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Abstract

In the arithmetic of function fields Drinfeld modules play the role that elliptic curves take on in the
arithmetic of number fields. As higher dimensional generalizations of Drinfeld modules, and as the
appropriate analogues of abelian varieties, G. Anderson introduced pure t-motives. In this article
we study the arithmetic of the latter. We investigate which pure t-motives are semisimple, that is,
isogenous to direct sums of simple ones. We give examples for pure t-motives which are not semi-
simple. Over finite fields the semisimplicity is equivalent to the semisimplicity of the endomorphism
algebra, but also this fails over infinite fields. Still over finite fields we study the Zeta function and
the endomorphism rings of pure t-motives and criteria for the existence of isogenies. We obtain
answers which are similar to Tate’s famous results for abelian varieties.

Mathematics Subject Classification (2000): 11G09, (13A35, 16K20)

Introduction

In the last decades the Arithmetic of Function Fields has acquired great impetus caused by Drin-
feld’s [Drl, [Dr2] invention of the concepts of elliptic modules (today called Drinfeld modules) and
elliptic sheaves in the 1970s. Both are analogues of elliptic curves. The latter live in the Arithmetic
of Number Fields, like their higher dimensional generalizations abelian varieties. In [BHI) [Hal] we
claimed that pure Anderson motives (a slight generalization of the pure t-motives introduced by An-
derson [Anl]) and abelian 7-sheaves should be viewed as the appropriate analogues for abelian varieties
and higher dimensional generalizations of elliptic sheaves or modules. We want to further support this
claim in the present article by developing the theory of pure Anderson motives over finite fields.

To give the definition of pure Anderson motives let C be a connected smooth projective curve over
F,, let oo € C(F,) be a fixed point, and let A = I'(C \ {oo},O¢). For a field L D F, let o* be the
endomorphism of Ay := A®p, L sending a®bto a®b? fora € Aand b e L. Let ¢* : A — L be an
[F,-homomorphism and let J = (a®1—-1®c*(a) : a € A) C Ar. A pure Anderson motive M = (M, )
of rank r, dimension d and characteristic ¢* consists of a locally free Ar-module M of rank r and an
Ar-homomorphism 7 : 0*M = M ®4, -« Ar — M with dimy, coker 7 = d and J . coker T = 0, such
that M possesses an extension to a locally free sheaf M on C xp, L on which 7/ : (6*)'M — M(k - o)
is an isomorphism near oo for some positive integers k and [. The last condition is the purity condition.
The ratio % equals % and is called the weight of M. Anderson’s definition of pure t-motives [Anl]
is recovered by setting C' = ]P’]qu and A = [Fy[t]. In the first two sections we recall the definition of
morphisms and isogenies between pure Anderson motives as well as some facts from [BHI]. Also for
an isogeny f between pure Anderson motives we define the degree of f as an ideal of A (Z8) which
annihilates coker f (2.I0). If M is a semisimple (see below) pure Anderson motive over a finite field, the
degree of any isogeny f : M — M is a principal ideal and has a canonical generator (7.3)). In particular
f has a canonical dual.

*The second author acknowledges support of the Deutsche Forschungsgemeinschaft in form of DFG-grant HA3006/2-1
and SFB 478
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Next we address the question whether every pure Anderson motive is semisimple, that is, isogenous
to a direct sum of simple pure Anderson motives. A pure Anderson motive is called simple if it has
no non-trivial factor motives. This question is the analogue of the classical theorem of Poincaré-Weil
on the semisimplicity of abelian varieties. By giving a counterexample (Example [6.1]) we demonstrate
that the answer to this question is negative in general. On the positive side we show that every pure
Anderson motive over a finite base field becomes semisimple after a field extension whose degree is a
power of ¢ (6I0), and then stays semisimple after any further field extension (6.I6]). Let @ be the
function field of C. Then the endomorphism Q-algebra QEnd(M) := End(M) ®4 Q of a semisimple
pure Anderson motive is semisimple (2.7) and over a finite field also the converse is true (6.11). This
is false however over an infinite field (G.13]).

Like for abelian varieties the behavior of a pure Anderson motive M over a finite field is controlled
by its Frobenius endomorphism 7 (defined in [5.2]). If M is semisimple we determine the dimension and
the local Hasse invariants of its endomorphism Q-algebra QEnd(M ) in terms of = (6.5 [0.1]). We define
a Zeta function Z)ys for a pure Anderson motive M (Definition [(.6]) and we show that it satisfies the
Riemann hypothesis (Z.8]), and has an expression in terms of the degrees deg(1 — 7¢) for all i if M is
semisimple (7). We prove the following isogeny criterion.

Theorem BRIl Let M and M’ be semisimple pure Anderson motives over a finite field and let ,
respectively ', be their Frobenius endomorphisms. Then the following are equivalent:

1. M and M’ are isogenous.

2. The characteristic polynomials of m and 7' acting on the v-adic Tate modules of M, respectively
M', coincide for some (any) place v € Spec A.

3. There exists an isomorphism of Q-algebras QEnd(M) = QEnd(M’) mapping 7 to 7'.
b Zag = Zyp.

In the last section we sketch a few results for the question, which orders of QEnd(M) occur as
the endomorphism rings of pure Anderson motives (I0.7, [0.IT). There is a relation between the
breaking up of the isogeny class of a semisimple pure Anderson motive into isomorphism classes, and
the arithmetic of QEnd(A/). We indicate this by treating the case of pure Anderson motives defined
over the minimal field F,. In this case QEnd (/) is commutative (I0.I1]). Many of our results parallel
Tate’s celebrated article [Tat] on abelian varieties over finite fields. To prove them, a major tool are the
Tate modules and local shtuka attached to pure Anderson motives, which we recall in Sections @ and
B, and the analogue [Tag), [Tam] of Tate’s conjecture on endomorphisms. These local structures behave
like in the classical case of abelian varieties, local shtuka playing the role of the p-divisible groups of the
abelian varieties. The only difference is that p-divisible groups are only useful for abelian varieties in
characteristic p, whereas the local shtuka at any place of ) are important for the investigation of abelian
T-sheaves and pure Anderson motives. One of the aims of this article is to demonstrate the utility of
local shtuka. For instance we apply them in the computation of the Hasse invariants of QEnd(M) in
Theorem We also used them in [BHI| to reprove the standard fact that the set of morphisms
between two pure Anderson motives is a projective A-module (L3]). Scattered in the text are several
interesting examples displaying various phenomena (6.1 [6.13] 0.4 @.5]). Note that there is a two in one
version [BH2| of the present article and [BHI] on the arXiv.
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Notation

In this article we denote by

F, the finite field with ¢ elements and characteristic p,
C a smooth projective geometrically irreducible curve over F,
oo € C(Fy) a fixed [Fy-rational point on C,

A=T(C~{0},0c)  the ring of regular functions on C outside oo,
Q =F,(C) = Quot(A) the function field of C,

Q. the completion of ) at the place v € C,
Ay the ring of integers in Q,. For v # oo it is the completion of A at v.
F, the residue field of A,. In particular Foo = F,.

For a field L containing I, we write

CL =C X SpecFy SpeCL,

Ap=Asr, L,

Qr=Q®r, L,

Ay = Ay®r, L for the completion of O¢, at the closed subscheme v x Spec L,
QoL = AU,L[%]. Note that this is not a field if F, N L 2 F,,

Frob, : L — L for the g-Frobenius endomorphism mapping x to x9,

o =id¢ x Spec(Frob,)  for the endomorphism of C, which acts as the identity on the points and on
O¢ and as the g-Frobenius on L,

o* for the endomorphisms induced by ¢ on all the above rings. For instance
o0 (a®b) =a®b?forac Aand be L.

oM =M ®a, o AL for an Ar-module M and similarly for the other rings.

For a divisor D on C we denote by O¢, (D) the invertible sheaf on Cf, whose sections ¢ have divisor
(¢) =2 —D. For a coherent sheaf 7 on Cp, we set F(D) := F ®0., Oc, (D). This notation applies in
particular to the divisor D = n - oo for n € Z.

We will fix the further notation =, F, E, pr, 7y, Fyy, E,, and X, in formula (6.]) on page
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1 Pure Anderson Motives and Abelian 7-Sheaves

Pure Anderson motives were introduced by G. Anderson [Anl] under the name pure t-motives in the
case where A = Fp[t]. They were further studied in [BHI|]. To give their definition let L be a field
extension of F, and fix an F,-homomorphism ¢* : A — L. Let J C A be the ideal generated by
a®1—1®c*(a) for all a € A.

Definition 1.1 (pure Anderson motives). A pure Anderson motive M = (M, 7) of rank r, dimension d,
and characteristic ¢* over L consists of a locally free Ap-module M of rank r and an injective Ar,-module
homomorphism 7 : c*M — M such that

1. the cokernel of T is an L-vector space of dimension d and annihilated by J?, and

2. M extends to a locally free sheaf M of rank r on Cp such that for some positive integers k,l
the map 7' := 1o o*(1) o...0 (") (1) : (6*)'M — M induces an isomorphism (6*) My —
M(k - 00)oo of the stalks at co.

We call € := kerc* € Spec A the characteristic point of M and we say that M has finite charac-
teristic (respectively generic characteristic) if € is a closed (respectively the generic) point. The ratio
wt(M,7) = % equals % and is called the weight of (M, 1); see [BHI, Proposition 1.2].

Definition 1.2. (Compare [PT, 4.5])

1. A morphism f: (M,7) — (M',7") between Anderson motives of the same characteristic c* is a
morphism f: M — M’ of Ap-modules which satisfies f o =10 c*(f).

2. If f : M — M’ is surjective, M’ is called a factor motive of M.

3. A morphism f: M — M’ is called an isogeny if f is injective with torsion cokernel.

4. An isogeny is called separable (respectively purely inseparable) if the induced morphism
T : 0¥ coker f — coker f is an isomorphism (respectively is nilpotent, that is, if for some n the
morphism T o o*To...0(c%)"T is zero).

We denote the set of morphisms between M and M’ by Hom(M, M'"). It is an A-module.

If M and M’ are pure Anderson motives of different weights then Hom(M,M') = {0} by [BHI,
Corollary 3.5]. This justifies the terminology pure. The following fact is well known. A proof can be
found for instance in [BHI, Theorem 9.5].

Theorem 1.3. Let M and M’ be pure Anderson motives over an arbitrary field L. Then Hom(M, M’)
is a projective A-module of rank < rr’. The minimal polynomial of every endomorphism of a pure
Anderson motive M lies in Alz]. O

Corollary 1.4. ([BHI, Corollary 5.4]) Let f : M — M’ be an isogeny between pure Anderson motives.
Then

1. there exists an element a € A which annihilates coker f,
2. there exists a dual isogeny f¥ : M' — M such that fo f¥ =a-idpyy and f¥ o f=a-idy .

Next we come to the notion of abelian (7-)sheaves. It was introduced in [Hal] in order to construct
moduli spaces for pure Anderson motives. We briefly recall the results from [BHI] on the relation
between pure Anderson motives and abelian 7-sheaves. Although our primary interest is on pure
Anderson motives we present abelian 7-sheaves here because they can have characteristic point ¢ =
oo € C in contrast to pure Anderson motives, and many results for the later extend to this more general
situation. Moreover, some results are proved most naturally via the use of abelian 7-sheaves (e.g.
and [[.3] below). The fact that ¢ = oo is allowed for abelian 7-sheaves was crucial for the uniformization
of the moduli spaces of pure Anderson motives in [Hal] and the derived consequences on analytic
uniformization of pure Anderson motives. Let L D F, be a field and fix a morphism ¢ : Spec L — C.
Let J be the ideal sheaf on C'f, of the graph of ¢. Let r and d be non-negative integers.
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Definition 1.5 (Abelian 7-sheaf). An abelian 7-sheaf F = (F;, II;,7;) of rank r, dimension d and
characteristic ¢ over L is a collection of locally free sheaves F; on Cr, of rank r together with injective
morphisms II;, 7; of Oc,-modules (i € Z) of the form

II; 4 II; ;44
— F —  F —— Fiy1 — -

Tres T I

* o oIl " o*1II;
0 Fiy —— 0" Fig —— o' F

subject to the following conditions:

1. the above diagram is commutative,

2. there exist integers k,l > 0 with ld = kr such that the morphism Il;,; 1 o --- o II; identifies F;
with the subsheaf Fiyi(—k-o00) of Fiy for alli € Z,

3. coker I1; is an L-vector space of dimension d for all i € Z,

4. cokerT; is an L-vector space of dimension d and annihilated by J¢ for all i € Z.

We call € := ¢(Spec L) € C the characteristic point and say that F has finite (respectively generic)
characteristic if € is a closed (respectively the generic) point. If r # 0 we call wt(F) := % the weight of
F.

Remark. 1. If F is an abelian 7-sheaf and D a divisor on C, then F(D) := (F;(D),II;® 1,7,® 1) is an
abelian 7-sheaf of the same rank and dimension as F.

2. Let F be an abelian 7-sheaf and let n € Z. We denote by F[n] := (Fitn, itn, Titn) the
n-shifted abelian T-sheaf of F whose collection of F’s, II’s and 7’s is just shifted by n.

Definition 1.6. A morphism f between two abelian 7-sheaves F = (F;, II;,7;) and F' = (F!, II},7})

e

of the same characteristic ¢ : SpecL — C s a collection of morphisms f; : F; — F| (i € Z) which
commute with the II’s and the T’s, that is, fix101l; = II] o f; and fit1 07 =1, 0c*f;. We denote the

set of morphisms between F and F' by Hom(F,F'). It is an F,-vector space.

For example, the collection of morphisms (II;) : F — F|[1] defines a morphism between the abelian
T-sheaves F and F[1].

Definition 1.7. Let F and F' be abelian 7-sheaves and let f € Hom(FE,F') be a morphism. Then f
is called injective (respectively surjective, respectively an isomorphism), if f; is injective (respectively
surjective, respectively bijective) for all i € Z. We call F an abelian factor T-sheaf of F’', if there is a
surjective morphism from F' onto F.

If ¥ = (F;, ;,7;) is an abelian 7-sheaf of rank r, dimension d, and characteristic ¢ : SpecL — C
with € = im ¢ # oo then

M(F) == (M,7) := (F(CL ~ {0}, Fo), Ho_l o7'0> (1.1)

is a pure Anderson motive of the same rank and dimension and of characteristic ¢* : A — L. Conversely
we have the following result.

Proposition 1.8. ([BHI, Theorem 3.1]) Let (M, T) be a pure Anderson motive of rank r, dimension
d, and characteristic ¢* : A — L over L. Then (M,7) = M(F) for an abelian T-sheaf F over L of
same rank and dimension with characteristic ¢ := Specc* : Spec L — Spec A C C'. One can even find
the abelian T-sheaf F with k,l relatively prime.
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2 Isogenies and Quasi-Isogenies

We recall the basic facts about isogenies from [BHI].

Proposition 2.1. ([BHI, Proposition 5.1]) Let f : F — F' be a morphism between two abelian T-
sheaves F = (F;, I;, ;) and F' = (F,,II],7}). Then the following assertions are equivalent:

RS

1. f is injective and the support of all coker f; is contained in D x Spec L for a finite closed subscheme
DcC,

2. f is injective and F and F' have the same rank and dimension,

3. F and F' have the same weight and the fiber f;, at the generic point n of Cy, is an isomorphism
for some (any) i € Z.

Definition 2.2. 1. A morphism f : F — F' satisfying the equivalent conditions of Proposition [Z1]
is called an isogeny. We denote the set of isogenies between F and F' by Isog(FE,F').
2. An isogeny f : F — JF' is called separable (respectively purely inseparable) if for all i the
induced morphism T; : o* coker f; — coker fi11 is an isomorphism (respectively is nilpotent, that
is, ;0 0*Ti_10...0(0*)"1_p, = 0 for some n).

The endomorphism rings of abelian 7-sheaves are finite rings. But if we allow the (endo-)morphisms
to have “poles” we get rings which are related to the endomorphism rings of the associated pure
Anderson motives. We make the following;:

Definition 2.3 (Quasi-morphism and quasi-isogeny). Let F and F' be abelian T-sheaves.

1. A quasi-morphism f between F and F' is a morphism f € Hom(FE,F' (D)) for some effective
divisor D on C.

2. A quasi-isogeny f between F and F' is an isogeny f € Isog(F,F' (D)) for some effective divisor
D on C.

If D; < D5 the composition with the inclusion isogeny F'(D;) C F'(Ds) defines an injec-
tion Hom(F, F'(D1)) — Hom(FE,F'(D3)). This yields an equivalence relation for quasi-morphisms
and quasi-isogenies. We let QHom(F, F') and QIsog(E, ') be the set of quasi-morphisms, respec-
tively quasi-isogenies, between F and F' modulo this equivalence relation. We write QEnd(F) :=
QHom(F, F) and QlIsog(F) := Qlsog(F, F).

The Q-vector spaces QHom(F, F') and QEnd(F) are finite dimensional, and QIsog(F) is the group
of units in the Q-algebra QEnd(F), see [BHIl, Propositions 6.5 and 9.4].

Two abelian 7-sheaves F and F' are called quasi-isogenous (notation: F =~ F'), if there exists
a quasi-isogeny between F and F'. The relation = is an equivalence relation. If F ~ F’', then the
Q-algebras QEnd(F) and QEnd(F') are isomorphic, and QHom(F, ') is free of rank 1 both as a left
module over QEnd(F’) and as a right module over QEnd(F).

Proposition 2.4. ([BHI, Proposition 6.10]) Let F and F' be two abelian T-sheaves of characteristic
e # 00 and let M(F) and M(F') be their associated pure Anderson motives. Then there is a canonical
isomorphism of Q-vector spaces

QHom(F, F') = Hom(M(F), M(F')) ®4 Q.

If M and M’ are pure Anderson motives, then the elements of Hom(M, M’) ® 4 Q which admit
an inverse in Hom(M’', M) ®4 @ are called quasi-isogenies. With this definition we can reformulate
Propositions [[.§ and 2.4] as follows.

Corollary 2.5. Let ¢ # co. Then the functor F +— M(F) defines an equivalence of categories between

1. the category with abelian T-sheaves as objects and with QHom(FE, F') as the set of morphisms,
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2. and the category with pure Anderson motives as objects and with Hom(M, M') ® 4 Q as the set of
morphisms.

We call these the quasi-isogeny categories of abelian T-sheaves of characteristic different from oo and
of pure Anderson motives, respectively. O

Definition 2.6. Let F be an abelian T-sheaf.

1. F is called simple, if F # 0 and F has no abelian factor T-sheaves other than 0 and F.
2. F is called semisimple, if F admits, up to quasi-isogeny, a decomposition into a direct sum
F~F @ ®F, of simple abelian T-sheaves F; (1 < j < n).

We make the same definition for a pure Anderson motive.

Remark. 1. Let F be an abelian 7-sheaf with characteristic different from co. Then F is (semi-)simple
if and only if the pure Anderson motive M (F) is (semi-)simple by [BHI, Proposition 7.3].

2. It is not sensible to try defining simple pure Anderson motives via sub-motives, since for example
aM C M is a proper sub-motive for any a € A ~. A*. This shows that pure Anderson motives behave
dually to abelian varieties. Namely an abelian variety is called simple if it has no non-trivial abelian
subvarieties.

Theorem 2.7. ([BHI1, Theorem 7.8]) Let F be an abelian T-sheaf of characteristic different from oc.

1. If F is simple, then QEnd(F) is a division algebra over Q.

2. If F is semisimple with decomposition F ~ F,®---®F,, up to quasi-isogeny into simple abelian
T-sheaves F ;, then QEnd(F) decomposes into a finite direct sum of full matriz algebras over the
division algebras QEnd(FE;) over Q.

In the following we want to define the degree of an isogeny which should be an ideal of A since
in the function field case we have substituted A for Z. Let f : M — M’ be an isogeny between pure
Anderson motives. Then the A;-module coker f is a finite L-vector space equipped with a morphism
of Ar-modules 7/ : 0* coker f — coker f. Since coker f is annihilated by an element of A it decomposes
by the Chinese remainder theorem

(coker f,7') = @ (coker f,7') @4 Ay =: @ K, .

vesupp(coker f) vesupp(coker f)

If v # € the morphism 7" on K, is an isomorphism and so Lang’s theorem implies that
(K, ®1 L*P)" ®p, L*P — K, ®1 L*P

is an isomorphism; see for instance [Anll Lemma 1.8.2]. In particular

[FU : Fq] . diva (Kv X LSCP)T = dim]Fq (Kv X LSCP)T = dimpsep (KU Ry, Lsep) = dimy, K, .

On the other hand if the characteristic is finite and v = ¢, the characteristic morphism ¢* : A — L
yields F. C L and determines the distinguished prime ideal

ap = (b®1—1®6*(b):b€F€)CA€’L.

If we set n := [F. : F] and a; := (6*)'ap = b ®1-1® (b)? : b € F.), then we can decompose
Acr = @iEZ/nZ A; 1,/a; and 7 is an isomorphism

o* (Ke/ai—lge) = Ke/ai

for ¢ # 0 since 7 is an isomorphism on M and M’ outside the graph of ¢*. (This argument will be used
again in Proposition B.8l) In particular

[Fe: Fy| - dimp (K, /apK,) = dimp K.
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Definition 2.8. We assign to the isogeny f the ideal
deg(f) := H pldimp K)/[Fo:Fq] _ dimp (K, /a0K,) H pdims, (K, ©r L*P)7

vEsupp(coker f) vF#E

of A and call it the degree of f. We call e9MLE/D0E) yhe inseparability degree of f and
Hv# pdime, (K ®LL*P)T 4h 0 geparability degree of f.

Remark. The separability degree of f is the Euler-Poincaré characteristic EP(@U# K, ®r LSCp)T; see
Gekeler [Gek| 3.9] or Pink and Traulsen [PT, 4.6]. Recall that the Euler-Poincaré characteristic of a
finite torsion A-module is the ideal of A defined by requiring that EP is multiplicative in short exact
sequences, and that EP(A/v) := v for any maximal ideal v of A.

Lemma 2.9. 1. Iff:M — M and g: M' — M" are isogenies then deg(gf) = deg(f) - deg(g).
2. dimp, A/ deg(f) = dimg coker f.

Proof. 1 is immediate from the short exact sequence

0 — coker f —> coker(gf) —— coker g ——= 0
and 2 is obvious. O

Proposition 2.10. The ideal deg(f) annihilates coker f.

Proof. If v = € and a is a uniformizer at ¢, then multiplication with a is nilpotent on the L-vector space
K_/apK.. In particular adimL (B /a0k.) apnihilates K ./apK ., and hence_ also K. o

If v # ¢ and a is a uniformizer at v, we obtain analogously that ad™e Ew®LL*")™ anpihilates the
F,-vector space (K, ®r, L*P)" and therefore also the L-vector space K. O

Proposition 2.11. Let f : M — M’ be an isogeny such that deg(f) = aA is principal (for example this
is the case if C = P! and A =F[t]). Then there is a uniquely determined dual isogeny f¥ : M' — M
(depending on a), which satisfies fo f¥ =a-idpy and f¥ o f =a-idp .

Proof. Since deg(f) annihilates coker f the proposition is immediate. O

In Theorem [7.3] we will see that any isogeny f € End(M) of a semisimple pure Anderson motive
over a finite field satisfies the assumption that deg(f) is principal.

3 Local Shtuka

There are mainly two local structures which one can attach to pure Anderson motives and abelian
T-sheaves, namely the local (iso-)shtuka and the Tate module. We treat the Tate module in the next
section. The local (iso-)shtuka is the analogue of the Dieudonné module of the p-divisible group attached
to an abelian variety. Note however one fundamental difference. While the Dieudonné module exists
only if p equals the characteristic of the base field, there is no such restriction in our theory here. And in
fact this would even allow to dispense with Tate modules at all and only work with local (iso-)shtuka.
Local (iso-)shtuka were introduced in [Hal] under the name Dieudonné F,[z]-modules (respectively
Dieudonné F,((z))-modules). They are studied in [An2, [Ha2) [Lau]. Over a field their definition takes
the following form.

Definition 3.1. Let v € C be a place of Q and let L O Fy be a field. An (effective) local o-shtuka at
v of rank r over L is a pair M = (M, ¢) consisting of a free Ay -module M of rank r and an injective
Ay, -module homomorphism ¢ : o*M — M.

A local o-isoshtuka at v of rank r over L is a pair N = (]\7, ®) consisting of a free Q,, -module N
of rank r and an isomorphism ¢ : N =5 N of Qu,r,-modules.
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Remark 3.2. Note that so far in the literature [An2, [Hall [Ha2| [Lau] it is always assumed that A,
has residue field I, the fixed field of o on L. So in particular A, ; is an integral domain and Q,,z, is

a field. For applications to pure Anderson motives this is not a problem since we may reduce to this
case by Propositions B.5] and 3.8 below.

Definition 3.3. A local shAtulm M = (M,(;S) 1s called étale if ¢ is an isomorphism. The Tate module
of an étale local o-shtuka M at v is the G := Gal(L*P/L)-module of ¢-invariants

T’I)_M = (_M ®A, L AU,LSCP)¢
The rational Tate module of M is the G-module
‘/U_M = T’I)_M XA, Qv .

It follows from [TWI, Proposition 6.1] that T, M is a free A,-module of the same rank than M and
that the natural morphism R R
TvM ®AU Av,LseP — M ®AU,L Av,LseP

is a G- and ¢-equivariant isomorphism of A, rsep-modules, where on the left module G' acts on both
factors and ¢ is id ®c*. Since (L5P)¥ = L we obtain:

Proposition 3.4. Let M and ]\_T be étale local o-shituka at v over L. Then

1. M = (TUM ®A4, AU,Lscp)G, the Galois invariants,
2. Homy, , (g (M,M") = Homy, (g (T,M,T,M'"), f+ T,f is an isomorphism.

In particular the Tate module functor yields an equivalence of the category of étale local shtuka at v
over L with the category of A,[G]-modules, which are finite free over A,. O

Proof. 1 and 2 are immediate. Hence clearly the Tate module functor is fully faithful. That it is an
equivalence follows analogously to [Katl, Proposition 4.1.1]. O

If the residue field F, of v is larger than F, one has to be a bit careful with local (iso-)shtuka since
(v, is then in general not a field. Namely let #F, = ¢" and let F ; := {a € L: al" = a} be the
“intersection” of F, with L. Then

Foor, L= ][] Feor, L= ]] F,@p, L/ (b@1—-1@b :bcF,y)
Gal(F g /Fq) i€Z) 7.

and o* transports the i-th factor to the (i+1)-th factor. (Of course, the indexing of the factors depends
on a choice of embeddings F,; C F, and F,; C L.) Denote by a; the ideal of A, 1, (or Q,1) generated

by {b®1—1®0b% : b€ Fy}. Then

AU,L = H Av®quL = H AU,L/ai
Gal(]qu /Fq) i€L) 7

and similarly for @),,. Note that the factors in this decomposition and the ideals a; correspond precisely
to the places v; of CFq ; lying above v.

Proposition 3.5. Fiz an i. The reduction modulo a; induces equivalences of categories
1. (N,¢) — (N/aiN, ¢ (0" NJaN — N/aZN)

between local o-isoshtuka at v over L and local of -isoshtuka at v; over L of the same rank.
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2. (M, ¢) — (M/aiM, ¢! (o) M Ja; M — M/aZM)

between étale local o-shtuka at v over L and étale local of -shtuka at v; over L preserving Tate
modules
TU(M7 ¢) B Tv'(M/aiM7 qbf) :

Proof Since o*a; = a;41 the isomorphism ¢ yields 1somorphlsms o (N / al ) —~ N / ai+1N and similarly
for M. These allow to reconstruct the other factors from (N/a;N,¢7), and likewise for M. The
isomorphism between the Tate modules follows from the observation that an element (z;);cz/ sz is
¢-invariant if and only if 741 = ¢(o*x;) for all j and z; = ¢/ ((0*) ;). O

Remark. The advantage of the étale local o/-shtuka at v; is that it is a free module over the integral
domain A, 1/a; = Au@f‘q fL, and similarly for local of-isoshtuka. So the results from [An2l Hall [Ha2,

Lau| apply.

Now let F be an abelian 7-sheaf and v € C an arbitrary place of (). We define the local o-isoshtuka
of F at v as

Nu(E) = (Fo 800, Qui, Mgt o).
If v # oo we define the local o-shtuka of F at v as

My(F) = (fo ®0¢, AvL, ;! OTo> .

Likewise if M is a pure Anderson motive over L and v € Spec A we define the local o-(iso-)shtuka of
M at v as
My(M) == M®a, Ay, respectively  N,(M) = M ®a, QurL-

These local (iso-)shtuka all have rank r. The local shtuka are étale if v # €. Note that N (F) does
not contain a local o-shtuka if € # oo, since then it is isoclinic of slope —wt(F) < 0.

However, if v = oo the periodicity condition allows to define a different local (iso-)shtuka at oo
which is of slope > 0. Namely, choose a uniformizer z on C at oo and set M; = F ®0c, Ao,z Recall

the integers k, [ from Definition [[.5)/2 and set II = II;_q0---0lIly. We define the big local o-shtuka of
F at oo as

0 S 0 ﬁ—l ° Zle—l
- - ~ ) 0 0
Moo (F) == My®---® M;_4 with ¢ = 0 (3.1)

We also define the big local o-isoshtuka of F at oo as

Noo(z) = Moo(f) ®Aoo,L Qoo,L .

Both have rank rl and depend on the choice of k,l and 2. If € # oo then Mo (F) is étale. Note that
M oo(F) and Noo(F) were used in [Hal] to construct the uniformization at oo of the moduli spaces of
abelian 7-sheaves. B B

The big local (iso-)shtuka at 0o, M (F) and N (F) are always equipped with the endomorphisms

0 e 0 ﬁ—l ° ZkHl—l A idMO
pe | A = 2

—1 .
AT idyy,
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for all A € Fi N L. They satisfy the relations II' = 2% and IT o A(X?) = A()\) o IT. We let Ay, be “the”
central division algebra over Q) of rank [ with Hasse invariant —%, or explicitly

Ao = Fu((2)[IT]/ (IT" — 2%, Az — 2\, ITN? — XIT for all A € F ). (3.3)
It Fp C L we identify A with a subalgebra of Endg_ (4 (_Noo(z)) by mapping A € Fi C A to
A(N).
The following two results were proved in [BHI, Theorems 8.6 and 8.7].

Theorem 3.6. Let F and F' be abelian T-sheaves of the same weight over a finite field L and let v be
an arbitrary place of Q.

1. Then there is a canonical isomorphism of Q,-vector spaces
QHom(F, F') ©q Qv — Homg, 45 (Ny(F), No(F)) -

2. If v = 0o choose an | which satisfies [1.3/2 for both F and F' and assume Fy C L. Then there is
a canonical isomorphism of Qso-vector spaces

QHom(E, £) ©q Qoo — Homy g, 114 (Noo(E), Noo(E)) -

Theorem 3.7. Let M and M’ be pure Anderson motives over a finite field L and let v € Spec A be an
arbitrary maximal ideal. Then

Hom(M,M') ®4 A, — Homy, , 14)(M (M), M, (M')).

Let now the characteristic be finite and v = € be the characteristic point. Consider a pure Anderson
motive M of characteristic ¢, its local o-shtuka M.(M) = (M, ¢) at € and the decomposition of the
later described before Proposition

M.(M)= [ M.(M)/a;M(M).
i€Z/f7

From the morphism ¢ : Spec L — SpecF. C C we see that F. C L, f = [F. : F,] and that there is a
distinguished place vy of Cr. above v = € # oo, namely the image of ¢ X ¢ : Spec L — C' x SpecF,.
Then ¢ has no cokernel on M (M)/a; M (M) for i # 0 and the reasoning of Proposition yields

Proposition 3.8. The reduction modulo ag induces an equivalence of categories
Mo(M) — (M(M)/aM: (M), ¢7)

between the local o-shtuka at € associated with pure Anderson motives of characteristic ¢ and the local
ol -shtuka at v associated with pure Anderson motives of characteristic c. The same is true for abelian
T-sheaves. O

Remark. Now the fixed field of ¢/ on L equals F., the residue field of A.. Also M.(F)/agM.(F)
is a module over the integral domain A€®FEL. So again [An2, [Hall [Ha2, [Lau] apply to
(Ma(z)/aoMa(z)y ¢f)

Proposition 3.9. Let M be a pure Anderson motive over L and let ]\_Z; be a local of -subshtuka
of Mo(M)/agM (M) of the same rank. Then there is a pure Anderson motive M' and an isogeny
fiM — M with Mo(f)(M-(M')/agM-(M")) = M_.. The same is true for abelian T-sheaves.
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Proof. Extend M. to the local o-subshtuka Dicz/sz QS’((J*)’M’E) of M.(M) and consider

K = M.(M)/ @ ¢((c*)Ml).
i€Z/ 7.

The induced morphism ¢x : 0*K — K has its kernel and cokernel supported on the graph of c.
Set M" = (M',7") := (ker(M — K),7|p). Then M’ is a pure Anderson motive with the required
properties by [BHI, Proposition 1.6]. O

There is a corresponding result at the places v # £ which is stated in Proposition [£.41

4 Tate Modules

Definition 4.1. If F is an abelian T-sheaf over L, respectively M a pure Anderson motive over L and
v € C (respectively v € Spec A) is a place of Q different from the characteristic point €, we define

T,F = Tv(Mv(£)) and Vo F = Vv(Mv(z)) fO’/“ v 7£ 0,

TooF = Too (M (F)) and VoolF i = Voo (M 5o (F))  for v =00 #e¢,
respectively Ty,M := T,(M,(M)) and VoM =V, (M, (M)) .

We call T, F (respectively V, F) the (rational) v-adic Tate module of F. If v = oo they both depend on
the choice of k,l, and z; see page [10.

By [TW. Proposition 6.1], T,F (and V,F) are free A,-modules (respectively @Q,-vector spaces) of
rank 7 for v # oo and rl for v = oo, which carry a continuous G = Gal(L**P/L)-action.

Also the Tate modules T F and Vo F are always equipped with the endomorphisms IT and A())
for A€ Fu N L from [B2). And if F; C L we identify the algebra A, from (3.3]) with a subalgebra of
Endg,, (VooE) by mapping A € F i to A(A).

Remark. Our functor T, is covariant. In the literature usually the A,-dual of our T, M is called the
v-adic Tate module of M. With that convention the Tate module functor is contravariant on Anderson
motives but covariant on Drinfeld modules and Anderson’s abelian t-modules [Anl] (which both give
rise to Anderson motives). Similarly the classical Tate module functor on abelian varieties is covariant.
We chose our non-standard convention here solely to avoid perpetual dualizations. This agrees also
with the remark after Definition that abelian 7-sheaves behave dually to abelian varieties.

The following analogues of the Tate conjecture for abelian varieties are due to Taguchi [Tag] and
Tamagawa [Taml §2].

Theorem 4.2. Let M and M’ be pure Anderson motives over a finitely generated field L and let
G := Gal(L*P/L). Let € # v € Spec A be a mazximal ideal. Then the Tate conjecture holds:

Hom(M,M') ®4 Ay = Homy,¢|(ToM,T,M"). O

Theorem 4.3. ([BHI, Theorem 9.9]) Let F and F' be abelian T-sheaves over a finitely generated field
L and let G := Gal(L*P/L). Let v € C be a place different from the characteristic point €.

1. If v # oo assume € # oo or wt(F) = wt(E'). Then
QHom(F, F') ®q Qv = Homg, (q](VuF, V,.F').
2. If v = 0o choose an integer | which satisfies [L.3/2 for both F and F' and assume Fp C L. Then

QHom(F, F') ®¢ Qoo = HomAw[G}(Vooz, VoolE) .
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As expected, there is the following relation between Tate modules and isogenies.
Proposition 4.4. ([BHI, Proposition 9.11])

1. Let f : M' — M be an isogeny between pure Anderson motives then T, f(T,M') is a G-stable
lattice in VuM contained in T, M .

2. Conversely if M is a pure Anderson motive and A, is a G-stable lattice in V,M contained in
T,M, then there exists a pure Anderson motive M' and a separable isogeny f : M' — M with
va(TvM,) = Av-

Proposition 4.5. Let F' be an abelian factor T-sheaf of F. Then V,F' is a G-factor space of V,F.
The same holds if M' is a factor motive of a pure Anderson motive M.

Proof. Let f € Hom(F,F') be surjective and let M and M’ be the (big, if v = oo) local o-shtuka
of F, respectively F', at v. Then the induced morphism M ,(f) € Hom(M M ) is surjective and
M "= ker M,(f) is also a local o-shtuka at v. We get an exact sequence of local o-shtuka which we
tensor with A, rser yielding

~ ~ Moy (f) 9
0 —— M"®a,, Avrer —— M ®a, , Apper — M ®a,, Appser — 0.

The Tate module functor is left exact, because considering the morphism of A, rser-modules
1—7: M®a,, Aprser — M ®4,, Ay Lo

we have by definition T, M = ker(1 — 7), and the desired left exactness follows from the snake lemma.
After tensoring with ® 4,Q, we get

0 —— V’I)_M// — V’I)_M ﬂ’ V’I)_M/'

Counting the dimensions of these @Q,-vector spaces, we finally also get right exactness, as desired. [J

5 The Frobenius Endomorphism

Suppose that the characteristic is finite, that is, the characteristic point ¢ is a closed point of C' with
finite residue field F¢, and the map c: Spec L — C factors through the finite field € = SpecF..

Definition 5.1 (s-Frobenius on abelian 7-sheaves). Let F be an abelian T-sheaf with finite characteristic
point € = SpecF. and let s = q° be a power of the cardinality of F.. We define the s-Frobenius on F by

m = (m): (6")°F — Fle|, m := Tife—10-+-0 (0*)6_17',- 2 (0)°F — Fige -
Clearly 7 is an isogeny. Observe that F. C Fy implies that (0*)°F has the same characteristic as F.
Similarly if € € Spec A is a closed point we define

Definition 5.2 (s-Frobenius on pure Anderson motives). Let M be a pure Anderson motive with finite
characteristic point € = SpecF. and let s = ¢° be a power of the cardinality of F.. We define the
s-Frobenius isogeny on M by

T = T1o0...0(0") v (6*)°M — M.

Remark 5.3. Classically for (abelian) varieties X over a field K of characteristic p one defines the
Frobenius morphism X — ¢*X where ¢ is the p-Frobenius on K. There p equals the cardinality of
the “characteristic field” im(Z — K) = F,,. In view of the dual behavior of abelian 7-sheaves and pure
Anderson motives our definition is a perfect analogue since here we consider the s-Frobenius for s being
the cardinality of (a power of) the “characteristic field” im(c¢* : A — L) = F..
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Now we suppose L = F to be a finite field with s = ¢° (e € N). Let F, denote a fixed algebraic
closure of F, and set G = Gal(F,/Fs). It is topologically generated by Frobg : z + 2°. The following
results for the Frobenius endomorphism of 7-modules can be found in Taguchi and Wan [TW], §6].

Proposition 5.4. Let M be a pure Anderson motive over Fy of rank r and let € # v € Spec A be a
mazimal ideal.

1. The generator Frob, of G acts on T,M like (T,7)".
2. Let V: Ay[G] — Enda, (T, M) denote the continuous morphism of A,-modules which is induced
by the action of G on T,M. Then im¥ = A,[T,x].

Proof. 1 was proved in [TW], Ch. 6] and 2 follows from the continuity of . O
Remark. The inversion of T, in the first statement results from the dual definition of our Tate module.

Proposition 5.5. Let F be an abelian 7-sheaf over L = Fy with s = ¢° and let 7w be its s-Frobenius.
Then (0*)¢F = F. Let v € C be a place different from oo and from the characteristic point .

1. The s-Frobenius w can be considered as a quasi-isogeny of F.

2. The generator Frobs of G acts on T,F like (T,m)~ 1.

3. The image of the continuous morphism of Qy-vector spaces Q[ G| — Endg, (Vi F) is Q[ Vur].
4. M(7) coincides with the s-Frobenius on the pure Anderson motive M(F) from definition [5.2.

Proof. 1. Due to the periodicity condition, we have Fle| C F(nk - co) for a sufficiently large n € N,
since Fite C Fitn = Fi(nk-o0) for e < nl. Thus 7 € Hom(F, F(nk-o0)), and therefore 7 € QEnd(F).
By 211 we have 7 € QIsog(F).

2 and 3 again follow from [TW, Ch. 6] and the continuity of ¥; see [BH2l, Proposition 2.29] for more
details.

4 follows from the definition of m and the commutation of the II’s and the 7’s. O

6 The Poincaré-Weil Theorem

In this section we study the analogue for pure Anderson motives and abelian 7-sheaves of the Poincaré-
Weil theorem. Originally, this theorem states that every abelian variety is semisimple, that is, isogenous
to a product of simple abelian varieties, see [Lan, Corollary of Theorem II.1/6]. Unfortunately, we
cannot expect a full analogue of this statement for abelian 7-sheaves or pure Anderson motives as our
next example illustrates. On the positive side we show that every abelian 7-sheaf or pure Anderson
motive over a finite field becomes semisimple after a finite base field extension.

Example 6.1. Let C = ]P’lq, C ~ {oo} = SpecF,[t] and ¢ := ¢*(1/t) € F;*. We construct an abelian
7-sheaf F over L =, with r = d = 2 which is not semisimple. Let

a=(o)+(55)
with «,3,7,0 € F;. To obtain characteristic ¢ we need det A = (1 — (t)?, and thus we require the
conditions @ + § = —2¢ and ad — By = (2. We set F; := O¢, (i - 00)®2, we let II; be the natural
inclusion, and we let 7; := A. Then F is an abelian 7-sheaf with r = d = 2 and k = [ = 1. The
associated pure Anderson motive is M = (L[t]®?, A).
We see that F is not simple. If A = (1 o lfa) then F is semisimple as a direct sum of two simple

abelian 7-sheaves. Otherwise, if A #£ (1 o lfa) which is the case for example if 3 # 0, consider

A= (55—@ (1)>_1'A'U*<5§< (1]) - (1_()@ 1—t<t)
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and the abelian 7-sheaf with F; = Oc, (i - 00)®? and 7; = A which is isomorphic to £. There is an

exact sequence
Y

0 z/ ® z z// 0
T =1-(t 7 T =1-(t

with ¢ : 1 — (é) and 1 : (Z) +— y where F' = F” is the abelian 7-sheaf with F/ = O¢, (i - c0) and
T/ =1-Ct. If z were semisimple, then there would be a quasi-morphism w : F’ — z with Yow = id g,

hence w : y +— (613) -y for some e € Fy(t). Thus, a necessary condition for the semisimplicity of F is

(1 - Ct) . U*(y) : (i) = (1_()Ct 1_t<t> : (0*1(6)) . U*(y)

which is equivalent to the condition
t

e—0 (6) = 1——<t .
But this cannot be true since e — o*(e) = 0, thus F is not semisimple. However, this last formula is
satisfied if e = X - 1%@ for X € Fga with A — X = —1. That means that after field extension Fy()) /Fy
we get F = F' 92 and we have QEnd(F) = M>(QEnd(F')) = M2(Q). Note that this phenomenon
generally appears, and we will state and prove it in Theorem

From now on we fix a place v € Spec A which is different from the characteristic point ¢ of c.
For a morphism f € QHom(F,F’) between two abelian 7-sheaves F and JF' we denote its image
Vof € HomQU[G}(VU£, Vo F') just by fp. If F is defined over Fy this applies in particular to the
s-Frobenius endomorphism 7 of F (Definition B.1]).

Let F be an abelian 7-sheaf over the finite field L = F,;. We set

E:=QEnd(F)>~ By, = Endg,[¢)(Vo.E) 2 Ty

F:=Q[r]CFE F, :=im(Q,[G] — Endg, (Vo)) (6-1)

with Q,[G] — Endg, (V,,F) induced by the action of G on V,F. Clearly, we have F' C E and F, C E,
by Proposition [(.5/3. By [BHI, Proposition 9.4], we know that dimg E < oo. Thus 7 is algebraic
over (). We denote its minimal polynomial by p, € Q[z], and the characteristic polynomial of the
endomorphism m, of V, F by x, € Qu[z]. If ¢ # 0o, Theorem [[3] shows that 7 is integral over A,
pr € Alz]. The zeroes of m in Spec A[x] all lie above € because 7 is an isomorphism locally at all v # ¢;
compare with [BHI1, Remark 5.5].

Due to the Tate conjecture, our situation can be represented by the following diagram where we
want to fit the missing bottom right arrow with an isomorphism.

E—>E®QQUN—>EU

]

Lemma 6.2. The natural morphism between F' ®q @, and F, is an isomorphism.

Proof. Consider the isomorphism ¢ : E ®q Q, = E, C Endg, (V,.F) and set ¢ := ¢|rg,q,. Then ¢ is
injective and maps into F,. Since im ¢ = Q,[m, |, the surjectivity follows from Proposition O

To evaluate the dimension of E we need the following notation.

Definition 6.3. Let K be a field. Let f,g € K[x] be two polynomials and let

f = H Mm(u), g = H M"(“)

peK|[z] peK |z ]
irred. irred.
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be their respective factorizations in powers of irreducible polynomials. Then we define the integer

w(f,9) == [ mw) n(y)- degp.
peK|z]
irred.
Remark. In contrast to characteristic zero, we have for char(K') # 0 in general different values of the
integer rx for different ground fields K. Namely, if K C L then rx(f,g9) < rp(f,g) with equality if
and only if all irreducible p € K[« ] which are contained both in f and in g have no multiple factors
in L[z]. This is satisfied for example if the greatest common divisor of f and ¢ has only separable
irreducible factors, or if L is separable over K. See below for an example where rx(f,g) < rr(f,g).

Before we discuss semisimplicity criteria in[6.8—[6.16], let us compute the dimension of QHom(F, F').

Lemma 6.4. Let v be a place of Q different from ¢ and oo. Let F and F' be abelian T-sheaves over F,

and assume that 7, and 7, are semisimple. Factor their characteristic polynomials x, = pi"™* ... pp™
and x), = ,uanl ‘oo™ with distinct monic irreducible polynomials py, . . ., iy € Qu[x ] and m;, m, € Ny.
Then

1. Homg, (Vo E, Vo F') = @Mmgxmi(Qv[x]/(,ui)) as Qy-vector spaces,
1=1

2. Endg,(q)(VoF) EBMmZ Q[ ,u,)) as Qy-algebras, and
3. dimg, Homg, [G](V}" VoF') = 10, (v, X)) -

Proof. Clearly 2 and 3 are consequences of 1 which we now prove. Since 7, and 7, are semisimple, we
have the following decomposition of @Q,[G]-modules

n

Vo = @QU DL VE = @ (Qulw]/ ()

i=1

where Q,[x]/(pi) =: K; are fields. Obviously, we only have non-zero @,[G]-morphisms K; — Kj if
i = j, since otherwise y;(7) # 0 in Kj;. Since 7, operates on Ki@mi as multiplication by the scalar x,
the lemma follows. O

Theorem 6.5. Let F and F' be abelian T-sheaves of the same weight over Fy and assume that the
endomorphisms m, and 7, of V,JF and V,F' are semisimple at a place v # €,00 of Q. Let x, and X'
be their characteristic polynomials. Then

dimg QHom(F, F') = 1q,(Xv: Xy)-
Proof. This follows from the lemma and the Tate conjecture, Theorem [4.3] O

Corollary 6.6. Let F be an abelian T-sheaf of rank r over Fy with Frobenius endomorphism m and let
Wy be the minimal polynomial of w. Assume that F' = Q[z]/(ur) is a field and set h := [F : Q] = deg pir.
Then

2

1. hlr and dimg QEnd(F) = % and dimp QEnd(F) = 7.
2. For any place v of Q different from ¢ and oo we have QEnd(F) ®q Qv = M, /,(F ®¢ Qv) and
Xo = (itx)"™" independent of v.

Proof. Since F' is a field, m, is semisimple by below. So general facts of linear algebra imply that
Hr = 1. .-l With pairwise different irreducible monic polynomials y; € Q,[z] and x, = pf™* .. .- ™
with m; > 1. We set K; = Q,[x]/(1;) and use the notation from (6II). By Lemma [64] the semisimple
Q.-algebra E, decomposes E, = @ | E; into the simple constituents E; = My, (K;). By [Bou,
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Théoreme 5.3/1 and Proposition 5.4/12], E; = E, - e; where e; are the central idempotents with
K; = F, - e;. Thus there are epimorphisms of K;-vector spaces

QEnd(z) ®rK; = E,Qp, Kj — Ej;.

This shows that mf < dimg E. So by Lemma [6.4]
n
[F:Q] -dimpE = dimg, E, = Z:ml2 degu; <
i=1

n
< dimFE-Zdeg,ui = dimp FE-degu, = [F:Q] dimpFE.
i=1
Therefore m? = dimp E for all i. Since r = degx, = >, m;degp; = /dimp E - [F : Q]. We find
r =m;h and dimp F = %, proving 1. For 2 we use that

B, 2= @ Myn(Qulel/() = Mo (@ Qulel/ () = Myyn(Qula /(1)

Next we investigate when m, is semisimple.

Remark 6.7. Notice that the completion @, is separable over Q). Namely, in terms of [EGAL IV.7.8.1-
3], we can state that Oc, is an excellent ring. Thus the formal fibers of 60,1} — Oc¢, and therefore
Q, = (50,1@@6&@ — ( are geometrically regular. This means that @), ®q K is regular for every finite
field extension K over (). Since ”regular” implies "reduced”, we conclude that @, is separable over Q.

Proposition 6.8. In the notation of (61) the following statements are equivalent:

™ 18 semisimple.
. F is semisimple.
. FRg Q, = F, is semisimple.
Ty 1S semasimple.
. E®q Qy = B, is semisimple.
6. E is semisimple.

TR Lo de

Proof. 1. and 2. are equivalent by definition. So we show the equivalences from 2. to 6.

Let F' be semisimple. Since @), is separable over ), we conclude that F®qQ, = Q,[m, ] is semisimple
by [Boul, Corollaire 7.6/4]. Hence , is semisimple by definition, and we showed in Lemma [6.4l/2 that
then E, =2 F ®q Q, is semisimple. Again by [Boul Corollaire 7.6/4] this implies that E is semisimple.
Since F' C Z(F) is a finite dimensional @-subalgebra of the center of F, we conclude by [Bou, Corollaire
de Proposition 6.4/9] that F' is semisimple, and our proof is complete. O

Remark. If more generally F is defined over a finitely generated field, then one cannot consider w, m,,
nor F'. Nevertheless 5 and 6 remain equivalent and are still implied by 3 due to the following well-known
lemma. Namely E, is the commutant of F), in Endg, (V,F). We thank O. Gabber for mentioning this
fact to us and we include its proof for lack of reference.

Lemma 6.9. Let B be a central simple algebra of finite dimension over a field K and let F' be a
semisimple K -subalgebra of B. Then the commutant of F' in B is semisimple.

Proof. Let F' = @, F; be the decomposition into simple constituents and let e; be the corresponding
central idempotents, that is, F; = Fe;. Consider B; = e; Be; which is again central simple over K by
[Bou, Corollaire 6.4/4], since if I C B; is a non-zero two sided ideal then BIB contains 1 and so I
contains the unit e; of B;. By [Bou, Théoréme 10.2/2] the commutant E; of F; in B; is simple. Clearly
the commutant E of F' in B satisfies E; = e¢;Ee; = Fe; and E = @, E; proving the lemma. O
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Corollary 6.10. Let F be an abelian T-sheaf over Fy of rank r with semisimple Frobenius endomor-
phism w. Then the algebra F = Q(w) is the center of the semisimple algebra E = QEnd(F).

Proof. Since F), is semisimple, we know by [Boul Proposition 5.1/1] that the F,-module V,F is semi-
simple. The commutant of F, in Endg, (V,F) is E, by definition. Trivially V,F is of finite type over
E,. Thus, by the theorem of bicommutation [Bou, Corollaire 4.2/1], the commutant of E, in End(V,F)
is again F;,. We conclude Z(E,) = E,NF, = F, and we have F ®q Q, = F, = Z(E,) = Z(E) ®q Q, by
[Boul, Corollaire de Proposition 1.2/3]. Considering the dimensions, we obtain dimg F' = dimg Z(E).
Since F' C Z(FE) and the dimensions are finite, we finish by F' = Z(E). O

Theorem 6.11. Let F be an abelian T-sheaf over a finite field L.

1. If QEnd(F) is a division algebra over @ then F is simple. If in addition ¢ # oo then both
statements are equivalent.

2. If the characteristic point € is different from oo then F is semisimple if and only if QEnd(F) is
semisimple.

Proof. 1. Let QEnd(F) = FE be a division algebra and let f € Hom(F,F’) be the morphism
onto a non-zero factor sheaf F' of F. We show that f is an isomorphism. We know by that
fo € Homg () (Vo.E, Vi, F') is surjective. By the semisimplicity of £ and Proposition B.8, F), is semi-
simple, and therefore V,F is a finitely generated semisimple F,-module. Thus we get a morphism
gu € HomQU[G](Vv£’, Vo, F) with f, 0g, = idy,, - Consider the integral Tate modules T,F and T,F’.
We can find some n € N such that

Ungv € HOHlAu[G}(Tv£/, Tvz) = Hom(]\_/f(fl) M(£)) @A Av

P

and we choose g € Hom(M (E'), M(F)) C QHom(F', F) with g = v"g, modulo v™ for a sufficiently
large m > n. If go f =0 in E, then fogo f = 0, and therefore f o g = 0 in QEnd(F’) due to the
surjectivity of f. This would imply

" idy, = 0" (fuogy) = foo(v'gy) = fog =0 (modulo v™)

which is a contradiction. Thus go f # 0 is invertible in E, and therefore f is injective. By that, f gives
the desired isomorphism between F’' and F. The second assertion follows from Theorem 2.7
2. We already saw one direction in Theorem 2.7)/2. So let now QEnd(F) be semisimple and let

QEnd(F) = @ My, (E;)
Jj=1

be the decomposition into full matrix algebras My, (E;) over division algebras E; over @ (1 <j <m).
For each j we find \; distinct idempotents e;1,...,e; 5, € My;(Ej) such that e; .- QEnd(F)-ej . = Ej
for all 1 < o < A; with 23]:1 ejo = 1 in My, (Ej;). Let eq,...,e, denote all these idempotents,
n = 3% Aj, and choose a divisor D on C' such that e; € Hom(F, Z(D)) for all 1 < i < n. Then
>, e =idg in QEnd(F) and therefore

F —>Ziei @imei Cc E(D).

i=1

The image F; := ime; is an abelian 7-sheaf by [BHIl, Proposition 4.2] because € # oco. Since ), e; is
injective it is an isogeny by 21l Since QEnd(F;) = e;- QEnd(F) -¢; is a division algebra, F, is a simple
abelian 7-sheaf by 1. Thus F ~ F, @& --- @ F,, gives the decomposition into a direct sum of simple
abelian 7-sheaves F, as desired. O
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Remark 6.12. Unfortunately the theorem fails if L is not finite, as Example [6.13] below shows. The
reason is, that then E, may still be semisimple while the image F, of Q,[G] in Endg, (V,F) is not.
Nevertheless, if one adds the assumption that F,, is semisimple, the assertions of Theorem remain
valid over an arbitrary field L. (See also the remark after Proposition [6.8])

Example 6.13. We construct a pure Anderson motive M over a non-finite field L which is not semi-
simple, but has End(M) = A. Any associated abelian 7-sheaf F has QEnd(F) = Q. Let C = ]P’Ilﬁ-q,

A =TF,[t] with ¢ > 2, and L = F¢() where « is transcendental over F,. Let M = AY? and 7 = (' !).
Then M = (M, 7) is a pure Anderson motive of rank and dimension 2. Clearly M is not simple, since
M' = (Ap, 7" =1t) is a factor motive by projecting onto the second coordinate. We will see below that
M 1is not even semisimple.

Let <Z £> € My(Ar) be an endomorphism of M, that is,

ac*e+o*g aoc*f+o*h\  [ae e+ f
o*g o*h  \Nag g+h/)

Choose 3 € Fy(a)8 \ Fy(a) satisfying 397! = o (for 8 ¢ Fy(a) we use ¢ > 2). Then 0*g = ag implies
g € B-F,[t]. Since also g € Fy(a)[t] we must have g = 0. Now o*e = e and ¢*h = h yielding e, h € F]t].

Let v € Fy(a)8\F,(B) with 77— = 3 and set fi= Bf—~-(e—h). Thenao*f—f =e—0c*h=e—h
implies o*f — f = B6*f — Bf — (¢ —)(e — h) = B(ac*f — f — (e — h)) = 0. Thus f € F,[t] and
v - (e —h) € Fy(B)[t]. So we must have e = h and then 3f = f € F,[t] implies f = 0. This shows that
End(M) = F,[t] = A.

The same argument shows that M is not even semisimple. Namely, the projection M — M’ has no
section M' — M,1 +— ({), since there is no solution f for the equation atc*f +t=1tf.

It is also not hard to compute F, for instance at the place v = (t — 1). Let z =t — 1 and § € L5P

with 97! = a, and consider the basis (y{)ﬁ ), (Z) of the Tate module T, (M) with

o0
<x> = Z <xl>2i and w;,y; € L™, yo #0.
Y i—o \Yi

They are subject to the equations y = to*y = (1 + 2)o*y and =z = ato*x + to*y = a(l + 2)o*z + y,
that is,

yi—y! = yl,, and

T —arl = arl {4y

There are elements v and § of G = Gal(L**P /L) operating as v(y;) = i, v(zi) = x4, v(8) = 8/n for an
n € F,* ~ {1}, respectively as d(y;) = yi, 0(8) = B, 6(x;) = x; + y;/B. With respect to our basis of
T, (M) they correspond to matrices 7, = (8 (1)) and 6, = (é %) We conclude that F, is the Q,-algebra
of upper triangular matrices. Its commutant in My(Q,) equals Q, - Ide =2 End(M) ®4 Q..

Remark. If ¢ = 2 any pure Anderson motive of rank rk M = 2 on A = [F[t], which is not semisimple has

End(M) 2 A. One easily sees this by choosing a basis of M for which 7 has the form (O‘(tae)d ﬁ(tjlg)d>

with «, 8,0 € L. Then (8 p (/]O‘> is an endomorphism.

However, we expect that also for ¢ = 2 there are examples similar to [6.13] (of rk M > 3), although
we have not tried to find one.

Let F be an abelian 7-sheaf over Fs and let Fy/ /Fy be a finite field extension. The base extension

£ ®FS ]Fs’ = (fz ®OCIFSOC]FS”Hi & 177—1' & 1)
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is an abelian T-sheaf over Fy with 7/ = (7 ® 1)! for s’ = s', and we have a canonical isomorphism
between V,F and V,F .

For the next result recall that an endomorphism ¢ of a finite dimensional vector space V over a
field K is called absolutely semisimple if for every field extension K'/K the endomorphism ¢ ® 1 €
Endg (V @ K') is semisimple. The following characterization is taken from [Boul, Proposition 9.2/4
and Proposition 9.2/5].

Lemma 6.14. Let K be a field and let V be a finite dimensional K -vector space. Let ¢ € Endg (V)
be an endomorphism.

1. ¢ is absolutely semisimple, if and only if there exists a perfect field extension K'/K such that
e ®1 € Endg/(V @k K') is semisimple.
2. @ is absolutely semisimple, if and only if its minimal polynomial is separable.

Theorem 6.15. Let F be an abelian T-sheaf over the finite field Fy. Then there exists a finite field
extension Fy /Fs whose degree is a power of char Fs such that F ®p, Fy has an absolutely semisimple
Frobenius endomorphism. Thus if moreover € # oo then F ®r, Fy is semisimple.

Remark. Tt suffices to take [Fy : Fy] as the smallest power of char Fy which is > rk F.

Proof. Let s’ = s for some arbitrary ¢t € N. Let £ := F ®p, Fy be the abelian 7-sheaf over Fy induced
by F. Let v € Spec A be a place different from e. Over Q,*'# we can write 7, € Endg, (V,,F) in Jordan
normal form

)\1 * 0

B ' (m,®1)B = Az
. *
0 Ar

for B € GL,(Q,#) and for some Aj € Q,8, 1 < j < r. Thus, by a suitable choice of t € N as a power
of char F,, (as in the remark), we can achieve that 7}, = (m, ® 1) is of the form

A 0
Ay
B~ l7n! B =
0 AL
Since Q,%# is perfect, we conclude by 6.14)/1 that 7], and thus 7’ is absolutely semisimple. O

The following corollary illustrates that, in contrast to endomorphisms of vector spaces, there is no
need of the term ”absolutely semisimple” for abelian 7-sheaves or pure Anderson motives over finite
fields.

Corollary 6.16. Let F be an abelian T-sheaf over Fs of characteristic different from oo. If F is
semisimple, then F ®p, Fy is semisimple for every finite field extension Fy /Fs. The same is true for
pure Anderson motives.

Proof. Let F be semisimple and let Fy /F, be a finite field extension with s’ = s'. We set F' :=
F ®r, Fy. By and 6.8, we know that QEnd(F) ®¢g Q, = EndQU[ﬂv](sz) is semisimple. Since
Qu[7!] C Qu|7my] we conclude by [Boul Corollaire de Proposition 6.4/9] that Q,[«! ] is semisimple, as
well. As V,F = V,F, we have !/, = 7!, and therefore 7/ is semisimple. Thus, by 6.8, QEnd(F’) is

(2

semisimple and F’ is semisimple by G.1T]/2. O
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7 Zeta Functions and Reduced Norms

In this section we generalize Gekeler’s results [Gek] on Zeta functions for Drinfeld modules to pure
Anderson motives. But let us begin by recalling a few facts about reduced norms; see for instance
[Rei, §9]. Let M be a semisimple pure Anderson motive over a finite field and let 7 be its Frobenius
endomorphism. Then F = Q(m) is the center of the semisimple algebra E by Corollary [GI0L Write
F = @, F; and E = @, E; where the F; are fields and E; is central simple over F;. Note that
by the pure Anderson motive M decomposes correspondingly up to isogeny M ~ €, M; with
E; = End(M;) ®4 Q. We apply [6.61to M; and obtain ) ,[F; : Fj|Y/?.[F;: Q] =r. Let f € FE and write
itas f = Z fi with f; € E;. Choose for each i a splitting field K; of E; with «; : E;®p, K; — M, (K;)
where n = [E; : F;]. The reduced norm of f is then defined by

N(f) == nrg(f) = HNFi/Q(detOéi(fi@l)),

where Np, g is the usual field norm. The reduced norm is an element of @ which is independent of the
choices of K; and «;. It satisfies N(a) = a" for all a € @, and N(f) # 0 if and only if f € E*, that is, f
is a quasi-isogeny. If f € End(M) or more generally f is contained in a finite A-algebra then N(f) € A
since A is normal.

Theorem 7.1. Let F be a semisimple abelian T-sheaf over a finite field L and let f € QEnd(F) be
a quasi-isogeny. Then for any place v # €,00 of Q we have N(f) = det V,,f, the determinant of the
endomorphism V,f € Endg, (V,E). For v = 0o # ¢ we have N(f)! = det Voo f, where I comes from
Definition [{-1] and satisfies dimg_ VooF =1 -1k F.

Proof. Clearly, if t is a power of ¢ then N(f!) = detV, f! implies N(f) = det V, f since 1 is the only
t-th root of unity in @, for v # oo, and likewise for v = co. Writing V,, f in Jordan canonical form over

218 we find as in the proof of Theorem [6.15] a power ¢ of q such that V, f! is absolutely semisimple over
Qv and hence its minimal polynomial is separable by [6.14. Then F,(f!) and F(f!) are semisimple by
[Bou, Proposition 9.1/1 and Corollaire 7.7/4]. We now replace f by f! and thus assume that F(f) is
semisimple.

As is well known there is a semisimple commutative subalgebra H = @, H; of E containing
F(f) with dimp, H; = n; and hence dimg H = r. Then nrg,o(f) equals the determinant of the
@-endomorphism f :x — fx of H. The reason for this is that H; ®p, K; is still semisimple and com-
mutative if we choose a splitting field K; which is separable over F;. By Lemma below H; @, K;
is isomorphic to K" as left H; ®p, K;-modules, and this implies that nrg, /5, (fi) = det a;(f;) = det fi,
the determinant of the Fj-endomorphism f; : z — f;z of H;, and N (f) = det f the determinant of the
Q-endomorphism f of H.

If v # oo then again by Lemma [[.2) H, is H,-isomorphic to V,F and N(f) = det f = det V, f.

If v = oo we embed EY into Endg_ 4 (Noo(F)). Namely, it (f@,..., f0=D) ¢ B where

f(m) = (fq,(m) :E®OCL QOO,L _>E®OCL QOO,L)a we set
Miyo...olljofi™ fo<j<i<li-—1
9ij = .
Moo o [T ifo<i<j<i-1.

Then g;; : F; ®0¢, Qoo — Fi ®0c, Qoo and a straightforward computation shows that the ho-
momorphlsm g = (g )i j=0..1—1 commutes with ¢ from (B.I) on page [0 that is, g is an element of

Endg_,16)(Nwo(F)) = Endg g)(VeoF); use Proposition B4l Now we apply Lemma [Z.2] to HZ
EZ C Endg., (V F), and we compute N(f)! = (det f)! = detq. (HZ — HZ , h— fh) = det Voo f as
desired. O

Lemma 7.2. Let K be a field and let H C M, (K) be a semisimple commutative K -algebra with
dimg H = n. Then as a (left) module over itself H is isomorphic to K™.
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Proof. Decomposing H into a direct sum of fields @, L, and K™ into a direct sum @, V) of simple
H-modules, each V), is isomorphic to an L,y). The injectivity of H — M, (K) and dimgx H = n imply
that H is isomorphic to @, Endg, (V) and a fortiori isomorphic as left module over itself to K™. [

Theorem 7.3. Let M be a semisimple pure Anderson motive of rank r over a finite field L and let
f € End(M) be an isogeny. Then

1. dimp, coker N(f) = r - dimp, coker f.
2. The ideal deg(f) = N(f) - A is principal and has a canonical generator.
3. There exists a canonical dual isogeny fV € End(M) satisfying fo f¥ = N(f) = fVo f.

Remark. 1. This shows that N(1 —7") € A is the analogue for pure Anderson motives of the number
of rational points X (Fy») = deg(1 — Froby) € Z on an abelian variety X over the finite field Fy; see
also Theorem [7.7] below.

2. The dual isogeny satisfies (fg)” = gV fV, because N(fg) = N(f)N(g). Note however, that we

cannot expect that (f +¢g)” = fV + g unless r = 2 because for f = a € A we have N(a) = a” and

a¥ =a""1

Proof. 1. Clearly for any a € A we have dimy, M /aM = r-dimg, A/(a) = —r-00(a) where co(a) denotes
the co-adic valuation of a. Now let F be an abelian 7-sheaf with M = M (F), and let f : F — F(n-o0)
for some n be the isogeny induced by f. Using Theorem [Tl we compute the dimension

l-dimy, coker f = mnrl— dimy, @g_:t(]:](n : OO)/fj(}—j))oo
= nrl—dimLMm(z(n‘oo))/]\_zm(f)(]\—zoo(£))
= nrl— diqu (Tooz(n . OO)/Toof(TOO£))
= —oo(det Voo f) = —l-00(N(f)).

Here the first equality follows from the identities Fj(n - 00)/f;(F;) = (Fj(n - 00)/f;(F;)),, @ coker f
and dimp, (Fj(n - 00)/ fj(F;)) = deg Fj(n - 00) — deg f;(F;) = nr. The second equality is the definition
of ]\_Z/oo, and the third follows from the isomorphism Moo(f) ® Aoy, Aco,ser = TooF @4, Aco,rser. The
fourth equality follows from the elementary divisor theorem. From this we obtain 1.

2. Let v # ¢ be a maximal ideal of A. Using Theorem [T.Il we compute the v-adic valuation of N(f)
v(N(f)) = v(detT,f) = dimg, (TLM/T,f(T,M)) = dimp, ((coker f), @ L*P)" = v(deg f).

Again the second equality follows from the elementary divisor theorem, the third equality comes from
the fact that the 7-invariants of the v-primary part (coker f),®p L*P are isomorphic to T, M /T, f (T, M),
and the last equality is the definition of deg f. From 1 and Lemma 2.9 we obtain

r-dimp, A/deg(f) = r-dimgcoker f = dimp, coker N(f)
= dimz ((A/N(f))" @, L) = r-dimg, A/N(f).

From the identity dimp, A/a =" [F, : F,] - v(a) for any ideal a C A we conclude e(deg f) = e(N(f))
and therefore deg(f) = N(f) - A.

Finally 3 is immediate since N(f) annihilates coker f by Proposition 2101 O

Remark 7.4. We do not know of a proof of 1 and 2 for arbitrary pure Anderson motives which does
not make use of the associated abelian 7-sheaf F. In the special case when M comes from a Drinfeld
module, Gekeler [Gekl Lemma 3.1] argued that both sides of the equation in 2 are extensions to E of
the oo-adic valuation on (). But this argument fails in general, since there may be more than one such
extension as one sees from Example below.
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Corollary 7.5. Let M be a semisimple pure Anderson motive of dimension d over a finite field L and
let m be its Frobenius endomorphism. Let v # € be a mazximal ideal of A and let x, be the characteristic
polynomial of m,. Then

1. xy € Alx] is independent of v and x,(a) - A = det Vy(a —7) - A = deg(a — ) for every a € A,
2. e¥llFl = deg(m) = x,(0) - A= N(n) - A is principal.

Proof. 1 is a direct consequence of Theorems [[.1] and [(.3] and the Lagrange interpolation theorem
applied to the fact that x,(a) = N(a —7) = xw(a) € A for all a € A.

2 follows from the fact that coker w is supported on ¢ and from the equation dimpy cokerm = [L :
[Fy] - dimy, coker 7 = d - [L : F). O

Definition 7.6. We define the Zeta function of a pure Anderson motive M over a finite field Fs as

Zy(t) = [ det(@—tAaim,) 0™

B 0<i<r
where € # v € Spec A is a mazimal ideal and N'w, € Endg, (A'V,M).

By [Z5)/1 the Zeta function Z(t) is independent of the place v and lies in Q(¢). This also follows
from work of Bockle [Boe] and Gardeyn [Garl, §7]. The name “Zeta function” is justified by the following
theorem (see also the remark after Theorem [7.3)).

Theorem 7.7. If M is semisimple and ), a;t' is the power series expansion of t% log Zy(t), then
a; = N(1 -7 € A.

Proof. By standard arguments a; = det(1 — 7’); see [Gekl Lemma 5.6]. Now our assertion follows from
Theorem [7.1] O

This Zeta function satisfies the Riemann hypothesis:

Theorem 7.8. In an algebraic closure of Qs all eigenvalues of N, € Endg, (A'V,M) have the same
absolute value (F#F4) Wt

Proof. This was proved by Goss |Gos, Theorem 5.6.10] for ¢ = 1 and follows for the remaining i by
general arguments of linear algebra. O

8 A Quasi-Isogeny Criterion

Similarly to the theory for abelian varieties, the characteristic polynomials of the Frobenius endomor-
phisms on the associated Tate modules play an important role for the study of abelian 7-sheaves. For
example, we can decide on quasi-isogeny of two abelian 7-sheaves F and F’ just by considering these
characteristic polynomials.

Theorem 8.1. Let F and F' be abelian T-sheaves over Fy with respective Frobenius endomorphisms
7 and 7', and let pr and p be their minimal polynomials over Q. Let v € C be a place different
from oo and . Let x, and X! be the characteristic polynomials of m, and w., respectively, and let
G := Gal(L**?/L). Assume in addition that € # oo, or that F and F' have the same weight.

1. Consider the following statements:

1.1. F' is quasi-isogenous to an abelian factor T-sheaf of F.
1.2. V,F'is G-isomorphic to a G-factor space of V,.F.
1.3. X, divides x, in Qy[z].
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1.4. pp divides pr in Qlz] and tk F' <tk F
We have 1.1 = 1.2 = 1.8 and 1.4  always,

1.2 < 1.8 if ™, and T are semisimple,
1.2 < 1.8 < 1.4 if pg is irreducible in Q|x],
1.1 <« 1.2 if the characteristic is different from oo.

2. Consider the following statements:

2.1. F and F' are quasi-isogenous.

2.2. Vo F and Vo, F' are G-isomorphic.

2.3 Xo =X,

2.4. pr = px and rk F =rk F'.

2.5.  There is an isomorphism of Q-algebras QEnd(F) = QEnd(F') mapping 7 to ='.
2.6.  There is a Qy-isomorphism QEnd(F) ®¢ Q, = QEnd(F’) ®¢g Q, mapping m, to .
2.7. Ife # oo also consider the statement Zyyr)y = Zyy(F'y-

We have 2.1 & 2.2 = 2.83,2.4,2.5 always,
2.5 = 2.6 always,
2.8 & 2.7 if the characteristic is different from oo,
2.2 < 2.8 = 2.6 if m, and 7, are semisimple,

22« 28« 24« 2.6 ifug and py are irreducible in Q|x].

Proof. 1. For the implication 1.1 = 1.2 without loss of generality, F’ can itself be considered as abelian
factor 7-sheaf of F and the implication follows from Proposition The implication 1.2 = 1.3 is
obvious.

For 1.2 = 1.4 note that p, is also the minimal polynomial of m, over @, by Lemma By
Proposition statement 1.2 implies pr (7)) = 0, whence 1.4.

For 1.3 = 1.2 let 7, and 7, be semisimple. Let x, = p1 ... ppn and x|, = pj - ... - u, be the
factorization in @,[z] into irreducible factors and set V; := Q,[z]/(1;) and V; := Qu[z]/(x}). Then we
can decompose V,F =V; @ ---®V, and V,F' = Vie---@ Vé,. Since y/, divides y,, we can now easily
construct a surjective G-morphism from V,,F onto V,F' which gives the desired result.

Next if p is irreducible, 1.4 implies p,» = p, and 1.3 follows from Corollary [6.6l It further follows
from Proposition that 7, and 7/ are semisimple and this implies 1.2 by the above.

For 1.2 = 1.1 we first do not assume that € # co. Let f, : V,.F — V,F’ be a surjective morphism
of Q,[G]-modules. We may multiply f, by a suitable power of v to get a morphism f, : T,F — T,F’
of the integral Tate modules which is not necessarily surjective, but satisfies v"T,F C f,(T,F) for
a sufficiently large n. Let M := (T'(Cp ~ {oo}, %), II;' o 7). This is a “r-module on A” in the
sense of [BHI Definition 3.2]. If € # oo then M is the pure Anderson motive M (F) associated with
F in (). Also let M’ := (I(Cp ~ {00}, F}), II{~" o 7/). By [BHI, Theorem 9.8] (or Theorem 2]
if ¢ # ), f, lies inside Hom(M, M') ®4 A,, so we can approximate f, by some f € Hom(M,M')
with T,(f) = f, modulo v"T'T,M’. Since v"T,M’ C f,(T,M) we find inside im T, (f) generators
of v"T,M'/v"* 1T, M'. They generate an A,-submodule of v"T,M’ whose rank must at least be r’
since v"T, M’ /v" T, M’ = (A,/vA,)" . Thus im T,(f) has rank /. Either by assumption or by [BHI],
Corollary 3.5] if € # oo, both F and ' have the same weight. So by [BHI], Proposition 6.10/1], f comes
from a quasi-morphism f € QHom(E, F'), that is, a morphism f : F — F'(D) for a suitable divisor
D. Now we finally assume that the characteristic is different from co. By [BHI, Proposition 4.2], the
image 1m(f F— £/(D)) is an abelian factor 7-sheaf of F and im f — F'(D) is an injective morphism
between abelian 7-sheaves of the same rank and weight, hence an isogeny by Proposition 2.1

2. A large part of 2 follows from 1. We prove the rest. To show 2.2 = 2.1 without the hypothesis on
the characteristic, we just replace the last argument of the proof of 1.2 = 1.1 by the following: Since
r = dimg, V,.F = dimg, Vo E' = r', the morphism f : F — F'(D) is an injective morphism between
abelian 7-sheaves of the same rank and weight, hence an isogeny by Proposition 211
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For the implication 2.1 = 2.5 let g € Qlsog(F, F’). Then the map QEnd(F) — QEnd(F’) sending
f— gfg~!is an isomorphism with 7’ = grg~!. The implication 2.5 = 2.6 is obvious.

For the implication 2.3 = 2.7 note that knowledge of y,, yields the knowledge of det(1—tA’m,) and
thus of Zy; () by linear algebra. Conversely we know from Theorem [L8that all zeroes of det(1— tATTy)
have absolute value s~*"*Z) in an algebraic closure of Quo. So we can recover y, from Z M (F) by simply
looking at this absolute value. This proves 2.3 < 2.7.

Next if 7, and 7, are semisimple 2.6 = 2.3 follows from Lemma [6.4]/2, and 2.3 = 2.2 was already
established in 1.

Finally if p, and p, are irreducible, 2.4 follows from 2.6 by Corollary since p, is also the
minimal polynomial of 7, over @, by Lemma Also 2.3 follows from 2.4 by Corollary and 7,
and 7] are semisimple, so 2.3 = 2.2 by the above. O

9 The Endomorphism ()-Algebra

In this section we study the structure of QEnd(F) for a semisimple abelian 7-sheaf F over a finite
field and calculate the local Hasse invariants of QEnd(F) as a central simple algebra over Q(m). For

a detailed introduction to central simple algebras, Hasse invariants and the Brauer group, we refer to
[Rei, Ch. 7, §§28-31].

Theorem 9.1. Let F be an abelian T-sheaf over the finite field Fy of rank r with semisimple Frobenius
endomorphism w, that is, Q(m) is semisimple. Let v € C be a place different from oo and from the
characteristic point €. Let x, be the characteristic polynomial of m,.

1. The algebra F = Q(m) is the center of the semisimple algebra E = QEnd(F).

2. We have 1 < [E:Q] = 19,(Xv,Xv) < 1%.
3. Consider the following statements:

31 E=F.

[3.2. FE is commutative.

B3 [F:Q]=r.

B4 [E:Q]=r.

[3.5.  xv has no multiple factor in Q,x].

[3.6. x. is separable.

We have Q1 B2 < B3 @4<E5<E6 always,
[35 =136 if 7, is absolutely semisimple.

4. Consider the following statements:

41 F=qQ.
[42. E is a central simple algebra over Q.
@3 [E:Q]=r2

[A4. xo is the r-th power of a linear polynomial in Q,[x].
[45. xv is purely inseparable.

We have [J1 & [2 &3 <[44 =45 always,
M4 <=H5 if myis absolutely semisimple.
If [ 2 holds and moreover the characteristic point € := c(SpecFy) € Cy, is different from oo, E is

characterized by inveo E = wt(F), inv. E = —wt(F) and inv, E =0 for any other place v € C.
5. In general the local Hasse invariants of E at the places v of F equal inv, E = —% ~v(m). In

particular
0 if vteoco,

inVUE = { Wt(E)‘[FU:QOO] va|oo ands#OO-
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(Here F,, denotes the completion of F at the place v and F, is the residue field of the place v.)

Remark 9.2. If ¢ # oo and F is an elliptic sheaf, that is, d = 1 and M (F) is the Anderson motive of a
Drinfeld module, Gekeler [Gekl, Theorem 2.9] has shown that there is exactly one place v of F' above ¢,
and exactly one place w of F' above oo, and that inv,, E = [F: Q]-wt(F) and inv, E = —[F : Q] - wt(F).
Note that Gekeler actually computes the Hasse invariants of the endomorphism algebra of the Drinfeld
module. So his invariants differ from ours by a minus sign, since passing from Drinfeld modules to
abelian 7-sheaves is a contravariant functor, see [BS|, Theorem 3.2.1].

Corollary 9.3. Let F be an abelian T-sheaf over the smallest possible field L =T, such that QEnd(F)
is a division algebra. Then QEnd(F) is commutative and equals Q(r).

Proof. QEnd(F) is a central division algebra over F' by Theorem [0.I which splits at all places of F' by
O.1)/5] hence equals F. U

Proof (of Theorem[91). 0l was already proved in Corollary 6.10.
2 Let

n
Xv = Hﬂ;nl GQv[l‘]
i=1

with distinct irreducible p; € Qu[z] and m; > 0 for 1 < ¢ < n. Then ) ;" ; m; - degp; = degx, = T,
and by Theorem we have [E: Q] = rg,(Xv: Xv) = iy m? - deg p;. The result now follows from
the obvious inequalities

2
i n & (2) r
r = E m; -deg u; < E mg ~degu; < ( E m; - degm) = 72, (9.1)
i=1 i=1 i=1

Bl Since F' = Z(F), the equivalence Bl1 <32 is evident. We have equality in (1) of Equation
@I if and only if m; = 1 for all 1 < i < s which establishes the equivalence Bl4 <{35. In order
to prove Bl5 ={3l3 we consider the minimal polynomial u, of m, over @Q,. If x, has no multiple
factor, then u, = x, and therefore [F : Q] = [Qy(my) : Q»] = 7. Next Bl3 =[3l1 because FF C E
and (dimg, F,)(dimg, E,) = dimg, Endg, (V,F) = r? by [Bou, Théoréeme 10.2/2], since E, is the
commutant of F, in Endg, (V,F). Note that Bl3 ={31 also follows from Lemma Conversely
Bl1 =34 because E = F implies r > [Qy(7y) : Qu] = [F: Q] =[E : Q] > r. For Bl5 =316 we use
Lemma [6.14)/2 as we know that x, = u,. Bl6 =35 is clear.

M If F =@, then E is simple with center @, so E is a central simple algebra over Q). Since F' = Z(F),
the converse is obvious. This shows 1 <[412. We have equality in (2) of (O.)) if and only if n = 1,
deg 1 = 1 and my = r which establishes 13 <{4l4. In order to connect @1 <412 with @3 <{[414 let
Xv be a power of a linear polynomial. By [Bou, Proposition 9.1/1] the minimal polynomial of 7, over
@y is linear and thus F' = Q). The converse is trivial. For [dl5 =414 we use again [6.14]/2 to see that pu,
is linear. 4 =415 is clear.

The statement about the Hasse invariants follows from [Bl Nevertheless, we give a separate proof in
case (k,l) = 1 using Tate modules, since this is much shorter here and exhibits a different technique
than Bl By the Tate conjecture 43l E ®¢g @, is isomorphic to Endg, (V4 F) = M,(Q,) for all places
v € C which are different from ¢ and oo, so the Hasse invariants of E at these places are 0. Since the
sum of all Hasse invariants is 0 (modulo 1), we only need to calculate invy, E.

As a first step, we show that [F, is contained in Fs. In our situation,  lies inside Q. Thus, by [I.8 we
get s*/! = | 7 |o = ¢ for some m € Z as | Q% |o = ¢%. Since ¢¢ = s, we conclude that e - k/l =m € Z
and hence [ | e, since k and [ are assumed to be relatively prime. Therefore F C Fye = F,.

Consider the rational Tate module V. (F) at oo and the isomorphism of )..-algebras

E®qQx = EndAoo[G](Vooz) = Enda_ (Voo F)
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from Theorem B3l Since dimg, Ay = 2 and dimg_ VooE = rl, we conclude that Vo.F is a left

r/l-dimensional A,-vector space and hence isomorphic to Agél. Thus we have
E®qQQ = Enda (AY') = M,(Enda, (Ax)) = M,,(AR).

Our proof now completes by inve, £ = inv Ay = —invA, = % = wt(F).

Bl We prove the general case using local (iso-)shtuka rather than Tate modules which were used in [
Our method is inspired by Milne’s and Waterhouse’ computation for abelian varieties [WM|, Theorem 8|.
However in the function field case this method can be used to calculate the Hasse invariant at all places,
whereas in the number field case it applies only to the place which equals the characteristic of the ground
field. Let w be a place of @ and let Ny, := N, (F) be the local o-isoshtuka of F at w. Let F,, be the
residue field of w and F s = F,, N F; the intersection inside an algebraic closure of F,. Let ag be the
ideal (b®1—-1®0b:b € Fyy) of Qu ®r, Fs and let R := (Qu ®F, Fs/a0)[T] = Qu ®F, F4[T] be the
non-commutative polynomial ring with T+ (a®b) = (a®bqf) T fora € Qu and b € F,. Since Q,, ®qu Iy
is a field, R is a non-commutative principal ideal domain as studied by Jacobson [Jad, Chapter 3]. Its

center is the commutative polynomial ring Qu[T¥] where g = [Fs : F¢s] = %. From Theorem and
Proposition we get isomorphisms

QEnd(f) ®q Qu = Endg, gy, r.[¢)(Nw) = Endr(Nw/aoNw)

where T operates on N,,/agN,, as qﬁf .

By [Jac, Theorem 3.19] the R-module N, /agN,, decomposes into a finite direct sum indexed by
some set [

Nu/aoN, = @ NE™ (9-2)
vel

of indecomposable R-modules N, with N, 2 N, for v # v’. The annihilator of IV, is a two sided ideal
of R generated by a central element p, € Q[T7] by [Jac, §3.6], which can be chosen to be monic. In
particular ([@.2)) is an isomorphism of @Q,,[TY]-modules and p, is the minimal polynomial of 79 on N,
by [Jac, Lemma 3.1]. Therefore the least common multiple p of the u, is the minimal polynomial of
T9 on N, /agN,. Note that 79 operates on N, /agN, as the Frobenius m, hence u = mipo, F and
F = Q(m) = Q[T9]/(u), where we write mipo for the minimal polynomial. By the semisimplicity of
7 (and Proposition [6.8]) x has no multiple factors in @Q,,[77]. Since the p, are powers of irreducible
polynomials by [Jac, Theorem 3.20] we conclude that all p, are themselves irreducible in @Q,,[T9]. Again
[Jac, Theorem 3.20] implies that g, # p, since N, 2 N, and

p= MipoLF = H'“” inside  Q[T7].
vel

Thus F ®q Quw = Qu[T7]/(1) = [l,e; QulT?]/(1v) = [1jy Fo- So I is the set of places of F' dividing
w and Fy, = Qw[TY9]/(1y) is the completion of F' at v, justifying our notation. Let 7, be the image of
m in F,. Its minimal polynomial over @, is f,. This implies that F ®¢g @,, decomposes further

E®qQuw = PEndr(NI™) = HE®FF,
vel vel

and F @p F, 2 Endg(NP™).
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Now fix a place v above w and consider the diagram of field extensions

FoFs

% |
F

v \ g/} IE‘wIE‘s
F,FsNEF, i
|

Fu(F,NF,) _F,
it
F, F,nF. "
h
i 2
F,; = F, NF, =F, N (F, NF,)
| f
Fq

Let h:= [F, NFy : F ] = ged([Fy : Fyrl, g). Let i := [Fy, : F¢]. From the formulas

[F,Fs:Fy| = [FS:IE‘qf] = g,
Fo(FyNF):Fy] = [F,NF:Fy] = h,
[FFs: (F,FsNF,)] = [FFs:F,] = [Fy:F,NF] = £, and
Fu(Fy NFs) C Fu,Fs NI,

we obtain F,FsNF, = F,(F, NF,) = Fyrni. Let Fy 1, be the compositum of @, ®]qu Fy and F, in
an algebraic closure of Q. Note that F, 1, is well defined since Fs/F ; is Galois. Let F, L[T"] be the
non-commutative polynomial ring with

T (@®b)=@2b?"). T and T z=2-T

for a € Qu, b € Fy, and = € F, and set A, = F, 1[T"]/((T")9/" — 7%). Observe that the commutation
rules of 7" are well defined since (Q., ®]Fq ; Fs) N F, has residue field F,,F; NF, = F sr: and is unramified

over (0, because Q, ®Fq ; Fs is. Moreover, the extension Fy, r, / F, is unramified of degree [F,Fs : F,] = %

and T := (T")FvFal/Fht g its Frobenius automorphism. Since T9/h — WI[,]F”:F‘Z]/fh in A,, our A, is just
[ urFq]/fh)
v

the cyclic algebra (Fv, L/ Fy, T, m and has Hasse invariant EEF‘ZEEF‘Z% -v(my,); compare [Rel, p. 266].
We relate A, to E ®p F,. Firstly by [Jacd, Theorem 3.20] there exists a positive integer u such that
NP = R/Ru,(T9). Therefore

My (E ®p F,) = M,(Endg(N{™)) = Endg(Ny"™) = My, ((R/Ruy(T9))°P) .

Secondly we choose integers m and n with m > 0 and m¢ +ng = 1. We claim that the morphism
R/Ruy(T9) — Mp(A,), which maps

a®b
a® b
a®br— ) and T+—m, - R

a® bt Y (™ o

for a € Q,, and b € Fy, is an isomorphism of F-algebras. It is well defined since it maps T+ (a ® b) and
(a®bqf) -T to the same element because (T")™ = (T")'/* in Gal(F, 1,/F,), and it maps T9 = (T")9/" to
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my(T")™9/h . 1d), = 7, -1dy,. Since Ry, (T9) C R is a maximal two sided ideal the morphism is injective.
To prove surjectivity we compare the dimensions as QQ,,-vector spaces. We compute

dimp, Mp(A,) = h*-(§)* = ¢,
dime®F les (R/RNU(T‘Q)) = g-degp, = g-[F,:Qu), and
q

dimg, (R/Ru(T9)) = ¢*-[F,:Qu] = dimg, My(A,).

Altogether M, (E ®p F,) & My,,(A) and inv, £ = —inv, A, = — g:gﬂ -v(my) as claimed.

It remains to convert this formula into the special form asserted for v { eco or v|oco. If v|oo and
e # o0, let e, be the ramification index of F,/Q~. Then we get from Theorem [I.§ the formula
eVt = |00 = g v(™)/ev gince the residue field of Qo is F,. This implies as desired
[Fy : Fyl - (—epe - wt(F))

R ) = - e B

Finally if w # €, 00 is a place of @, the local o-shtuka M, (F) at w is étale. So u = mipo, r has
coefficients in A,, with constant term in A. Therefore v(m,) = 0 for all places v of F' dividing w. O

Example 9.4. Let C = ]P’Ilﬁ-q, C ~\ {oo} = SpecF,[t] and L = F,. Let d be a positive integer. Let
Fi = O(d[%] - 00) ® O(d[5] - 00) for i € Z and let 7 = (? tg). Then F = (F;, II;,7;) is an
abelian 7-sheaf of rank 2, dimension d, and characteristic ¢ = V(¢) € P! over F,. Hence the Frobenius

endomorphism 7 equals 7. If d is odd then F is primitive (that means (d,r) = 1) and therefore simple
by [BHI, Proposition 7.4]. In particular, 7 is semisimple. We have

Hr = Xv = 2?1 = (m—\/t_d)(:n+\/t_d)

which means that m, is not absolutely semisimple in characteristic 2. Moreover, we calculate
70y (Xv, Xv) = 1 - 1-2 = 2 whereas in the field extension Q,(v/t) / Q, we have

. ( ) = 2:2-1=4 in characteristic 2,
Qu(vh) X Xv) = 9 1.1 +1-1-1=2 in characteristic different from 2.

Although the later has no further significance it illustrates the remark after Definition [6.3] By Theorem
OI/B we have E = F = Q(n) commutative and [E : Q] = 2 = r. Moreover, |7 |o = | V17 |00 = ¢%/?
and Yy, is irreducible. But x, is not separable in characteristic 2.

If d = 2n is even then the minimal polynomial of 7 is

e = xo = 22 —t% = (z — t¥?)(z + t¥?).

So 7 is semisimple if and only if char(F,) # 2. In this case F is quasi-isogenous to the abelian 7-

sheaf F' with F/ = O¢, (in - 00)®? and 7/ = <_én tﬁl). The quasi-isogeny f : F' — F is given by

fony = <_fn tf) : (/)7?7 = Fo,y- The abelian 7-sheaf F' equals the direct sum E(l) & E(z) where

]—"Z-(j) = O¢, (in - 00) and 9 = (=1)7¢". Note that FI) and F® are not isogenous over F,, since the

(2

equation —t" - 6*(g) = ¢ - t" has no solution g € @ for char(F,) # 2. Therefore
2 .
QeQ = PQEnd(FY) = E = F = Ql/(+* - ) = Q& Q.
j=1

Now we consider the same abelian 7-sheaf over L = F 2. This means m = 72 =t €  and therefore
Xo = (x —t%)?%. Thus 7 is semisimple. By Theorem @I/ we have F = Q(r) = Q and E is central
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simple over @ with [F: Q] = 4 and invy F = inv. F = %l. Moreover, |7 |oo = |t |00 = ¢%. In this
case, T, is absolutely semisimple. Note that if d is even and char(IF;) = 2 this is another example for
Theorem

If d is odd then F is still primitive, whence simple and F is a division algebra. If d = 2n is even
then the abelian 7T-sheaves F @) and F @) defined above are isomorphic F L =, F (2), 1 — )\ where
A € F 2 satisfies A77! = —1. Therefore M»(Q) = M> (QEnd(£(l))) & F in accordance with the Hasse
invariants just computed.

Example 9.5. We compute another example which displays other phenomena. Let C' = Plqu and let
C ~\ {0} = SpecFy[t]. Let F; = Oc, ([51] - 00)®2 @ Oc, ([4] - 00)®2, let II; be the natural inclusion,
and let 7; be given by the matrix

00 0 a
0b 1 0 .

T = t 0 —b 0 with a,b e F,~\ {0}.
0t 0 O

Then F is an abelian 7-sheaf of rank 4 and dimension 2 with | = 2,k = 1 and characteristic ¢ = V (¢) €
P!. One checks that the minimal polynomial of the matrix 7 is z* — b22? — at? which is irreducible
over @ if char(IF,) # 2, since it has neither zeroes in F,[t] nor quadratic factors in Q[z]. If char(F,) = 2
then the minimal polynomial is a square and F is not semisimple.

For L = F, and 2 { ¢ we obtain 7 = 7 semisimple and E = F = Q(7) = Q[z]/(z* — b?2? — at?).

For L = F,2 we have m = 72 and the minimal polynomial of 7 over @ is 2 — b?x — at?, which is
irreducible also in characteristic 2 since it has no zeroes in Fy[t]. Hence 7 is semisimple, F' is a field
with [F: Q] = 2 and [F : F| = 4 by Corollary This again illustrates Theorem We compute
the decomposition of co and € in F'.
Decomposition of e: Modulo t the polynomial 2% — b%x — at? has two zeroes z = b? and = 0 in F,. So
by Hensel’s lemma F @ Q. = F, ® F, splits with F, & F,, 2 Q. and v(7) = 0 and v/(7) = v/ (at?) = 2.
Thus the Hasse invariants of E are inv, F = inv,y E = 0.
Decomposition of co: Set y = n/t. Then y? — ?y —a=0.

2

Case (a). If 2|q then (y — a?/2)? — > (y — a?/?) — ?aqﬂ = 0, that is, oo ramifies in F, F ®Q Qoo = Fy
with w(F — a?/?) =1 and w(7) =2-00(3) =2. So [Fy : Quo) = 2 and inv,, E = 0.

Case (b). If 24 q and \/a € F, then the polynomial y? — %y — a has two zeroes y = ++/a modulo %
So by Hensel’s lemma F' ®¢g Qoo = Fyy @ Fyy splits with [Fy, : Qo] = [Fiy : Qoo) = 1. Thus the local
Hasse invariants of E are inv, F = inv,y E = % As was remarked in such a distribution of the
Hasse invariants can occur only if d > 2.

Case (c). 1f 24 ¢ and a ¢ F, then y* — %y — a is irreducible modulo 1 and oo is inert in F,
F ®g Qoo = Fyy with [Fyy, : Qo] = 2. Thus the Hasse invariant of E is inv,, £ = 0.

In case (b) F is a division algebra and F is simple. In cases (a) and (¢c) F = Ms(F) and F is
quasi-isogenous to (F')®? for an abelian 7-sheaf F’ of rank 2, dimension 1 and QEnd(E’) = F. This

surprising result is due to the fact that F'. being of dimension 1, is associated with a Drinfeld module
and thus of the form F = Oc, ([4] - 00) ® O¢, ([F] - 00) with 7/ = () and ¢,d € Fp2. Then

= (7)? = <Cq+:j[;dqt fé) has minimal polynomial x? — (c9™! + (d + d?)t)z + d97't> which must be

equal to 22 — b’z — at?. This is possible only if d + d? = 0 and d9"! = —a. So either d € F, and 2|q
and we are in case (a), or d € F 2 \F,, d? = —d, and a = d*>. The later implies 2{ ¢ and ya=d ¢ F,
and we are in case (c). If we choose ¢ = b in case (c) a quasi-isogeny f : F — (F')®? over F 2 is given
for instance by

d a =bd/t 0
0 0 —d a
0 O d/t  a/t
1 —d 0 bd/t
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10 Kernel Ideals for Pure Anderson Motives

In this section we investigate which orders of E can arise as endomorphism rings End(M ) for pure An-
derson motives M. For this purpose we define for each right ideal of the endomorphism ring End(M)
an isogeny with target M and discuss its properties. This generalizes Gekeler’s results for Drinfeld
modules [Gek| §3] and translates the theory of Waterhouse [Watl §3] for abelian varieties to the func-
tion field case. These two sources are themselves the translation, respectively the higher dimensional
generalization of Deuring’s work on elliptic curves [Deul.

Let M be a pure Anderson motive over L and abbreviate R := End(M). Let I C R be a right ideal
which is an A-lattice in £ := R ®4 Q. This is equivalent to saying that I contains an isogeny, since
every lattice contains some isogeny a -idys for a € A and conversely the existence of an isogeny f € I
implies that the lattice f - fV - R is contained in I.

Definition 10.1. 1. Let M be the pure Anderson sub-motive of M whose underlying Ar-module is
Egejim(g). This is indeed a pure Anderson motive, since if I = fiR+ ...+ f,R are arbitrary
generators, then M! equals the image of the morphism

(froooif)  M&...0OM — M.

As I contains an isogeny, M! has the same rank as M and the natural inclusion is an isogeny
which we denote fr: M' — M.
2. IfI={f€R:im(f) C M'} then I is called a kernel ideal for M.

The later terminology is borrowed from Waterhouse [Wat], §3]. Since { f € R :im(f) C M!} is the
right ideal annihilating coker f; one should maybe use the name “cokernel ideal” instead.

Proposition 10.2. Let I C R be a right ideal which is a lattice, and consider the right ideal J :={ f €
R :im(f) C ]\_41} C R containing I. Then M’ = M. In particular, J is a kernel ideal for M. We
call J the kernel ideal for M associated with I.

Proof. Obviously J is a right ideal and MY c M by definition of J. Conversely M! c M since
IcJ. O

Lemma 10.3. 1. Forany g€ I, fl_l og: M — M is a morphism and g = fr o (fl_1 0g).
2. If I = gR is principal, g an isogeny, then fI_1 og: M — M is an isomorphism and I is a kernel
ideal.

Proof. 1 is obvious since the image of ¢ lies inside M.
2. Clearly f; Lo g is injective since g is an isogeny and surjective by construction, hence an isomorphism.
To show that I is a kernel ideal let f € R satisfy im(f) € M. Consider the diagram

M f;lof MI fI M
| M M
hl
v frlog
M
and let h:= (f;'og)™ o (ff' o f). Then f = gh € I as desired. O

Example. If a € A and I = aR, then M! = aM and coker f; = M /aM. More generally if a C A is an
ideal and I = aR then M! = aM and coker f; = M /aM.

Proposition 10.4. Let I C R and J C End(M?') be right ideals which are lattices in E. Then also the
product K := fr-J - fl_1 -1 is a right ideal of R and a lattice in E and f;(1 o fro fy is an isomorphism
of (M"Y with M¥

(MI)J f1 Ml I1 M i ME
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Proof. If f € I and g € J then the morphism fl_1 of: M — M'" can be composed with f; o g to yield
an element of R. Since I and J contain isogenies, K is a right ideal and contains an isogeny. Clearly
the images of fro f; and fx in M coincide since they equal the sum Z” frogjo fl_l o fi(M) for sets
of generators {f;} of I and {g;} of J. O

Theorem 10.5. Let I, J C End(M) =: R be right ideals which are lattices in E := R®4Q and consider
the following assertions:

1. I and J are isomorphic R-modules,
2. the pure Anderson motives M and M’ are isomorphic.

Then 1 implies 2 and if moreover I and J are kernel ideals, also 2 implies 1.

Proof. 1 = 2. Since I and J are lattices, the R-isomorphism I — J extends to an F-isomorphism of
E and is thus given by left multiplication with a unit g € E*, that is, J = ¢gI. There is an a € A such
that ag € I C R. Then im(ag) C M’, that is, j’I_1 oag: M — M! is an isogeny.

Let K be the right ideal fj - (fl_l oago fr-End(M7)) -fl_1 - I of R. We claim that MK = p(e9)]
Namely, M@ ¢ M¥ since agl ¢ K. Conversely if f € I, h € End(M'), and m € M, then we find
m = rohofI_1 o f(m) € M!, that is, m’ = 3, fi(m;) for suitable f; € I and m; € M. It follows that
ag(m’) =3, agfi(m;) € M@ and therefore M@ = MK,

Applying Lemma 0.3l and Proposition [0.4] now yields an isomorphisms M! =~ MK = pflao)l
Likewise we obtain M” = M and the equality aJ = agl then implies M7 = M' as desired.

2 = 1. Let I and J be kernel ideals and let u : M — M” be an isomorphism. There is an a € A with
aM C M!. Therefore g := fyouo (fl_l oa): M — M is an isogeny.

We claim that gI = aJ, that is, left multiplication by a~'g is an isomorphism of I with J. Let f € I,
then h := fJouo(fI_1 of) € Rhasim(h) C M”. So h € J since J is a kernel ideal, and gf = ah € aJ,
since a commutes with all morphisms. Conversely let h € J, then f := frou='o ( fJ_l oh) € R has
im(f) ¢ M!. So f € I since I is a kernel ideal, and ah = gf € gI as desired. O

Proposition 10.6. Let I C R be a right ideal which is a lattice in E. Then fI-End(MI)-fI_I contains
the left order O ={f € E: fI C1} of I and equals it if I is a kernel ideal.

Remark. Recall that End(M') ® 4 Q is identified with E by mapping h € End(M7) to froho f; 1.

Proof. Let f € O and g € I. Then fg € I and fI_IOfOfIO(fj_log) = fI_IOfg is a morphism
from M to M. If g varies, the images of fr 16 g exhaust all of M?. Hence Ir Lo fo f7 is indeed an
endomorphism of M’. Conversely let I be a kernel ideal and let f = froho fI_1 € fr-End(M7) - fj_l.
If g € I then fog:fjoho(fl_log) € R has im(f og) € M!. So fg € I as desired. O

We will now draw conclusions about the endomorphism ring R similar to Waterhouse’ results [Wat]
on abelian varieties by simply translating his arguments.

Theorem 10.7. Every mazimal order in E occurs as the endomorphism ring f - End(M') - f~' C E
of a pure Anderson motive M’ isogenous to M via an isogeny f : M' — M.

Proof. Let S be a maximal order of E. Then the lattice R contains aS for some a € A. Consider the
right ideal I = a.S - R whose left order contains S. By Proposition 0.6} f; - End(M?)- f I ! contains the
left order of I. Since S is maximal we find S = f; - End(M7) - f; . O

Theorem 10.8. If E is semisimple and End(M) is a mazimal order in E, so is fr-End(M?')- f; for
any right ideal I C R.

Proof. By [Reil, Theorem 21.2] the left order of I is also maximal and then Proposition [[0.0] yields the
result. O
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From now on we assume that L is a finite field and we set e := [L : Fy]. Let m be the Frobenius
endomorphism of M.

Proposition 10.9. The order R in E contains © and deg(m)/m.

Proof. Clearly the isogeny m belongs to R. Let now a € deg(w). Then a annihilates coker 7 by 2.10I
and so there is an isogeny f: M — M with wo f = a. The image a/7 of f in E belongs to R. O

Proposition 10.10. If M is a semisimple pure Anderson motive over a finite field and End(M) is a
maximal order in E = End(M) ®4 Q, then every right ideal I C End(M ), which is a lattice, is a kernel
ideal for M, and deg(fr) = N(I) := (N(f): f €1).

Proof. (cf. [Watl, Theorem 3.15]) Let f € I, then f = fro fl_lf and N(f) € deg(f) C deg(fr) by
Lemma 2291 Therefore N(I) C deg(fr). Let R’ be the left order of I. It is maximal by |Rei, Theorem
21.2]. For a suitable a € A the set J' :={x € E: zl C aR} is a right ideal in R’ and a lattice in F
and satisfies J' - I = aR by [Rei, Theorem 22.7]. Let J := f; 'J'f; € End(M') be the induced right
ideal of End(M') = f; 'R fr; see Then coker fr o f; = coker f;; = coker a by Proposition [10.4.
Therefore Theorem [7.3 and [Rel, 24.12 and 24.11] imply

N(a)- A = N(J') - N(I) C (deg f)(deg fr) = deg(a) = N(a) - A.

By the above we must have N (I) = deg(f;) since A is a Dedekind domain. If I were not a kernel ideal
its associated kernel ideal would be a larger ideal with the same norm. But this is impossible by [Rel,
24.11]. O

Like for abelian varieties there is a strong relation between the ideal theory of orders of F and the
investigation of isomorphy classes of pure Anderson motives isogenous to M. We content ourselves with
the following result which is analogous to Waterhouse [Watl Theorem 6.1]. The interested reader will
find many other results without much difficulty.

Theorem 10.11. Let M be a simple pure Anderson motive of rank r and dimension d over the smallest
possible field F,. Then

1. End(M) is commutative and E := End(M) ®4 Q = Q(x).

2. All orders R in Q(m) containing m are endomorphism rings of pure Anderson motives isogenous
to M. Any such order automatically contains N(r)/m = Ng(xy/q(T)/.

3. For each such R the isomorphism classes of pure Anderson motives isogenous to M with endo-

morphism ring R correspond bijectively to the isomorphism classes of A-lattices in E with order
R.

Proof. 1 follows from [6.11] and

2. Let R be an order in Q(m) containing 7 and let v # € be a maximal ideal of A. Since [F : Q] = r
and F, is semisimple, there is by Lemma an isomorphism E, — V,M of (left) E,-modules given
by f — f(x) for a suitable z € V, M. It identifies R, :== R ®4 A, with a w-stable lattice A, = R, - z
in V, M, which without loss of generality is contained in T,,M. By Proposition 4] there is an isogeny
f: M — M of pure Anderson motives with T, f(T,M') = A,. By Theorem we conclude

EHd(M,) R4 Ay = EndAv[,T] (Av) =R,.

For v = ¢ note that Q. ;, = Q. since L = F,. In particular F. = F,. Since dimg, N.(M) =r =[E : Q],
Theorem B.7] together with Lemma [7.2] show that E. is isomorphic to N.(M) as left E.-modules. Since
R contains m, the image of R, := R®4 A. in N.(M) is a local o-subshtuka M’ of M_ (M) of the same
rank. (If it is not contained in M (M), multiply it with a suitable a € A.) Then Proposition yields
an isogeny of pure Anderson motives f : M’ — M such that M.(f)(M:(M")) = M’ and

End(M') ®4 Ae = End_14(M') = R.
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by Theorem B.7l Since each of these operations only modifies End(M) at the respective place v, this
shows that we may modify M at all places to obtain a pure Anderson motive M’ with End(M') = R.
Now the last statement follows from Proposition [[0.9 and Theorem [7.3]

3. Let R be such an order. By what we proved in 2 there is a pure Anderson motive M for which
all T,M =~ R, and M.(M) = R.. Let I C R be a (right) ideal which is an A-lattice in E and
consider the isogeny fr: M ! — M Under the above isomorphisms T, f1(T,M 7 ) =1®4 Ay =: 1, and
M fi(M.M) = T®s A =: 1. _Conversely if f: M" — M is an isogeny then M, f(M,M') is a (left)
R,-module because R = End(M ), hence isomorphic to an R,-ideal I,,. This shows that any isogeny
f: M’ — M is of the form f;: MT — M.

If now f € R satisfies im(f) C M 7 then f€l.and f € I, for all v and therefore f € I. This shows
that every I is a kernel ideal for M. By Proposition 0.6, End(M7) is the (left) order of I. Since every
lattice with order R in F is isomorphic to an ideal of R, we have

{ A-lattices in F with order R}/,

{1 C R 1deals with order R}/ ——= { N 5 N[ — M with End(M') = R}/..

and the assertion now follows from Theorem [10.5] O
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