endo-)morphisms
to have “poles” we get rings which are related to the endomorphism rings of the associated pure
Anderson motives. We make the following:

Definition 2.3 (Quasi-morphism and quasi-isogeny). Let F and F ′ be abelian τ -sheaves.

1. A quasi-morphism f between F and F ′ is a morphism f ∈ Hom(F ,F ′(D)) for some effective
divisor D on C.

2. A quasi-isogeny f between F and F ′ is an isogeny f ∈ Isog(F ,F ′(D)) for some effective divisor
D on C.

If D1 ≤ D2 the composition with the inclusion isogeny F ′(D1) ⊂ F ′(D2) defines an injec-
tion Hom(F ,F ′(D1)) →֒ Hom(F ,F ′(D2)). This yields an equivalence relation for quasi-morphisms
and quasi-isogenies. We let QHom(F ,F ′) and QIsog(F ,F ′) be the set of quasi-morphisms, respec-
tively quasi-isogenies, between F and F ′ modulo this equivalence relation. We write QEnd(F) :=
QHom(F ,F) and QIsog(F) := QIsog(F ,F).

The Q-vector spaces QHom(F ,F ′) and QEnd(F) are finite dimensional, and QIsog(F) is the group
of units in the Q-algebra QEnd(F), see [BH1, Propositions 6.5 and 9.4].

Two abelian τ -sheaves F and F ′ are called quasi-isogenous (notation: F ≈ F ′), if there exists
a quasi-isogeny between F and F ′. The relation ≈ is an equivalence relation. If F ≈ F ′, then the
Q-algebras QEnd(F) and QEnd(F ′) are isomorphic, and QHom(F ,F ′) is free of rank 1 both as a left
module over QEnd(F ′) and as a right module over QEnd(F).

Proposition 2.4. ([BH1, Proposition 6.10]) Let F and F ′ be two abelian τ -sheaves of characteristic
ε 6=∞ and let M(F) and M(F ′) be their associated pure Anderson motives. Then there is a canonical
isomorphism of Q-vector spaces

QHom(F ,F ′) = Hom(M(F),M (F ′))⊗A Q .

If M and M ′ are pure Anderson motives, then the elements of Hom(M,M ′) ⊗A Q which admit
an inverse in Hom(M ′,M ) ⊗A Q are called quasi-isogenies. With this definition we can reformulate
Propositions 1.8 and 2.4 as follows.

Corollary 2.5. Let ε 6=∞. Then the functor F 7→M(F) defines an equivalence of categories between

1. the category with abelian τ -sheaves as objects and with QHom(F ,F ′) as the set of morphisms,
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2. and the category with pure Anderson motives as objects and with Hom(M,M ′)⊗AQ as the set of
morphisms.

We call these the quasi-isogeny categories of abelian τ -sheaves of characteristic different from ∞ and
of pure Anderson motives, respectively.

Definition 2.6. Let F be an abelian τ -sheaf.

1. F is called simple, if F 6= 0 and F has no abelian factor τ -sheaves other than 0 and F .
2. F is called semisimple, if F admits, up to quasi-isogeny, a decomposition into a direct sum
F ≈ F1 ⊕ · · · ⊕ Fn of simple abelian τ -sheaves F j (1 ≤ j ≤ n).

We make the same definition for a pure Anderson motive.

Remark. 1. Let F be an abelian τ -sheaf with characteristic different from ∞. Then F is (semi-)simple
if and only if the pure Anderson motive M(F) is (semi-)simple by [BH1, Proposition 7.3].

2. It is not sensible to try defining simple pure Anderson motives via sub-motives, since for example
aM ⊂M is a proper sub-motive for any a ∈ Ar A×. This shows that pure Anderson motives behave
dually to abelian varieties. Namely an abelian variety is called simple if it has no non-trivial abelian
subvarieties.

Theorem 2.7. ([BH1, Theorem 7.8]) Let F be an abelian τ -sheaf of characteristic different from ∞.

1. If F is simple, then QEnd(F) is a division algebra over Q.
2. If F is semisimple with decomposition F ≈ F1⊕ · · ·⊕Fn up to quasi-isogeny into simple abelian

τ -sheaves F j, then QEnd(F) decomposes into a finite direct sum of full matrix algebras over the
division algebras QEnd(F j) over Q.

In the following we want to define the degree of an isogeny which should be an ideal of A since
in the function field case we have substituted A for Z. Let f : M → M ′ be an isogeny between pure
Anderson motives. Then the AL-module coker f is a finite L-vector space equipped with a morphism
of AL-modules τ ′ : σ∗ coker f → coker f . Since coker f is annihilated by an element of A it decomposes
by the Chinese remainder theorem

(coker f, τ ′) =
⊕

v∈supp(coker f)

(coker f, τ ′)⊗A Av =:
⊕

v∈supp(coker f)

Kv .

If v 6= ε the morphism τ ′ on Kv is an isomorphism and so Lang’s theorem implies that

(Kv ⊗L Lsep)τ ⊗Fq L
sep ∼−→ Kv ⊗L Lsep

is an isomorphism; see for instance [An1, Lemma 1.8.2]. In particular

[Fv : Fq] · dimFv(Kv ⊗L Lsep)τ = dimFq(Kv ⊗L Lsep)τ = dimLsep(Kv ⊗L Lsep) = dimLKv .

On the other hand if the characteristic is finite and v = ε, the characteristic morphism c∗ : A→ L
yields Fε ⊂ L and determines the distinguished prime ideal

a0 := (b⊗ 1− 1⊗ c∗(b) : b ∈ Fε) ⊂ Aε,L .

If we set n := [Fε : Fq] and ai := (σ∗)ia0 = (b ⊗ 1 − 1 ⊗ c∗(b)qi

: b ∈ Fε), then we can decompose
Aε,L =

⊕
i∈Z/nZ

Aε,L/ai and τ is an isomorphism

σ∗(Kε/ai−1Kε)
∼−→ Kε/ai

for i 6= 0 since τ is an isomorphism on M and M ′ outside the graph of c∗. (This argument will be used
again in Proposition 3.8.) In particular

[Fε : Fq] · dimL(Kε/a0Kε) = dimLKε .
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Definition 2.8. We assign to the isogeny f the ideal

deg(f) :=
∏

v∈supp(coker f)

v(dimL Kv)/[Fv:Fq] = εdimL(Kε/a0Kε) ·
∏

v 6=ε
vdimFv (Kv⊗LL

sep)τ

of A and call it the degree of f . We call εdimL(Kε/a0Kε) the inseparability degree of f and∏
v 6=ε v

dimFv (Kv⊗LL
sep)τ

the separability degree of f .

Remark. The separability degree of f is the Euler-Poincaré characteristic EP
(⊕

v 6=εKv ⊗L Lsep
)τ

; see
Gekeler [Gek, 3.9] or Pink and Traulsen [PT, 4.6]. Recall that the Euler-Poincaré characteristic of a
finite torsion A-module is the ideal of A defined by requiring that EP is multiplicative in short exact
sequences, and that EP (A/v) := v for any maximal ideal v of A.

Lemma 2.9. 1. If f : M →M ′ and g : M ′ →M ′′ are isogenies then deg(gf) = deg(f) · deg(g).
2. dimFq A/deg(f) = dimL coker f .

Proof. 1 is immediate from the short exact sequence

0 // coker f
g // coker(gf) // coker g // 0

and 2 is obvious.

Proposition 2.10. The ideal deg(f) annihilates coker f .

Proof. If v = ε and a is a uniformizer at ε, then multiplication with a is nilpotent on the L-vector space
Kε/a0Kε. In particular adimL(Kε/a0Kε) annihilates Kε/a0Kε, and hence also Kε.

If v 6= ε and a is a uniformizer at v, we obtain analogously that adimFv (Kv⊗LL
sep)τ

annihilates the
Fv-vector space (Kv ⊗L Lsep)τ and therefore also the L-vector space Kv.

Proposition 2.11. Let f : M →M ′ be an isogeny such that deg(f) = aA is principal (for example this
is the case if C = P1 and A = Fq[t]). Then there is a uniquely determined dual isogeny f∨ : M ′ → M
(depending on a), which satisfies f ◦ f∨ = a · idM ′ and f∨ ◦ f = a · idM .

Proof. Since deg(f) annihilates coker f the proposition is immediate.

In Theorem 7.3 we will see that any isogeny f ∈ End(M) of a semisimple pure Anderson motive
over a finite field satisfies the assumption that deg(f) is principal.

3 Local Shtuka

There are mainly two local structures which one can attach to pure Anderson motives and abelian
τ -sheaves, namely the local (iso-)shtuka and the Tate module. We treat the Tate module in the next
section. The local (iso-)shtuka is the analogue of the Dieudonné module of the p-divisible group attached
to an abelian variety. Note however one fundamental difference. While the Dieudonné module exists
only if p equals the characteristic of the base field, there is no such restriction in our theory here. And in
fact this would even allow to dispense with Tate modules at all and only work with local (iso-)shtuka.
Local (iso-)shtuka were introduced in [Ha1] under the name Dieudonné Fq[[z]]-modules (respectively
Dieudonné Fq((z))-modules). They are studied in [An2, Ha2, Lau]. Over a field their definition takes
the following form.

Definition 3.1. Let v ∈ C be a place of Q and let L ⊃ Fq be a field. An (effective) local σ-shtuka at
v of rank r over L is a pair M̂ = (M̂, φ) consisting of a free Av,L-module M̂ of rank r and an injective

Av,L-module homomorphism φ : σ∗M̂ → M̂ .

A local σ-isoshtuka at v of rank r over L is a pair N̂ = (N̂ , φ) consisting of a free Qv,L-module N̂

of rank r and an isomorphism φ : σ∗N̂
∼−→ N̂ of Qv,L-modules.
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Remark 3.2. Note that so far in the literature [An2, Ha1, Ha2, Lau] it is always assumed that Av
has residue field Fq, the fixed field of σ on L. So in particular Av,L is an integral domain and Qv,L is
a field. For applications to pure Anderson motives this is not a problem since we may reduce to this
case by Propositions 3.5 and 3.8 below.

Definition 3.3. A local shtuka M̂ = (M̂, φ) is called étale if φ is an isomorphism. The Tate module
of an étale local σ-shtuka M̂ at v is the G := Gal(Lsep/L)-module of φ-invariants

TvM̂ :=
(
M̂ ⊗Av,L

Av,Lsep

)φ
.

The rational Tate module of M̂ is the G-module

VvM̂ := TvM̂ ⊗Av Qv .

It follows from [TW, Proposition 6.1] that TvM̂ is a free Av-module of the same rank than M̂ and
that the natural morphism

TvM̂ ⊗Av Av,Lsep
∼−→ M̂ ⊗Av,L

Av,Lsep

is a G- and φ-equivariant isomorphism of Av,Lsep -modules, where on the left module G acts on both
factors and φ is id⊗σ∗. Since (Lsep)G = L we obtain:

Proposition 3.4. Let M̂ and M̂ ′ be étale local σ-shtuka at v over L. Then

1. M̂ = (TvM̂ ⊗Av Av,Lsep)G, the Galois invariants,

2. HomAv,L[φ](M̂, M̂ ′)
∼−→ HomAv[G](TvM̂, TvM̂

′) , f 7→ Tvf is an isomorphism.

In particular the Tate module functor yields an equivalence of the category of étale local shtuka at v
over L with the category of Av[G]-modules, which are finite free over Av.

Proof. 1 and 2 are immediate. Hence clearly the Tate module functor is fully faithful. That it is an
equivalence follows analogously to [Kat, Proposition 4.1.1].

If the residue field Fv of v is larger than Fq one has to be a bit careful with local (iso-)shtuka since
Qv,L is then in general not a field. Namely let #Fv = qn and let Fqf := {α ∈ L : αq

n
= α} be the

“intersection” of Fv with L. Then

Fv ⊗Fq L =
∏

Gal(F
qf /Fq)

Fv ⊗F
qf
L =

∏

i∈Z/fZ

Fv ⊗Fq L/ (b⊗ 1− 1⊗ bqi

: b ∈ Fqf )

and σ∗ transports the i-th factor to the (i+1)-th factor. (Of course, the indexing of the factors depends
on a choice of embeddings Fqf ⊂ Fv and Fqf ⊂ L.) Denote by ai the ideal of Av,L (or Qv,L) generated

by {b⊗ 1− 1⊗ bqi
: b ∈ Fqf}. Then

Av,L =
∏

Gal(F
qf /Fq)

Av⊗̂F
qf
L =

∏

i∈Z/fZ

Av,L / ai

and similarly for Qv. Note that the factors in this decomposition and the ideals ai correspond precisely
to the places vi of CF

qf
lying above v.

Proposition 3.5. Fix an i. The reduction modulo ai induces equivalences of categories

1. (N̂ , φ) 7−→
(
N̂/aiN̂ , φf : (σ∗)f N̂/aiN̂ → N̂/aiN̂

)

between local σ-isoshtuka at v over L and local σf -isoshtuka at vi over L of the same rank.
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2. (M̂, φ) 7−→
(
M̂/aiM̂ , φf : (σ∗)fM̂/aiM̂ → M̂/aiM̂

)

between étale local σ-shtuka at v over L and étale local σf -shtuka at vi over L preserving Tate
modules

Tv(M̂ , φ)
∼−→ Tvi

(M̂/aiM̂, φf ) .

Proof. Since σ∗ai = ai+1 the isomorphism φ yields isomorphisms σ∗(N̂/aiN̂)→ N̂/ai+1N̂ and similarly
for M̂ . These allow to reconstruct the other factors from (N̂/aiN̂ , φ

f ), and likewise for M̂ . The
isomorphism between the Tate modules follows from the observation that an element (xj)j∈Z/fZ is

φ-invariant if and only if xj+1 = φ(σ∗xj) for all j and xi = φf ((σ∗)fxi).

Remark. The advantage of the étale local σf -shtuka at vi is that it is a free module over the integral
domain Av,L/ai = Av⊗̂F

qf
L, and similarly for local σf -isoshtuka. So the results from [An2, Ha1, Ha2,

Lau] apply.

Now let F be an abelian τ -sheaf and v ∈ C an arbitrary place of Q. We define the local σ-isoshtuka
of F at v as

Nv(F) :=
(
F0 ⊗OCL

Qv,L , Π
−1
0 ◦ τ0

)
.

If v 6=∞ we define the local σ-shtuka of F at v as

Mv(F) :=
(
F0 ⊗OCL

Av,L , Π
−1
0 ◦ τ0

)
.

Likewise if M is a pure Anderson motive over L and v ∈ SpecA we define the local σ-(iso-)shtuka of
M at v as

Mv(M ) := M ⊗AL
Av,L respectively Nv(M) := M ⊗AL

Qv,L .

These local (iso-)shtuka all have rank r. The local shtuka are étale if v 6= ε. Note that N∞(F) does
not contain a local σ-shtuka if ε 6=∞, since then it is isoclinic of slope −wt(F) < 0.

However, if v = ∞ the periodicity condition allows to define a different local (iso-)shtuka at ∞
which is of slope ≥ 0. Namely, choose a uniformizer z on C at ∞ and set M̂i := Fi ⊗OCL

A∞,L. Recall

the integers k, l from Definition 1.5/2 and set Π̃ := Πl−1 ◦ · · · ◦Π0. We define the big local σ-shtuka of
F at ∞ as

M̃∞(F) := M̂0 ⊕ · · · ⊕ M̂l−1 with φ :=




0 0 Π̃−1 ◦ zkτl−1

τ0 0
0

0 0 τl−2 0




(3.1)

We also define the big local σ-isoshtuka of F at ∞ as

Ñ∞(F) := M̃∞(F)⊗A∞,L
Q∞,L .

Both have rank rl and depend on the choice of k, l and z. If ε 6= ∞ then M̃∞(F) is étale. Note that
M̃∞(F) and Ñ∞(F) were used in [Ha1] to construct the uniformization at ∞ of the moduli spaces of
abelian τ -sheaves.

The big local (iso-)shtuka at ∞, M̃∞(F) and Ñ∞(F) are always equipped with the endomorphisms

Π :=




0 0 Π̃−1 ◦ zkΠl−1

Π0 0

0

0 0 Πl−2 0



, Λ(λ) :=




λ · idM0

λq · idM1

λq
l−1 · idMl−1




(3.2)
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for all λ ∈ Fql ∩L. They satisfy the relations Π l = zk and Π ◦Λ(λq) = Λ(λ) ◦Π. We let ∆∞ be “the”

central division algebra over Q∞ of rank l with Hasse invariant −k
l , or explicitly

∆∞ := Fql((z))[Π ] / (Π l − zk, λz − zλ, Πλq − λΠ for all λ ∈ Fql) . (3.3)

If Fql ⊂ L we identify ∆∞ with a subalgebra of EndQ∞,L[φ]

(
Ñ∞(F)

)
by mapping λ ∈ Fql ⊂ ∆∞ to

Λ(λ).

The following two results were proved in [BH1, Theorems 8.6 and 8.7].

Theorem 3.6. Let F and F ′ be abelian τ -sheaves of the same weight over a finite field L and let v be
an arbitrary place of Q.

1. Then there is a canonical isomorphism of Qv-vector spaces

QHom(F ,F ′)⊗Q Qv ∼−→ HomQv,L[φ]

(
Nv(F), N v(F ′)

)
.

2. If v =∞ choose an l which satisfies 1.5/2 for both F and F ′ and assume Fql ⊂ L. Then there is
a canonical isomorphism of Q∞-vector spaces

QHom(F ,F ′)⊗Q Q∞
∼−→ Hom∆∞

b⊗FqL[φ]

(
Ñ∞(F), Ñ∞(F ′)

)
.

Theorem 3.7. Let M and M ′ be pure Anderson motives over a finite field L and let v ∈ SpecA be an
arbitrary maximal ideal. Then

Hom(M,M ′)⊗A Av ∼−→ HomAv,L[φ](Mv(M ),M v(M
′)) .

Let now the characteristic be finite and v = ε be the characteristic point. Consider a pure Anderson
motive M of characteristic c, its local σ-shtuka M ε(M) = (M̂, φ) at ε and the decomposition of the
later described before Proposition 3.5

M ε(M ) =
∏

i∈Z/fZ

M ε(M)/aiM ε(M ) .

From the morphism c : SpecL → Spec Fε ⊂ C we see that Fε ⊂ L, f = [Fε : Fq] and that there is a
distinguished place v0 of CFε above v = ε 6= ∞, namely the image of c × c : SpecL → C × SpecFε.
Then φ has no cokernel on M ε(M)/aiM ε(M) for i 6= 0 and the reasoning of Proposition 3.5 yields

Proposition 3.8. The reduction modulo a0 induces an equivalence of categories

M ε(M) 7−→
(
M ε(M )/a0M ε(M ) , φf

)

between the local σ-shtuka at ε associated with pure Anderson motives of characteristic c and the local
σf -shtuka at v0 associated with pure Anderson motives of characteristic c. The same is true for abelian
τ -sheaves.

Remark. Now the fixed field of σf on L equals Fε, the residue field of Aε. Also M ε(F)/a0M ε(F)
is a module over the integral domain Aε⊗̂FεL. So again [An2, Ha1, Ha2, Lau] apply to(
M ε(F)/a0M ε(F), φf

)
.

Proposition 3.9. Let M be a pure Anderson motive over L and let M̂ ′
ε be a local σf -subshtuka

of M ε(M )/a0M ε(M ) of the same rank. Then there is a pure Anderson motive M ′ and an isogeny
f : M ′ →M with M ε(f)

(
M ε(M

′)/a0M ε(M
′)
)

= M̂ ′
ε. The same is true for abelian τ -sheaves.
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Proof. Extend M̂ ′
ε to the local σ-subshtuka

⊕
i∈Z/fZ

φi
(
(σ∗)iM̂ ′

ε

)
of M ε(M) and consider

K := M ε(M ) /
⊕

i∈Z/fZ

φi
(
(σ∗)iM̂ ′

ε

)
.

The induced morphism φK : σ∗K → K has its kernel and cokernel supported on the graph of c.
Set M ′ = (M ′, τ ′) :=

(
ker(M → K), τ |M ′

)
. Then M ′ is a pure Anderson motive with the required

properties by [BH1, Proposition 1.6].

There is a corresponding result at the places v 6= ε which is stated in Proposition 4.4.

4 Tate Modules

Definition 4.1. If F is an abelian τ -sheaf over L, respectively M a pure Anderson motive over L and
v ∈ C (respectively v ∈ SpecA) is a place of Q different from the characteristic point ε, we define

TvF := Tv(M v(F)) and VvF := Vv(Mv(F)) for v 6=∞,

T∞F := T∞(M̃∞(F)) and V∞F := V∞(M̃∞(F)) for v =∞ 6= ε,

respectively TvM := Tv(Mv(M)) and VvM := Vv(Mv(M)) .

We call TvF (respectively VvF) the (rational) v-adic Tate module of F . If v =∞ they both depend on
the choice of k, l, and z; see page 10.

By [TW, Proposition 6.1], TvF (and VvF) are free Av-modules (respectively Qv-vector spaces) of
rank r for v 6=∞ and rl for v =∞, which carry a continuous G = Gal(Lsep/L)-action.

Also the Tate modules T∞F and V∞F are always equipped with the endomorphisms Π and Λ(λ)
for λ ∈ Fql ∩ L from (3.2). And if Fql ⊂ L we identify the algebra ∆∞ from (3.3) with a subalgebra of
EndQ∞

(V∞F) by mapping λ ∈ Fql to Λ(λ).

Remark. Our functor Tv is covariant. In the literature usually the Av-dual of our TvM is called the
v-adic Tate module of M . With that convention the Tate module functor is contravariant on Anderson
motives but covariant on Drinfeld modules and Anderson’s abelian t-modules [An1] (which both give
rise to Anderson motives). Similarly the classical Tate module functor on abelian varieties is covariant.
We chose our non-standard convention here solely to avoid perpetual dualizations. This agrees also
with the remark after Definition 2.6 that abelian τ -sheaves behave dually to abelian varieties.

The following analogues of the Tate conjecture for abelian varieties are due to Taguchi [Tag] and
Tamagawa [Tam, §2].

Theorem 4.2. Let M and M ′ be pure Anderson motives over a finitely generated field L and let
G := Gal(Lsep/L). Let ε 6= v ∈ SpecA be a maximal ideal. Then the Tate conjecture holds:

Hom(M,M ′)⊗A Av ∼= HomAv[G ](TvM,TvM
′) .

Theorem 4.3. ([BH1, Theorem 9.9]) Let F and F ′ be abelian τ -sheaves over a finitely generated field
L and let G := Gal(Lsep/L). Let v ∈ C be a place different from the characteristic point ε.

1. If v 6=∞ assume ε 6=∞ or wt(F) = wt(F ′). Then

QHom(F ,F ′)⊗Q Qv ∼= HomQv[G ](VvF , VvF ′) .

2. If v =∞ choose an integer l which satisfies 1.5/2 for both F and F ′ and assume Fql ⊂ L. Then

QHom(F ,F ′)⊗Q Q∞ ∼= Hom∆∞[G](V∞F , V∞F ′) .
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As expected, there is the following relation between Tate modules and isogenies.

Proposition 4.4. ([BH1, Proposition 9.11])

1. Let f : M ′ → M be an isogeny between pure Anderson motives then Tvf(TvM
′) is a G-stable

lattice in VvM contained in TvM .
2. Conversely if M is a pure Anderson motive and Λv is a G-stable lattice in VvM contained in

TvM , then there exists a pure Anderson motive M ′ and a separable isogeny f : M ′ → M with
Tvf(TvM

′) = Λv.

Proposition 4.5. Let F ′ be an abelian factor τ -sheaf of F . Then VvF ′ is a G-factor space of VvF .
The same holds if M ′ is a factor motive of a pure Anderson motive M .

Proof. Let f ∈ Hom(F ,F ′) be surjective and let M̂ and M̂ ′ be the (big, if v = ∞) local σ-shtuka
of F , respectively F ′, at v. Then the induced morphism M v(f) ∈ Hom(M̂, M̂ ′) is surjective and
M̂ ′′ := kerMv(f) is also a local σ-shtuka at v. We get an exact sequence of local σ-shtuka which we
tensor with Av,Lsep yielding

0 −−−−→ M̂ ′′ ⊗Av,L
Av,Lsep −−−−→ M̂ ⊗Av,L

Av,Lsep
Mv(f)−−−−→ M̂ ′ ⊗Av,L

Av,Lsep −−−−→ 0 .

The Tate module functor is left exact, because considering the morphism of Av,Lsep -modules

1− τ : M̂ ⊗Av,L
Av,Lsep −→ M̂ ⊗Av,L

Av,Lsep

we have by definition TvM̂ = ker(1− τ), and the desired left exactness follows from the snake lemma.
After tensoring with ⊗AvQv we get

0 −−−−→ VvM̂
′′ −−−−→ VvM̂

Vvf−−−−→ VvM̂
′ .

Counting the dimensions of these Qv-vector spaces, we finally also get right exactness, as desired.

5 The Frobenius Endomorphism

Suppose that the characteristic is finite, that is, the characteristic point ε is a closed point of C with
finite residue field Fε, and the map c : SpecL→ C factors through the finite field ε = Spec Fε.

Definition 5.1 (s-Frobenius on abelian τ -sheaves). Let F be an abelian τ -sheaf with finite characteristic
point ε = Spec Fε and let s = qe be a power of the cardinality of Fε. We define the s-Frobenius on F by

π := (πi) : (σ∗)eF → F [ e ], πi := τi+e−1 ◦ · · · ◦ (σ∗)e−1τi : (σ∗)eFi → Fi+e .

Clearly π is an isogeny. Observe that Fε ⊂ Fs implies that (σ∗)eF has the same characteristic as F .

Similarly if ε ∈ SpecA is a closed point we define

Definition 5.2 (s-Frobenius on pure Anderson motives). Let M be a pure Anderson motive with finite
characteristic point ε = Spec Fε and let s = qe be a power of the cardinality of Fε. We define the
s-Frobenius isogeny on M by

π := τ ◦ . . . ◦ (σ∗)e−1τ : (σ∗)eM →M .

Remark 5.3. Classically for (abelian) varieties X over a field K of characteristic p one defines the
Frobenius morphism X → φ∗X where φ is the p-Frobenius on K. There p equals the cardinality of
the “characteristic field” im(Z→ K) = Fp. In view of the dual behavior of abelian τ -sheaves and pure
Anderson motives our definition is a perfect analogue since here we consider the s-Frobenius for s being
the cardinality of (a power of) the “characteristic field” im(c∗ : A→ L) = Fε.
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Now we suppose L = Fs to be a finite field with s = qe (e ∈ N). Let Fs denote a fixed algebraic
closure of Fs and set G = Gal(Fs/Fs). It is topologically generated by Frobs : x 7→ xs. The following
results for the Frobenius endomorphism of τ -modules can be found in Taguchi and Wan [TW, §6].

Proposition 5.4. Let M be a pure Anderson motive over Fs of rank r and let ε 6= v ∈ SpecA be a
maximal ideal.

1. The generator Frobs of G acts on TvM like (Tvπ)−1.
2. Let Ψ : Av[G ]→ EndAv(TvM) denote the continuous morphism of Av-modules which is induced

by the action of G on TvM . Then im Ψ = Av[Tvπ ].

Proof. 1 was proved in [TW, Ch. 6] and 2 follows from the continuity of Ψ.

Remark. The inversion of Tvπ in the first statement results from the dual definition of our Tate module.

Proposition 5.5. Let F be an abelian τ -sheaf over L = Fs with s = qe and let π be its s-Frobenius.
Then (σ∗)eF = F . Let v ∈ C be a place different from ∞ and from the characteristic point ε.

1. The s-Frobenius π can be considered as a quasi-isogeny of F .
2. The generator Frobs of G acts on TvF like (Tvπ)−1.
3. The image of the continuous morphism of Qv-vector spaces Qv[G ]→ EndQv(VvF) is Qv[Vvπ ].
4. M(π) coincides with the s-Frobenius on the pure Anderson motive M(F) from definition 5.2.

Proof. 1. Due to the periodicity condition, we have F [ e ] ⊂ F(nk · ∞) for a sufficiently large n ∈ N,
since Fi+e ⊂ Fi+nl = Fi(nk ·∞) for e ≤ nl. Thus π ∈ Hom(F ,F(nk ·∞)), and therefore π ∈ QEnd(F).
By 2.1, we have π ∈ QIsog(F).
2 and 3 again follow from [TW, Ch. 6] and the continuity of Ψ; see [BH2, Proposition 2.29] for more
details.
4 follows from the definition of π and the commutation of the Π’s and the τ ’s.

6 The Poincaré-Weil Theorem

In this section we study the analogue for pure Anderson motives and abelian τ -sheaves of the Poincaré-
Weil theorem. Originally, this theorem states that every abelian variety is semisimple, that is, isogenous
to a product of simple abelian varieties, see [Lan, Corollary of Theorem II.1/6]. Unfortunately, we
cannot expect a full analogue of this statement for abelian τ -sheaves or pure Anderson motives as our
next example illustrates. On the positive side we show that every abelian τ -sheaf or pure Anderson
motive over a finite field becomes semisimple after a finite base field extension.

Example 6.1. Let C = P1
Fq

, C r {∞} = Spec Fq[ t ] and ζ := c∗(1/t) ∈ Fq
×. We construct an abelian

τ -sheaf F over L = Fq with r = d = 2 which is not semisimple. Let

∆ =
(

1
0

0
1

)
+
(
α
γ
β
δ

)
· t

with α, β, γ, δ ∈ Fq. To obtain characteristic c we need det ∆ = (1 − ζt)2, and thus we require the
conditions α + δ = −2ζ and αδ − βγ = ζ2. We set Fi := OCL

(i · ∞)⊕2, we let Πi be the natural
inclusion, and we let τi := ∆. Then F is an abelian τ -sheaf with r = d = 2 and k = l = 1. The
associated pure Anderson motive is M = (L[t]⊕2,∆).

We see that F is not simple. If ∆ =
(

1−ζt
0

0
1−ζt

)
then F is semisimple as a direct sum of two simple

abelian τ -sheaves. Otherwise, if ∆ 6=
(

1−ζt

0
0

1−ζt

)
which is the case for example if β 6= 0, consider

∆̃ :=
(

β
δ+ζ

0
1

)−1
·∆ · σ∗

(
β
δ+ζ

0
1

)
=
(

1−ζt
0

t
1−ζt

)
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and the abelian τ -sheaf with F̃i = OCL
(i · ∞)⊕2 and τ̃i = ∆̃ which is isomorphic to F . There is an

exact sequence

0 −−−−→ F ′ ϕ−−−−→ F̃ ψ−−−−→ F ′′ −−−−→ 0

τ ′ = 1−ζt τ̃ τ ′′ =1−ζt

with ϕ : 1 7→
(1

0

)
and ψ :

(x
y

)
7→ y where F ′ = F ′′ is the abelian τ -sheaf with F ′

i = OCL
(i · ∞) and

τ ′i = 1−ζt. If F̃ were semisimple, then there would be a quasi-morphism ω : F ′′ → F̃ with ψ◦ω = idF ′′ ,

hence ω : y 7→
( e

1

)
· y for some e ∈ Fq(t). Thus, a necessary condition for the semisimplicity of F is

(1− ζt) · σ∗(y) ·
( e

1

)
=
(

1−ζt
0

t
1−ζt

)
·
(σ∗(e)

1

)
· σ∗(y)

which is equivalent to the condition

e− σ∗(e) =
t

1− ζt .

But this cannot be true since e − σ∗(e) = 0, thus F is not semisimple. However, this last formula is
satisfied if e = λ · t

1−ζt for λ ∈ Fqq with λq − λ = −1. That means that after field extension Fq(λ) /Fq

we get F ∼= F ′ ⊕2 and we have QEnd(F) = M2(QEnd(F ′)) = M2(Q). Note that this phenomenon
generally appears, and we will state and prove it in Theorem 6.15.

From now on we fix a place v ∈ SpecA which is different from the characteristic point ε of c.
For a morphism f ∈ QHom(F ,F ′) between two abelian τ -sheaves F and F ′ we denote its image
Vvf ∈ HomQv[G ](VvF , VvF ′) just by fv. If F is defined over Fs this applies in particular to the
s-Frobenius endomorphism π of F (Definition 5.1).

Let F be an abelian τ -sheaf over the finite field L = Fs. We set

E := QEnd(F) ∋ π Ev := EndQv[G ](VvF) ∋ πv
F := Q[π ] ⊂ E Fv := im(Qv[G ]→ EndQv(VvF))

(6.1)

with Qv[G ]→ EndQv(VvF) induced by the action of G on VvF . Clearly, we have F ⊂ E and Fv ⊂ Ev
by Proposition 5.5/3. By [BH1, Proposition 9.4], we know that dimQE < ∞. Thus π is algebraic
over Q. We denote its minimal polynomial by µπ ∈ Q[x], and the characteristic polynomial of the
endomorphism πv of VvF by χv ∈ Qv[x]. If ε 6= ∞, Theorem 1.3 shows that π is integral over A,
µπ ∈ A[x]. The zeroes of π in SpecA[π] all lie above ε because π is an isomorphism locally at all v 6= ε;
compare with [BH1, Remark 5.5].

Due to the Tate conjecture, our situation can be represented by the following diagram where we
want to fit the missing bottom right arrow with an isomorphism.

E // E ⊗Q Qv ∼ // Ev

F //

OO

F ⊗Q Qv ∼ //___

OO

Fv .

OO

Lemma 6.2. The natural morphism between F ⊗Q Qv and Fv is an isomorphism.

Proof. Consider the isomorphism ψ : E ⊗Q Qv ∼= Ev ⊂ EndQv(VvF) and set ϕ := ψ|F⊗QQv . Then ϕ is
injective and maps into Fv. Since imϕ = Qv[πv ], the surjectivity follows from Proposition 5.5.

To evaluate the dimension of E we need the following notation.

Definition 6.3. Let K be a field. Let f, g ∈ K[x ] be two polynomials and let

f =
∏

µ∈K[x ]
irred.

µm(µ), g =
∏

µ∈K[x ]
irred.

µn(µ)



6 THE POINCARÉ-WEIL THEOREM 16

be their respective factorizations in powers of irreducible polynomials. Then we define the integer

rK(f, g) :=
∏

µ∈K[x ]
irred.

m(µ) · n(µ) · deg µ .

Remark. In contrast to characteristic zero, we have for char(K) 6= 0 in general different values of the
integer rK for different ground fields K. Namely, if K ⊂ L then rK(f, g) ≤ rL(f, g) with equality if
and only if all irreducible µ ∈ K[x ] which are contained both in f and in g have no multiple factors
in L[x ]. This is satisfied for example if the greatest common divisor of f and g has only separable
irreducible factors, or if L is separable over K. See 9.4 below for an example where rK(f, g) < rL(f, g).

Before we discuss semisimplicity criteria in 6.8 – 6.16, let us compute the dimension of QHom(F ,F ′).

Lemma 6.4. Let v be a place of Q different from ε and ∞. Let F and F ′ be abelian τ -sheaves over Fs
and assume that πv and π′v are semisimple. Factor their characteristic polynomials χv = µm1

1 · . . . ·µmn
n

and χ′
v = µ

m′

1
1 ·. . .·µ

m′

n
n with distinct monic irreducible polynomials µ1, . . . , µn ∈ Qv[x ] and mi,m

′
i ∈ N0.

Then

1. HomQv[G](VvF , VvF ′) ∼=
n⊕

i=1

Mm′

i×mi

(
Qv[x]/(µi)

)
as Qv-vector spaces,

2. EndQv[G](VvF) ∼=
n⊕

i=1

Mmi

(
Qv[x]/(µi)

)
as Qv-algebras, and

3. dimQv HomQv[G ](VvF , VvF ′) = rQv(χv , χ
′
v) .

Proof. Clearly 2 and 3 are consequences of 1 which we now prove. Since πv and π′v are semisimple, we
have the following decomposition of Qv[G]-modules

VvF ∼=
n⊕

i=1

(Qv[x ]/(µi))
⊕mi , VvF ′ ∼=

n⊕

i=1

(Qv[x ]/(µi))
⊕m′

i

where Qv[x ]/(µi) =: Ki are fields. Obviously, we only have non-zero Qv[G]-morphisms Ki → Kj if
i = j, since otherwise µi(π) 6= 0 in Kj . Since πv operates on K⊕mi

i as multiplication by the scalar x,
the lemma follows.

Theorem 6.5. Let F and F ′ be abelian τ -sheaves of the same weight over Fs and assume that the
endomorphisms πv and π′v of VvF and VvF ′ are semisimple at a place v 6= ε,∞ of Q. Let χv and χ′

v

be their characteristic polynomials. Then

dimQ QHom(F ,F ′) = rQv(χv, χ
′
v).

Proof. This follows from the lemma and the Tate conjecture, Theorem 4.3.

Corollary 6.6. Let F be an abelian τ -sheaf of rank r over Fs with Frobenius endomorphism π and let
µπ be the minimal polynomial of π. Assume that F = Q[x]/(µπ) is a field and set h := [F : Q] = deg µπ.
Then

1. h|r and dimQ QEnd(F) = r2

h and dimF QEnd(F) = r2

h2 .
2. For any place v of Q different from ε and ∞ we have QEnd(F) ⊗Q Qv ∼= Mr/h(F ⊗Q Qv) and

χv = (µπ)
r/h independent of v.

Proof. Since F is a field, πv is semisimple by 6.8 below. So general facts of linear algebra imply that
µπ = µ1 · . . . ·µn with pairwise different irreducible monic polynomials µi ∈ Qv[x] and χv = µm1

1 · . . . ·µmn
n

with mi ≥ 1. We set Ki = Qv[x]/(µi) and use the notation from (6.1). By Lemma 6.4 the semisimple
Qv-algebra Ev decomposes Ev ∼=

⊕n
i=1Ei into the simple constituents Ei = Mmi

(Ki). By [Bou,
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Théorème 5.3/1 and Proposition 5.4/12], Ei = Ev · ei where ei are the central idempotents with
Ki = Fv · ei. Thus there are epimorphisms of Ki-vector spaces

QEnd(F)⊗F Ki = Ev ⊗Fv Ki −→→ Ei .

This shows that m2
i ≤ dimF E. So by Lemma 6.4

[F : Q] · dimF E = dimQv Ev =
n∑

i=1

m2
i deg µi ≤

≤ dimF E ·
n∑

i=1

degµi = dimF E · deg µπ = [F : Q] · dimF E .

Therefore m2
i = dimF E for all i. Since r = degχv =

∑
imi deg µi =

√
dimF E · [F : Q]. We find

r = mih and dimF E = r2

h2 , proving 1. For 2 we use that

Ev ∼=
⊕

i

Mr/h

(
Qv[x]/(µi)

)
= Mr/h

(⊕

i

Qv[x]/(µi)
)

= Mr/h

(
Qv[x]/(µπ)

)
.

Next we investigate when πv is semisimple.

Remark 6.7. Notice that the completion Qv is separable over Q. Namely, in terms of [EGA, IV.7.8.1–
3], we can state that OC,v is an excellent ring. Thus the formal fibers of ÔC,v −→ OC,v and therefore

Qv = ÔC,v⊗OC,v
Q −→ Q are geometrically regular. This means that Qv⊗QK is regular for every finite

field extension K over Q. Since ”regular” implies ”reduced”, we conclude that Qv is separable over Q.

Proposition 6.8. In the notation of (6.1) the following statements are equivalent:

1. π is semisimple.
2. F is semisimple.
3. F ⊗Q Qv ∼= Fv is semisimple.
4. πv is semisimple.
5. E ⊗Q Qv ∼= Ev is semisimple.
6. E is semisimple.

Proof. 1. and 2. are equivalent by definition. So we show the equivalences from 2. to 6.
Let F be semisimple. SinceQv is separable over Q, we conclude that F⊗QQv ∼= Qv[πv ] is semisimple

by [Bou, Corollaire 7.6/4]. Hence πv is semisimple by definition, and we showed in Lemma 6.4/2 that
then Ev ∼= E ⊗Q Qv is semisimple. Again by [Bou, Corollaire 7.6/4] this implies that E is semisimple.
Since F ⊂ Z(E) is a finite dimensional Q-subalgebra of the center of E, we conclude by [Bou, Corollaire
de Proposition 6.4/9] that F is semisimple, and our proof is complete.

Remark. If more generally F is defined over a finitely generated field, then one cannot consider π, πv,
nor F . Nevertheless 5 and 6 remain equivalent and are still implied by 3 due to the following well-known
lemma. Namely Ev is the commutant of Fv in EndQv(VvF). We thank O. Gabber for mentioning this
fact to us and we include its proof for lack of reference.

Lemma 6.9. Let B be a central simple algebra of finite dimension over a field K and let F be a
semisimple K-subalgebra of B. Then the commutant of F in B is semisimple.

Proof. Let F =
⊕

i Fi be the decomposition into simple constituents and let ei be the corresponding
central idempotents, that is, Fi = Fei. Consider Bi = eiBei which is again central simple over K by
[Bou, Corollaire 6.4/4], since if I ⊂ Bi is a non-zero two sided ideal then BIB contains 1 and so I
contains the unit ei of Bi. By [Bou, Théorème 10.2/2] the commutant Ei of Fi in Bi is simple. Clearly
the commutant E of F in B satisfies Ei = eiEei = Eei and E =

⊕
iEi proving the lemma.
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Corollary 6.10. Let F be an abelian τ -sheaf over Fs of rank r with semisimple Frobenius endomor-
phism π. Then the algebra F = Q(π) is the center of the semisimple algebra E = QEnd(F).

Proof. Since Fv is semisimple, we know by [Bou, Proposition 5.1/1] that the Fv-module VvF is semi-
simple. The commutant of Fv in EndQv(VvF) is Ev by definition. Trivially VvF is of finite type over
Ev. Thus, by the theorem of bicommutation [Bou, Corollaire 4.2/1], the commutant of Ev in End(VvF)
is again Fv . We conclude Z(Ev) = Ev∩Fv = Fv and we have F ⊗QQv = Fv = Z(Ev) = Z(E)⊗QQv by
[Bou, Corollaire de Proposition 1.2/3]. Considering the dimensions, we obtain dimQ F = dimQ Z(E).
Since F ⊂ Z(E) and the dimensions are finite, we finish by F = Z(E).

Theorem 6.11. Let F be an abelian τ -sheaf over a finite field L.

1. If QEnd(F) is a division algebra over Q then F is simple. If in addition ε 6= ∞ then both
statements are equivalent.

2. If the characteristic point ε is different from ∞ then F is semisimple if and only if QEnd(F) is
semisimple.

Proof. 1. Let QEnd(F) = E be a division algebra and let f ∈ Hom(F ,F ′) be the morphism
onto a non-zero factor sheaf F ′ of F . We show that f is an isomorphism. We know by 4.5 that
fv ∈ HomQv[G ](VvF , VvF ′) is surjective. By the semisimplicity of E and Proposition 6.8, Fv is semi-
simple, and therefore VvF is a finitely generated semisimple Fv-module. Thus we get a morphism
gv ∈ HomQv[G](VvF ′, VvF) with fv ◦ gv = idVvF ′ . Consider the integral Tate modules TvF and TvF ′.
We can find some n ∈ N such that

vngv ∈ HomAv[G ](TvF ′, TvF) ∼= Hom(M(F ′),M (F))⊗A Av

and we choose g ∈ Hom(M(F ′),M (F)) ⊂ QHom(F ′,F) with g ≡ vngv modulo vm for a sufficiently
large m > n. If g ◦ f = 0 in E, then f ◦ g ◦ f = 0, and therefore f ◦ g = 0 in QEnd(F ′) due to the
surjectivity of f . This would imply

vn · idVvF ′ = vn(fv ◦ gv) = fv ◦ (vngv) ≡ f ◦ g = 0 (modulo vm)

which is a contradiction. Thus g ◦ f 6= 0 is invertible in E, and therefore f is injective. By that, f gives
the desired isomorphism between F ′ and F . The second assertion follows from Theorem 2.7.
2. We already saw one direction in Theorem 2.7/2. So let now QEnd(F) be semisimple and let

QEnd(F) =
m⊕

j=1

Mλj
(Ej)

be the decomposition into full matrix algebras Mλj
(Ej) over division algebras Ej over Q (1 ≤ j ≤ m).

For each j we find λj distinct idempotents ej,1, . . . , ej,λj
∈Mλj

(Ej) such that ej,α ·QEnd(F) · ej,α = Ej

for all 1 ≤ α ≤ λj with
∑λj

α=1 ej,α = 1 in Mλj
(Ej). Let e1, . . . , en denote all these idempotents,

n =
∑m

j=1 λj, and choose a divisor D on C such that ei ∈ Hom(F ,F(D)) for all 1 ≤ i ≤ n. Then∑n
i=1 ei = idF in QEnd(F) and therefore

F
P

i ei−−−−→
n⊕

i=1

im ei ⊂ F(D) .

The image F i := im ei is an abelian τ -sheaf by [BH1, Proposition 4.2] because ε 6= ∞. Since
∑

i ei is
injective it is an isogeny by 2.1. Since QEnd(F i) = ei ·QEnd(F) · ei is a division algebra, F i is a simple
abelian τ -sheaf by 1. Thus F ≈ F1 ⊕ · · · ⊕ Fn gives the decomposition into a direct sum of simple
abelian τ -sheaves F i as desired.
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Remark 6.12. Unfortunately the theorem fails if L is not finite, as Example 6.13 below shows. The
reason is, that then Ev may still be semisimple while the image Fv of Qv[G] in EndQv(VvF) is not.
Nevertheless, if one adds the assumption that Fv is semisimple, the assertions of Theorem 6.11 remain
valid over an arbitrary field L. (See also the remark after Proposition 6.8.)

Example 6.13. We construct a pure Anderson motive M over a non-finite field L which is not semi-
simple, but has End(M) = A. Any associated abelian τ -sheaf F has QEnd(F) = Q. Let C = P1

Fq
,

A = Fq[t] with q > 2, and L = Fq(α) where α is transcendental over Fq. Let M = A⊕2
L and τ =

(
αt
0
t
t

)
.

Then M = (M, τ) is a pure Anderson motive of rank and dimension 2. Clearly M is not simple, since
M ′ = (AL, τ

′ = t) is a factor motive by projecting onto the second coordinate. We will see below that
M is not even semisimple.

Let
(
e
g
f
h

)
∈M2(AL) be an endomorphism of M , that is,

(
ασ∗e+ σ∗g

σ∗g
ασ∗f + σ∗h

σ∗h

)
=

(
αe

αg

e+ f

g + h

)
.

Choose β ∈ Fq(α)alg r Fq(α) satisfying βq−1 = α (for β /∈ Fq(α) we use q > 2). Then σ∗g = αg implies
g ∈ β ·Fq[t]. Since also g ∈ Fq(α)[t] we must have g = 0. Now σ∗e = e and σ∗h = h yielding e, h ∈ Fq[t].

Let γ ∈ Fq(α)algrFq(β) with γq−γ = β and set f̃ := βf−γ ·(e−h). Then ασ∗f−f = e−σ∗h = e−h
implies σ∗f̃ − f̃ = βqσ∗f − βf − (γq − γ)(e − h) = β(ασ∗f − f − (e − h)) = 0. Thus f̃ ∈ Fq[t] and
γ · (e− h) ∈ Fq(β)[t]. So we must have e = h and then βf = f̃ ∈ Fq[t] implies f = 0. This shows that
End(M) = Fq[t] = A.

The same argument shows that M is not even semisimple. Namely, the projection M →M ′ has no
section M ′ →M, 1 7→

(f
1

)
, since there is no solution f for the equation αtσ∗f + t = tf .

It is also not hard to compute Fv for instance at the place v = (t− 1). Let z = t− 1 and β ∈ Lsep

with βq−1 = α, and consider the basis
(y/β

0

)
,
(x
y

)
of the Tate module Tv(M ) with

(
x

y

)
=

∞∑

i=0

(
xi
yi

)
zi and xi, yi ∈ Lsep , y0 6= 0 .

They are subject to the equations y = tσ∗y = (1 + z)σ∗y and x = αtσ∗x + tσ∗y = α(1 + z)σ∗x + y,
that is,

yi − yqi = yqi−1 , and

xi − αxqi = αxqi−1 + yi .

There are elements γ and δ of G = Gal(Lsep/L) operating as γ(yi) = yi, γ(xi) = xi, γ(β) = β/η for an
η ∈ Fq

× r {1}, respectively as δ(yi) = yi, δ(β) = β, δ(xi) = xi + yi/β. With respect to our basis of
Tv(M) they correspond to matrices γv =

(η
0

0
1

)
and δv =

(1
0

1
1

)
. We conclude that Fv is the Qv-algebra

of upper triangular matrices. Its commutant in M2(Qv) equals Qv · Id2
∼= End(M)⊗A Qv.

Remark. If q = 2 any pure Anderson motive of rank rkM = 2 on A = Fq[t], which is not semisimple has

End(M) ) A. One easily sees this by choosing a basis of M for which τ has the form
(
α(t−θ)d

0
∗

β(t−θ)d

)

with α, β, θ ∈ L. Then
(

0
0
β/α
0

)
is an endomorphism.

However, we expect that also for q = 2 there are examples similar to 6.13 (of rkM ≥ 3), although
we have not tried to find one.

Let F be an abelian τ -sheaf over Fs and let Fs′/Fs be a finite field extension. The base extension

F ⊗Fs Fs′ := (Fi ⊗OC
Fs
OCFs′

,Πi ⊗ 1, τi ⊗ 1)
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is an abelian τ -sheaf over Fs′ with π′ = (π ⊗ 1)t for s′ = st, and we have a canonical isomorphism
between VvF and VvF ′.

For the next result recall that an endomorphism ϕ of a finite dimensional vector space V over a
field K is called absolutely semisimple if for every field extension K ′/K the endomorphism ϕ ⊗ 1 ∈
EndK ′(V ⊗K K ′) is semisimple. The following characterization is taken from [Bou, Proposition 9.2/4
and Proposition 9.2/5].

Lemma 6.14. Let K be a field and let V be a finite dimensional K-vector space. Let ϕ ∈ EndK(V )
be an endomorphism.

1. ϕ is absolutely semisimple, if and only if there exists a perfect field extension K ′/K such that
ϕ⊗ 1 ∈ EndK ′(V ⊗K K ′) is semisimple.

2. ϕ is absolutely semisimple, if and only if its minimal polynomial is separable.

Theorem 6.15. Let F be an abelian τ -sheaf over the finite field Fs. Then there exists a finite field
extension Fs′/Fs whose degree is a power of char Fs such that F ⊗Fs Fs′ has an absolutely semisimple
Frobenius endomorphism. Thus if moreover ε 6=∞ then F ⊗Fs Fs′ is semisimple.

Remark. It suffices to take [Fs′ : Fs] as the smallest power of char Fs which is ≥ rkF .

Proof. Let s′ = st for some arbitrary t ∈ N. Let F ′ := F ⊗Fs Fs′ be the abelian τ -sheaf over Fs′ induced
by F . Let v ∈ SpecA be a place different from ε. Over Qv

alg we can write πv ∈ EndQv(VvF) in Jordan
normal form

B−1 (πv ⊗ 1)B =




λ1 ∗ 0

λ2
. . .
. . . ∗

0 λr




for B ∈ GLr(Qvalg) and for some λj ∈ Qvalg, 1 ≤ j ≤ r. Thus, by a suitable choice of t ∈ N as a power
of char Fq (as in the remark), we can achieve that π′v = (πv ⊗ 1)t is of the form

B−1 π′vB =




λt1 0
λt2

. . .

0 λtr


 .

Since Qv
alg is perfect, we conclude by 6.14/1 that π′v and thus π′ is absolutely semisimple.

The following corollary illustrates that, in contrast to endomorphisms of vector spaces, there is no
need of the term ”absolutely semisimple” for abelian τ -sheaves or pure Anderson motives over finite
fields.

Corollary 6.16. Let F be an abelian τ -sheaf over Fs of characteristic different from ∞. If F is
semisimple, then F ⊗Fs Fs′ is semisimple for every finite field extension Fs′/Fs. The same is true for
pure Anderson motives.

Proof. Let F be semisimple and let Fs′/Fs be a finite field extension with s′ = st. We set F ′ :=
F ⊗Fs Fs′ . By 6.11 and 6.8, we know that QEnd(F) ⊗Q Qv ∼= EndQv[ πv ](VvF) is semisimple. Since
Qv[π

t
v ] ⊂ Qv[πv ] we conclude by [Bou, Corollaire de Proposition 6.4/9] that Qv[π

t
v ] is semisimple, as

well. As VvF ′ = VvF , we have π′v = πtv, and therefore π′v is semisimple. Thus, by 6.8, QEnd(F ′) is
semisimple and F ′ is semisimple by 6.11/2.
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7 Zeta Functions and Reduced Norms

In this section we generalize Gekeler’s results [Gek] on Zeta functions for Drinfeld modules to pure
Anderson motives. But let us begin by recalling a few facts about reduced norms; see for instance
[Rei, §9]. Let M be a semisimple pure Anderson motive over a finite field and let π be its Frobenius
endomorphism. Then F = Q(π) is the center of the semisimple algebra E by Corollary 6.10. Write
F =

⊕
i Fi and E =

⊕
iEi where the Fi are fields and Ei is central simple over Fi. Note that

by 6.11 the pure Anderson motive M decomposes correspondingly up to isogeny M ≈ ⊕iM i with
Ei = End(M i)⊗AQ. We apply 6.6 to M i and obtain

∑
i[Ei : Fi]

1/2 · [Fi : Q] = r. Let f ∈ E and write
it as f =

∑
i fi with fi ∈ Ei. Choose for each i a splitting field Ki of Ei with αi : Ei⊗Fi

Ki
∼−→Mni

(Ki)
where n2

i = [Ei : Fi]. The reduced norm of f is then defined by

N(f) := nrE/Q(f) :=
∏

i

NFi/Q

(
detαi(fi ⊗ 1)

)
,

where NFi/Q is the usual field norm. The reduced norm is an element of Q which is independent of the
choices of Ki and αi. It satisfies N(a) = ar for all a ∈ Q, and N(f) 6= 0 if and only if f ∈ E×, that is, f
is a quasi-isogeny. If f ∈ End(M) or more generally f is contained in a finite A-algebra then N(f) ∈ A
since A is normal.

Theorem 7.1. Let F be a semisimple abelian τ -sheaf over a finite field L and let f ∈ QEnd(F) be
a quasi-isogeny. Then for any place v 6= ε,∞ of Q we have N(f) = detVvf , the determinant of the
endomorphism Vvf ∈ EndQv(VvF). For v = ∞ 6= ε we have N(f)l = detV∞f , where l comes from
Definition 4.1 and satisfies dimQ∞

V∞F = l · rkF .

Proof. Clearly, if t is a power of q then N(f t) = detVvf
t implies N(f) = detVvf since 1 is the only

t-th root of unity in Qv for v 6=∞, and likewise for v =∞. Writing Vvf in Jordan canonical form over
Qalg
v we find as in the proof of Theorem 6.15 a power t of q such that Vvf

t is absolutely semisimple over
Qv and hence its minimal polynomial is separable by 6.14. Then Fv(f

t) and F (f t) are semisimple by
[Bou, Proposition 9.1/1 and Corollaire 7.7/4]. We now replace f by f t and thus assume that F (f) is
semisimple.

As is well known there is a semisimple commutative subalgebra H =
⊕

iHi of E containing
F (f) with dimFi

Hi = ni and hence dimQH = r. Then nrE/Q(f) equals the determinant of the

Q-endomorphism f̃ : x 7→ fx of H. The reason for this is that Hi ⊗Fi
Ki is still semisimple and com-

mutative if we choose a splitting field Ki which is separable over Fi. By Lemma 7.2 below Hi ⊗Fi
Ki

is isomorphic to Kni

i as left Hi ⊗Fi
Ki-modules, and this implies that nrEi/Fi

(fi) = detαi(fi) = det f̃i,

the determinant of the Fi-endomorphism f̃i : x 7→ fix of Hi, and N(f) = det f̃ the determinant of the
Q-endomorphism f̃ of H.

If v 6=∞ then again by Lemma 7.2, Hv is Hv-isomorphic to VvF and N(f) = det f̃ = detVvf .
If v = ∞ we embed E⊕l

∞ into EndQ∞,L[φ]

(
Ñ∞(F)

)
. Namely, if (f (0), . . . , f (l−1)) ∈ E⊕l

∞ , where

f (m) =
(
f

(m)
i : Fi ⊗OCL

Q∞,L → Fi ⊗OCL
Q∞,L

)
, we set

gij :=





Πi−1 ◦ . . . ◦Πj ◦ f (i−j)
j if 0 ≤ j ≤ i ≤ l − 1

zkΠ−1
i ◦ . . . ◦Π−1

j−1 ◦ f
(l+i−j)
j if 0 ≤ i < j ≤ l − 1 .

Then gij : Fj ⊗OCL
Q∞,L → Fi ⊗OCL

Q∞,L and a straightforward computation shows that the ho-
momorphism g = (gij)i,j=0...l−1 commutes with φ from (3.1) on page 10, that is, g is an element of

EndQ∞,L[φ]

(
Ñ∞(F)

)
= EndQ∞[G](V∞F); use Proposition 3.4. Now we apply Lemma 7.2 to H⊕l

∞ ⊂
E⊕l

∞ ⊂ EndQ∞
(V∞F), and we compute N(f)l = (det f̃)l = detQ∞

(
H⊕l

∞ → H⊕l
∞ , h 7→ fh

)
= detV∞f as

desired.

Lemma 7.2. Let K be a field and let H ⊂ Mn(K) be a semisimple commutative K-algebra with
dimK H = n. Then as a (left) module over itself H is isomorphic to Kn.
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Proof. Decomposing H into a direct sum of fields
⊕

κ Lκ and Kn into a direct sum
⊕

λ Vλ of simple
H-modules, each Vλ is isomorphic to an Lκ(λ). The injectivity of H →Mn(K) and dimK H = n imply
that H is isomorphic to

⊕
λ EndLκ(λ)

(Vλ) and a fortiori isomorphic as left module over itself to Kn.

Theorem 7.3. Let M be a semisimple pure Anderson motive of rank r over a finite field L and let
f ∈ End(M) be an isogeny. Then

1. dimL cokerN(f) = r · dimL coker f .
2. The ideal deg(f) = N(f) ·A is principal and has a canonical generator.
3. There exists a canonical dual isogeny f∨ ∈ End(M ) satisfying f ◦ f∨ = N(f) = f∨ ◦ f .

Remark. 1. This shows that N(1 − πn) ∈ A is the analogue for pure Anderson motives of the number
of rational points X(Fqn) = deg(1 − Frobnq ) ∈ Z on an abelian variety X over the finite field Fq; see
also Theorem 7.7 below.

2. The dual isogeny satisfies (fg)∨ = g∨f∨, because N(fg) = N(f)N(g). Note however, that we
cannot expect that (f + g)∨ = f∨ + g∨ unless r = 2 because for f = a ∈ A we have N(a) = ar and
a∨ = ar−1.

Proof. 1. Clearly for any a ∈ A we have dimLM/aM = r ·dimFq A/(a) = −r ·∞(a) where∞(a) denotes
the∞-adic valuation of a. Now let F be an abelian τ -sheaf with M = M(F), and let f : F → F(n ·∞)
for some n be the isogeny induced by f . Using Theorem 7.1 we compute the dimension

l · dimL coker f = nrl− dimL
⊕l−1

j=0

(
Fj(n · ∞)/fj(Fj)

)
∞

= nrl− dimL M̃∞
(
F(n·∞)

)
/M̃∞(f)

(
M̃∞(F)

)

= nrl− dimFq

(
T∞F(n · ∞)/T∞f(T∞F)

)

= −∞(detV∞f) = −l · ∞
(
N(f)

)
.

Here the first equality follows from the identities Fj(n · ∞)/fj(Fj) =
(
Fj(n · ∞)/fj(Fj)

)
∞ ⊕ coker f

and dimL

(
Fj(n · ∞)/fj(Fj)

)
= degFj(n · ∞)− deg fj(Fj) = nr. The second equality is the definition

of M̃∞, and the third follows from the isomorphism M̃∞(F)⊗A∞,L
A∞,Lsep ∼= T∞F ⊗A∞

A∞,Lsep . The
fourth equality follows from the elementary divisor theorem. From this we obtain 1.

2. Let v 6= ε be a maximal ideal of A. Using Theorem 7.1 we compute the v-adic valuation of N(f)

v(N(f)) = v(detTvf) = dimFv

(
TvM/Tvf(TvM)

)
= dimFv

(
(coker f)v ⊗L Lsep

)τ
= v(deg f) .

Again the second equality follows from the elementary divisor theorem, the third equality comes from
the fact that the τ -invariants of the v-primary part (coker f)v⊗LLsep are isomorphic to TvM/Tvf(TvM),
and the last equality is the definition of deg f . From 1 and Lemma 2.9 we obtain

r · dimFq A/deg(f) = r · dimL coker f = dimL cokerN(f)

= dimL

(
(A/N(f))r ⊗Fq L

)
= r · dimFq A/N(f) .

From the identity dimFq A/a =
∑

v[Fv : Fq] · v(a) for any ideal a ⊂ A we conclude ε(deg f) = ε(N(f))
and therefore deg(f) = N(f) · A.

Finally 3 is immediate since N(f) annihilates coker f by Proposition 2.10.

Remark 7.4. We do not know of a proof of 1 and 2 for arbitrary pure Anderson motives which does
not make use of the associated abelian τ -sheaf F . In the special case when M comes from a Drinfeld
module, Gekeler [Gek, Lemma 3.1] argued that both sides of the equation in 2 are extensions to E of
the ∞-adic valuation on Q. But this argument fails in general, since there may be more than one such
extension as one sees from Example 9.5 below.
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Corollary 7.5. Let M be a semisimple pure Anderson motive of dimension d over a finite field L and
let π be its Frobenius endomorphism. Let v 6= ε be a maximal ideal of A and let χv be the characteristic
polynomial of πv. Then

1. χv ∈ A[x] is independent of v and χv(a) ·A = detVv(a− π) · A = deg(a− π) for every a ∈ A,
2. εd·[L:Fε] = deg(π) = χv(0) · A = N(π) ·A is principal.

Proof. 1 is a direct consequence of Theorems 7.1 and 7.3 and the Lagrange interpolation theorem
applied to the fact that χv(a) = N(a− π) = χw(a) ∈ A for all a ∈ A.
2 follows from the fact that coker π is supported on ε and from the equation dimL coker π = [L :
Fq] · dimL coker τ = d · [L : Fq].

Definition 7.6. We define the Zeta function of a pure Anderson motive M over a finite field Fs as

ZM (t) :=
∏

0≤i≤r
det(1− t ∧i πv)(−1)i+1

where ε 6= v ∈ SpecA is a maximal ideal and ∧iπv ∈ EndQv(∧iVvM).

By 7.5/1 the Zeta function ZM (t) is independent of the place v and lies in Q(t). This also follows
from work of Böckle [Boe] and Gardeyn [Gar, §7]. The name “Zeta function” is justified by the following
theorem (see also the remark after Theorem 7.3).

Theorem 7.7. If M is semisimple and
∑

i ait
i is the power series expansion of t ddt logZM (t), then

ai = N(1− πi) ∈ A.

Proof. By standard arguments ai = det(1−πiv); see [Gek, Lemma 5.6]. Now our assertion follows from
Theorem 7.1

This Zeta function satisfies the Riemann hypothesis:

Theorem 7.8. In an algebraic closure of Q∞ all eigenvalues of ∧iπv ∈ EndQv(∧iVvM) have the same
absolute value (#Fs)

iwt(M).

Proof. This was proved by Goss [Gos, Theorem 5.6.10] for i = 1 and follows for the remaining i by
general arguments of linear algebra.

8 A Quasi-Isogeny Criterion

Similarly to the theory for abelian varieties, the characteristic polynomials of the Frobenius endomor-
phisms on the associated Tate modules play an important role for the study of abelian τ -sheaves. For
example, we can decide on quasi-isogeny of two abelian τ -sheaves F and F ′ just by considering these
characteristic polynomials.

Theorem 8.1. Let F and F ′ be abelian τ -sheaves over Fs with respective Frobenius endomorphisms
π and π′, and let µπ and µπ′ be their minimal polynomials over Q. Let v ∈ C be a place different
from ∞ and ε. Let χv and χ′

v be the characteristic polynomials of πv and π′v, respectively, and let
G := Gal(Lsep/L). Assume in addition that ε 6=∞, or that F and F ′ have the same weight.

1. Consider the following statements:

1.1. F ′ is quasi-isogenous to an abelian factor τ -sheaf of F .
1.2. VvF ′ is G-isomorphic to a G-factor space of VvF .
1.3. χ′

v divides χv in Qv[x].
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1.4. µπ′ divides µπ in Q[x] and rkF ′ ≤ rkF
We have 1.1 ⇒ 1.2 ⇒ 1.3 and 1.4 always,

1.2 ⇐ 1.3 if πv and π′v are semisimple,
1.2 ⇐ 1.3 ⇐ 1.4 if µπ is irreducible in Q[x],

1.1 ⇐ 1.2 if the characteristic is different from ∞.

2. Consider the following statements:

2.1. F and F ′ are quasi-isogenous.
2.2. VvF and VvF ′ are G-isomorphic.
2.3. χv = χ′

v.
2.4. µπ = µπ′ and rkF = rkF ′.
2.5. There is an isomorphism of Q-algebras QEnd(F) ∼= QEnd(F ′) mapping π to π′.
2.6. There is a Qv-isomorphism QEnd(F)⊗Q Qv ∼= QEnd(F ′)⊗Q Qv mapping πv to π′v.
2.7. If ε 6=∞ also consider the statement ZM(F) = ZM(F ′).

We have 2.1 ⇔ 2.2 ⇒ 2.3 , 2.4 , 2.5 always,
2.5 ⇒ 2.6 always,

2.3 ⇔ 2.7 if the characteristic is different from ∞,
2.2 ⇐ 2.3 ⇐ 2.6 if πv and π′v are semisimple,
2.2 ⇐ 2.3 ⇐ 2.4 ⇐ 2.6 if µπ and µπ′ are irreducible in Q[x].

Proof. 1. For the implication 1.1⇒ 1.2 without loss of generality, F ′ can itself be considered as abelian
factor τ -sheaf of F and the implication follows from Proposition 4.5. The implication 1.2 ⇒ 1.3 is
obvious.

For 1.2 ⇒ 1.4 note that µπ is also the minimal polynomial of πv over Qv by Lemma 6.2. By
Proposition 5.5 statement 1.2 implies µπ(π

′
v) = 0, whence 1.4.

For 1.3 ⇒ 1.2 let πv and π′v be semisimple. Let χv = µ1 · . . . · µn and χ′
v = µ′1 · . . . · µ′n′ be the

factorization in Qv[x] into irreducible factors and set Vi := Qv[x]/(µi) and V ′
i := Qv[x]/(µ

′
i). Then we

can decompose VvF = V1 ⊕ · · · ⊕ Vn and VvF ′ = V ′
1 ⊕ · · · ⊕ V ′

n′ . Since χ′
v divides χv, we can now easily

construct a surjective G-morphism from VvF onto VvF ′ which gives the desired result.
Next if µπ is irreducible, 1.4 implies µπ′ = µπ and 1.3 follows from Corollary 6.6. It further follows

from Proposition 6.8 that πv and π′v are semisimple and this implies 1.2 by the above.
For 1.2 ⇒ 1.1 we first do not assume that ε 6= ∞. Let fv : VvF → VvF ′ be a surjective morphism

of Qv[G ]-modules. We may multiply fv by a suitable power of v to get a morphism fv : TvF → TvF ′

of the integral Tate modules which is not necessarily surjective, but satisfies vnTvF ′ ⊂ fv(TvF) for
a sufficiently large n. Let M :=

(
Γ(CL r {∞},F0), Π

−1
0 ◦ τ

)
. This is a “τ -module on A” in the

sense of [BH1, Definition 3.2]. If ε 6= ∞ then M is the pure Anderson motive M(F) associated with
F in (1.1). Also let M ′ :=

(
Γ(CL r {∞},F ′

0), Π
′
0
−1 ◦ τ ′

)
. By [BH1, Theorem 9.8] (or Theorem 4.2

if ε 6= ∞), fv lies inside Hom(M,M ′) ⊗A Av, so we can approximate fv by some f ∈ Hom(M,M ′)
with Tv(f) ≡ fv modulo vn+1TvM

′. Since vnTvM
′ ⊂ fv(TvM) we find inside im Tv(f) generators

of vnTvM
′/vn+1TvM

′. They generate an Av-submodule of vnTvM
′ whose rank must at least be r′

since vnTvM
′/vn+1TvM

′ ∼= (Av/vAv)
r′ . Thus imTv(f) has rank r′. Either by assumption or by [BH1,

Corollary 3.5] if ε 6=∞, both F and F ′ have the same weight. So by [BH1, Proposition 6.10/1], f comes
from a quasi-morphism f ∈ QHom(F ,F ′), that is, a morphism f : F → F ′(D) for a suitable divisor
D. Now we finally assume that the characteristic is different from ∞. By [BH1, Proposition 4.2], the
image im

(
f : F → F ′(D)

)
is an abelian factor τ -sheaf of F and im f → F ′(D) is an injective morphism

between abelian τ -sheaves of the same rank and weight, hence an isogeny by Proposition 2.1.

2. A large part of 2 follows from 1. We prove the rest. To show 2.2 ⇒ 2.1 without the hypothesis on
the characteristic, we just replace the last argument of the proof of 1.2 ⇒ 1.1 by the following: Since
r = dimQv VvF = dimQv VvF ′ = r′, the morphism f : F → F ′(D) is an injective morphism between
abelian τ -sheaves of the same rank and weight, hence an isogeny by Proposition 2.1.
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For the implication 2.1 ⇒ 2.5 let g ∈ QIsog(F ,F ′). Then the map QEnd(F)→ QEnd(F ′) sending
f 7→ gfg−1 is an isomorphism with π′ = gπg−1. The implication 2.5⇒ 2.6 is obvious.

For the implication 2.3⇒ 2.7 note that knowledge of χv yields the knowledge of det(1− t∧i πv) and
thus of ZM(F) by linear algebra. Conversely we know from Theorem 7.8 that all zeroes of det(1−t∧iπv)
have absolute value s−iwt(F) in an algebraic closure of Q∞. So we can recover χv from ZM(F) by simply
looking at this absolute value. This proves 2.3⇐ 2.7.

Next if πv and π′v are semisimple 2.6 ⇒ 2.3 follows from Lemma 6.4/2, and 2.3 ⇒ 2.2 was already
established in 1.

Finally if µπ and µπ′ are irreducible, 2.4 follows from 2.6 by Corollary 6.6 since µπ is also the
minimal polynomial of πv over Qv by Lemma 6.2. Also 2.3 follows from 2.4 by Corollary 6.6 and πv
and π′v are semisimple, so 2.3⇒ 2.2 by the above.

9 The Endomorphism Q-Algebra

In this section we study the structure of QEnd(F) for a semisimple abelian τ -sheaf F over a finite
field and calculate the local Hasse invariants of QEnd(F) as a central simple algebra over Q(π). For
a detailed introduction to central simple algebras, Hasse invariants and the Brauer group, we refer to
[Rei, Ch. 7, §§28–31].

Theorem 9.1. Let F be an abelian τ -sheaf over the finite field Fs of rank r with semisimple Frobenius
endomorphism π, that is, Q(π) is semisimple. Let v ∈ C be a place different from ∞ and from the
characteristic point ε. Let χv be the characteristic polynomial of πv.

1. The algebra F = Q(π) is the center of the semisimple algebra E = QEnd(F).

2. We have r ≤ [E : Q ] = rQv(χv, χv) ≤ r2 .
3. Consider the following statements:

3.1. E = F .
3.2. E is commutative.
3.3. [F : Q ] = r.
3.4. [E : Q ] = r.
3.5. χv has no multiple factor in Qv[x ].
3.6. χv is separable.

We have 3.1 ⇔ 3.2 ⇔ 3.3 ⇔ 3.4 ⇔ 3.5 ⇐ 3.6 always,
3.5 ⇒ 3.6 if πv is absolutely semisimple.

4. Consider the following statements:

4.1. F = Q.
4.2. E is a central simple algebra over Q.
4.3. [E : Q ] = r2.
4.4. χv is the r-th power of a linear polynomial in Qv[x ].
4.5. χv is purely inseparable.

We have 4.1 ⇔ 4.2 ⇔ 4.3 ⇔ 4.4 ⇒ 4.5 always,
4.4 ⇐ 4.5 if πv is absolutely semisimple.

If 4.2 holds and moreover the characteristic point ε := c(Spec Fs) ∈ CFs is different from ∞, E is

characterized by inv∞E = wt(F), invεE = −wt(F) and invv E = 0 for any other place v ∈ C.

5. In general the local Hasse invariants of E at the places v of F equal invv E = − [Fv:Fq]
[Fs:Fq]

· v(π). In

particular

invv E =

{
0 if v ∤ ε∞ ,
wt(F) · [Fv : Q∞] if v|∞ and ε 6=∞ .
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(Here Fv denotes the completion of F at the place v and Fv is the residue field of the place v.)

Remark 9.2. If ε 6=∞ and F is an elliptic sheaf, that is, d = 1 and M(F) is the Anderson motive of a
Drinfeld module, Gekeler [Gek, Theorem 2.9] has shown that there is exactly one place v of F above ε,
and exactly one place w of F above∞, and that invw E = [F : Q] ·wt(F) and invv E = −[F : Q] ·wt(F).
Note that Gekeler actually computes the Hasse invariants of the endomorphism algebra of the Drinfeld
module. So his invariants differ from ours by a minus sign, since passing from Drinfeld modules to
abelian τ -sheaves is a contravariant functor, see [BS, Theorem 3.2.1].

Corollary 9.3. Let F be an abelian τ -sheaf over the smallest possible field L = Fq such that QEnd(F)
is a division algebra. Then QEnd(F) is commutative and equals Q(π).

Proof. QEnd(F) is a central division algebra over F by Theorem 9.1, which splits at all places of F by
9.1/5, hence equals F .

Proof (of Theorem 9.1 ). 1 was already proved in Corollary 6.10.

2. Let

χv =

n∏

i=1

µmi

i ∈ Qv[x ]

with distinct irreducible µi ∈ Qv[x ] and mi > 0 for 1 ≤ i ≤ n. Then
∑n

i=1mi · deg µi = degχv = r,
and by Theorem 6.5 we have [E : Q ] = rQv(χv, χv) =

∑n
i=1m

2
i · degµi. The result now follows from

the obvious inequalities

r =

n∑

i=1

mi · deg µi
(1)

≤
n∑

i=1

m2
i · deg µi

(2)

≤
(

n∑

i=1

mi · deg µi

)2

= r2 . (9.1)

3. Since F = Z(E), the equivalence 3.1 ⇔ 3.2 is evident. We have equality in (1) of Equation
(9.1) if and only if mi = 1 for all 1 ≤ i ≤ s which establishes the equivalence 3.4 ⇔ 3.5. In order
to prove 3.5 ⇒ 3.3 we consider the minimal polynomial µv of πv over Qv. If χv has no multiple
factor, then µv = χv and therefore [F : Q ] = [Qv(πv) : Qv ] = r. Next 3.3 ⇒ 3.1 because F ⊂ E
and (dimQv Fv)(dimQv Ev) = dimQv EndQv(VvF) = r2 by [Bou, Théorème 10.2/2], since Ev is the
commutant of Fv in EndQv(VvF). Note that 3.3 ⇒ 3.1 also follows from Lemma 7.2. Conversely
3.1 ⇒ 3.4 because E = F implies r ≥ [Qv(πv) : Qv ] = [F : Q ] = [E : Q ] ≥ r. For 3.5 ⇒ 3.6 we use
Lemma 6.14/2 as we know that χv = µv. 3.6⇒ 3.5 is clear.

4. If F = Q, then E is simple with center Q, so E is a central simple algebra over Q. Since F = Z(E),
the converse is obvious. This shows 4.1 ⇔ 4.2. We have equality in (2) of (9.1) if and only if n = 1,
degµ1 = 1 and m1 = r which establishes 4.3 ⇔ 4.4. In order to connect 4.1 ⇔ 4.2 with 4.3 ⇔ 4.4 let
χv be a power of a linear polynomial. By [Bou, Proposition 9.1/1] the minimal polynomial of πv over
Qv is linear and thus F = Q. The converse is trivial. For 4.5⇒ 4.4 we use again 6.14/2 to see that µv
is linear. 4.4⇒ 4.5 is clear.

The statement about the Hasse invariants follows from 5. Nevertheless, we give a separate proof in
case (k, l) = 1 using Tate modules, since this is much shorter here and exhibits a different technique
than 5. By the Tate conjecture 4.3, E ⊗Q Qv is isomorphic to EndQv(VvF) ∼= Mr(Qv) for all places
v ∈ C which are different from ε and ∞, so the Hasse invariants of E at these places are 0. Since the
sum of all Hasse invariants is 0 (modulo 1), we only need to calculate inv∞E.

As a first step, we show that Fql is contained in Fs. In our situation, π lies inside Q. Thus, by 7.8 we

get sk/l = |π |∞ = qm for some m ∈ Z as |Q×
∞ |∞ = qZ. Since qe = s, we conclude that e · k/l = m ∈ Z

and hence l | e, since k and l are assumed to be relatively prime. Therefore Fql ⊂ Fqe = Fs.
Consider the rational Tate module V∞(F) at ∞ and the isomorphism of Q∞-algebras

E ⊗Q Q∞ ∼= End∆∞[G](V∞F) = End∆∞
(V∞F)
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from Theorem 4.3. Since dimQ∞
∆∞ = l2 and dimQ∞

V∞F = rl, we conclude that V∞F is a left

r/l-dimensional ∆∞-vector space and hence isomorphic to ∆
r/l
∞ . Thus we have

E ⊗Q Q∞ ∼= End∆∞
(∆r/l

∞ ) = Mr/l(End∆∞
(∆∞)) = Mr/l(∆

op
∞) .

Our proof now completes by inv∞E = inv ∆op
∞ = − inv ∆∞ = k

l = wt(F) .

5. We prove the general case using local (iso-)shtuka rather than Tate modules which were used in 4.
Our method is inspired by Milne’s and Waterhouse’ computation for abelian varieties [WM, Theorem 8].
However in the function field case this method can be used to calculate the Hasse invariant at all places,
whereas in the number field case it applies only to the place which equals the characteristic of the ground
field. Let w be a place of Q and let Nw := Nw(F) be the local σ-isoshtuka of F at w. Let Fw be the
residue field of w and Fqf = Fw ∩ Fs the intersection inside an algebraic closure of Fq. Let a0 be the
ideal (b ⊗ 1 − 1 ⊗ b : b ∈ Fqf ) of Qw ⊗Fq Fs and let R := (Qw ⊗Fq Fs/a0)[T ] = Qw ⊗F

qf
Fs[T ] be the

non-commutative polynomial ring with T ·(a⊗b) = (a⊗bqf
) ·T for a ∈ Qw and b ∈ Fs. Since Qw⊗F

qf
Fs

is a field, R is a non-commutative principal ideal domain as studied by Jacobson [Jac, Chapter 3]. Its
center is the commutative polynomial ring Qw[T g] where g = [Fs : Fqf ] = e

f . From Theorem 3.6 and
Proposition 3.5 we get isomorphisms

QEnd(F)⊗Q Qw ∼= EndQw⊗Fq Fs[φ](Nw) ∼= EndR(Nw/a0Nw)

where T operates on Nw/a0Nw as φf .
By [Jac, Theorem 3.19] the R-module Nw/a0Nw decomposes into a finite direct sum indexed by

some set I
Nw/a0Nw

∼=
⊕

v∈I
N⊕nv
v (9.2)

of indecomposable R-modules Nv with Nv 6∼= Nv′ for v 6= v′. The annihilator of Nv is a two sided ideal
of R generated by a central element µv ∈ Qw[T g] by [Jac, §3.6], which can be chosen to be monic. In
particular (9.2) is an isomorphism of Qw[T g]-modules and µv is the minimal polynomial of T g on Nv

by [Jac, Lemma 3.1]. Therefore the least common multiple µ of the µv is the minimal polynomial of
T g on Nw/a0Nw. Note that T g operates on Nw/a0Nw as the Frobenius π, hence µ = mipoπ|F and
F = Q(π) = Q[T g]/(µ), where we write mipo for the minimal polynomial. By the semisimplicity of
π (and Proposition 6.8) µ has no multiple factors in Qw[T g]. Since the µv are powers of irreducible
polynomials by [Jac, Theorem 3.20] we conclude that all µv are themselves irreducible in Qw[T g]. Again
[Jac, Theorem 3.20] implies that µv 6= µv′ since Nv 6∼= Nv′ and

µ = mipoπ|F =
∏

v∈I
µv inside Qw[T g] .

Thus F ⊗Q Qw = Qw[T g]/(µ) =
∏
v∈I Qw[T g]/(µv) =

∏
v|w Fv . So I is the set of places of F dividing

w and Fv = Qw[T g]/(µv) is the completion of F at v, justifying our notation. Let πv be the image of
π in Fv. Its minimal polynomial over Qw is µv. This implies that E ⊗Q Qw decomposes further

E ⊗Q Qw =
⊕

v∈I
EndR(N⊕nv

v ) =
⊕

v∈I
E ⊗F Fv

and E ⊗F Fv ∼= EndR(N⊕nv
v ).
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Now fix a place v above w and consider the diagram of field extensions

FvFs

Fv

g/h ggggggggggggggggggg

OOOOOOO FwFs

iFwFs ∩ Fv

g/h nnnnnn

Fw(Fv ∩ Fs)

i

Fs

Fw
i

h ppppppp

Fv ∩ Fs
g/h

nnnnnnnn

Fqf = Fw ∩ Fs = Fw ∩ (Fv ∩ Fs)

h pppppp

f

Fq

Let h := [Fv ∩ Fs : Fqf ] = gcd([Fv : Fqf ], g). Let i := [Fw : Fqf ]. From the formulas

[FwFs : Fw] = [Fs : Fqf ] = g,

[Fw(Fv ∩ Fs) : Fw] = [Fv ∩ Fs : Fqf ] = h,

[FwFs : (FwFs ∩ Fv)] = [FvFs : Fv] = [Fs : Fv ∩ Fs] = g
h , and

Fw(Fv ∩ Fs) ⊂ FwFs ∩ Fv,

we obtain FwFs ∩ Fv = Fw(Fv ∩ Fs) = Fqfhi . Let Fv,L be the compositum of Qw ⊗F
qf

Fs and Fv in

an algebraic closure of Qw. Note that Fv,L is well defined since Fs/Fqf is Galois. Let Fv,L[T ′] be the
non-commutative polynomial ring with

T ′ · (a⊗ b) = (a⊗ bqfhi

) · T ′ and T ′ · x = x · T ′

for a ∈ Qw, b ∈ Fs, and x ∈ Fv and set ∆v = Fv,L[T ′]/
(
(T ′)g/h − πiv

)
. Observe that the commutation

rules of T ′ are well defined since (Qw⊗F
qf

Fs)∩Fv has residue field FwFs∩Fv = Fqfhi and is unramified

over Qw, because Qw⊗F
qf

Fs is. Moreover, the extension Fv,L/Fv is unramified of degree [FvFs : Fv] = g
h

and T̃ := (T ′)[Fv:Fq]/fhi is its Frobenius automorphism. Since T̃ g/h = π
[Fv:Fq]/fh
v in ∆v, our ∆v is just

the cyclic algebra
(
Fv,L/Fv , T̃ , π

[Fv:Fq]/fh
v

)
and has Hasse invariant

[Fv:Fq]
[Fs:Fq]

· v(πv); compare [Rei, p. 266].

We relate ∆v to E ⊗F Fv. Firstly by [Jac, Theorem 3.20] there exists a positive integer u such that
N⊕u
v
∼= R/Rµv(T

g). Therefore

Mu(E ⊗F Fv) ∼= Mu

(
EndR(N⊕nv

v )
)

= EndR(N⊕unv
v ) = Mnv

(
(R/Rµv(T

g))op
)
.

Secondly we choose integers m and n with m > 0 and mi + ng = 1. We claim that the morphism
R/Rµv(T

g)→Mh(∆v), which maps

a⊗ b 7−→




a⊗ b
a⊗ bqf

. . .

a⊗ bqf(h−1)


 and T 7−→ πnv ·




0 1

1

(T ′)m 0




for a ∈ Qw and b ∈ Fs, is an isomorphism of Fv-algebras. It is well defined since it maps T · (a⊗ b) and

(a⊗ bqf
) ·T to the same element because (T ′)m = (T ′)1/i in Gal(Fv,L/Fv), and it maps T g = (T h)g/h to
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πngv (T ′)mg/h · Idh = πv · Idh. Since Rµv(T
g) ⊂ R is a maximal two sided ideal the morphism is injective.

To prove surjectivity we compare the dimensions as Qw-vector spaces. We compute

dimFv Mh(∆v) = h2 · ( gh)2 = g2 ,

dimQw⊗
F

qf
Fs

(
R/Rµv(T

g)
)

= g · deg µv = g · [Fv : Qw] , and

dimQw

(
R/Rµv(T

g)
)

= g2 · [Fv : Qw] = dimQw Mh(∆v) .

Altogether Mu(E ⊗F Fv) ∼= Mhnv
(∆op

v ) and invv E = − invv ∆v = − [Fv:Fq]
[Fs:Fq]

· v(πv) as claimed.

It remains to convert this formula into the special form asserted for v ∤ ε∞ or v|∞. If v|∞ and
ε 6= ∞, let ev be the ramification index of Fv/Q∞. Then we get from Theorem 7.8 the formula
qewt(F) = |π|∞ = q−v(πv)/ev , since the residue field of Q∞ is Fq. This implies as desired

− [Fv : Fq]

[Fs : Fq]
· v(πv) = − [Fv : Fq] · (−eve · wt(F))

e
= wt(F) · [Fv : Q∞]

Finally if w 6= ε,∞ is a place of Q, the local σ-shtuka Mw(F) at w is étale. So µ = mipoπ|F has
coefficients in Aw with constant term in A×

w . Therefore v(πv) = 0 for all places v of F dividing w.

Example 9.4. Let C = P1
Fq

, C r {∞} = SpecFq[ t ] and L = Fq. Let d be a positive integer. Let

Fi := O(d⌈ i2⌉ · ∞) ⊕ O(d⌈ i−1
2 ⌉ · ∞) for i ∈ Z and let τ :=

(
0
1
td

0

)
. Then F = (Fi,Πi, τi) is an

abelian τ -sheaf of rank 2, dimension d, and characteristic ε = V (t) ∈ P1 over Fq. Hence the Frobenius
endomorphism π equals τ . If d is odd then F is primitive (that means (d, r) = 1) and therefore simple
by [BH1, Proposition 7.4]. In particular, π is semisimple. We have

µπ = χv = x2 − td = (x−
√
td)(x+

√
td)

which means that πv is not absolutely semisimple in characteristic 2. Moreover, we calculate
rQv(χv , χv) = 1 · 1 · 2 = 2 whereas in the field extension Qv(

√
t) /Qv we have

rQv(
√
t)(χv, χv) =

{
2 · 2 · 1 = 4 in characteristic 2,
1 · 1 · 1 + 1 · 1 · 1 = 2 in characteristic different from 2.

Although the later has no further significance it illustrates the remark after Definition 6.3. By Theorem
9.1/3. we have E = F = Q(π) commutative and [E : Q ] = 2 = r. Moreover, |π |∞ = |

√
td |∞ = qd/2

and χv is irreducible. But χv is not separable in characteristic 2.
If d = 2n is even then the minimal polynomial of π is

µπ = χv = x2 − td = (x− td/2)(x+ td/2) .

So π is semisimple if and only if char(Fq) 6= 2. In this case F is quasi-isogenous to the abelian τ -

sheaf F ′ with F ′
i = OCL

(in · ∞)⊕2 and τ ′i =
(
−tn
0

0
tn

)
. The quasi-isogeny f : F ′ → F is given by

f0,η =
(
−tn
1

tn

1

)
: F ′

0,η
∼−→ F0,η. The abelian τ -sheaf F ′ equals the direct sum F (1) ⊕ F (2) where

F (j)
i = OCL

(in · ∞) and τ
(j)
i = (−1)jtn. Note that F (1) and F (2) are not isogenous over Fq, since the

equation −tn · σ∗(g) = g · tn has no solution g ∈ Q for char(Fq) 6= 2. Therefore

Q⊕Q =
2⊕

j=1

QEnd(F (j)) ∼= E = F = Q[x]/(x2 − t2n) ∼= Q⊕Q .

Now we consider the same abelian τ -sheaf over L = Fq2. This means π = τ2 = td ∈ Q and therefore
χv = (x − td)2. Thus π is semisimple. By Theorem 9.1/4 we have F = Q(π) = Q and E is central
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simple over Q with [E : Q ] = 4 and inv∞E = invεE = d
2 . Moreover, |π |∞ = | td |∞ = qd. In this

case, πv is absolutely semisimple. Note that if d is even and char(Fq) = 2 this is another example for
Theorem 6.15.

If d is odd then F is still primitive, whence simple and E is a division algebra. If d = 2n is even
then the abelian τ -sheaves F (1) and F (2) defined above are isomorphic F (1) ∼−→ F (2), 1 7→ λ where
λ ∈ Fq2 satisfies λq−1 = −1. Therefore M2(Q) = M2

(
QEnd(F (1))

) ∼= E in accordance with the Hasse
invariants just computed.

Example 9.5. We compute another example which displays other phenomena. Let C = P1
Fq

and let

C r {∞} = Spec Fq[t]. Let Fi = OCL
(⌈ i−1

2 ⌉ · ∞)⊕2 ⊕OCL
(⌈ i2⌉ · ∞)⊕2, let Πi be the natural inclusion,

and let τi be given by the matrix

T :=




0 0 0 a
0 b 1 0
t 0 −b 0
0 t 0 0


 with a, b ∈ Fq r {0} .

Then F is an abelian τ -sheaf of rank 4 and dimension 2 with l = 2, k = 1 and characteristic ε = V (t) ∈
P1. One checks that the minimal polynomial of the matrix T is x4 − b2x2 − at2 which is irreducible
over Q if char(Fq) 6= 2, since it has neither zeroes in Fq[t] nor quadratic factors in Q[x]. If char(Fq) = 2
then the minimal polynomial is a square and F is not semisimple.

For L = Fq and 2 ∤ q we obtain π = τ semisimple and E = F = Q(π) = Q[x]/(x4 − b2x2 − at2).
For L = Fq2 we have π = τ2 and the minimal polynomial of π over Q is x2 − b2x − at2, which is

irreducible also in characteristic 2 since it has no zeroes in Fq[t]. Hence π is semisimple, F is a field
with [F : Q] = 2 and [E : F ] = 4 by Corollary 6.6. This again illustrates Theorem 6.15. We compute
the decomposition of ∞ and ε in F .

Decomposition of ε: Modulo t the polynomial x2− b2x− at2 has two zeroes x = b2 and x = 0 in Fq. So
by Hensel’s lemma F ⊗QQε ∼= Fv⊕Fv′ splits with Fv ∼= Fv′ ∼= Qε and v(π) = 0 and v′(π) = v′(at2) = 2.
Thus the Hasse invariants of E are invv E = invv′ E = 0.

Decomposition of ∞: Set y = π/t. Then y2 − b2

t y − a = 0.

Case (a). If 2|q then (y − aq/2)2 − b2

t (y − aq/2)− b2

t a
q/2 = 0, that is, ∞ ramifies in F , F ⊗Q Q∞ = Fw

with w(πt − aq/2) = 1 and w(1
t ) = 2 · ∞(1

t ) = 2. So [Fw : Q∞] = 2 and invw E = 0.

Case (b). If 2 ∤ q and
√
a ∈ Fq then the polynomial y2 − b2

t y − a has two zeroes y = ±√a modulo 1
t .

So by Hensel’s lemma F ⊗Q Q∞ ∼= Fw ⊕ Fw′ splits with [Fw : Q∞] = [Fw′ : Q∞] = 1. Thus the local
Hasse invariants of E are invw E = invw′ E = 1

2 . As was remarked in 9.2 such a distribution of the
Hasse invariants can occur only if d ≥ 2.

Case (c). If 2 ∤ q and
√
a /∈ Fq then y2 − b2

t y − a is irreducible modulo 1
t and ∞ is inert in F ,

F ⊗Q Q∞ = Fw with [Fw : Q∞] = 2. Thus the Hasse invariant of E is invw E = 0.

In case (b) E is a division algebra and F is simple. In cases (a) and (c) E ∼= M2(F ) and F is
quasi-isogenous to (F ′)⊕2 for an abelian τ -sheaf F ′ of rank 2, dimension 1 and QEnd(F ′) = F . This
surprising result is due to the fact that F ′, being of dimension 1, is associated with a Drinfeld module
and thus of the form F ′

i = OCL
(⌈ i2⌉ · ∞) ⊕ OCL

(⌈ i−1
2 ⌉ · ∞) with τ ′i =

( c
d
t
0

)
and c, d ∈ Fq2. Then

π′ = (τ ′)2 =
(
cq+1+dqt

cqd
ct
dt

)
has minimal polynomial x2 − (cq+1 + (d + dq)t)x + dq+1t2 which must be

equal to x2 − b2x − at2. This is possible only if d + dq = 0 and dq+1 = −a. So either d ∈ Fq and 2|q
and we are in case (a), or d ∈ Fq2 r Fq, d

q = −d, and a = d2. The later implies 2 ∤ q and
√
a = d /∈ Fq

and we are in case (c). If we choose c = b in case (c) a quasi-isogeny f : F → (F ′)⊕2 over Fq2 is given
for instance by 



d a −bd/t 0
0 0 −d a
0 0 d/t a/t
1 −d 0 bd/t


 .
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10 Kernel Ideals for Pure Anderson Motives

In this section we investigate which orders of E can arise as endomorphism rings End(M) for pure An-
derson motives M . For this purpose we define for each right ideal of the endomorphism ring End(M)
an isogeny with target M and discuss its properties. This generalizes Gekeler’s results for Drinfeld
modules [Gek, §3] and translates the theory of Waterhouse [Wat, §3] for abelian varieties to the func-
tion field case. These two sources are themselves the translation, respectively the higher dimensional
generalization of Deuring’s work on elliptic curves [Deu].

Let M be a pure Anderson motive over L and abbreviate R := End(M ). Let I ⊂ R be a right ideal
which is an A-lattice in E := R ⊗A Q. This is equivalent to saying that I contains an isogeny, since
every lattice contains some isogeny a · idM for a ∈ A and conversely the existence of an isogeny f ∈ I
implies that the lattice f · f∨ · R is contained in I.

Definition 10.1. 1. Let M I be the pure Anderson sub-motive of M whose underlying AL-module is∑
g∈I im(g). This is indeed a pure Anderson motive, since if I = f1R + . . . + fnR are arbitrary

generators, then M I equals the image of the morphism

(f1, . . . , fn) : M ⊕ . . . ⊕M −→ M .

As I contains an isogeny, M I has the same rank as M and the natural inclusion is an isogeny
which we denote fI : M I →M .

2. If I = { f ∈ R : im(f) ⊂M I } then I is called a kernel ideal for M .

The later terminology is borrowed from Waterhouse [Wat, §3]. Since { f ∈ R : im(f) ⊂M I } is the
right ideal annihilating coker fI one should maybe use the name “cokernel ideal” instead.

Proposition 10.2. Let I ⊂ R be a right ideal which is a lattice, and consider the right ideal J := { f ∈
R : im(f) ⊂ M I } ⊂ R containing I. Then MJ = M I . In particular, J is a kernel ideal for M . We
call J the kernel ideal for M associated with I.

Proof. Obviously J is a right ideal and MJ ⊂ M I by definition of J . Conversely M I ⊂ MJ since
I ⊂ J .

Lemma 10.3. 1. For any g ∈ I, f−1
I ◦ g : M →M I is a morphism and g = fI ◦ (f−1

I ◦ g).
2. If I = gR is principal, g an isogeny, then f−1

I ◦ g : M →M I is an isomorphism and I is a kernel
ideal.

Proof. 1 is obvious since the image of g lies inside M I .
2. Clearly f−1

I ◦g is injective since g is an isogeny and surjective by construction, hence an isomorphism.
To show that I is a kernel ideal let f ∈ R satisfy im(f) ⊂M I . Consider the diagram

M

h
���
�

�

f−1
I

◦f
// M I

fI // M

M
f−1

I
◦g

99rrrrrrrrrrrr

and let h := (f−1
I ◦ g)−1 ◦ (f−1

I ◦ f). Then f = gh ∈ I as desired.

Example. If a ∈ A and I = aR, then M I = aM and coker fI = M/aM . More generally if a ⊂ A is an
ideal and I = aR then M I = aM and coker fI = M/aM .

Proposition 10.4. Let I ⊂ R and J ⊂ End(M I) be right ideals which are lattices in E. Then also the
product K := fI · J · f−1

I · I is a right ideal of R and a lattice in E and f−1
K ◦ fI ◦ fJ is an isomorphism

of (M I)J with MK

(M I)J
fJ−−−→M I fI−−→M

fK←−−−MK .
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Proof. If f ∈ I and g ∈ J then the morphism f−1
I ◦ f : M →M I can be composed with fI ◦ g to yield

an element of R. Since I and J contain isogenies, K is a right ideal and contains an isogeny. Clearly
the images of fI ◦ fJ and fK in M coincide since they equal the sum

∑
i,j fI ◦ gj ◦ f−1

I ◦ fi(M) for sets
of generators {fi} of I and {gj} of J .

Theorem 10.5. Let I, J ⊂ End(M ) =: R be right ideals which are lattices in E := R⊗AQ and consider
the following assertions:

1. I and J are isomorphic R-modules,
2. the pure Anderson motives M I and MJ are isomorphic.

Then 1 implies 2 and if moreover I and J are kernel ideals, also 2 implies 1.

Proof. 1 ⇒ 2. Since I and J are lattices, the R-isomorphism I → J extends to an E-isomorphism of
E and is thus given by left multiplication with a unit g ∈ E×, that is, J = gI. There is an a ∈ A such
that ag ∈ I ⊂ R. Then im(ag) ⊂M I , that is, f−1

I ◦ ag : M →M I is an isogeny.
Let K be the right ideal fI ·

(
f−1
I ◦ ag ◦ fI · End(M I)

)
· f−1
I · I of R. We claim that MK ∼= M (ag)I .

Namely, M (ag)I ⊂ MK since agI ⊂ K. Conversely if f ∈ I, h ∈ End(M I), and m ∈ M , then we find
m′ := fI ◦h ◦ f−1

I ◦ f(m) ∈M I , that is, m′ =
∑

i fi(mi) for suitable fi ∈ I and mi ∈M . It follows that
ag(m′) =

∑
i agfi(mi) ∈M (ag)I and therefore M (ag)I = MK .

Applying Lemma 10.3 and Proposition 10.4 now yields an isomorphisms M I ∼= MK = M (ag)I .
Likewise we obtain MJ ∼= MaJ and the equality aJ = agI then implies MJ ∼= M I as desired.

2⇒ 1. Let I and J be kernel ideals and let u : M I →MJ be an isomorphism. There is an a ∈ A with
aM ⊂M I . Therefore g := fJ ◦ u ◦ (f−1

I ◦ a) : M →M is an isogeny.
We claim that gI = aJ , that is, left multiplication by a−1g is an isomorphism of I with J . Let f ∈ I,

then h := fJ ◦u ◦ (f−1
I ◦ f) ∈ R has im(h) ⊂MJ . So h ∈ J since J is a kernel ideal, and gf = ah ∈ aJ ,

since a commutes with all morphisms. Conversely let h ∈ J , then f := fI ◦ u−1 ◦ (f−1
J ◦ h) ∈ R has

im(f) ⊂M I . So f ∈ I since I is a kernel ideal, and ah = gf ∈ gI as desired.

Proposition 10.6. Let I ⊂ R be a right ideal which is a lattice in E. Then fI ·End(M I) ·f−1
I contains

the left order O = { f ∈ E : fI ⊂ I } of I and equals it if I is a kernel ideal.

Remark. Recall that End(M I)⊗A Q is identified with E by mapping h ∈ End(M I) to fI ◦ h ◦ f−1
I .

Proof. Let f ∈ O and g ∈ I. Then fg ∈ I and f−1
I ◦ f ◦ fI ◦ (f−1

I ◦ g) = f−1
I ◦ fg is a morphism

from M to M I . If g varies, the images of f−1
I ◦ g exhaust all of M I . Hence f−1

I ◦ f ◦ fI is indeed an
endomorphism of M I . Conversely let I be a kernel ideal and let f = fI ◦ h ◦ f−1

I ∈ fI ·End(M I) · f−1
I .

If g ∈ I then f ◦ g = fI ◦ h ◦ (f−1
I ◦ g) ∈ R has im(f ◦ g) ⊂M I . So fg ∈ I as desired.

We will now draw conclusions about the endomorphism ring R similar to Waterhouse’ results [Wat]
on abelian varieties by simply translating his arguments.

Theorem 10.7. Every maximal order in E occurs as the endomorphism ring f · End(M ′) · f−1 ⊂ E
of a pure Anderson motive M ′ isogenous to M via an isogeny f : M ′ →M .

Proof. Let S be a maximal order of E. Then the lattice R contains aS for some a ∈ A. Consider the
right ideal I = aS ·R whose left order contains S. By Proposition 10.6, fI ·End(M I) · f−1

I contains the
left order of I. Since S is maximal we find S = fI · End(M I) · f−1

I .

Theorem 10.8. If E is semisimple and End(M) is a maximal order in E, so is fI ·End(M I) · f−1
I for

any right ideal I ⊂ R.

Proof. By [Rei, Theorem 21.2] the left order of I is also maximal and then Proposition 10.6 yields the
result.
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From now on we assume that L is a finite field and we set e := [L : Fq]. Let π be the Frobenius
endomorphism of M .

Proposition 10.9. The order R in E contains π and deg(π)/π.

Proof. Clearly the isogeny π belongs to R. Let now a ∈ deg(π). Then a annihilates coker π by 2.10
and so there is an isogeny f : M →M with π ◦ f = a. The image a/π of f in E belongs to R.

Proposition 10.10. If M is a semisimple pure Anderson motive over a finite field and End(M) is a
maximal order in E = End(M )⊗AQ, then every right ideal I ⊂ End(M ), which is a lattice, is a kernel
ideal for M , and deg(fI) = N(I) :=

(
N(f) : f ∈ I

)
.

Proof. (cf. [Wat, Theorem 3.15]) Let f ∈ I, then f = fI ◦ f−1
I f and N(f) ∈ deg(f) ⊂ deg(fI) by

Lemma 2.9. Therefore N(I) ⊂ deg(fI). Let R′ be the left order of I. It is maximal by [Rei, Theorem
21.2]. For a suitable a ∈ A the set J ′ := {x ∈ E : xI ⊂ aR } is a right ideal in R′ and a lattice in E
and satisfies J ′ · I = aR by [Rei, Theorem 22.7]. Let J := f−1

I J ′fI ⊂ End(M I) be the induced right
ideal of End(M I) = f−1

I R′fI ; see 10.6. Then coker fI ◦ fJ = coker fJ ′I = coker a by Proposition 10.4.
Therefore Theorem 7.3 and [Rei, 24.12 and 24.11] imply

N(a) ·A = N(J ′) ·N(I) ⊂ (deg fJ)(deg fI) = deg(a) = N(a) · A .

By the above we must have N(I) = deg(fI) since A is a Dedekind domain. If I were not a kernel ideal
its associated kernel ideal would be a larger ideal with the same norm. But this is impossible by [Rei,
24.11].

Like for abelian varieties there is a strong relation between the ideal theory of orders of E and the
investigation of isomorphy classes of pure Anderson motives isogenous to M . We content ourselves with
the following result which is analogous to Waterhouse [Wat, Theorem 6.1]. The interested reader will
find many other results without much difficulty.

Theorem 10.11. Let M be a simple pure Anderson motive of rank r and dimension d over the smallest
possible field Fq. Then

1. End(M) is commutative and E := End(M)⊗A Q = Q(π).
2. All orders R in Q(π) containing π are endomorphism rings of pure Anderson motives isogenous

to M . Any such order automatically contains N(π)/π = NQ(π)/Q(π)/π.
3. For each such R the isomorphism classes of pure Anderson motives isogenous to M with endo-

morphism ring R correspond bijectively to the isomorphism classes of A-lattices in E with order
R.

Proof. 1 follows from 6.11 and 9.3.
2. Let R be an order in Q(π) containing π and let v 6= ε be a maximal ideal of A. Since [E : Q] = r
and Ev is semisimple, there is by Lemma 7.2 an isomorphism Ev

∼−→ VvM of (left) Ev-modules given
by f 7→ f(x) for a suitable x ∈ VvM . It identifies Rv := R ⊗A Av with a π-stable lattice Λv = Rv · x
in VvM , which without loss of generality is contained in TvM . By Proposition 4.4 there is an isogeny
f : M ′ →M of pure Anderson motives with Tvf(TvM

′) = Λv. By Theorem 4.2 we conclude

End(M ′)⊗A Av = EndAv[π](Λv) = Rv .

For v = ε note that Qε,L = Qε since L = Fq. In particular Fε = Fq. Since dimQε N ε(M) = r = [E : Q],
Theorem 3.7 together with Lemma 7.2 show that Eε is isomorphic to N ε(M ) as left Eε-modules. Since
R contains π, the image of Rε := R⊗A Aε in N ε(M) is a local σ-subshtuka M̂ ′ of M ε(M) of the same
rank. (If it is not contained in M ε(M ), multiply it with a suitable a ∈ A.) Then Proposition 3.9 yields
an isogeny of pure Anderson motives f : M ′ →M such that M ε(f)

(
M ε(M

′)
)

= M̂ ′ and

End(M ′)⊗A Aε = EndAε[φ](M̂
′) = Rε
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by Theorem 3.7. Since each of these operations only modifies End(M ) at the respective place v, this
shows that we may modify M at all places to obtain a pure Anderson motive M ′ with End(M ′) = R.
Now the last statement follows from Proposition 10.9 and Theorem 7.3.

3. Let R be such an order. By what we proved in 2 there is a pure Anderson motive M̃ for which
all TvM̃ ∼= Rv and M ε(M̃ ) ∼= Rε. Let I ⊂ R be a (right) ideal which is an A-lattice in E and
consider the isogeny fI : M̃ I → M̃ . Under the above isomorphisms TvfI(TvM̃

I) ∼= I ⊗A Av =: Iv and
M εfI(M εM̃

I) ∼= I ⊗A Aε =: Iε. Conversely if f : M ′ → M̃ is an isogeny then Mvf(MvM
′) is a (left)

Rv-module because R = End(M̃ ), hence isomorphic to an Rv-ideal Iv. This shows that any isogeny
f : M ′ → M̃ is of the form fI : M̃ I → M̃ .

If now f ∈ R satisfies im(f) ⊂ M̃ I then f ∈ Iε and f ∈ Iv for all v and therefore f ∈ I. This shows
that every I is a kernel ideal for M̃ . By Proposition 10.6, End(M̃ I) is the (left) order of I. Since every
lattice with order R in E is isomorphic to an ideal of R, we have

{A-lattices in E with order R }/∼

{ I ⊂ R Ideals with order R }/∼ ∼ // { M̃ I fI−→ M̃ →M with End(M̃ I) = R
}
/∼

and the assertion now follows from Theorem 10.5.
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