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Abstract

We survey Colmez’s theory and conjecture about the Faltings height and a product formula for the periods
of abelian varieties with complex multiplication, along with the function field analog developed by the authors.
In this analog, abelian varieties are replaced by Drinfeld modules and A-motives. We also explain the necessary
background on abelian varieties, Drinfeld modules and A-motives, including their cohomology theories and
comparison isomorphisms and their theory of complex multiplication.
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1 Introduction

One purpose of this survey is to give a brief introduction to abelian varieties with complex multiplication over
number fields, some of their cohomology theories with comparison isomorphisms, and to explain Colmez’s con-
jectures [Col93] on a product formula for the periods and on the Faltings height of these abelian varieties. The
second purpose is to explain the function field analog of this theory. There abelian varieties are replaced by
Drinfeld modules [Dri76, Gos96] and their higher dimensional generalizations, so-called A-motives. So we give
a brief introduction to Drinfeld modules and A-motives with complex multiplication, some of their cohomology
theories with comparison isomorphisms, and explain the conjecture [HS20] of the authors on periods of these
A-motives. We point out that recently other surveys on Colmez’s conjectures were written by Gross [Gro18], by
Yuan [Yua19], and by Gao, van Känel and Mocz [GvKM19] based on a lecture of Shou-Wu Zhang. However,
these do not discuss the function field analog that we are discussing in Part II. In [Gro18] it is explained how
Colmez’s conjectures generalize the Chowla-Selberg formula. And in [Yua19] the consequences of the recently
proved averaged Colmez Conjecture for the André-Oort Conjecture are explained. In [GvKM19] in addition to
these aspects, the proof of Yuan and Shou-Wu Zhang [YZ18] of the averaged Colmez conjecture, and the work
of Yun and Wei Zhang [YZ17, YZ19] on the Gross-Zagier formula for intersection numbers in the Chow group of
moduli spaces of PGL2-shtukas is discussed.

1.1. We begin with a review of product formulas for global fields. For a rational number α ∈ Q×, all of its
absolute values |α|v are linked by the product formula

∏
v |α|v = 1 where only finitely many factors are different

from 1. Here v runs through the set P of places of Q consisting of all prime numbers p together with ∞, and the
p-adic absolute values | . |p are normalized such that |p|p = p−1. This product formula extends to number fields,
i.e. finite extensions of Q, as follows. Let Qalg be the algebraic closure of Q in C, and if p is a prime number let
Qp be the completion of Q with respect to | . |p and let Qalg

p be an algebraic closure of Qp. The p-adic absolute

value | . |p extends canonically to Qalg
p . We denote by | . |∞ the usual absolute value on C. In addition to the

embedding Qalg ⊂ C we fix once and for all an embedding of Qalg in Qalg
p for every p and consider the induced

absolute value | . |p on Qalg. For a finite field extension K of Q we set HK := HomQ(K,Qalg). Then the product
formula [Lan94, Chapter V, § 1, bottom of page 99] for 0 6= α ∈ K can be written as

∏

p∈P

∏

η∈HK

|η(α)|p = 1. (1.1)

1.2. The product formula also holds for function fields. More precisely, let Q be a finitely generated field of
transcendence degree one over the finite field Fp = Z/pZ. Let Fq := {a ∈ Q : a is algebraic over Fp} ⊂ Q be
the field of constants, see [VS06, Definition 2.1.3], which is a finite field with q elements. Then Q is the field
of rational functions on a smooth, projective curve C over Fq by [Liu02, Chapter 7.3, Proposition 3.13] which
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is geometrically irreducible by [Gro65, IV2, 4.3.1 and Proposition 4.5.9c)]. Every closed point v of C is called a
place. We denote its residue field by Fv and set qv := #Fv = q[Fv:Fq]. The local ring OC,v is a discrete valuation
ring by [Sil86, Proposition 1.1]. We denote the corresponding valuation also by v and the corresponding absolute
value on Q by | . |v. Both are normalized such that v(zv) = 1 and |zv|v = q−1v for a uniformizing parameter zv ∈ Q
at v. Then every a ∈ Q r {0} satisfies

∏
v |a|v = 1 where again only finitely many factors are different from

1, see [Cas67, Chapter II, § 12, Theorem]. This can be reinterpreted in terms of divisors on C. Namely, since

|a|v = q
−v(a)
v we have − log

∏
v |a|v =

∑
v v(a) · [Fv : Fq] · log q = 0, because

∑
v v(a) · [Fv : Fq] is the degree of the

principal divisor of a which is zero, see [VS06, Corollary 3.2.9].
Let Qalg be a fixed algebraic closure of Q. For every place v of Q let Qv be the completion of Q with respect

to | . |v and let Qalg
v be an algebraic closure of Qv. The v-adic absolute value | . |v extends canonically to Qalg

v . We
fix once and for all an embedding of Qalg in Qalg

v for every v and consider the induced absolute value | . |v on Qalg.
For a finite field extension K of Q we set HK := HomQ(K,Qalg). Then by transformations of equations as in
[Lan94, Chapter V, § 1, bottom of page 99] the product formula [Cas67, Chapter II, § 12, Theorem] for 0 6= a ∈ K
can be written as ∏

all v

∏

η∈HK

|η(a)|v = 1. (1.2)

1.3. In [Col93] P. Colmez considers product formulas for periods of abelian varieties. Let X be an abelian variety
defined over a number field K with complex multiplication by the ring of integers in a CM-field E and of CM-
type Φ, see Section 6 for explanations. Assume that K contains ψ(E) for every ψ ∈ HE . For a ψ ∈ HE let
ωψ ∈ H1

dR(X,K) be a non-zero cohomology class such that b∗ωψ = ψ(b) · ωψ for all b ∈ E, see Section 4.3. For
every embedding η : K →֒ Qalg, let Xη := X ×SpecK,Specη Spec η(K) and ωηψ ∈ H1

dR(Xη, η(K)) be deduced from
X and ωψ by base extension. Let (uη)η ∈ ∏η∈HK

H1(Xη(C),Z) be a family of cycles compatible with complex
conjugation, see Section 4.1. Let v be a place of Q. If v = ∞ the de Rham isomorphism between Betti and
de Rham cohomology (Theorem 4.4) yields a complex number

∫
uη
ωηψ and its absolute value

∣∣∫
uη
ωηψ
∣∣
∞

∈ R. If

v corresponds to a prime number p ∈ Z, Colmez [Col93] associates a period
∫
uη
ωηψ in Fontaine’s p-adic period

field Bp,dR, see Notation 5.4, and an absolute value
∣∣∫
uη
ωηψ
∣∣
v
∈ R. He considers the product

∏
v

∏
η∈HK

∣∣∫
uη
ωηψ
∣∣
v

and (after some modifications which we explain in Section 8) conjectures that this product evaluates to 1; see
Conjecture 8.6 for the precise formulation. This conjecture implies a conjectural formula for the Faltings height
of a CM abelian variety in terms of the logarithmic derivatives at s = 0 of certain Artin L-functions. Colmez
proves the conjectures when E is an abelian extension of Q, see Theorem 8.10. On the way, he computes∏
η∈HK

∣∣∫
uη
ωηψ
∣∣
v

at a finite place v in terms of the local factor at v of the Artin L-series associated with an Artin

character a0E,ψ,Φ : Gal(Qalg/Q) → C that only depends on E, ψ and Φ but not on X and v; see Theorem 8.3.
There has been further progress on Colmez’s conjecture on which we report in Section 8.

We point out that Colmez’s formulation generalizes various previous results. Namely, when [E : Q] = 2 his
Theorem 8.10 is equivalent to the formula proved by Lerch [Ler97] and rediscovered by Chowla-Selberg [SC67]

ζ′E(0)

ζE(0)
=

1

12 # Pic(OE)

∑

[I]∈Pic(OE)

log
(
∆(I)∆(I−1)

)
, (1.3)

where ∆(I) is the modular discriminant of the lattice I ⊂ E ⊂ C. A new geometric proof of (1.3) was given by
Gross [Gro78], who together with Deligne conjectured a generalization to a formula for the archimedean periods of
certain CM motives up to multiplication by algebraic numbers. Anderson [And82] reformulated the Gross-Deligne
conjecture in terms of the logarithmic derivative of an L-function at s = 0 and proved it when the CM field E is
abelian over Q. Colmez added the consideration of the non-archimedean periods and thus removed the ambiguity
of the algebraic factors in Anderson’s theorem.

1.4. There is a beautiful analog to the theory of elliptic curves and abelian varieties in the “Arithmetic of function
fields”. Namely, Drinfeld [Dri76] invented the analog of elliptic curves under the name “elliptic modules”. These
are today called Drinfeld modules, see Section 9. Since then, the arithmetic of function fields has evolved into an
equally rich parallel world to the arithmetic of number fields. As higher dimensional generalizations of Drinfeld
modules and analogs of abelian varieties, Anderson [And86] has defined abelian t-modules and the dual notion
of t-motives, which are a kind of “global Dieudonné-modules” for abelian t-modules, see Remark 9.3. They can
be slightly generalized to A-motives as follows. In the notation of § 1.2 let ∞ be a fixed closed point on C and
let A = Γ(C r {∞},OC) = {a ∈ A : v(a) ≥ 0 for all v 6= ∞}. Let K ⊂ Qalg be a finite field extension of Q.
We write AK := A ⊗Fq K and consider the endomorphism σ∗ := idA ⊗ Frobq,K of AK , where Frobq,K(b) = bq

for b ∈ K. For an AK-module M we set σ∗M := M ⊗AK ,σ∗ AK and for a homomorphism f : M → N of
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AK-modules we set σ∗f := f ⊗ idAK : σ∗M → σ∗N . Let γ : A → K be the inclusion A ⊂ Q ⊂ K, and set
J := (a⊗ 1 − 1 ⊗ γ(a) : a ∈ A) ⊂ AK . Then γ can be recovered as the homomorphism A→ AK/J = K.

Definition 1.5. An (effective) A-motive of rank r and dimension d over K is a pair M = (M, τM ) consisting of
a locally free AK-module M of rank r and an AK-homomorphism τM : σ∗M →M such that

(a) dimK(coker τM ) = d.

(b) (a− γ(a))d · coker τM = 0 for all a ∈ A.

We write rkM := r and dimM := d.

A-motives possess cohomology realizations in analogy with abelian varieties, see Section 13.

1.6. Let us now explain the analog of Colmez’s theory from § 1.3 which was developed by the authors in [HS20].
Let M be a uniformizable A-motive defined over a finite extension K ⊂ Qalg of Q with complex multiplication by
the ring of integers in a CM-algebra E and of CM-type Φ, see Sections 13.1 and 15 for explanations. Assume that
K contains ψ(E) for every ψ ∈ HE := HomQ(E,Qalg). For a ψ ∈ HE let ωψ ∈ H1

dR(M,K[[z − ζ]]) be a non-zero
cohomology class such that b∗ωψ = ψ(b) · ωψ for all b ∈ E, see Section 13.3. For every embedding η : K →֒ Qalg,
let Mη := M ⊗K,η η(K) and ωηψ ∈ H1

dR(Mη, η(K)[[z − ζ]]) be deduced from M and ωψ by base extension. Let
(uη)η ∈

∏
η∈HK

H1,Betti(M
η, A) be a family of cycles, see Section 13.1. Let v be a place of Q. If v = ∞ the

comparison isomorphism between Betti and de Rham cohomology (Theorem 13.18) yields an element
∫
uη
ωηψ in the

completion C∞ of Qalg
∞ with respect to | . |∞ and its absolute value

∣∣∫
uη
ωηψ
∣∣
∞

∈ R. If v corresponds to a maximal

ideal of A, the period isomorphism between v-adic and de Rham cohomology (Theorem 14.12) gives a period∫
uη
ωηψ in the analog Cv((zv − ζv)) of Fontaine’s p-adic period field Bp,dR and an absolute value

∣∣∫
uη
ωηψ
∣∣
v
∈ R,

see Definition 14.14. We consider the product
∏
v

∏
η∈HK

∣∣∫
uη
ωηψ
∣∣
v

and (after some modifications analogous to

Colmez’s which we explain in Section 17) we conjecture that this product evaluates to 1; see Conjecture 17.6 for
the precise formulation. In [HS20] we have computed

∏
η∈HK

∣∣∫
uη
ωηψ
∣∣
v

at all finite places v 6= ∞ in terms of the

local factor at v of the Artin L-series associated with an Artin character a0E,ψ,Φ : Gal(Qalg/Q) → C that only
depends on E, ψ and Φ but not on M and v; see Theorem 17.3.

If M is the A-motive associated with a Drinfeld module G, then Conjecture 17.6 is equivalent to a formula for
the Taguchi height (Definition 16.3) of G in terms of the logarithmic derivatives at s = 0 of an Artin L-function.
This formula was established by Fu-Tsun Wei [Wei20] by first proving the function field analogs of Kronecker’s
limit theorem and Lerch’s formula 1.3, see Theorem 17.10 below. Previously, formulas of Chowla-Selberg type
expressing the periods at ∞ of CM Drinfeld modules in terms of Γ-values were obtained by Thakur [Tha91]
for certain CM-fields. Also when proving his results in [And82] Anderson had considered the analogous case of
A-motives, but without publishing his results.

This survey contains no new results, except for Theorems 13.20 and 17.8 which give a formula for the Taguchi
height of a Drinfeld module with complex multiplication. Our presentation summarizes material from various
sources. But all shortcomings of the exposition are solely due to the authors. We describe the content of the
individual sections of this survey. In Part I we first define elliptic curves and abelian varieties and discuss
their torsion points in Section 2. Section 3 is concerned with simple and semi-simple abelian varieties and
their endomorphism rings. In Section 4 we review the singular (co-)homology, Tate modules and the ℓ-adic
(co-)homology, and the de Rham (co-)homology of abelian varieties and period isomorphisms between these (co-
)homologies. The period isomorphism between ℓ-adic and de Rham (co-)homology is explained in Section 5. It
is based on the concept of p-divisible groups, which we also review in this section. The definition of complex
multiplication of abelian varieties, of CM-fields, CM-algebras and CM-types is explained in Section 6. A short
review of the Faltings height of an abelian variety fills Section 7. Finally, in Section 8 we discuss Colmez’s
conjecture alluded to in § 1.3 above.

In Part II we discuss the analog of Colmez’s theory in the “Arithmetic of function fields”. We define Drinfeld
modules and A-motives in Section 9, and isogenies and semi-simplicity in Section 10, where we also describe the
endomorphism rings of semi-simple A-motives. The analytic theory of Drinfeld modules via lattices is explained
in Section 11. Section 12 is devoted to torsion points and Tate modules of Drinfeld modules. In Section 13 we
review the singular (co-)homology, Tate modules and the v-adic (co-)homology, and the de Rham (co-)homology
of A-motives and period isomorphisms between these (co-)homologies. The period isomorphism between v-adic
and de Rham (co-)homology is explained in Section 14. It is based on the concept of z-divisible local Anderson
modules and local shtukas, which we also review in this section. In Section 15 we introduce the concept of complex
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multiplication of A-motives and of their CM-types. Section 16 contains a brief review of the Taguchi height of a
Drinfeld module. Then in Section 17 we present the theory of the authors on the product formula for periods of
A-motives analogous to Colmez’s conjecture. In the last Section 18 we compute an interesting example for this
product formula where Q and C have genus 1.
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Part I

Abelian Varieties and Elliptic Curves

Our exposition of the theory of abelian varieties and elliptic curves follows [Mum70, Mil86, Mil08, Sil86, DS05],
which serve as background material for this article.

2 Basic Definitions

Notation 2.1. As usual we denote by Q and R the fields of rational and real numbers, respectively, by Z the
ring of integers and by N0, respectively N>0 the set of non-negative, respectively positive integers. By a place
of Q we mean either ∞ or a maximal ideal v = (p) ⊂ Z for a prime number p ∈ N>0. It defines a normalized
absolute value | . |v : Q → R≥0 given for v = ∞ by the usual absolute value |x|∞ = x if x ≥ 0 and |x|∞ = −x
if x ≤ 0, and for v = (p) by the p-adic absolute value |x|v := |x|p = p−vp(x) where vp(x) = n if x = pn ab with
a, b ∈ Z and p ∤ ab. Let Qv be the completion of Q with respect to the valuation v, that is Q∞ = R and Qv = Qp
for v = (p). Let Qalg

v be a fixed algebraic closure of Qv and let Cv be the completion of Qalg
v with respect to the

canonical extension of the absolute value | . |v to Qalg
v . Note that Cv is algebraically closed. It equals the field of

complex numbers C when v = ∞, and is usually denoted Cp when v = (p). We also fix an algebraic closure Qalg

of Q and an embedding Qalg →֒ Qalg
v for every place v of Q. We let OCp be the ring of integers of Cp.

Definition 2.2. Let K be an arbitrary field, let Kalg be a fixed algebraic closure and let Ksep be the separable
closure of K in Kalg, and GK := Gal(Ksep/K). We mean by a (smooth) group variety over K an irreducible
smooth separated scheme G of finite type over K with a group law mult : G ×K G → G, an inverse map
inv : G → G and a K-rational point 0 ∈ G(K), the identity element, such that mult and inv are morphisms of
varieties satisfying the usual axioms, see [Mum70, Chapter III, § 11]. A morphism of group varieties is a morphism
of varieties which is also a homomorphism of groups.

For a group variety G over K, let Lie(G) = T0G be the tangent space to G at the identity element 0. It is
also called the Lie algebra of G. For every endomorphism f of G we let Lie(f) be the induced endomorphism of
LieG.

Definition 2.3. An elliptic curve over a field K is a smooth projective curve E of genus 1, together with a
distinguished point 0 ∈ E(K). Every such can be written as a smooth projective plane curve which is the zero
locus of an equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 with ai ∈ K (2.1)

and with distinguished point 0 = (0 : 1 : 0). It carries a group law making it into a commutative group variety
with identity element 0 (see [Sil86, Hus04]).

Let E be an elliptic curve over C. Then E(C) inherits a complex structure as a sub-manifold of P2(C). It is
a complex manifold (because E is nonsingular) and compact (because it is closed in the compact space P2(C)).
It is connected and carries a commutative group structure. Therefore, E is a compact connected complex Lie
group of dimension 1. Let T0E(C) be the tangent space of E(C) at the identity element 0. It is also called the
Lie algebra of E(C) and denoted LieE. Then there is a unique homomorphism

exp : T0E(C) → E(C)

of complex Lie groups such that, for each v ∈ T0E(C), z 7→ exp(zv) is the one parameter subgroup1 fv : C → E(C)
corresponding to v. The differential of exp at 0 is the identity map

T0E(C) → T0E(C),

1 For a complex Lie group G, a one parameter subgroup of G is a holomorphic homomorphism f : C → G. In complex analysis
one proves that for every tangent vector v to G at e, there is a unique one-parameter subgroup fv : C → G such that fv(0) = e and
(dfv)(1) = v, see [Hoc65, pp. 79 and 195].
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and the map exp is surjective, and its kernel is a lattice Λ = Λ(E) in the complex vector space T0E(C). So
E(C) ∼= C/Λ as a complex Lie group (for more details see [Mum70, Chapter I, § 1]).

Now we explain how one associates an elliptic curve with a lattice. Let Λ be a lattice in C, that is, a discrete
Z-module Λ ⊂ C which is free of rank 2. With Λ, we associate its Weierstrass ℘-function

℘Λ(z) =
1

z2
+

∑

ω∈Λr{0}

1

(z − ω)2
− 1

ω2
. (2.2)

Then ℘Λ(z) is Λ-invariant and meromorphic on C with poles of order 2 at all ω ∈ Λ. It satisfies the equation

℘′Λ(z)
2

= 4℘3
Λ(z) − g2(Λ)℘Λ(z) − g3(Λ) (2.3)

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ), and

Gk(Λ) =
∑

ω∈Λ−{0}

1

ωk
,

is the Eisenstein series of the lattice Λ for k > 2 even. g2 and g3 satisfy the relation

∆ := g32 − 27g23 6= 0. (2.4)

This means
(
℘Λ(z), ℘′Λ(z)

)
∈ C2 for z /∈ Λ is a point on the smooth affine curve Eaff

Λ (since ∆ 6= 0) with equation

Y 2 = 4X3 − g2X − g3 (2.5)

and
(
℘Λ(z) : ℘′Λ(z) : 1

)
∈ P2(C) for all z ∈ C is a point on the projective model of the above curve with equation

Y 2Z = 4X3 − g2XZ
2 − g3Z

3. (2.6)

The above yields a biholomorphic isomorphism of the complex torus C/Λ with EΛ(C), well-defined through its
restriction to (CrΛ)/Λ by z 7→

(
℘Λ(z) : ℘′Λ(z) : 1

)
. Note that EΛ(C) inherits a group structure from C/Λ, which

may however be defined in purely algebraic terms on the algebraic curve EΛ, and which turns EΛ into an elliptic
curve. This is the elliptic curve associated with the lattice Λ. In fact, each elliptic curve E over C has the form
E = EΛ for some lattice Λ as above, and two such, EΛ and EΛ′ , are isomorphic as elliptic curves (i.e., as algebraic
curves through some isomorphism preserving the group structures) if and only if Λ′ and Λ are homothetic, that
is, Λ′ = cΛ for some c ∈ C×.

Definition 2.4. An abelian variety over a field K is a smooth projective connected group variety. The group law
is automatically commutative; see [Mum70, Chapter II, § 4, Corollary 2]. Abelian varieties are higher-dimensional
generalizations of elliptic curves, which in turn are abelian varieties of dimension 1.

A homomorphism f : X → Y between abelian varieties over K is a morphism of varieties over K which
is compatible with the group structure. The abelian group of homomorphisms f : X → Y over K is denoted
HomK(X,Y ) and we write EndK(X) = HomK(X,X). We also write QHomK(X,Y ) = HomK(X,Y ) ⊗Z Q and
QEndK(X) = QHomK(X,X) = EndK(X) ⊗Z Q. For an abelian variety X over K and an integer m ∈ Z, there
is an endomorphism [m] ∈ EndK(X) given as the multiplication by m on the points. Thus if m > 0, then

[m](P ) = P + P + · · · + P (m times)

For m < 0, we set [m](P ) = [−m](−P ), and we define [0](P ) = 0.
A morphism f : X → Y between abelian varieties is an isogeny if it is surjective with finite kernel. Every

isogeny is finite, flat, surjective, see [Mil86, Proposition 8.2]. The degree of an isogeny f : X → Y is its degree as
a regular map, i.e., the degree of the field extension [K(X) : f∗K(Y )]. If there exists an isogeny X → Y defined
over K we will say that X and Y are isogenous over K and write X ≈K Y . Note that ≈K is an equivalence
relation. In fact, for every isogeny f : X → Y there is an isogeny g : Y → X such that g ◦ f = [n] on X for
some n ∈ Z, see [Mil08, Remark 6.5]. This means that f becomes invertible in QHomK(X,Y ), in the sense that
f−1 := g ⊗ 1

n ∈ QHomK(Y,X) is its inverse.

Remark 2.5. (a) Let X and Y be abelian varieties over K. If X and Y are isogenous over K via an isogeny
f , then

QEndK(X) ∼= QHomK(X,Y ) ∼= QEndK(Y ), h 7→ f ◦ h 7→ f ◦ h ◦ f−1.
More precisely, QHomK(X,Y ) is a free right QEndK(X)-module of rank 1 and a free left QEndK(Y )-module
of rank 1. If X and Y are not isogenous then QHomK(X,Y ) = (0).
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(b) The homomorphism [m] ∈ EndK(X) is an isogeny of degree m2g, where g = dimX . It is always étale when
K has characteristic zero, and when K has characteristic p > 0 it is étale if and only if p does not divide
m, see [Mum70, Chapter II, § 6].

(c) The kernel X [m] := ker([m] : X → X) is a finite group scheme over K of order m2g.

Definition 2.6. Let X be an abelian variety and let m ∈ Z with m ≥ 1. The m-torsion subgroup of X , denoted
by X [m](Kalg), is the subgroup of points of X(Kalg) of order m,

X [m](Kalg) = {P ∈ X(Kalg) : [m]P = 0}.

It equals the group of Kalg-valued points of the finite group scheme X [m].

Remark 2.7. For any m not divisible by the characteristic of K, X [m](Kalg) has order m2g and is contained in
X(Ksep). Since this is also true for any n dividing m, X [m](Kalg) must be a free Z/mZ-module of rank 2g.

Finally, if X is an abelian variety over C of dimension g, then X(C) is isomorphic to a complex torus Cg/Λ,

X(C) ∼= Cg/Λ

for some lattice Λ = Λ(X) in Cg under an isomorphism of complex manifolds which preserves the group structures.
Here Λ ⊂ Cg is a discrete Z-submodule which is free of rank 2g. However, when g > 1, not every lattice Λ ⊂ Cg

arises from an abelian variety, that is, the quotient Cg/Λ of Cg by an arbitrary lattice Λ does not always arise
from an abelian variety. There is a criterion on Λ for when Cg/Λ is an algebraic (hence abelian) variety, namely,
that (Cg,Λ) admits a Riemannian form2, see [Mum70, Chapter I, § 3].

3 Semi-simple Abelian Varieties

Theorem 3.1. For two abelian varieties X and Y over a field K the Z-module HomK(X,Y ) is finite projective
of rank ≤ (2 dimX) · (2 dimY ).

Proof. See for example [Mum70, Chapter IV, § 19, Corollary 1].

Definition 3.2. Let X be an abelian variety over K. Then X is called

(a) simple over K if X is non-trivial and there does not exist an abelian subvariety Y ⊂ X over K other than
(0) and X .

(b) semi-simple over K if X is isogenous over K to a direct product of simple abelian varieties, i.e. X ≈K
X1 ×K . . .×K Xn with Xi simple.

Remark 3.3. The Theorem of Poincaré and Weil [Mil08, Proposition 9.1] states that any abelian variety is
semi-simple over K. More precisely, for any abelian variety X over K, there are simple abelian subvarieties
X1, · · · , Xn ⊂ X such that the map X1 ×K · · · ×K Xn → X, (a1, · · · , an) → a1 + · · · + an is an isogeny. The
proof of this is analogous with a standard proof for the semi-simplicity of a representation of a finite group G on
a finite-dimensional vector space over Q, see [Mil08, Remark 9.2].

Let X be a simple abelian variety, and let 0 6= f ∈ EndK(X). Then f is an isogeny, because by the simplicity
of X , the image of f equals X and the connected component of ker f equals {0}, as both are abelian subvarieties.
So f is surjective with finite kernel. From this it follows that QEndK(X) is a division algebra or equivalently a
skew-field, i.e., a ring, possibly non commutative, in which every nonzero element has an inverse.

Remark 3.4. Let X be a simple abelian variety over K, and let D = QEndK(X). Then QEndK(Xn) = Mn(D)
is the ring of n× n matrices with coefficients in D.

Now consider an arbitrary abelian variety X . Then X is isogenous over K to a product Xn1
1 ×K · · · ×K Xnr

r ,
where each Xi is simple, and Xi is not isogenous to Xj for i 6= j over K. The above remarks show that

QEndK(X) ∼=
∏

Mni(Di), Di = QEndK(Xi).

2For a complex torus V/Λ where V is a complex vector space and Λ is a full lattice in V , a skew-symmetric form F : Λ×Λ → Z, that
is F (w, v) = −F (v, w), extended to a skew-symmetric R-bilinear form FR : V ×V → R is a Riemannian form if FR(iv, iw) = FR(v, w)
and the associated Hermitian form H : V × V → C with H(v, w) := FR(iv, w) + i FR(v, w) and FR(v, w) = Im(H(v, w)) is positive
definite.
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Since EndK(X) is a free Z-module of finite rank ≤ (2 dimX)2 we know that QEndK(X) is a finite dimensional
Q-algebra.

In the following we recall a few facts about semi-simple algebras. Let Q be a field, let B be a semi-simple
Q-algebra of finite dimension, and let B =

∏
Bi be its decomposition into a product of simple algebras Bi. A

simple Q-algebra is isomorphic to a matrix algebra over a division Q-algebra. The center of each Bi is a field Fi,
and each degree [Bi : Fi] is a square. The reduced degree of B over Q is defined to be

[B : Q]red =
∑

i

[Bi : Fi]
1/2[Fi : Q].

For any field Q′ containing Q,

[B : Q] = [B ⊗Q Q′ : Q′] and [B : Q]red = [B ⊗Q Q′ : Q′]red.

Proposition 3.5 ([Mil06, Proposition 1.2]). Let B be a semi-simple Q-algebra which is finite dimensional over
Q. For any faithful B-module M ,

dimQM ≥ [B : Q]red;

and there exists a faithful module for which equality holds if and only if the simple factors of B are matrix algebras
over their centers.

Proposition 3.6 ([Mil06, Proposition 1.3]). Let char(Q) = 0 and let B be a semi-simple Q-algebra. Every
maximal étale Q-subalgebra of B has degree [B : Q]red over Q. Here we mean by an étale Q-algebra a finite
product of finite separable field extensions of Q.

4 Cohomology

4.1 Singular Cohomology

Let X be an abelian variety of dimension g over C. Let V be the tangent space of X at the identity element
and let Λ be the kernel of the exponential map exp : V → X . Now the space V ∼= Cg is simply connected, and
exp : V → X is a covering map, therefore it realizes V as the universal covering space of X , and so π1(X) is its
group of covering transformations, which is Λ. In particular, it is abelian. As for any good topological space we
obtain for the singular cohomology of X

H1(X,Z) ∼= Homgroups(π1(X),Z) = HomZ(Λ,Z).

Since we have seen that X is a complex torus of dimension g, it is isomorphic to (R/Z)2g = (S1)2g as a real
Lie group, where S1 is the circle group. We claim that for all r ∈ N>0

∧r
H1(X,Z) ∼−→ Hr(X,Z)

under the natural map defined by the cup product. Indeed, by the Künneth formula if the above map is an
isomorphism for spaces X1 and X2 with finitely generated cohomologies, then it is an isomorphism for X1×KX2.
Since it is an isomorphism for S1 for all r ≥ 0, where the module is (0) for r ≥ 2, the result for X follows.

Since X is compact and orientable and Hr(X,Z) is torsion free, the duality theorems gives us for the singular
homology of X

Hr(X,Z) ∼= Hr(X,Z)∨ and in particular H1(X,Z) = Λ .

4.2 ℓ-adic Cohomology

We follow [Mil86, § 15]. Let X be an abelian variety of dimension g over a field K, and let ℓ be a prime different
from char(K). Recall that, for any m not divisible by the characteristic of K, X [m](Ksep) has order m2g. Define
the ℓ-adic Tate module of X as

Tℓ(X) = lim
←−

(
X [ℓn](Ksep), [ℓ]

)
.

It follows that Tℓ(X) is a free Zℓ-module of rank 2g. There is a continuous action of GK on this module.
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Let X and Y be two abelian varieties over K. A homomorphism f : X → Y induces a homomorphism
X [ℓn] → Y [ℓn], and hence a homomorphism

Tℓ(f) : Tℓ(X) → Tℓ(Y ), (a1, a2, · · · ) 7→
(
f(a1), f(a2), · · ·

)
.

Therefore, Tℓ is a functor from abelian varieties to Zℓ-modules. It is easy to see that for any prime ℓ 6= char(K),
the natural map

HomK(X,Y ) → HomZℓ(Tℓ(X), Tℓ(Y ))

is injective. From this one obtains that the Z-algebra HomK(X,Y ) of morphisms X → Y of group varieties
is torsion-free. The following theorem was conjectured by Tate [Tat66] and proved by him for finite fields K.
It was proved by Zarhin [Zar75] for fields of positive characteristic and by Faltings [Fal83, Fal84b] for fields of
characteristic zero.

Theorem 4.1 (Tate conjecture for abelian varieties). Let X and Y be two abelian varieties over a finitely
generated field K and let ℓ be a prime different from the characteristic of K. Then the natural map

HomK(X,Y ) ⊗Z Zℓ → HomZℓ[GK ](TℓX,TℓY ), f ⊗ a 7→ a · Tℓ(f)

is an isomorphism of Zℓ-modules.

The theorem is known to fail for some classes of fields which are not finitely generated (e.g. local fields and of
course algebraically closed fields).

Now we write XKalg := X ×K SpecKalg and denote by πét
1 (XKalg , 0) the étale fundamental group, then

H1
ét(XKalg ,Zℓ) ∼= Homcont(πét

1 (XKalg , 0),Zℓ).

For each n the map [ℓn] : X → X is a finite étale covering ofX with group of covering transformationsX [ℓn](Ksep).
By definition πét

1 (XKalg , 0) classifies such coverings, and therefore there is a canonical epimorphism πét
1 (XKalg , 0) ։

X [ℓn]. On passing to the inverse limit, we get an epimorphism πét
1 (XKalg , 0) ։ Tℓ(X), and consequently an

injection
HomZℓ(Tℓ(X),Zℓ) →֒ H1

ét(XKalg ,Zℓ),

which actually is an isomorphism, see [Mil86, Theorem 15.1]. So we obtain for the first ℓ-adic homology group of
X

H1,ét(XKalg ,Zℓ) = Tℓ(X) and H1,ét(XKalg ,Qℓ) = Tℓ(X) ⊗Zℓ Qℓ ,

and for the first ℓ-adic cohomology group of X

H1
ét(XKalg ,Zℓ) = H1,ét(XKalg ,Zℓ)

∨ and H1
ét(XKalg ,Qℓ) = H1,ét(XKalg ,Qℓ)

∨.

By [Mil86, Theorem 15.1] the cup product pairings define isomorphisms

Hr,ét(XKalg ,Zℓ) ∼=
∧r

H1,ét(XKalg ,Zℓ) and Hr
ét(XKalg ,Qℓ) ∼=

∧r
H1

ét(XKalg ,Qℓ).

Now, over the field K = C the choice of an isomorphism X(C) ∼= Cg/Λ determines X [m](C) ∼= m−1Λ/Λ. Then

Tℓ(X) = lim
←−

(
X [ℓn](C), [ℓ]

) ∼= lim
←−

(
ℓ−nΛ/Λ,multiplication with ℓ

)

∼= lim
←−

(
Λ ⊗Z (Z/ℓnZ), mod ℓn

)

∼= Λ ⊗Z lim
←−

(Z/ℓnZ), because Λ is a free Z-module

∼= Λ ⊗Z Zℓ.

Taking duals and exterior powers, we can summarize the results as a

Theorem 4.2. For every abelian variety X over C there are canonical comparison isomorphisms between singular
and ℓ-adic (co-)homology

Hr
ét(X,Zℓ)

∼= Hr(X,Z) ⊗Z Zℓ and Hr,ét(X,Zℓ) ∼= Hr(X,Z) ⊗Z Zℓ .
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Example 4.3. Also for the multiplicative group scheme Gm := Gm,Q = SpecQ[x, x−1] there is a period iso-
morphism between H1(Gm(C),Z) ⊗Z Zℓ and H1,ét(Gm,C,Zℓ). Namely, H1(Gm(C),Z) = Z · u, where u : [0, 1] →
Gm(C) = C× is the cycle given by u(s) = exp(2πis). Also let ε

(n)
ℓ := exp(2πi/ℓn) ∈ Qalg ⊂ C. It is a primitive ℓn-

th root of unity with (ε
(n+1)
ℓ )ℓ = ε

(n)
ℓ for all n. Let εℓ := (ε

(n)
ℓ )n∈N ∈ TℓGm. Then H1,ét(Gm,C,Zℓ) = TℓGm = εZℓℓ

and the comparison isomorphism

H1(Gm(C),Z) ⊗Z Zℓ
∼−→ H1,ét(Gm,C,Zℓ)

sends u to εℓ. This can be seen from the exact sequence 0 → Z = π1(C×) → C
exp(2πi • )−−−−−−−−→ C× → 0 and the

induced comparison isomorphism π1(C×) ⊗Z Zℓ
∼−→ TℓGm, 1 7→

(
exp(2πi/ℓn)

)
n∈N

.

4.3 De Rham Cohomology

We will now explain the construction of the Dolbeault complex associated with X which is an analog of the de
Rham complex for complex manifolds. Let X be an abelian variety over C.

Let C n = ⊕p+q=rC p,q be the sheaf of C∞ complex valued differential n-forms, where C p,q is the sheaf of C∞

complex valued differential forms of type (p, q). In terms of local coordinates, let (z1, · · · , zg) be a holomorphic
coordinate system. First we decompose the complex coordinates into their real and imaginary parts: zj = xj+ iyj
for each j. Letting dzj = dxj+idyj, dz̄j = dxj−idyj, one sees that any differential 1-form with complex coefficients
can be written uniquely as a sum

n∑

j=1

(fjdzj + gjdz̄j) ,

for C-valued C∞-functions fj and gj. Let C 1,0 be the sheaf of C∞ complex valued differential 1-forms where all
gj are zero, and let C 0,1 be the sheaf of C∞ complex valued differential 1-forms where all fj are zero. Then the
space C

p,q of type (p, q)-forms is defined by taking linear combinations of the wedge products of p elements from
C 1,0 and q elements from C 0,1. Symbolically,

C
p,q =

p∧
C

1,0 ∧
q∧

C
0,1

In particular for each n and each p and q with p+ q = n, there are canonical projection maps which we denote by

π(p,q) : C
n → C

p,q.

The exterior derivative defines a map d : C n → C n+1 i.e. if ϕ ∈ C p,q then d(ϕ) ∈ C p+1,q ⊕ C p,q+1. Using d and
the projections maps, it is possible to define the operators:

∂ = πp+1,q ◦ d : C
p,q → C

p+1,q, ∂̄ = πp,q+1 ◦ d : C
p,q → C

p,q+1

In terms of local coordinates z = (z1, · · · zg) we can write ϕ ∈ C p,q as

ϕ =
∑

#I=p,#J=q

fIJ dzI ∧ dz̄J ∈ C
p,q

where I and J are multi-indices and dzI =
∧
i∈I dzi and dz̄I =

∧
i∈I dz̄i. Then

∂ϕ =
∑

#I=p,#J=q

∑

i

∂fIJ
∂zi

dzi ∧ dzI ∧ dz̄J and ∂̄ϕ =
∑

#I=p,#J=q

∑

i

∂fIJ
∂z̄i

dz̄i ∧ dzI ∧ dz̄J .

It is not difficult to see the following properties:

d = ∂ + ∂̄

∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0.

Then the Poincaré lemma gives that the complex

0 → C → C
0 d−→ C

1 d−→ · · ·
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is a fine resolution of the constant sheaf C. It is called the de Rham resolution. We define the de Rham cohomology
as the cohomology of this complex i.e.

Hn
dR(X,C) =

{global n-forms ϕ ∈ C n(X) on X which are d-closed, i.e. dϕ = 0}
{dψ : where ψ ∈ C n−1(X) is a global (n− 1)-form on X} .

Let V = T0X be the tangent space to X at 0 (regarded as a complex vector space). Let T∨ = HomC(V,C)

be the complex cotangent space to X at 0 and T
∨

= HomC -antilinear(V,C). Then from linear algebra

HomR(V,C) ∼= HomC(V,C) ⊕ HomC -antilinear(V,C) i.e. HomR(V,C) ∼= T∨ ⊕ T
∨
,

and

∧r
HomR(V,C) ∼=

⊕

p+q=r

∧p
T∨ ⊗

∧q
T
∨

By translation under the group law on X every complex co-vector ϕ ∈ ∧pT∨ ⊗ ∧qT∨ extends to a unique
translation invariant ωϕ ∈ C p,q, and therefore every complex co-vector ϕ ∈ ∧r HomR(V,C) extends to a unique
translation invariant form ωϕ belonging to C n. For all d-closed n-forms ω, there is unique translation invariant
ωϕ for ϕ ∈ ∧n HomR(V,C), such that

ω − ωϕ = dη, for some (n− 1)-form η.

Therefore, Hr
dR(X,C) ∼=

∧r
HomR(V,C), and has the decomposition

Hr
dR(X,C) ∼=

⊕

p+q=r

∧p
T∨ ⊗

∧q
T
∨
.

For the sheaf Ωp := ker(∂̄ : C p,0 → C p,1) of holomorphic p-forms on X we know from [Mum70, Chapter I, § 1,
Theorem] that

Hq(X,OX) ∼=
∧q

T
∨

and Hq(X,Ωp) ∼=
∧p

T∨ ⊗
∧q

T
∨
,

so
Hr

dR(X,C) ∼=
⊕

p+q=r

Hp,q(X), where Hp,q(X) := Hq(X,Ωp).

This is the famous Hodge decomposition.

Now we obtain the de Rham isomorphism

H1(X,C) = H1(X,Z) ⊗Z C = HomZ(Λ,Z) ⊗Z C = HomR(V,C) ∼= H1
dR(X,C).

Then, Hn
dR(X,C) ∼= Hn(X,Q) ⊗Q C. Note that complex conjugation on the right tensor factor of the target

defines a conjugate-linear automorphism of Hn
dR(X,C). For more details see [Mum70, Chapter I, § 1]. Taking also

exterior powers, we can summarize the results as a

Theorem 4.4 (De Rham isomorphism). For every abelian variety X over C there are canonical comparison
isomorphisms between singular and de Rham cohomology

Hr
dR(X,C) ∼= Hr(X,Z) ⊗Z C .

Example 4.5. Also for the multiplicative group scheme Gm := Gm,C = SpecC[x, x−1] there is a de Rham isomor-
phism between H1(Gm(C),Z) and H1

dR(Gm,C) = Cdx
x . As in Example 4.3, the singular homology H1(Gm(C),Z) =

Z · u, where u : [0, 1] → Gm(C) = C× is the cycle given by u(s) = exp(2πis). The de Rham isomorphism is given
as the pairing

H1(Gm,Z) × H1
dR(Gm,C) −→ C , (nu, ω) 7−→ n

∫
u
ω , (u, dxx ) 7−→

∫
u
dx
x = 2πi.

The corresponding isomorphism H1(Gm,Z) ⊗Z C ∼−→ H1
dR(Gm,C) sends the generator of H1(Gm,Z), which is

dual to u, to (2πi)−1 · dxx .
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5 p-divisible Groups and the p-adic Period Isomorphism

Let R be a commutative ring. Let p be a prime number, and h an integer ≥ 0. A p-divisible group G over R of
height h is an inductive system

(Gn, in), n ≥ 0

where

(a) Gn is a finite flat commutative group scheme of finite presentation over R of order pnh,

(b) for each n ≥ 0,

0 → Gn
in−→ Gn+1

[pn]−−→ Gn+1

is exact (i.e., Gn can be identified via in with the kernel of multiplication by pn in Gn+1).

These axioms for ordinary abelian groups would imply

Gn ∼= (Z/pnZ)h and G = lim−→Gn = (Qp/Zp)
h.

A homomorphism f : G → H of p-divisible groups is defined in the obvious way: if G = (Gn, in), H = (Hn, in)
then f is a system of homomorphisms fn : Gn → Hn of group schemes over R, satisfying in ◦ fn = fn+1 ◦ in for
all n ≥ 1.

Example 5.1. Let G be a commutative group variety over a field K, which is either an abelian variety or Gm.
We can associate a p-divisible group with G:

Define G[m] as the kernel of multiplication by m. Then (G[pn], in) is a p-divisible group, where in denotes the
obvious inclusion. This p-divisible group is sometimes denoted G[p∞].

(a) If G = X is an abelian variety, then the height of G[p∞] is 2 dimX .

(b) If G = Gm is the multiplicative group scheme, then Gm[p∞] = lµ.. p∞ := (lµ.. pn , in) with height 1. Here

lµ.. pn = SpecK[x]/(xp
n − 1) is the group scheme of pn-th roots of unity.

Let us see how p-divisible groups generalize Tate modules. Suppose p 6= char(K). Then for a p-divisible group
(Gn, in) of height h over K each Gn is a finite étale group scheme over K and each Mn := Gn(Ksep) is a discrete
GK-module of size pnh annihilated by pn and Mn+1[pn] = Mn. It follows that Mn = (Z/pnZ)h. We can form two
kinds of limits:
(i) the direct limit M∞ = lim−→Mn is (Qp/Zp)

h with a continuous GK-action for the discrete topology, and
(ii) multiplication by p on Mn+1 provides a quotient map Mn+1 ։Mn of discrete GK-modules yielding an inverse
limit Tp(M) = lim

←−
Mn that is a finite free Zp-module of rank h equipped with a continuous action of GK for the

p-adic topology.
We can recover the direct system (Mn, in) from both limits, namely Mn = M∞[pn] and Mn = Tp(M)/(pn).

The viewpoint of M∞ explains the p-divisible aspect of the situation (since multiplication by p is surjective
on (Qp/Zp)

h), whereas Tp(M) has a nicer Zp-module structure. Since the étale group scheme Gn is uniquely
determined by the GK-module Mn, this proves:

Proposition 5.2. If K is a field with p 6= char(K), then the functor G → Tp(G) is an equivalence from the
category of p-divisible groups over K to the category of finite free Zp-modules with continuous GK-action.

On the other hand let K be a finite extension of Qp and let X be an abelian variety over K. Assume
that X has good reduction, i.e. there exists a smooth projective commutative group scheme X over OK with
X ∼= X ×OK SpecK. Then X [pn] admits an integral model Gn := X [pn] with Gn = Gn+1[pn] for all n ≥ 1 and
G = (Gn, in) is a p-divisible group over OK with GK := G ×OK SpecK ∼= X [p∞].

Now due to Tate [Tat67] we know that if G and H are p-divisible groups over OK then

HomOK (G,H) ∼−→ HomK(GK ,HK).

Remark 5.3. p-divisible groups over a perfect field k of characteristic p have a description via semi-linear algebra
by their Dieudonné module. The latter is a finite free module M over the ring W (k) of p-typical Witt-vectors
over k, equipped with a Frobp-semi-linear morphism F : M → M , called Frobenius, and a Frob−1p -semi-linear
morphism V : M →M , called Verschiebung, satisfying FV = p = V F .
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This was generalized by Fontaine [Fon77] to p-divisible groups G over the ring of integers OK of a finite
field extension K of Qp. Those p-divisible groups are described by the Dieudonné module D of the special fiber
G ×OK Spec k together with a decreasing exhaustive and separated filtration Fil• on DK = D ⊗K0 K satisfying
Fil0(DK) = DK , Fil2(DK) = (0), where K0 = W (k)[p−1] is the maximal unramified subextension of K.

Notation 5.4. Let O♭
Cp

:= lim
←−

(OCp ,Frobp) = {x = (x(n))n∈N0 ∈ (OCp)N0 : (x(n+1))p = x(n)} and Ainf := W (O♭
Cp

)

be the ring of Witt vectors. Every element of Ainf can be written in the form
∑∞

i=0[xi]p
i where [x] denotes the

Teichmüller lift of the element x = (x(n))n ∈ O♭
Cp

. Let Θ : Ainf [
1
p ] ։ Cp be the morphism sending

∑
i[xi]p

i

to
∑

i x
(0)
i pi. The de Rham period ring B+

p,dR is the completion of Ainf [
1
p ] at the maximal ideal ker Θ and

Bp,dR := Frac(B+
p,dR) is the field of p-adic periods. The de Rham period ring B+

p,dR is a complete discrete
valuation ring with residue field Cp and maximal ideal ker Θ. One can show that the ideal ker Θ ⊂ Ainf is

principal and generated by an element [p♭]− p ∈ Ainf , where p♭ = (p, p1/p, p1/p
2

, · · · ) ∈ O♭
Cp

. Any other generator

is of the form ([p♭] − p) · u for u ∈ A×

inf . For more details see [Fon77]. There is a filtration on Bp,dR defined

by putting Fili(Bp,dR) = ([p♭] − p)i · B+
p,dR for i ∈ Z, and we define v̂p(x) for x ∈ Bp,dR r {0} by v̂p(x) = i if

x ∈ Fili(Bp,dR) r Fili+1(Bp,dR). For x ∈ Bp,dR r {0}, the quantity

vp(x) := vp
(
Θ(x · ([p♭] − p)−v̂p(x))

)
∈ Q (5.1)

does not depend on the choice of the generator [p♭]− p of Ainf ∩ ker Θ. Indeed, if we replace the generator [p♭]− p
of ker Θ ⊂ Ainf by another generator ([p♭] − p) · u with u ∈ A×

inf , because then vp
(
Θ(x · (([p♭] − p) · u)−v̂p(x)

)
=

vp
(
Θ(x · ([p♭]− p)−v̂p(x)

)
+ vp(Θ(u))−v̂p(x) = vp

(
Θ(x · ([p♭]− p)−v̂p(x)

)
as Θ(u) ∈ O×

Cp
. If x and y are two elements

of Bp,dR, then v̂p(xy) = v̂p(x) + v̂p(y), and hence vp(xy) = vp(x) + vp(y). But note that vp does not satisfy the
triangle inequality.

Finally, if K ⊂ Cp is a finite field extension of Qp, then there is an action of GK on Bp,dR which respects the
filtration, and (Bp,dR)GK = K. Also note that there does not exist a lift of the absolute Frobenius ϕp on Bp,dR.

The p-adic period isomorphism is provided by the following theorem which was proved by Fontaine and
Messing [FM87] using the associated p-divisible group.

Theorem 5.5. Let Kp ⊂ Qalg
p be a finite extension of Qp and let X be an abelian variety over Kp. Then for

every n ≥ 0 there is a period isomorphism from p-adic Hodge theory

hp,dR : Hn
ét(X ×Kp SpecQalg

p ,Zp) ⊗Zp Bp,dR
∼−→ Hn

dR(X,Kp) ⊗Kp Bp,dR,

which is GKp-equivariant and compatible with the filtrations, where on the left hand side, GKp acts on both factors
and the filtration is induced only by Bp,dR, and on the right hand side GKp acts only on Bp,dR and the filtration

is induced by the Hodge filtration on H1
dR(X,Kp) and the filtration on Bp,dR, i.e. Filk

(
H1

dR(X,Kp)⊗Kp Bp,dR
)

:=∑
i+j=k

Fili H1
dR(X,Kp) ⊗Kp Filj Bp,dR.

It was conjectured by Fontaine [Fon82, A.6] and proved by Faltings [Fal89, Theorem 8.1], Niziol [Niz98] and
Tsuji [Tsu99], that the theorem also holds for arbitrary smooth proper schemes over Kp.

Example 5.6. Also for the multiplicative group scheme Gm := Gm,Qp = SpecQp[x, x
−1] there is a period

isomorphism between H1
ét(Gm,Qalg

p
,Zp) and H1

dR(Gm,Qp) = Qp
dx
x , see Example 4.5. As in Example 4.3 let

ε
(n)
p ∈ Qalg ⊂ Qalg

p be a primitive pn-th root of unity with (ε
(n+1)
p )p = ε

(n)
p , such that εp = (ε

(n)
p )n ∈ O♭

Cp
. Then

H1,ét(Gm,Qalg
p
,Zp) = TpGm = ε

Zp
p and H1

ét(Gm,Qalg
p
,Zp) = (TpGm)∨ = (ε−1p )Zp . On the latter Gal(Qalg

p /Qp) acts

through the inverse of the cyclotomic character. The series tp := log[εp] := −
∑
n>0

1
n (1 − [εp])

n converges in
Bp,dR. Under the period isomorphism

hp,dR : H1
ét(Gm,Qalg

p
,Zp) ⊗Zp Bp,dR

∼−→ H1
dR(Gm,Qp) ⊗Qp Bp,dR,

of Gm the element dx
x ⊗ 1 is mapped to ε−1p ⊗ tp. Therefore tp can be viewed as the p-adic analog of the complex

period 2πi from Example 4.5. It satisfies v̂p(tp) = 1 and vp(tp) = vp
(
Θ(tp · ([p♭]− p)−1)

)
= 1

p−1 , see [Col93, § 0.2].
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6 Complex Multiplication

We follow [Mil06]. Complex conjugation on C (or a subfield) is denoted by c or simply by a → ā. A complex
conjugation on a field K is an involution induced by an embedding of K into C and by complex conjugation on
C.

A number field E is a CM-field if it is a quadratic extension E/F where the base field F is totally real but E is
totally imaginary. i.e., every embedding of F →֒ C lies entirely within R, but there is no embedding of E →֒ R
or equivalently there exists an automorphism cE 6= id of E such that ρ ◦ cE = c ◦ ρ for all homomorphisms
ρ : E →֒ C. In other words, there is a subfield F of E such that E = F [

√
α], F totally real, α ∈ F and ρ(α) < 0

for all homomorphisms ρ : F →֒ C.

Remark 6.1. A finite composite of CM-subfields of a field is CM. In particular, the Galois closure of a CM-field
in any larger field is CM.

A CM-algebra is a finite product of CM-fields. Equivalently, it is a finite product of number fields admitting an
automorphism cE that is of order 2 on each factor and such that ρ ◦ cE = c ◦ ρ for all homomorphisms ρ : E → C.
The fixed algebra of cE is a product of the largest totally real subfields of the factors.

Let E be a CM-algebra. The set HomQ(E,C) of Q-homomorphisms E → C is a union in complex conjugate pairs
{ϕ, c ◦ ϕ}. A CM-type on E is the choice of one element from each such pair. More formally:

Definition 6.2. A CM-type on a CM-algebra E is a subset Φ ⊂ HomQ(E,C) such that

HomQ(E,C) = Φ ⊔ cΦ (disjoint union).

Here cΦ := {c ◦ ϕ | ϕ ∈ Φ}).

Let X be an abelian variety over the complex numbers C. We have seen that QEndC(X) is a semi-simple Q-
algebra which acts faithfully on the (2 dimX)-dimensional Q-vector space H1(X,Q). Therefore, by Proposition 3.5

2 dimX ≥ [QEndC(X) : Q]red

and when equality holds, QEndC(X) is a product of matrix algebras over fields.

Definition 6.3. An abelian variety X over a subfield K ⊂ C is said to have complex multiplication (or be of
CM-type, or be a CM abelian variety) over K if

2 dimX = [QEndK(X) : Q]red.

By Proposition 3.6 this definition is equivalent to the statement that QEndK(X) contains an étale Q-subalgebra
of degree 2 dimX over Q. Indeed, if the latter holds then 2 dimX is less or equal to the degree of a maximal étale
Q-subalgebra. By Proposition 3.6 the latter degree equals [QEndK(X) : Q]red. And the inequality [QEndK(X) :
Q]red ≤ 2 dimX proves the claim.

Note that when X is a CM abelian variety over a field K ⊂ C then QEndK(X) ⊂ QEndC(X) implies that
this inclusion is an equality.

Remark 6.4. Let X ≈K
∏
iX

ni
i be the decomposition of X (up to isogeny) into a product of isotypic abelian

varieties overK. Then Di = QEndK(Xi) is a division algebra, and QEndK(X) ∼=
∏
Mni(Di) is the decomposition

of QEndK(X) into a product of simple Q-algebras. From the above definition and Proposition 3.5 we see that X
has complex multiplication if and only if Di is a commutative field of degree 2 dimXi for all i. In particular, a
simple abelian variety X has complex multiplication if and only if QEndK(X) is a field of degree 2 dimX over Q,
and an arbitrary abelian variety has complex multiplication if and only if each simple isogeny factor does.

Let X be an abelian variety over C. An endomorphism α of X defines an endomorphism of the vector space
H1(X,Q) of dimension 2 dimX over Q. Therefore, the characteristic polynomial Pα of α is defined as

Pα(T ) := det
(
α− T | H1(X,Q)

)
.

It is monic, of degree 2 dimX , and has coefficients in Z. More generally, we define the characteristic polynomial
of any element of QEnd(X) by the same formula.
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Consider an endomorphism α of an abelian variety X over C, and write X = Cg/Λ with Λ = H1(X,Z). If α is
an isogeny, then α : Λ → Λ is injective, and it defines an isomorphism

ker(α) = α−1Λ/Λ ∼−→ Λ/αΛ.

Therefore, for an isogeny α : X → X

degα = # ker(α) =
∣∣det

(
α| H1(X,Q)

)∣∣ = |Pα(0)|.

More generally, for any integer r we have deg(α− r) =
∣∣det

(
α− r| H1(X,Q)

)∣∣ = |Pα(r)|; compare [CS86, Chap 5
§ 12].

For the convenience of the reader we reproduce the proof from [Mil06] of the following results.

Lemma 6.5 ([Mil06, Lemma 3.7]). Let F be a subfield of QEnd(X), where X is an abelian variety over C. If F
has a real prime, then [F : Q] divides dimX.

Proof. First note that H1(X,Q) is a vector space over F of dimension m := 2 dimX/[F : Q]. So for any
α ∈ End(X) ∩ F , the characteristic polynomial Pα(T ) is the m-th-power of the characteristic polynomial of α in
F/Q. In particular,

NormF/Q(α)m = degα ≥ 0.

However, if F has a real prime, then from the weak approximation theorem α can be chosen to be large and
negative at that prime and close to 1 at the remaining primes so that NormF/Q(α) < 0. This gives a contradiction
unless m is even.

For the next proposition recall the definition of a Rosati involution on QEndK(X). By [Mum70, Chapter III,
§ 13, Corollary 5] there exist polarizations on X , that is, isogenies λ : X → X∨ = Pic0(X) which over Kalg

are of the form λ(x) = x∗L ⊗ L−1 for an ample line bundle L on XKalg . Every polarization λ has an inverse
λ−1 ∈ QHomK(X∨, X). The Rosati involution on QEndK(X) corresponding to λ is

α 7→ α† = λ−1 ◦ α∨ ◦ λ (6.1)

Proposition 6.6 ([Mil06, Proposition 3.6]). (a) A simple abelian variety X has complex multiplication if and
only if QEnd(X) is a CM-field of degree 2 dimX over Q.

(b) An isotypic abelian variety X has complex multiplication if and only if QEnd(X) contains a field of degree
2 dimX over Q (which can be chosen to be a CM-field invariant under some Rosati involution).

(c) An abelian variety X has complex multiplication if and only if QEnd(X) contains an étale Q-algebra E
(which can be chosen to be a CM-algebra invariant under some Rosati involution) of degree 2 dimX over
Q. In this case H1(X,Q) is free over E of rank 1.

Proof. (a) QEndK(X) is a field extension of Q of degree 2 dimX by Remark 6.4. We know that it is either totally
real or CM because it is stable under the Rosati involutions (6.1). Now Lemma 6.5 shows that QEndK(X) is a
CM-field.

For (b) and (c) see [Mil06, Proposition 3.6].

Definition 6.7. Let X be an abelian variety with complex multiplication, so that QEnd(X) contains a CM-
algebra E for which H1(X,Q) is a free E-module of rank 1, and let Φ be the set of homomorphisms E → C
occurring in the representation of E on T0(X), i.e., T0(X) ∼=

⊕
ϕ∈ΦCϕ where Cϕ is the one-dimensional C-vector

space on which a ∈ E acts as ϕ(a). Then, because

H1(X,R) ∼= T0(X) ⊕ T0(X), (6.2)

Φ is a CM-type on E, and we say that, X together with the injective homomorphism E → QEnd(X) is of CM-type
(E,Φ).

Let e be a basis vector for H1(X,Q) as an E-module, and let a be the OE-lattice in E such that ae = H1(X,Z).
Under the above isomorphism

H1(X,R) ∼−→
⊕

ϕ∈Φ

Cϕ ⊕
⊕

ϕ∈cΦ

Cϕ, (6.3)

e⊗ 1 7−→ (· · · , eϕ, · · · ; · · · , ec◦ϕ, · · · )
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where each eϕ is a C-basis for Cϕ. The eϕ determine an isomorphism

T0(X) ∼=
⊕

ϕ∈Φ

Cϕ.

Next we state two important results on abelian varieties with complex multiplication from [ST61] and [ST68]
which we will need later.

Proposition 6.8. [ST61, Prop 26 §12.4] Let X be an abelian variety over K = Ksep ⊂ C with complex multi-
plication, then there exists an abelian variety isogenous to X defined over a field which is a finite extension of
Q.

Theorem 6.9. [ST68, Thm 6] Let X be an abelian variety over a finite extension K/Q with complex multiplica-
tion, then there exists a finite extension L/K such that X has good reduction at every place of OL.

7 The Faltings Height of an Abelian Variety

We recall the definition of the Faltings height of an abelian variety. It was introduced by Faltings in his proof of
the Mordell Conjecture and the Tate Conjecture 4.1 for abelian varieties; see [Fal83] or [CS86, Chapter 2, § 3] for
the English translation. Let K be a number field, OK the ring of integers in K. We define a metrized line bundle
on Spec(OK) to be a projective OK-module P of rank 1, together with norms ‖ . ‖v on P ⊗OK Kv for all infinite
places v of K, where Kv denotes the completion of K at v. We define εv = 1 or 2 according to whether Kv

∼= R
or Kv

∼= C. The degree of the metrized line bundle is defined as

deg(P, ‖ . ‖) = log(#(P/OK · x)) −
∑

v|∞

εv log ‖x‖v,

where x is a nonzero element of P and the sum runs over all infinite places of K. The right-hand side is of course
independent of x because of the product formula (1.1).

Let now X be an abelian variety of dimension g over K, and let X be the relative identity component of the
Néron model of X over OK . Assume that X is semi-abelian, i.e. a smooth algebraic group q : X → SpecOK , whose
fibers are connected of dimension g, and are extensions of an abelian variety by a torus. Let s : X → SpecOK be
the zero section. Let ωX/OK = s∗(ΩgX/OK ), ωX/OK is a line bundle on OK . The metrics at the infinite places v

of K are given by

‖α‖2v :=
1

(2π)g

∫

Xv(C)

|α ∧ ᾱ| for α ∈ ω(Xv) = Γ(Xv,Ω
g
Xv

) ,

where Xv denotes the base change of X under the map K → Kv. Then Faltings [CS86, Chapter 2, § 3] defines a
moduli-theoretic height as follows.

Definition 7.1. The (stable) Faltings height htstFal(X) of X is defined as

htstFal(X) :=
1

[K : Q]
deg(ωX/OK , ‖ . ‖). (7.1)

It is easy to check that htstFal(X) is invariant under extension of the ground field. Since every abelian variety
is potentially semi-stable by Grothendieck [SGA 7, Exposé IX, Théorème 3.6], the Faltings height is defined for
every abelian variety over a number field. It measures the arithmetic complexity of the abelian variety and is
“not far” from an actual height on the moduli space of principally polarized abelian varieties.

8 Colmez’s Conjecture on Periods of CM Abelian Varieties

In [Col93] P. Colmez considers product formulas for periods of abelian varieties in the following

Situation 8.1. Let X be an abelian variety defined over a number field K with complex multiplication by the
ring of integers OE in a CM-field E and of CM-type (E,Φ). Let HE := HomQ(E,Qalg) be the set of all ring
homomorphisms E →֒ Qalg and assume that K contains ψ(E) for every ψ ∈ HE . By Theorem 6.9 we may assume
moreover, that K is a finite Galois extension of Q and that X has good reduction at every prime of OK . For
a fixed ψ ∈ HE let ωψ ∈ H1

dR(X,K) be a non-zero cohomology class such that b∗ωψ = ψ(b) · ωψ for all b ∈ E.
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For every embedding η : K →֒ Qalg, let Xη := X ×SpecK,Specη SpecK and ωηψ ∈ H1
dR(Xη,K) be deduced from

X and ωψ by base extension. Let (uη)η ∈ ∏η∈HK
H1(Xη(C),Z) be a family of cycles compatible with complex

conjugation c, that is ucη = c(uη). Let v be a place of Q.
If v = ∞ the de Rham isomorphism (Theorem 4.4) between Betti and de Rham cohomology yields a pairing

〈 . , . 〉∞ : H1(Xη(C),Z) × H1
dR(Xη,K) −→ C , (uη, ω

η
ψ) 7−→ 〈uη, ωηψ〉∞ .

We define the complex absolute value
∣∣∫
uη
ωηψ
∣∣
∞

:= |〈uη, ωηψ〉∞|∞ ∈ R.

If v corresponds to a prime number p ∈ Z, the comparison isomorphism H1(Xη(C),Z)⊗ZZp
∼−→ H1

ét(X
η

Qalg
p

,Zp)

together with the comparison isomorphism from p-adic Hodge theory (Theorems 4.2 and 5.5) yield a pairing

〈 . , . 〉p : H1(Xη(C),Z) × H1
dR(Xη,K) −→ Bp,dR , (uη, ω

η
ψ) 7−→ 〈uη, ωηψ〉p .

We define the absolute value
∣∣∫
uη
ωηψ
∣∣
p

:= |〈uη, ωηψ〉p|p := p−vp(〈uη ,ω
η
ψ
〉p) ∈ R, where the “valuation” vp on Bp,dR

was defined in (5.1) in Notation 5.4.

Colmez [Col93] now considers the product
∏
v

∏
η∈HK

∣∣∫
uη
ωηψ
∣∣
v
, or equivalently 1

#HK
times its logarithm

1
#HK

∑
v

∑
η∈HK

log
∣∣∫
uη
ωηψ
∣∣
v

= 1
#HK

∑
η∈HK

log
∣∣〈uη, ωηψ〉∞

∣∣
∞

− 1
#HK

∑
v=vp 6=∞

∑
η∈HK

vp
(
〈uη, ωηψ〉p

)
log p . (8.1)

The right sum over all v = vp does not converge. Namely, Colmez [Col93, Theorem II.1.1] proves the following
Theorem 8.3 below. To formulate the theorem we need a

Definition 8.2. In this definition we denote by Q the function field from the introduction or the field Q, and
by Qv the completion of Q at a place v 6= ∞. The case Q = Q is relevant in the present section, and the
other case will be relevant in Section 17. For F = Q or F = Qv let F sep be the separable closure of F in
F alg and let GF := Gal(F sep/F ). Let C(GF ,Q) be the Q-vector space of locally constant functions a : GF → Q
and let C0(GF ,Q) be the subspace of those functions which are constant on conjugacy classes, that is, which
satisfy a(h−1gh) = a(g) for all g, h ∈ GF . Then the C-vector space C0(GF ,Q) ⊗Q C is spanned by the traces
of representations ρ : GF → GLn(C) with open kernel for varying n by [Ser77, § 2.5, Theorem 6]. Via the fixed
embedding Qsep →֒ Qsep

v we consider the induced inclusion GQv ⊂ GQ and morphism C(GQ,Q) → C(GQv ,Q). If χ
is the trace of a representation ρ : GQ → GLn(C) with open kernel we let L(χ, s) :=

∏
all v Lv(χ, s), respectively

L∞(χ, s) :=
∏
v 6=∞ Lv(χ, s) be the Artin L-function of ρ with, respectively without the factor at ∞. Note that

the latter factor involves the Gamma-function if Q = Q. These L-functions only depend on χ and converge for all
s ∈ C with Re(s) > 1; see [Lan94, Chapter XII, § 2] for Q = Q and [Ros02, pp. 126ff] for the function field case.
We also let qv be the cardinality of the residue field of Qv (this means qv = p if Q = Q and Qv = Qp) and we set

Z∞(χ, s) :=
d
dsL

∞(χ, s)

L∞(χ, s)
= −

∑

v 6=∞

Zv(χ, s) log qv with (8.2)

Zv(χ, s) :=
d
dsLv(χ, s)

−Lv(χ, s) · log qv
=

d
dq−sv

Lv(χ, s)

qsv · Lv(χ, s)
. (8.3)

Moreover, we let fχ be the Artin conductor of χ. If Q = Q, it is a positive integer fχ =
∏
p p

µArt,p(χ) ∈ Z, and if
Q is the function field of the curve C it is an effective divisor fχ =

∑
v µArt,v(χ) · [v] on C; see [Ser79, Chapter VI,

§§ 2,3], where µArt,v(χ) is denoted f(χ, v). In particular, only finitely many values µArt,v(χ) are non-zero. We set

µ∞Art(χ) := log(fχ) =
∑

v 6=∞

µArt,v(χ) log qv if Q = Q , respectively (8.4)

µArt(χ) := deg(fχ) log q :=
∑

all v

µArt,v(χ)[Fv : Fq] log q =
∑

all v

µArt,v(χ) log qv and

µ∞Art(χ) :=
∑

v 6=∞

µArt,v(χ) log qv if Q is a function field . (8.5)

By linearity we extend Z∞( . , s) and µ∞Art to all a ∈ C0(GQ,Q) and Zv( . , s) and µArt,v to all a ∈ C0(GQv ,Q). The
map Zv( . , s) takes values in Q(q−sv ).

17



For our CM-type (E,Φ) and for every ψ ∈ HE we define the functions

aE,ψ,Φ : GQ → Z, g 7→
{

1 when gψ ∈ Φ

0 when gψ /∈ Φ
and

a0E,ψ,Φ : GQ → Q, g 7→ 1
#HK

∑
η∈HK

aE,ηψ,ηΦ(g) =
#{η ∈ HK : η−1gηψ ∈ Φ}

#HK
(8.6)

which factor through Gal(K/Q) by our assumption that ψ(E) ⊂ K for all ψ ∈ HE . In particular, aE,ψ,Φ ∈
C(GQ,Q) and a0E,ψ,Φ ∈ C0(GQ,Q) is independent of K.

We also define integers vp(ω
η
ψ) which are all zero except for finitely many. Let Kp be the p-adic completion

of K ⊂ Qalg ⊂ Qalg
p ⊂ Cp and let X η be an abelian scheme over OKp with X η ×OKp SpecKp

∼= Xη ×K SpecKp.

Then there is an element x ∈ K×
p , unique up to multiplication by O×

Kp
, such that x−1ωηψ is an OKp-generator of

the free OKp -module of rank one

Hηψ(X η,OKp) :=
{
ω ∈ H1

dR(X η,OKp) : b∗ω = ηψ(b) · ω ∀ b ∈ OE

}
,

and we set
vp(ω

η
ψ) := vp(x) ∈ Z . (8.7)

This value does not depend on the choice of the model X η with good reduction, because all such models are
isomorphic over OKp . Now Colmez [Col93, Theorem II.1.1] computed the terms in (8.1) as follows.

Theorem 8.3. If the image of uη in H1(Xη(C),Qp) = H1,ét(X
η

Qalg
p

,Zp) is a generator of the OE ⊗Z Zp-module

H1,ét(X
η

Qalg
p

,Zp) = TpX
η, then

1
#HK

∑
η∈HK

vp(〈ωηψ , uη〉v) = Zp(a
0
E,ψ,Φ, 1) − µArt,p(a

0
E,ψ,Φ) + 1

#HK

∑

η∈HK

vp(ω
η
ψ) . (8.8)

Since −µArt,p(a
0
E,ψ,Φ) + 1

#HK

∑
η∈HK

vp(ω
η
ψ) vanishes for all but finitely many primes p and

∑
p
Zp(a

0
E,ψ,Φ, 1)

diverges, the sum (8.1) diverges. Colmez [Col93, Convention 0] assigns to this divergent sum a value by the
following

Convention 8.4. Let (xp)p6=∞ be a tuple of complex numbers indexed by the prime numbers p in Z. We will give

a sense to the (divergent) series Σ
?
=
∑

p<∞ xp in the following situation. We suppose that there exists an element

a ∈ C0(GQ,Q) such that xp = −Zp(a, 1) log p for all p except for finitely many. Then we let a∗ ∈ C0(GQ,Q) be
defined by a∗(g) := a(g−1). We further assume that Z∞(a∗, s) does not have a pole at s = 0, and we define the
limit of the series

∑
p<∞ xp as

Σ := −Z∞(a∗, 0) − µ∞Art(a) +
∑

p<∞

(
xp + Zp(a, 1) log p

)
(8.9)

inspired by the functional equation relating L(a, s) with L(a∗, 1 − s) deprived of the terms at ∞.

Example 8.5. The convention allows to prove the product formula for the multiplicative group Gm := Gm,Q =
SpecQ[x, x−1]. Namely, for the generator ω = dx

x of H1
dR(Gm,Q) = Q·ω and for the cycle u : [0, 1] → Gm(C) = C×

given by u(s) = exp(2πis) with H1(Gm(C),Z) = Z · u, we have computed in Examples 4.3, 4.5 and 5.6

〈ω, u〉∞ = 2πi and log
∣∣〈ω, u〉∞

∣∣
∞

= log(2π) ,

〈ω, u〉p = tp and log
∣∣〈ω, u〉p

∣∣
p

= log |tp|p = − log p
p−1 = −Zp(1l , 1) log p ,

where 1l(g) = 1 for every g ∈ GQ. So Convention 8.4 implies
∑

p<∞ log |〈ω, u〉p|p = − ζ′
Z
(0)

ζZ(0)
= − log(2π) for the

Riemann Zeta-function ζZ and
∑

v log |〈ω, u〉v|v = 0. Therefore
∏
v
|〈ω, u〉v|v = 1.
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The Convention 8.4 and the Theorem 8.3 allow us to give to the divergent sum (8.1) a convergent interpretation.
In order to remove the dependency on the chosen cycles (uη)η ∈∏η∈HK

H1(Xη(C),Z), Colmez considers the value

〈ωηψ, ω
η
cψ, uη〉v :=

(
tv ·

〈ωηψ, uη〉v
〈ωηcψ, uη〉v

) 1
2

, (8.10)

where t∞ = 2πi and for v = vp 6= ∞, tv = tp is the p-adic analog of 2πi from Examples 5.6 and 8.5. Note
that Φ ⊔ cΦ = HE implies a0E,ψ,Φ + a0E,cψ,Φ = 1l, and hence Zp(a

0
E,ψ,Φ, 1) + Zp(a

0
E,cψ,Φ, 1) = Zp(1l , 1) and

µArt,p(a
0
E,ψ,Φ) + µArt,p(a

0
E,cψ,Φ) = µArt,p(1l) = 0. Therefore, Theorem 8.3 implies

1
#HK

∑
η∈HK

vp(〈ωηψ, ω
η
cψ, uη〉v) =

1

2

(
Zp(1l , 1) + Zp(a

0
E,ψ,Φ, 1) − µArt,p(a

0
E,ψ,Φ) + 1

#HK

∑
η∈HK

vp(ω
η
ψ)

− Zp(a
0
E,cψ,Φ, 1) + µArt,p(a

0
E,cψ,Φ) − 1

#HK

∑
η∈HK

vp(ω
η
cψ)
)

= Zp(a
0
E,ψ,Φ, 1) − µArt,p(a

0
E,ψ,Φ) +

1

2

(
1

#HK

∑
η∈HK

vp(ω
η
ψ) − vp(ω

η
cψ)
)
.

Using Convention 8.4 one thus obtains

1
#HK

∑
v

∑
η∈HK

log
∣∣〈ωηψ, ω

η
cψ, uη〉v

∣∣
v

(8.11)

= −Z∞((a0E,ψ,Φ)∗, 0) + 1
#HK

∑

η∈HK

(
log
∣∣〈ωηψ , ω

η
cψ, uη〉∞

∣∣
∞

− 1

2

∑

p<∞

(
vp(ω

η
ψ) − vp(ω

η
cψ)
)

log p
)

which is independent of the chosen uη. Colmez formulated the following

Conjecture 8.6 ([Col93, Conjecture 0.1]). The sum (8.11) is zero, or equivalently the product formula holds:

∏

v

∏

η∈HK

∣∣〈ωηψ, ω
η
cψ, uη〉v

∣∣
v

= 1 .

He then proved

Lemma 8.7 ([Col93, Lemme II.2.9]). In Situation 8.1 the value

ht(E,ψ,Φ) := 1
#HK

∑

η∈HK

(
log
∣∣〈ωηψ, ω

η
cψ, uη〉∞

∣∣
∞

− 1

2

∑

p<∞

(
vp(ω

η
ψ) − vp(ω

η
cψ)
)

log p
)

(8.12)

only depends on E,ψ and Φ and not on the choice of X,ωψ, uη and K.

Colmez also relates the product formula to the Faltings height, see Definition 7.1.

Theorem 8.8 ([Col93, Théorème II.2.10(ii)]). In Situation 8.1 the Faltings height htstFal(X) of X satisfies

htstFal(X) = −
∑

ψ∈Φ

(
ht(E,ψ,Φ) + 1

2µ
∞
Art(a

0
E,ψ,Φ)

)
(8.13)

This immediately implies the following

Corollary 8.9. In Situation 8.1 the following assertions are equivalent.

(a) ht(E,ψ,Φ) = Z∞((a0E,ψ,Φ)∗, 0).

(b) The product formula holds, that is, the expression (8.11) is zero and
∏
v

∏
η∈HK

∣∣〈ωηψ, ω
η
cψ, uη〉v

∣∣
v

= 1.

If (a) and (b) hold for all ψ ∈ Φ then htstFal(X) = −∑ψ∈Φ

(
Z∞((a0E,ψ,Φ)∗, 0) + 1

2µ
∞
Art(a

0
E,ψ,Φ)

)
.

Colmez [Col93, Conjecture II.2.11] conjectures that statements (a) and (b) of Corollary 8.9 hold for all E,ψ,Φ.
There are various partial results in this direction. The first is due to Colmez himself who was able to prove the
following theorem up to a rational multiple of log 2, which was then removed by Obus:
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Theorem 8.10 ([Col93, Théorème 0.5], [Obu13, Theorem 4.9]). If E is abelian over Q, then the product formula
holds true for every ψ,Φ, and hence

htstFal(X) = −
∑

ψ∈Φ

(
Z∞((a0E,ψ,Φ)∗, 0) + 1

2µ
∞
Art(a

0
E,ψ,Φ)

)
. (8.14)

There has been much further work and progress on Colmez’s conjecture by many people. For example,
Yang [Yan13] proved it for a large class of CM-fields E of degree [E : Q] = 4, including the first known cases
when E/Q is non-abelian. Let us also mention the most recent results by Andreatta, Goren, Howard, Madapusi
Pera [AGHMP18], Yuan, Shou-Wu Zhang [YZ18] and Barquero-Sanchez, Masri [BSM18].

Theorem 8.11 ([AGHMP18, Theorem A], [YZ18, Theorem 1.1]). For every CM-field E Colmez’s conjecture
holds true on average over all CM-types Φ, that is

∑

Φ

∑

ψ∈Φ

ht(E,ψ,Φ) =
∑

Φ

∑

ψ∈Φ

Z∞((a0E,ψ,Φ)∗, 0) .

Remark 8.12. In [YZ18] the averaged Colmez conjecture (Theorem 8.11) follows from a generalized Chowla-
Selberg formula [YZ18, Theorem 1.7]. Moreover, (generalized) Chowla-Selberg formulas are special cases of
generalized Gross-Zagier formulas. In the case when [E : Q] = 2, the generalized Chowla-Selberg formula [YZ18,
Theorem 1.7] is actually equivalent to the classical Lerch-Chowla-Selberg formula (1.3), and it is also equivalent
to the Colmez conjecture for E, by using a result of Faltings [Fal84a, Theorem 7.b)]. See [Col93, § 0.6] and
[GvKM19, § 4.3] for additional explanations.

As a consequence of Theorem 8.11, Barquero-Sanchez and Masri [BSM18, Theorem 1.1] proved that for any
fixed totally real number field F of degree [F : Q] ≥ 3 there are infinitely many effective, “positive density” sets
of CM extensions E/F such that E/Q is non-abelian and Colmez’s conjecture (8.14) on the Faltings height holds
true for E and any Φ. Moreover, they prove

Theorem 8.13 ([BSM18, Theorem 1.4]). In Situation 8.1 if the Galois closure of E has degree 2dimX · (dimX)!
over Q, then

htstFal(X) = −
∑

ψ∈Φ

Z∞((a0E,ψ,Φ)∗, 0) − 1
2µ
∞
Art(a

0
E,ψ,Φ) .

As another consequence of Theorem 8.11 and of previous work by Edixhoven [EMO01, Problem 14], Pila,
Wilkie, Yafaev, Zannier and many others [EY03, PT14, PW06, PZ08], Tsimerman [Tsi18] proved the André-
Oort-Conjecture for the Siegel modular varieties:

Theorem 8.14 ([Tsi18, Theorem 1.3]). Let Ag be the Siegel modular variety parameterizing principally polarized
abelian varieties of dimension g over C. Let X ⊂ Ag be an irreducible closed subvariety which contains a Zariski
dense subset of special points of Ag. Then X is a special subvariety.

The averaged Colmez conjecture (Theorem 8.11) enters in this result by implying that the Galois orbit of a
special point, that is a CM abelian variety, is large. This result and the André-Oort-Conjecture were previously
obtained in several cases conditionally under assumption of the generalized Riemann Hypothesis.

Part II

Drinfeld Modules and A-motives

9 Basic Definitions

Following the general philosophy about similarities between number fields and function fields, we now transfer the
contents of Part I to characteristic p. Here Drinfeld modules replace elliptic curves and A-motives replace abelian
varieties. We follow the expositions in [Gos96, Ch.4], [Tha04, Ch.2] and begin with the analog of Notation 2.1

Notation 9.1. Let Fq be a finite field with q elements and characteristic p. Let C be a smooth projective,
geometrically irreducible curve over Fq with function field Q = Fq(C). Let ∞ ∈ C be a fixed closed point and let
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A := Γ(C r {∞},OC) be the Fq-algebra of those rational functions on C which are regular outside ∞. Let v∞
be the valuation associated with the prime ∞.

By a place of C we mean a closed point v ∈ C. So either v = ∞ or v is a maximal ideal of A. It defines a
normalized valuation on Q which we also denote by v, respectively by v∞ and which takes the value v(zv) = 1 on
a uniformizing parameter zv ∈ Q at v. We now fix such a uniformizer zv at every v and if v = ∞ we abbreviate
z∞ to z. We denote the residue field of v by Fv, its degree over Fq by dv = [Fv : Fq] and its cardinality by
qv := #Fv = qdv . Thus if a ∈ A r Fq then v∞(a) < 0, because Fq is the field of constants in Q as C is
geometrically irreducible, see [Gro65, IV2, 4.3.1 and Proposition 4.5.9c)]. The ring A and its fraction field Q play
the role of Z and Q in the arithmetic of function fields.

Let Qv be the completion of Q with respect to the valuation v and let Av ⊂ Qv be the valuation ring of v.
Then there is a canonical isomorphism Av ∼= Fv[[zv]]. Let Qalg

v be a fixed algebraic closure of Qv and let Cv be
the completion of Qalg

v with respect to the canonical extension of v. We also use v to denote this extension to
Qalg
v and thus to Cv. However, we denote the image of zv in Cv by ζv and abbreviate ζ∞ to ζ. Note that Cv is

algebraically closed. On Cv and all its subrings we consider the normalized absolute value | . |v : Cv → R≥0 given

by |x|v = q
−v(x)
v . We let OCv = {x ∈ Cv : |x|v ≤ 1} be the valuation ring of Cv. We also fix an algebraic closure

Qalg of Q and an embedding Qalg →֒ Qalg
v for every place v of Q.

Let K be a field extension of Fq and fix an Fq-morphism γ : A → K. We will call the pair (K, γ : A → K)
an A-field. The prime ideal ker(γ) ⊂ A is called the A-characteristic of K and is denoted A-char(K, γ) or simply
A-char(K). If A-char(K) = (0) we say K has generic A-characteristic. Then γ is injective and K is via γ a
field extension of Q. If A-char(K) = v ⊂ A is a maximal ideal, we say that A-char(K) is finite and K has finite
A-characteristic v. Then K is via γ a field extension of Fv.

Let Ga,K = Spec(K[X ]) be the additive group scheme over K and let τ ∈ EndK(Ga,K) be the q-th power
Frobenius endomorphism given by τ∗(X) = Xq. Also every b ∈ K induces an endomorphism ψb ∈ EndK(Ga,K)
given by ψ∗b (X) = bX . These endomorphisms satisfy τ ◦ ψb = ψbq ◦ τ . Then the ring EndK,Fq (Ga,K) of Fq-linear
endomorphisms of group schemes over K equals the non-commutative polynomial ring over K in τ :

K{τ} :=
{ n∑

i=0

biτ
i : n ∈ N0, bi ∈ K

}
with τb = bqτ .

For
n∑
i=0

biτ
i ∈ K{τ} we set degτ

( n∑
i=0

biτ
i
)

= max{i : bi 6= 0}.

Definition 9.2. Let (K, γ : A → K) be an A-field. A Drinfeld A-module over K is a pair G = (G,ϕ) with
G ∼= Ga,K and ϕ is an Fq-algebra homomorphism ϕ : A→ EndK,Fq (G) ∼= K{τ}, a 7→ ϕa, such that

(a) Lie(ϕa) = γ(a) i.e. (a− γ(a)) · Lie(G) = 0 in K for all a ∈ A.

(b) There exists an a ∈ A such that ϕa ∈ K{τ}rK i.e. ϕa 6= γ(a) · τ0 i.e. degτ (ϕa) > 0.

Then there is an integer r > 0 such that degτ (ϕa) = −rd∞v∞(a) for every a ∈ A, see [Gos96, § 4.5]. It is called
the rank of (G,ϕ) and is denoted rkG or rkϕ. Also sometimes a Drinfeld A-module G = (G,ϕ) is simply denoted
by ϕ.

A morphism between Drinfeld A-modules (G,ϕ) and (G′, ϕ′) over K is a homomorphism f : G→ G′ of group
schemes such that ϕ′a ◦ f = f ◦ ϕa for every a ∈ A. We denote the set of morphisms between G and G′ by
HomK(G,G′) and we write EndK(G) := HomK(G,G).

In particular, for every c ∈ A the commutation ϕa ◦ ϕc = ϕac = ϕca = ϕc ◦ ϕa implies that ϕc ∈ EndK(G).
Thus EndK(G) is an A-algebra via A → EndK(G), c 7→ ϕc and HomK(G,G′) is an A-module. So we may also
define QHomK(G,G′) := HomK(G,G′) ⊗A Q and write QEndK(G) := QHomK(G,G) = EndK(G) ⊗A Q.

Remark 9.3. Drinfeld A-modules possess higher dimensional generalizations, which are called abelian Anderson
A-modules, see [Har17, Definition 1.2]. They were originally defined by Anderson [And86] for A = Fq[t] under the
name abelian t-modules. These are group schemes which carry an action of the ring A subject to certain conditions.
Abelian Anderson A-modules are the function field analogs of abelian varieties. Although Anderson worked over
a field, abelian Anderson A-modules also exist naturally over arbitrary A-algebras as base rings. They possess an
(anti-)equivalent description by semi-linear algebra objects called A-motives, which we will define next. Through
the work of Drinfeld and Anderson it was realized very early on that a Drinfeld module or abelian Anderson
A-module over a field is completely described by its A-motive. The same is true over an arbitrary A-algebra R, as
is shown for example in [Har17]. So in a way the situation in function field arithmetic is much better than in the
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arithmetic of abelian varieties (which only have a local p-adic semi-linear algebra description via the Dieudonné
module of the associated p-divisible group, see Remark 5.3): the A-motive is a “global” Dieudonné module which
integrates the “local” Dieudonné modules for every prime in a single object. We will return to this in Section 14
and Proposition 14.7.

Before we define A-motives we have to fix some

Notation 9.4. For an A-field (K, γ) we write AK := A⊗Fq K and set J := (a⊗ 1− 1⊗ γ(a) : a ∈ A) ⊂ AK . We
consider the endomorphism σ∗ := idA ⊗ Frobq,K of AK , where Frobq,K(b) = bq for b ∈ K. For an AK-module M
we set σ∗M := M ⊗AK ,σ∗ AK and we write σ∗M : M → σ∗M, m 7→ m⊗1 for the natural σ∗-semilinear map. For a
homomorphism f : M → N of AK -modules we set σ∗f := f ⊗ idAK : σ∗M → σ∗N . Note that the endomorphism
σ∗ corresponds to a morphism of schemes

σ := idC × Spec(Frobq,K) : CK := C ×Fq SpecK → CK (9.1)

which is the identity on points and on sections of OC and the q-Frobenius on K. It satisfies σ|SpecAK =
Spec(σ∗) : SpecAK → SpecAK .

Example 9.5. Before we give the general definition of A-motives, we define the A-motive associated to a Drinfeld
A-module G = (G,ϕ) over K as in [And86]. Namely, we set

M := M(G) := M(ϕ) := HomK,Fq (G,Ga,K),

where HomK,Fq (−,−) is the group of Fq-linear homomorphisms of group schemes over K. Every choice of an
isomorphism G ∼= Ga,K induces an isomorphism M(G) ∼= K{τ}. We make M(G) into an AK{τ} = A ⊗Fq K{τ}
module in the fashion given below:

(a,m) 7→ m ◦ ϕa for m ∈M, a ∈ A; (9.2)

(b,m) 7→ ψb ◦m for m ∈M, b ∈ K; (9.3)

(τ,m) 7→ τm = Frobq,Ga ◦m for Ga,K → Ga,K : m ∈M. (9.4)

Since the actions of a ∈ A and of b ∈ K commute, i.e. a(b ·m) = ψb ◦m ◦ ϕa = b(a ·m), this makes M into a
module over AK := A⊗Fq K. It is not difficult to see that M is a locally free AK-module of rank r := rkG, see
[Gos96, Lemma 5.4.1]. Now for a ∈ A and b ∈ K we have

τ ◦ (a⊗ b)(m) = τ ◦ (ψb ◦m ◦ ϕa) = ψbq ◦ τ ◦m ◦ ϕa = (a⊗ bq) ◦ τm .

Since the action of τ is not AK -linear but σ∗-semi linear, it induces an AK-linear map τM : σ∗M →M defined by
τM (m⊗ 1) = τm. Sending m ∈ M := HomK,Fq(G,Ga,K) to Liem ∈ HomK(LieG,LieGa,K) = HomK(LieG,K)
defines a canonical isomorphism of AK-modules

coker τM = M/τM (σ∗M) ∼−→ HomK(LieG,K), m mod τM (σ∗M) 7−→ Liem, (9.5)

where a ∈ A acts on LieE via Lieϕa; see [And86, Lemma 1.3.4]. This implies dimK(coker τM ) = 1, which can
also be seen directly from M ∼= K{τ} and τM (σ∗M) ∼= K{τ} · τ .

The above construction motivates the definition of A-motives:

Definition 9.6. An (effective) A-motive of rank r and dimension d over K is a pair M = (M, τM ) consisting of
a locally free AK-module M of rank r and an AK-homomorphism τM : σ∗M →M such that

(a) dimK(coker τM ) = d.

(b) (a− γ(a))d · coker τM = 0 for all a ∈ A.

We write rkM := r and dimM := d.
A morphism between A-motives f : (M, τM ) → (N, τN ) over K is an AK-homomorphism f : M → N with

f ◦τM = τN ◦σ∗f . We denote the set of morphisms between M and N by HomK(M,N) and we write EndK(M) :=
HomK(M,M). Since σ∗(a) = a for all a ∈ A and τM is AK-linear, we have a · idM ∈ EndK(M). Thus EndK(M)
is an A-algebra via A → EndK(M), a 7→ a · idM and HomK(M,N) is an A-module. So we may also define
QHomK(M,N) := HomK(M,N) ⊗A Q and write QEndK(M) := QHomK(M,M) = EndK(M) ⊗A Q.
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On the relation with Drinfeld A-modules we have the following theorem, see [And86] or [Gos96, §5.4].

Theorem 9.7. The contravariant functor G 7→ M(G) from Drinfeld A-modules to A-motives over K is fully
faithful. Its essential image consists of all M = (M, τM ) such that M is free over K{τ} of rank 1. The latter
implies that dimM = 1.

In this sense we view A-motives as higher dimensional generalizations of Drinfeld A-modules. As an illustration
of the claim that A-motives (and abelian Anderson A-modules) play the role of abelian varieties, see for example
[BH09] where the theory of A-motives over finite fields is developed in analogy with [Tat66].

Example 9.8. Let C = P1
Fq

, and set A = Fq[t]. Then AK = K[t]. Let K = Fq(θ) be the rational function field

in the variable θ and let γ : A → K be given by γ(t) = θ. The Carlitz module over K is given by G = (Ga,K , ϕ)
with ϕ : Fq[t] → K{τ} defined by ϕt = θ + τ . The A-motive associated with the Carlitz module is given by
C = (C = K[t], τC = t − θ) and is called the Carlitz motive. Both G and C have rank 1. As we will see in
Examples 12.3 and 14.10 below, the Carlitz module is the function field analog of the multiplicative group Gm,Q
from Example 4.3.

10 Isogenies and Semi-simple A-Motives

If we define the rank of an abelian variety X ad rkX := 2 · dimX , see Remark 12.5 below, the analog of
Theorem 3.1 is the following

Theorem 10.1. For two A-motives M and N over an A-field K the A-module Homk(M,N) is finite projective
of rank ≤ (rkM) · (rkN). The same is true for Drinfeld A-modules over K.

Proof. For A-motives this was proved by Anderson [And86, Corollary 1.7.2] and for Drinfeld A-modules it can be
found in [Gos96, Theorem 4.7.8].

Definition 10.2. Let G = (G,ϕ) and G′ = (G′, ϕ′) be two Drinfeld A-modules over K. A non zero morphism
f ∈ HomK(G,G′) is called an isogeny. If there is an isogeny f : G→ G′, then G and G′ are isogenous.

From [Gos96, 4.7.13], we know that if there is an isogeny f : G→ G′, then there exists a some nonzero a ∈ A

and an isogeny f̂ : G′ → G such that
f̂ f = ϕa and f f̂ = ϕ′a.

In particular, if 0 6= f ∈ EndK(G), then f is invertible in QEnd(G) := EndK(G) ⊗A Q, so QEnd(G) is a finite
dimensional division algebra over Q.

Definition 10.3. Let M and N be two A-motives over K. A morphism f ∈ HomK(M,N) is called an isogeny
if f is injective and coker f is a finite dimensional K-vector space. If there exists an isogeny f ∈ HomK(M,N)
then M and N are said to be isogenous over K and we write M ≈K N . This defines an equivalence relation by
Remark 10.4(d) below.

Remark 10.4. (a) Two Drinfeld A-modules are isogenous if and only if their associated A-motives are isoge-
nous, see [Har17, Theorem 5.9 and Proposition 5.4].

(b) If two A-motives M and N are isogenous then rkM = rkN and dimM = dimN , see [Har17, Proposi-
tion 5.8].

(c) Conversely, let f : M → N be a morphism of A-motives with rkM = rkN . Then f is injective if and
only if coker f is a finite dimensional K-vector space, and in this case f is an isogeny. Indeed, since M is
locally free over AK , it is contained in M ⊗AK Quot(AK) where Quot(AK) denotes the fraction field of AK .
Since rkM = rkN the injectivity of f is equivalent to f inducing an isomorphism M ⊗AK Quot(AK) →
N ⊗AK Quot(AK), and this in turn is equivalent to coker f being torsion, and hence finite.

(d) If f : M → N is an isogeny between A-motives, then there exists non-canonically an isogeny f̂ : N → M

and a non-zero element a ∈ A with f̂ f = a · idM and f f̂ = a · idN by [Har17, Corollary 5.15]

(e) Let M and N be A-motives over K. If M and N are isogenous over K via an isogeny f , then

QEndK(M) ∼= QHomK(M,N) ∼= QEndK(N), h 7→ f ◦ h 7→ f ◦ h ◦ f−1.

More precisely, QHomK(M,N) is a free right QEndK(M)-module of rank 1 and a free left QEndK(N)-
module of rank 1. If M and N are not isogenous then QHomK(M,N) = (0).
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Definition 10.5. Let M be an A-motive over K.

(a) An A-factor-motive over K of M is an A-motive M ′ together with a surjective morphism M ։ M ′ of
A-motives over K.

(b) M is called simple over K if M is non trivial and M has no A-factor-motives over K other than (0) and M .

(c) M is called semi-simple over K if M is isogenous to a direct sum of simple A-motives over K, i.e. M ≈K
⊕iM i with M i simple.

Remark 10.6. (a) In comparison to the analogous Definition 3.2 for abelian varieties, A-motives behave dually.
This is due to the fact that the functor from Drinfeld A-modules to A-motives is contravariant.

(b) For any Drinfeld A-module ϕ over K the A-motive M(ϕ) is simple by [BH11, Corollary 7.5].

(c) But in contrast to abelian varieties (Remark 3.3) not every A-motive is semi-simple up to isogeny. This was
observed in [BH09, Examples 6.1 and 6.13].

(d) Let M and N be two A-motives over K of same rank and let M be simple over K. Then every non-zero
morphism f ∈ HomK(M,N) is an isogeny. Namely, the image of f is a non-zero A-factor-motive of M , and hence
isomorphic to M via f , because M is simple. So f is injective and hence an isogeny by Remark 10.4(c).

In particular, if M is simple over K then every non-zero endomorphism 0 6= f ∈ EndK(M) is an isogeny and
therefore invertible in QEndK(M) by Remark 10.4(d). This implies that QEndK(M) is a division algebra over
Q.

Moreover, if M is semi-simple over K with decomposition M ≈K M1 ⊕ · · · ⊕Mn up to isogeny into simple
A-motives M i over K, then QEndK(M) decomposes into a finite direct product of full matrix algebras over the
division algebras QEndK(M i) over Q, compare Remark 3.4.

11 Analytic Theory of Drinfeld Modules

In this section we consider Drinfeld A-modules over C∞, which is an A-field via the natural inclusion A ⊂ Q ⊂
Q∞ ⊂ C∞ denoted by γ.

If G = (Ga,C∞ , ϕ) with ϕ : A→ C∞{τ} is a Drinfeld A-module over C∞ then there is a uniquely determined

power series expG(z) =
∑∞
i=0 eiz

qi with ei ∈ C∞, e0 = 1 satisfying

ϕa(expG(z)) = expG(γ(a) · z)

for all a ∈ A, see [Gos96, 4.6.7]. It is called the exponential function of G. The power series expG converges
for every z ∈ C∞ and its kernel Λ(G) is an A-lattice in C∞ (that is, a finitely generated projective, discrete
A-submodule) of the same rank as the Drinfeld A-module G. Note that C∞ is infinite dimensional over Q∞ and
therefore contains A-lattices of arbitrarily high rank.

Conversely, let Λ ⊂ C∞ be an A-lattice of rank r. Then the function

expΛ(z) = z
∏

06=λ∈Λ

(1 − z
λ) (11.1)

converges for every z ∈ C∞ and can be written as an everywhere convergent power series in z. Moreover
expΛ : C∞ → C∞ is a surjective Fq-linear map whose zeroes are simple and located at Λ. For more details see
[Gos96, §4.2]. For a ∈ Ar {0} we can now define the polynomial

ϕΛ
a (x) := γ(a) · x ·

∏

06=λ∈γ(a)−1Λ/Λ

(
1 − x

expΛ(λ)

)
∈ C∞[x] . (11.2)

It satisfies
expΛ(γ(a) · z) = ϕΛ

a (expΛ(z)) (11.3)

and makes the following diagram with exact rows commutative

0 // Λ

��

// C∞
expΛ //

γ(a)

��

C∞

ϕΛ
a

��

// 0

0 // Λ // C∞
expΛ // C∞ // 0

. (11.4)

It is easy to see that

24



(a) ϕΛ
a (x) is an Fq-linear polynomial, i.e. ϕΛ

a ∈ C∞{τ}, of τ -degree degτ (ϕΛ
a ) = −rd∞v∞(a);

(b) ϕΛ : a 7→ ϕΛ
a defines a ring homomorphism ϕΛ : A→ C∞{τ}.

The additive group C∞, considered as the quotient C∞/Λ via expΛ, thus carries a new structure as an A-module
given by z 7→ ϕΛ

a (z) for a ∈ A. Therefore, for every A-lattice Λ ⊂ C∞ of rank r we get a Drinfeld A-module
GΛ := (Ga,C∞ , ϕ

Λ) of rank r over C∞.

Definition 11.1. Let Λ1, Λ2 be two A-lattices of the same rank. A morphism from Λ1 → Λ2 is an element
c ∈ C∞, with cΛ1 ⊆ Λ2. If the ranks of Λ1 and Λ2 are different, then we only allow 0 ∈ C∞ to be a morphism.

Theorem 11.2 ([Dri76, Proposition 3.1]). The functors G 7→ Λ(G) and Λ 7→ GΛ give an equivalence of categories
between the category of Drinfeld A-modules over C∞ and the category of A-lattices in C∞.

Corollary 11.3. If G is a Drinfeld A-module over a field K of generic A-characteristic, then QEndK(G) is a
commutative field whose degree over Q divides rkG.

Proof. Since G and all elements of QEndK(G) are defined over a finitely generated subfield K0 of K, we can choose
a Q-embedding K0 →֒ C∞ and it suffices to prove the corollary when K = C∞. In this case G ∼= GΛ for an A-
lattice Λ ⊂ C∞ of rank equal to rkG. By Theorem 11.2 we have isomorphisms EndK(G) ∼−→ {c ∈ C∞ : cΛ ⊂ Λ},

f 7→ Lie(f) and QEndK(G) ∼−→ {c ∈ C∞ : c(Q · Λ) ⊂ Q · Λ}. In particular QEndK(G) ⊂ C∞ is a commutative
field. Since Q · Λ ⊂ C∞ is a Q-vector space of dimension rkG and also a QEndK(G)-vector space, the formula
rkG = dimQ(Q · Λ) = [QEndK(G) : Q] · dimQEndK(G)(Q · Λ) tells us that [QEndK(G) : Q] divides rkG.

We regard Drinfeld A-modules and particularly those of rank two as analogs of elliptic curves, where the
functional equation (11.3) for expΛ(z) corresponds to the group law derived from (2.3). The point is that (2.3)

defines a Z-module structure on the elliptic curve C/Λ ∼−→ EΛ(C), while (11.2) and (11.3) define the above
A-module structure on the additive group scheme GaK .

Definition 11.4. Let G be a Drinfeld A-module of rank r over C∞. The Betti (co-)homology realization of G is
defined by

H1
Betti(G,R) := Λ(G) ⊗A R and H1,Betti(G,R) := HomA(Λ(G), R)

for any A-algebra R. Both are free R-modules of rank r.

12 Torsion Points and v-adic Cohomology of Drinfeld Modules

Definition 12.1. Let G = (G,ϕ) be a Drinfeld A-module over an A-field K and let G(Kalg) be the set of
Kalg-valued points of G. For an element a ∈ A, we set

G[a](Kalg) := ϕ[a](Kalg) := {P ∈ G(Kalg) | ϕa(P ) = 0},

and we call G[a](Kalg) the module of a-torsion points of G = (G,ϕ). If a ⊆ A is an ideal, we set

G[a](Kalg) := ϕ[a](Kalg) := {P ∈ G(Kalg) | ϕa(P ) = 0 for all a ∈ a}.

The latter are the Kalg-valued points of a closed subgroup scheme G[a] of G, which is an A/a-module scheme via
a 7→ ϕa|G[a]. If a = (a) then G[a](Kalg) = G[a](Kalg).

Remark 12.2. We have the following observation, see [Gos96, § 4.5], where we denote the A-characteristic of K
by p = A-char(K) := ker(γ : A→ K):

(a) If a ∈ A is prime to A-char(K), we see that the polynomial ϕa is separable and #G[a](Kalg) = (#A/(a))rkG.
Since this holds for every a ∈ A and G[a](Kalg) is an A/a-module, one obtains G[a](Kalg) ∼= (A/a)rkG as
A-modules.

(b) #G[p](Kalg) = (#A/(p))rkG−h and G[p](Kalg) ∼= (A/(p))rkG−h, where h is the height of the Drinfeld A-

module defined by h := w(a)
vp(a)·[Fp:Fq]

for every a ∈ A, where w(a) is the smallest integer i ≥ 0 with τ i

occurring in ϕa, with nonzero coefficient.
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Example 12.3. The Carlitz module G = (Ga,K , ϕ) over K = Fq(θ) with ϕt = θ + τ from Example 9.8 has
rank 1. For every a =

∑n
i=0 ait

i with ai ∈ Fq and an 6= 0, we have ϕa =
∑n

i=0 aiϕ
n
t =

∑n
i=0 ai(θ + τ)n =

(
∑n

i=0 aiθ
n) · τ0 + . . .+ anτ

n = γ(a)τ0 + . . .+ anτ
n. Therefore, the polynomial ϕa(x) = γ(a)x+ . . .+ an x

qn has
degree qn and is separable, because γ(a) 6= 0. From this it follows that #G[a](Kalg) = qn = #(A/(a)) and that
G[a](Kalg) ∼= A/(a) for every a ∈ A. This illustrates that the Carlitz module is the function field analog of the
multiplicative group Gm = Gm,Q from Example 4.3, which for a ∈ N>0 satisfies Gm[a](Qalg) := ker[a](Qalg) =
{x ∈ Qalg : xa = 1} ∼= Z/(a).

Definition 12.4. Let v be a prime ideal of A. Let G = (G,ϕ) be a Drinfeld A-module over K of fixed rank r
and define the Av-module G[v∞](Kalg) := ∪n≥1G[vn](Kalg). The Av-module

H1,v(G,Av) := Tv(G) = HomAv

(
Qv/Av, G(Kalg)

)
= HomAv

(
Qv/Av, G[v∞](Kalg)

)
. (12.1)

is called the v-adic homology realization or the v-adic Tate module of G. It carries a continuous GK-action.
Note that when z = a

c ∈ Q is a uniformizing parameter of Av then the map ϕz := ϕ−1c ◦ ϕa : G[vn](Kalg) →
G[vn−1](Kalg) is well defined and

Tv(G) ∼= lim
←−

(
G[vn](Kalg), ϕz

)
;

see for example [HK20, after Definition 4.8]. A morphism f : G → G′ of Drinfeld A-modules gives a morphism
Tv(f) : Tv(G) → Tv(G

′) of Av[GK ]-modules. If v is different from the A-characteristic A-char(K) of K, then
Tv(G) is isomorphic to A⊕rv .

Remark 12.5. The results of this section parallel Remark 2.7 for abelian varieties. Since the ℓ-adic Tate module
of an abelian variety X is isomorphic to (Zℓ)

2 dimX , while the v-adic Tate module of a Drinfeld A-module G is

isomorphic to A
rkG
v it is natural to call the number rkX := 2 dimX the rank of the abelian variety X , compare

also Theorems 3.1 and 10.1.

There is a similar theory of Tate modules for A-motives which we will explain in the next section.

13 Cohomology Realizations and Period Maps for A-Motives

13.1 Uniformizability and Betti Cohomology

In this section we discuss the notion of uniformizability, cohomology realizations and period maps for A-motives
from [HJ20] and also we generalize the results to the case d∞ = [F∞ : Fq] 6= 1. For a field extension K of Fq we
consider the closed subscheme ∞K := ∞×Fq SpecK ⊂ CK := C ×Fq SpecK. If K contains F∞, then ∞K is the
disjoint union of d∞-many K-rational points of CK .

In order to define the notion of uniformizability for A-motives we have to introduce some notation of rigid
analytic geometry as in [HP04]. For a general introduction to rigid analytic geometry see [BGR84].

Notation 13.1. With the curve CC∞ and its open affine part C′C∞
:= CC∞ r∞C∞ one can associate by [BGR84,

§9.3] rigid analytic spaces CC∞ := (CC∞)rig and C′C∞
:= (C′C∞

)rig = CC∞ r∞C∞ . The underlying sets of CC∞ and
C′C∞

are the sets of C∞-valued points of CC∞ and CC∞ r∞C∞ , respectively. The endomorphism σ of CC∞ from
(9.1) induces endomorphisms of CC∞ and C′C∞

which we denote by the same symbol σ.
Let OC∞ be the valuation ring of C∞ and let κC∞ be its residue field. By the valuative criterion of properness

every point of CC∞ = CC∞(C∞) = C(C∞) extends uniquely to an OC∞ -valued point of C and in the reduction
gives rise to a κC∞-valued point of C. This gives us a reduction map

red : CC∞ = C(C∞) −→ C(κC∞) . (13.1)

The subscheme ∞κC∞
⊂ CκC∞

contains d∞ points. We denote them by {∞i for i ∈ Z/d∞Z} in such a way that

the map σ from (9.1) transports ∞i to ∞i+1 and (σd∞)∗ stabilizes each ∞i. Since the curve CκC∞
is non-singular,

[BL85, Proposition 2.2] implies for each i that the preimage Di of ∞i ∈ ∞κC∞
under red is an open rigid analytic

unit disc in CC∞ around ∞i. Let D′i := Di r ∞i be the punctured open unit disc around ∞i in CC∞ . Then σ
maps Di isomorphically onto Di+1. We let O(Di) and O(CC∞ r ∪iDi) be the coordinate rings of rigid analytic
functions on the spaces Di and CC∞ r∪iDi, respectively. The uniformizer z ∈ O(Di) is a coordinate function on
the disc Di for every i.
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Example 13.2. If C = P1
Fq
, A = Fq[t], and [F∞ : Fq] = 1, we can give the following explicit description.

D0 ⊂ P1(C∞) is the open unit disc around ∞.

O(CC∞ rD0) := C∞〈t〉 :=

{ ∞∑

i=0

ait
i, ai ∈ C∞, ai → 0 as i→ ∞

}

and CC∞ rD0 is the closed unit disc inside C(C∞)r∞C∞ = C∞ on which the coordinate t has absolute value less
or equal to 1. Also we can take z = 1/t as the coordinate on the disc D0, and suggestively write D0 = {|z| < 1}.

Definition 13.3. For an A-motive M over C∞, we define the τ-invariants

Λ(M) := (M ⊗AC∞
O(CC∞ r ∪iDi))

τ := {m ∈M ⊗AC∞
O(CC∞ r ∪iDi) : τM (σ∗Mm) = m}.

Since the ring of σ∗-invariants in O(CC∞ r ∪iDi) equals A, the set Λ(M) is an A-module. It was shown
implicitly by Anderson [And86, Proof of Lemma 2.10.6] that Λ(M) is finite projective of rank at most equal to
rkM .

Definition 13.4. An A-motive M is called uniformizable (or rigid analytically trivial) if the natural homomor-
phism

hM : Λ(M) ⊗A O(CC∞ r ∪iDi) −→ M ⊗AC∞
O(CC∞ r ∪iDi), λ⊗ f 7−→ f · λ

is an isomorphism.

Example 13.5. We keep the notation from Example 9.8. We recall that the Carlitz motive over C∞ is given by
C =

(
C = C∞[t], τC = t− θ

)
. We set ℓ− :=

∏∞
i=0

(
1 − t

θqi

)
∈ O(C′C∞

) ⊂ O(CC∞ rD0) and choose an η ∈ C∞ with

η1−q = −θ. Then we see that ηℓ− ∈ Λ(C), because

τC(σ
∗
C(ηℓ

−)) = (t− θ) · ηq · σ∗
∞∏

i=0

(
1 − t

θqi
)

= η · t− θ

−θ ·
∞∏

i=1

(
1 − t

θqi
)

= ηℓ− .

Since ηℓ− has no zeroes outside D0 it generates the O(CC∞ rD0)-module C ⊗AC∞
O(CC∞ rD0) = O(CC∞ rD0)

and so hC is an isomorphism and C is uniformizable.

Anderson [And86] proved the following criterion for uniformizability.

Lemma 13.6. Let M be an A-motive of rank r.

(a) The homomorphism hM is injective and it satisfies hM ◦ (idΛ(M) ⊗ id) = (τM ⊗ id) ◦ σ∗hM .

(b) M is uniformizable if and only if rkA Λ(M) = r.

Proof. (b) was proved by Anderson [And86, Lemma 2.10.6].

(a) is implicitly proved by Anderson [And86]. It is explicitly stated for example in [BH07, Lemma 4.2].

Next we state the generalization of [HJ20, Proposition 3.25], which we will need to define period maps. The
point V(J ) ∈ CC∞(C∞) lies in one of the discs Di, because |γ(a)|∞ > 1 for all a ∈ A r Fq. We normalize the
indexing of the Di in such a way that V(J ) ∈ D0. Then for any i ∈ N0, we consider the pullbacks σi∗J =

(a ⊗ 1 − 1 ⊗ γ(a)q
i

: a ∈ A) ⊂ AC∞ and the points V(σi∗J ) of C′C∞
and C′C∞

. They correspond to the

point V(z − ζq
i

) ∈ Di and have ∞C∞ = {∞0, · · · ,∞d∞−1} as accumulation points. More precisely, for each

k = 0, 1, · · · , d∞ − 1 the point ∞k is the limit of the sequence V(σ(k+d∞i)∗J ) = V(z − ζq
k+d∞i

) for i ∈ N0.
Therefore, C′C r ∪i∈N0 V(σi∗J ) is an admissible open rigid analytic subspace of C′C∞

.

Proposition 13.7. [HJ20, Proposition 3.25] Let M be a uniformizable effective A-motive over C∞. Then Λ(M)
equals {m ∈M⊗AC∞

O(C′C∞
) : τM (σ∗Mm) = m} and the isomorphism hM extends to an injective homomorphism

hM : Λ(M) ⊗A O(C′C∞
) −→ M ⊗AC∞

O(C′C∞
), λ⊗ f 7→ f · λ

with hM ◦ (idΛ(M) ⊗ id) = (τM ⊗ id) ◦ σ∗hM . At the point V(J ) its cokernel satisfies cokerhM ⊗ C∞[[z −
ζ]] = M/τM (σ∗M). The morphism hM is a local isomorphism away from ∪i∈N0 V(σi∗J ), and σ∗hM is a local
isomorphism away from ∪i∈N>0 V(σi∗J ).
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Proof. This follows in the same way as [HJ20, Proposition 3.25].

Definition 13.8. Let M be an A-motive of rank r over C∞. Anderson defined the Betti cohomology realization
of M by setting

H1
Betti(M,R) := Λ(M) ⊗A R and H1,Betti(M,R) := HomA(Λ(M), R)

for any A-algebra R. This is most useful when M is uniformizable, in which case both are locally free R-modules
of rank equal to rkM .

Example 13.9. We keep the notation from Example 13.5. There we have calculated Λ(C) as the A-module
generated by ηℓ−, so

H1
Betti(C, A) = ηℓ− · A and H1,Betti(M,A) = (ηℓ−)−1 · A.

Remark 13.10. To explain the compatibility with Definition 11.4 let Ω1
A/Fq

be the module of Kähler differentials

of A over Fq. Then Ω1
A/Fq

⊗AQ = Ω1
Q/Fq

= Qdz because the field extensionQ/Fq(z) is separable as it is unramified
at ∞.

Proposition 13.11 ([And86, Corollary 2.12.1]). Let G = (G,ϕ) be a Drinfeld A-module over C∞ and let M =
M(G) be the associated A-motive. Then M is uniformizable and there is a perfect pairing of A-modules

H1,Betti(G,A) × H1
Betti(M,A) −→ Ω1

A/Fq
, (λ,m) 7−→ ωA,λ,m

where ωA,λ,m is determined by the residues Res∞(a · ωA,λ,m) = −m
(
expG(Lieϕa(λ))

)
∈ Fq for all a ∈ Q. The

pairing yields a canonical isomorphism

H1,Betti(M,A) ⊗A Ω1
A/Fq

∼−→ H1,Betti(G,A) ,

which is functorial in G.

13.2 v-adic Cohomology

Definition 13.12. For an A-field K consider the v-adic completion Av,K := lim
←−

AK/v
nAK of AK . Let M be an

A-motive over K and let v ⊂ A be a maximal ideal with v 6= A-char(K). Since (Av,Ksep)τ=id = Av, we can define
the v-adic cohomology realizations of M as the Av-modules

H1
v(M,Av) := (M ⊗AK Av,Ksep)τ := {m ∈M ⊗AK Av,Ksep | τM (σ∗Mm) = m} and (13.2)

H1,v(M,Av) := HomAv(H1
v(M,Av), Av).

They are free Av-modules of rank equal to rkM , carrying a continuous action of the Galois group GK by [TW96,
Proposition 6.1], and the inclusion H1

v(M,Av) ⊂ M ⊗AK Av,Ksep induces a canonical isomorphism of Av,Ksep -
modules

H1
v(M,Av) ⊗Av Av,Ksep

∼−→M ⊗AK Av,Ksep

which is both GK and τ -equivariant, where on the left module GK acts on both factors and τ is id ⊗ σ∗ and on
the right module GK acts only on Av,Ksep and τ is (τM ◦ σ∗M ) ⊗ σ∗. One also sometimes denotes H1

v(M,Av) by
Ťv(M) and calls this the v-adic dual Tate module associated with M at v. We also define the Qv-vector spaces
with continuous GK-action

H1
v(M,Qv) := H1

v(M,Av) ⊗Av Qv and

H1,v(M,Qv) := HomAv(H1
v(M,Av), Qv) = H1,v(M,Av) ⊗Av Qv .

The association M 7→ H1
v(M,Av) or M 7→ H1

v(M,Qv) is a covariant functor which is exact and faithful.

The analog of the Tate conjecture is the following theorem which was proved by Taguchi [Tag95] and Tama-
gawa [Tam94, § 2].

Theorem 13.13 (Tate conjecture for A-motives). If K is a finitely generated A-field and v 6= A-char(K) then

Hom(M,M ′) ⊗A Av ∼−→ HomAv [GK ](H
1
v(M,Av),H

1
v(M

′, Av))

is an isomorphism of Av-modules for A-motives M and M ′.
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Let us explain the relation between TvG and ŤvM(G) := H1
v(M(G), Av) for a Drinfeld A-module G. The Av-

module HomFv (Qv/Av,Fv) is canonically isomorphic to the Av-module Ω̂1
Av/Fv

= Av dzv of continuous differential

forms; see [HK20, Equation (4.5)], and therefore, it is a free Av-module of rank 1. If G is a Drinfeld A-module
over K and M = M(G) is its associated A-motive, then there is a natural GK-equivariant perfect pairing of
Av-modules

〈 . , . 〉 : TvG× ŤvM −→ HomFv(Qv/Av,Fv) ∼= Ω̂1
Av/Fv

, 〈f,m〉 := m ◦ f , (13.3)

which identifies TvG with the contragredient GK-representation HomAv (ŤvM, Ω̂1
Av/Fv

) of ŤvM ; see [HK20, Propo-

sition 4.9]. Together with Theorems 9.7 and 13.13 this implies the following

Corollary 13.14 (Tate conjecture for Drinfeld A-modules). Let G and G′ be two Drinfeld A-modules over a
finitely generated field K. Then the natural map

HomK(G,G′) ⊗A Av → HomAv[GK ](TvG, TvG
′), f ⊗ a 7→ a · Tv(f)

is an isomorphism of Av-modules.

13.3 De Rham Cohomology and Period Isomorphisms

In this subsection let (K, γ) be an A-field of generic A-characteristic. Then K is a field extension of Q via γ and
we set ζ := γ(z). There is an identification lim

←−
AK/J n = K[[z − ζ]] from [HJ20, Lemma 1.3].

Definition 13.15. Let M be an A-motive over an A-field K of generic A-characteristic. The de Rham realization
of M is defined as

H1
dR

(
M,K[[z − ζ]]

)
:= σ∗M ⊗AK lim

←−
AK/J n ,

H1
dR

(
M,K((z − ζ))

)
:= H1

dR

(
M,K[[z − ζ]]

)
⊗K[[z−ζ]] K((z − ζ)) and

H1
dR(M,K) := σ∗M ⊗AK AK/J

= H1
dR

(
M,K[[z − ζ]]

)
⊗K[[z−ζ]] K[[z − ζ]]/(z − ζ) .

The Hodge-Pink lattice of M is defined as qM := τ−1M (M ⊗AK lim
←−

AK/J n) ⊂ H1
dR

(
M,K((z − ζ))

)
, and the

descending Hodge-Pink filtration of M is defined via pM := H1
dR(M,K[[z − ζ]]) and

F i H1
dR(M,K) :=

(
pM ∩ (z − ζ)iqM

)/(
(z − ζ)pM ∩ (z − ζ)iqM

)

= image of
(
σ∗M ∩ τ−1M (J iM)

)
⊗R K in H1

dR(M,K) ;

compare also with [Gos96, § 2.6]. Since M is effective, we have pM ⊂ qM with τM : qM/pM ∼−→ coker τM and
F 0 H1

dR(M,K) = H1
dR(M,K). Note that the de Rham realization with Hodge-Pink lattice and filtration is a

covariant functor on the category of A-motives over K with quasi-morphisms.

Definition 13.16. If G is a Drinfeld A-module over an A-field K of generic characteristic, let M = (M, τM ) =
M(G) be the associated A-motive. Then the de Rham cohomology realization of G is defined to be

H1
dR(G,K) := HomA(Ω1

A/Fq
, σ∗M/J · σ∗M) ,

H1
dR(G,K[[z − ζ]]) := HomA

(
Ω1
A/Fq

, σ∗M ⊗AK K[[z − ζ]]
)
,

H1,dR(G,K[[z − ζ]]) := HomAK (σ∗M, Ω̂1
K[[z−ζ]]/K) and

H1,dR(G,K) := HomAK (σ∗M, Ω̂1
K[[z−ζ]]/K) ⊗K[[z−ζ]] K[[z − ζ]]/(z − ζ) ,

where Ω1
A/Fq

is the module of Kähler differentials of A over Fq and Ω̂1
K[[z−ζ]]/K = K[[z−ζ]]dz is the K[[z−ζ]]-module

of continuous differentials. We define the Hodge-Pink lattices of G as the K[[z − ζ]]-submodules

qG := HomA

(
Ω1
A/Fq

, τ−1M (M) ⊗AK K[[z − ζ]]
)

⊂ H1
dR

(
G,K((z − ζ))

)
and

qG := (τ∨M ⊗ idK((z−ζ)))
(
HomAK (M, Ω̂1

K[[z−ζ]]/K)
)

⊂ H1,dR

(
G,K((z − ζ))

)
.
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In both cases the Hodge-Pink filtrations F i H1
dR(G,K) and F i H1,dR(G,K) of G are recovered as the images of

H1
dR

(
G,K[[z − ζ]]

)
∩ (z − ζ)iqG in H1

dR(G,K) and of H1,dR

(
G,K[[z − ζ]]

)
∩ (z − ζ)iqG in H1,dR(G,K) like in

Definition 13.15. All these structures are compatible with the natural duality between H1
dR and H1,dR.

Remark 13.17. It was shown in [HJ20, Remark 4.45 and Lemma 5.46] that this definition coincides with the
definitions given by Deligne, Anderson, Gekeler and Jing Yu, see [Gos94, Definition 2.6.1], [Gek89, § 2] and [Yu90].
Moreover, it was shown in [HJ20, Diagram (5.36) in the Proof of Theorem 5.40] that the dual of the sequence of
K[[z − ζ]]-modules 0 → pM → qM → coker τM → 0 is isomorphic to the sequence

0 −→ qG −→ H1,dR(G,K[[z − ζ]]) −→ LieG −→ 0 .

Since z − ζ = 0 on LieG we obtain modulo (z − ζ) H1,dR(G,K[[z − ζ]]) the exact sequence of K-vector spaces

0 −→ F 0 H1,dR(G,K) −→ H1,dR(G,K) −→ LieG −→ 0 , (13.4)

which is the analog of the decomposition (6.2).

For a uniformizable A-motive M over C∞ the morphism hM from Proposition 13.7 induces comparison iso-
morphisms between the Betti and the v-adic, respectively the de Rham realizations as follows.

Since v 6= ∞ the points in the closed subscheme {v} ×Fq SpecC∞ ⊂ CC∞ do not specialize to ∞κC
∈ CκC

and

so this closed subscheme lies in CC∞ r∪iDi. This gives us isomorphisms O(CC∞ r∪iDi)/v
nO(CC∞ r∪iDi)

∼−→
AC∞/v

nAC∞ for all n ∈ N and lim
←−

O(CC∞ r ∪iDi)/v
nO(CC∞ r ∪iDi)

∼−→ lim
←−

AC∞/v
nAC∞ = Av,C∞ . The

isomorphism hM from Proposition 13.7 induces a τ -equivariant isomorphism

H1
Betti(M,A) ⊗A lim

←−
O(CC∞ r ∪iDi)/v

nO(CC∞ r ∪iDi)
∼−→M ⊗AC∞

Av,C∞ .

Taking τ -invariant on both sides provides us with the isomorphism between the Betti and the v-adic realization

hBetti,v : H1
Betti(M,Av) = H1

Betti(M,A) ⊗A Av ∼−→ H1
v(M,Av), λ⊗ f 7→ (f · λ mod vn)n∈N.

On the other hand, Proposition 13.7 implies that σ∗hM is an isomorphism locally at V(J ) that is

σ∗hM ⊗ idC∞[[z−ζ]] : H1
Betti(M,A) ⊗A C∞[[z − ζ]] ∼−→ σ∗M ⊗AC∞

C∞[[z − ζ]].

This induces an isomorphism between the Betti and the de Rham realization

hBetti,dR := σ∗hM ⊗ idC∞[[z−ζ]] : H1
Betti(M,C∞[[z − ζ]]) ∼−→ H1

dR(M,C∞[[z − ζ]]),

hBetti,dR := σ∗hM mod J : H1
Betti(M,C∞) ∼−→ H1

dR(M,C∞).

We summarize the above result as follows, compare [HJ20, Theorem 3.39].

Theorem 13.18. If M is a uniformizable A-motive over C∞ there are canonical comparison isomorphisms,
sometimes also called period isomorphisms

hBetti,v : H1
Betti(M,Av) = H1

Betti(M,A) ⊗A Av ∼−→ H1
v(M,Av), λ⊗ f 7→ (f · λ mod vn)n∈N (13.5)

and

hBetti,dR := σ∗hM ⊗ idC∞[[z−ζ]] : H1
Betti(M,C∞[[z − ζ]]) ∼−→ H1

dR(M,C∞[[z − ζ]]),

hBetti,dR := σ∗hM mod J : H1
Betti(M,C∞) ∼−→ H1

dR(M,C∞). (13.6)

The latter yields a pairing

〈 . , . 〉∞ : H1,Betti(M,C∞) × H1
dR(M,C∞) −→ C∞ , (13.7)

(u , ω) 7−→ 〈u, ω〉∞ := u⊗ idC∞

(
h−1Betti,dR(ω)

)
.

All these cohomology realizations and period isomorphisms are functorial in M and by [HJ20, Theorem 5.49]
compatible with the functor from Drinfeld A-modules to A-motives, Proposition 13.11 and the pairing (13.3).
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Example 13.19. For the Carlitz motive C = (C = Fq(θ)[t], τC = t− θ) from Example 9.8 the period isomorphism
hBetti,dR is given as follows. By Example 13.5 the generator ηℓ− of H1

Betti(C,C∞) = A · ηℓ− is sent under hBetti,dR

to the element σ∗(ηℓ−)|t=θ = ηq
∏∞
i=1(1−θ1−qi) ∈ C∞ which has absolute value

∣∣ηq∏∞i=1(1−θ1−qi)
∣∣
∞

= |ηq|∞ =

|θ|q/(1−q)∞ = q−q/(q−1). This element is the analog of the period (2πi)−1 from Example 4.5, because the Carlitz
module and Carlitz motive are the analogs of the multiplicative group Gm, see Example 12.3.

Theorem 13.20. Let G be a Drinfeld A-module over C∞ and let M = (M, τM ) = M(G) := HomC∞,Fq(G,Ga,C∞)

be the associated A-motive. Let qM and pM := H1
dR(M,C∞[[z−ζ]]) be as in Definition 13.15. Let m ∈ qM be such

that its image m under the isomorphism τM ⊗ idC∞[[z−ζ]] : q
M/pM ∼−→ coker τM generates the one dimensional

C∞-vector space coker τM . Let ω := −(z − ζ) ·m ∈ (z − ζ)qM ⊂ pM . Consider the pairing

coker τM × LieG −→ LieGa,C∞ = C∞ , (m,λ) 7−→ m(λ) (13.8)

induced from (9.5) and the isomorphism

βA : H1,Betti(G,Q) ∼−→ H1,Betti(M,Q) ⊗Q Ω1
Q/Fq

= H1,Betti(M,Q) · dz

from Proposition 13.11 using Remark 13.10. Let λ ∈ H1,Betti(G,Q) ⊂ LieG and let u ∈ H1,Betti(M,Q) be such
that βA(λ) = u dz. Then the pairing (13.7) can be computed as

〈u, ω〉∞ = m(λ) . (13.9)

Proof. As in [HJ20, Diagram (5.36) in the proof of Theorem 5.39] the isomorphism βA fits into a commutative
diagram

H1,Betti(M,Q) ⊗Q Ω1
Q/Fq

γ̃A
// HomC∞(coker τM ,C∞)

H1,Betti(G,Q)
�

�

//

∼= βA

OO

LieG

∼= α

OO
(13.10)

where the isomorphism α is induced from the pairing (13.8), and the map γ̃A is given by

γ̃A : H1,Betti(M,Q) ⊗Q Ω1
Q/Fq

= H1,Betti(M,Q) · dz −→ HomC∞(coker τM ,C∞) ,

u dz 7−→
[
m 7→ −Resz=ζ u(m)dz

]
.

Here u(m) ∈ C∞((z − ζ)) is defined as

u(m) := (u ⊗ idC∞((z−ζ))) ◦ (hM ⊗ idC∞((z−ζ)))
−1 ◦ (τM ⊗ idC∞((z−ζ)))(m)

= (u ⊗ idC∞((z−ζ))) ◦ (h−1Betti,dR ⊗ idC∞((z−ζ)))(m)

where
hM ⊗ idC∞((z−ζ)) : H1

Betti(M,Q) ⊗Q C∞((z − ζ)) ∼−→ M ⊗AC∞
C∞((z − ζ))

is the isomorphism from Proposition 13.7 with hM = τM ◦ σ∗hM and hBetti,dR = σ∗hM ⊗ idC∞[[z−ζ]]. Note that
u(m) is only well defined up to adding elements of C∞[[z − ζ]], because the preimage m of m is only well defined
up to pM and (u ◦ h−1Betti,dR)(pM ) = u

(
H1

Betti(M,C∞[[z − ζ]])
)
⊂ C∞[[z − ζ]]. This shows that, nevertheless, the

residue −Resz=ζ u(m)dz is well defined and independent of the preimage m of m. We may thus compute

m(λ) = α(λ)(m) = (γ̃A ◦ βA)(λ)(m) = γ̃A(u dz)(m) = −Resz=ζ u(m)dz .

Now m = −(z − ζ)−1 · ω and u(m) = (u ◦ h−1Betti,dR)(m) = −(z − ζ)−1 · 〈u, ω〉∞ in C∞((z − ζ))
/
C∞[[z − ζ]]. This

yields

m(λ) = −Resz=ζ u(m)dz = Resz=ζ

(
〈u, ω〉∞ d(z−ζ)

z−ζ

)
= 〈u, ω〉∞ .
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14 Local Shtukas and the v-adic Period Isomorphism

We next describe the function field analog of p-divisible groups.

Notation 14.1. We fix a place v 6= ∞ of Q. Let K ⊂ Qalg be an A-field which is a finite extension of Q via
γ. Under the fixed embedding Qalg →֒ Cv let L be the v-adic completion of K ⊂ Cv. Let R be the valuation
ring of L, let πL be a uniformizing parameter of R and let κ be the residue field of R. Then R = κ[[πL]]
and L = κ((πL)). The homomorphism γ : A → K extends by continuity to γ : Av → L and factors through
γ : Av → R with ζv = γ(zv) ∈ πLRr {0}. Let R[[zv]] be the power series ring in the variable zv over R and σ̂∗v the
endomorphism of R[[zv]] with σ̂∗v (zv) = zv and σ̂∗v (b) = bqv for b ∈ R, where qv = #Fv. For an R[[zv]]-module M̂ we
let σ̂∗v M̂ := M̂ ⊗R[[zv ]],σ̂∗

v
R[[zv]] as well as M̂ [ 1

zv−ζv
] := M̂ ⊗R[[zv]] R[[zv]][

1
zv−ζv

] and M̂ [ 1
zv

] := M̂ ⊗R[[zv ]] R[[zv]][
1
zv

].

We obtain a canonical embedding AR := A⊗Fq R →֒ R[[zv]] by mapping zv ⊗ 1 7→ zv and 1 ⊗ ζv 7→ ζv.

The function field analog of p-divisible groups is given by the following

Definition 14.2. A zv-divisible local Anderson module over R is a sheaf of Fq[[zv]]-modules G on the big fppf -site
of SpecR such that

(a) G is zv-torsion, that is G = lim
−→

G[znv ],

(b) G is zv-divisible, that is zv : G→ G is an epimorphism,

(c) for every n the Fq-module G[znv ] is representable by a finite locally free strict Fq-module scheme over R in
the sense of Faltings (see [Fal02] or [HS20, Definition 4.7]), and

(d) locally on SpecR there exists an integer d ∈ Z≥0, such that (zv − ζv)d = 0 on ωG where ωG := lim
←−

ωG[znv ]

and ωG[znv ]
:= ε∗Ω1

G[znv ]/ SpecR
for the unit section ε of G[znv ] over R.

Example 14.3. Let G = (G,ϕ) be a Drinfeld A-module over R which is defined as in Definition 9.2 by replacing
K by R. By [Har17, Theorem 6.6] the torsion module G[vn] is a finite locally free strict Fv-module scheme and
the inductive limit G[v∞] := lim

−→
G[vn] is a zv-divisible local Anderson module over R for which one can take

d = 1 in Definition 14.2(d).

Similarly to Remark 5.3, divisible local Anderson modules have a description by semi-linear algebra. It is
given by local σ̂∗v -shtukas.

Definition 14.4. A local σ̂∗v -shtuka of rank r over R is a pair M̂ = (M̂, τM̂ ) consisting of a free R[[zv]]-module

M̂ of rank r, and an isomorphism τM̂ : σ̂∗v M̂ [ 1
zv−ζv

] ∼−→ M̂ [ 1
zv−ζv

]. It is effective if τM̂ (σ̂∗v M̂) ⊂ M̂ and étale if

τM̂ (σ̂∗v M̂) = M̂ . We write rk M̂ for the rank of M̂ .

A morphism of local shtukas f : M̂ = (M̂, τM̂ ) → N̂ = (N̂ , τN̂ ) over R is a morphism of the underlying

modules f : M̂ → N̂ which satisfies τN̂ ◦ σ̂∗v f = f ◦ τM̂ . We denote the Av-module of homomorphisms f : M̂ → N̂

by HomR(M̂, N̂) and write EndR(M̂) = HomR(M̂, M̂).
A quasi-morphism between local shtukas f : (M̂, τM̂ ) → (N̂ , τN̂ ) over R is a morphism of R[[zv]][

1
zv

]-modules

f : M [ 1
zv

] ∼−→ N [ 1
zv

] with τN̂ ◦σ̂∗v f = f◦τM̂ . It is called a quasi-isogeny if it is an isomorphism ofR[[zv]][ 1
zv

]-modules.

We denote the Qv-vector space of quasi-morphisms from M̂ to N̂ by QHomR(M̂, N̂) and write QEndR(M̂) =
QHomR(M̂, M̂).

Note that HomR(M̂, N̂) is a finite free Av-module of rank at most rk M̂ · rk N̂ by [HK20, Corollary 4.5]
and QHomR(M̂, N̂) = HomR(M̂, N̂) ⊗Av Qv. Also every quasi-isogeny f : M̂ → N̂ induces an isomorphism of

Qv-algebras QEndR(M̂) ∼−→ QEndR(N̂), g 7→ fgf−1, similarly to Remark 2.5(a).

The analog of the (“local”) Dieudonné functor from Remark 5.3 is given by the following

Theorem 14.5 ([HS20, Theorem 8.3]). There is an anti-equivalence between the category of zv-divisible local
Anderson modules over R and the category of effective local σ̂∗v -shtukas over R given by the contravariant functor
M̂qv defined by M̂ qv (G) := lim

←−
n

M̂ qv

(
G[znv ]

)
, where

M̂qv (G[znv ]) :=
(
HomR-groups,Fq-lin(G[znv ],Ga,R), τ̂Mq(G[znv ])

)

and τ̂Mq(G[znv ])
is provided by the relative qv-Frobenius of the additive group scheme Ga,R over R like in (9.4).
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It turns out that like with abelian Anderson A-modules, one can dispense with the notions of zv-divisible
local Anderson modules, because their equivalent description by local σ̂∗v -shtukas can be obtained purely from
A-motives as in the following

Example 14.6. Let M = (M, τM ) be an A-motive over K and assume that it has good reduction, that is, there
exist a pair M = (M, τM) consisting of a locally free module M over AR := A⊗FqR of finite rank and a morphism
τM : σ∗M → M of AR-modules whose cokernel is annihilated by a power of the ideal J := (a ⊗ 1 − 1 ⊗ γ(a) :
a ∈ A) ⊂ AR, such that M⊗R L ∼= M ⊗K L. The reduction M⊗R κ is an A-motive over κ of A-characteristic
v = ker(γ : A→ κ). The pair M is called an A-motive over R and a good model of M .

We consider the v-adic completions Av,R of AR and M⊗AR Av,R := (M ⊗AR Av,R, τM ⊗ id) of M. We let
dv := [Fv : Fq] and discuss the two cases dv = 1 and dv > 1 separately. If dv = 1, and hence qv = q and σ̂∗v = σ∗,

we have Av,R = R[[zv]], and M⊗AR Av,R is an effective local σ̂∗v -shtuka over SpecR which we denote by M̂v(M)
and call the local σ̂∗v -shtuka at v associated with M.

If dv > 1, the situation is more complicated, because Fv ⊗Fq R and Av,R fail to be integral domains. Namely,

Fv ⊗Fq R =
∏

Gal(Fv/Fq)

Fv ⊗Fv R =
∏

i∈Z/dvZ

Fv ⊗Fq R/ (a⊗ 1 − 1 ⊗ γ(a)q
i

: a ∈ Fv)

and σ∗ transports the i-th factor to the (i+ 1)-th factor. In particular σ̂∗v stabilizes each factor. Denote by ai the

ideal of Av,R generated by {a⊗ 1 − 1 ⊗ γ(a)q
i

: a ∈ Fv}. Then

Av,R =
∏

Gal(Fv/Fq)

Av⊗̂FvR =
∏

i∈Z/dvZ

Av,R / ai.

Note that each factor is isomorphic to R[[zv]] and the ideals ai correspond precisely to the places vi of CFv lying
above v. The ideal J decomposes as follows J · Av,R/a0 = (zv − ζv) and J · Av,R/ai = (1) for i 6= 0. We define

the local σ̂∗v -shtuka at v associated with M as M̂v(M) := (M̂, τM̂ ) :=
(
M ⊗AR Av,R/a0 , (τM ⊗ 1)dv

)
, where

τdvM := τM ◦ σ∗τM ◦ . . . ◦ σ(dv−1)∗τM. Of course if dv = 1 we get back the definition of M̂v(M) given above. Also

note that M/τM(σ∗M) = M̂/τM̂(σ̂∗v M̂).

The local shtuka M̂v(M) allows to recover M⊗AR Av,R via the isomorphism

dv−1⊕

i=0

(τM ⊗ 1)i mod ai :
(dv−1⊕

i=0

σi∗(M⊗AR Av,R/a0), (τM ⊗ 1)dv ⊕
⊕

i6=0

id
)
∼−→ M⊗AR Av,R ,

because for i 6= 0 the equality J ·Av,R/ai = (1) implies that τM ⊗ 1 is an isomorphism modulo ai; see [BH11,
Propositions 8.8 and 8.5] for more details.

Proposition 14.7 ([Har17, Theorem 7.6]). Let G = (G,ϕ) be a Drinfeld A-module over R and let G[v∞] :=
lim
−→

G[vn] be its zv-divisible local Anderson module over R from Example 14.3. Let M(G) be the associated A-

motive over R and let M̂ qv (G[v∞]) be the associated local σ̂∗v -shtuka over R. Then M̂qv (G[v∞]) is canonically

isomorphic to the local σ̂∗v -shtuka M̂v(M) from Example 14.6.

Example 14.8. It was shown in [HK20, Example 2.7] that the local σ̂∗v -shtuka at v associated with the Carlitz
motive C = (C = Fq(θ)[t], τC = t − θ) from Example 9.8 equals M̂v(C) =

(
Fv[[ζv]][[z]], τM̂ = (zv − ζv)

)
. Here

L = Fv((ζv)) and R = OL = Fv[[ζv]].

Next we define the v-adic realization and the de Rham realization of a local shtuka M̂ = (M̂, τM̂ ) over R.

Since τM̂ induces an isomorphism τM̂ : σ̂∗v M̂ ⊗R[[zv]] L[[zv]]
∼−→ M̂ ⊗R[[zv]] L[[zv]], we can think of M̂ ⊗R[[zv ]] L[[zv]]

as an étale local shtuka over L.

Definition 14.9. The v-adic realization H1
v(M̂,Av) of a local σ̂∗v -shtuka M̂ = (M̂, τM̂ ) is the GL-module of

τ -invariants

H1
v(M̂,Av) := (M̂ ⊗R[[zv ]] L

sep[[zv]])
τ := {m ∈ M̂ ⊗R[[zv ]] L

sep[[zv]] : τM̂ (σ̂∗
M̂
m) = m},

where we set σ̂∗
M̂
m := m ⊗ 1 ∈ M̂ ⊗R[[zv]],σ̂∗

v
R[[zv]] =: σ∗M for m ∈ M . One also writes sometimes ŤvM̂ =

H1
v(M̂,Av) and calls this the dual Tate module of M̂ . By [HK20, Proposition 4.2] it is a free Av-module of the

same rank as M̂ . We also write H1
v(M̂,B) := H1

v(M̂,Av) ⊗Av B for an Av-algebra B.
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If M = (M, τM ) is an A-motive over L with good model M and M̂ = M̂v(M) is the local shtuka at v
associated with M, then H1

v(M̂,Av) is by [HK20, Proposition 4.6] canonically isomorphic as a representation of
GL to the v-adic realization H1

v(M,Av) of M .

Example 14.10. We describe the v-adic realization H1
v(C, Av) = H1

v(M̂v(C), Av) of the Carlitz module from
Example 14.8 by using its local shtuka M̂v(C) =

(
Fv[[ζv]][[zv]], τM̂ = (zv − ζv)

)
at v computed there. For all i ∈ N0

let ℓi ∈ Lsep be solutions of the equations ℓqv−10 = −ζv and ℓqvi + ζvℓi = ℓi−1. This implies |ℓi| = |ζv|q
−i
v /(qv−1) <

1. Define the power series ℓ+v =
∑∞
i=0 ℓiz

i
v ∈ OLsep [[zv]]. It satisfies σ̂∗v (ℓ+v ) = (zv − ζv) · ℓ+v , but depends on

the choice of the ℓi. A different choice yields a different power series ℓ̃+v which satisfies ℓ̃+v = uℓ+v for a unit

u ∈ (Lsep[[zv]]
×

)σ̂
∗
v =id = Fv[[zv]]

×
= A

×

v , because σ̂∗v (u) =
σ̂∗
v (ℓ̃+v )

σ̂∗
v (ℓ+v )

=
ℓ̃+v
ℓ+v

= u. The field extension Fv((ζv))(ℓi : i ∈ N0)

of Fv((ζv)) is the function field analog of the cyclotomic tower Qp(
pi
√

1: i ∈ N0); see [Har09, § 1.3 and § 3.4]. There
is an isomorphism of topological groups called the v-adic cyclotomic character

χv : Gal
(
Fv((ζv))(ℓi : i ∈ N0)

/
Fv((ζv))

)
∼−→ A

×

v ,

which satisfies g(ℓ+v ) :=
∑∞

i=0 g(ℓi)z
i
v = χv(g) · ℓ+v in Lsep[[zv]] for g in the Galois group. It is independent of the

choice of the ℓi. The v-adic (dual) Tate module ŤvM̂ = H1
v(M̂v(C), Av) of M̂v(C) and C is generated by (ℓ+v )−1

on which the Galois group acts by the inverse of the v-adic cyclotomic character. The reader should compare this
to Example 5.6.

Definition 14.11. Let M̂ = (M̂, τM̂ ) be a local σ̂∗v -shtuka over R. We define the de Rham realizations of M̂ as

H1
dR(M̂,R) := σ̂∗v M̂/(zv − ζv)M̂ = σ̂∗v M̂ ⊗R[[zv]],zv 7→ζv R , as well as

H1
dR(M̂, L[[zv − ζv]]) := σ̂∗v M̂ ⊗R[[zv]] L[[zv − ζv]] and

H1
dR(M̂, L) := σ̂∗v M̂ ⊗R[[zv]],zv 7→ζv L = H1

dR(M̂, L[[zv − ζv]]) ⊗L[[zv−ζv ]] L[[zv − ζv]]/(zv − ζv)

= H1
dR(M̂,R) ⊗R L .

It carries the Hodge-Pink lattice qM̂ := τ−1
M̂

(M̂ ⊗R[[zv ]] L[[zv − ζv]]) ⊂ H1
dR(M̂, L[[zv − ζv]])[ 1

zv−ζv
].

If M = (M, τM ) is an A-motive over L with good model M and M̂ = M̂v(M) is the local shtuka at v
associated with M and dv = [Fv : Fq] is as in Example 14.6, the map

σ∗τdv−1M = σ∗τM ◦ σ2∗τM ◦ · · · ◦ σ(dv−1)∗τM : σdv∗M ⊗AR Av,R/a0 ∼−→ σ∗M ⊗AR Av,R/a0

is an isomorphism, because τM is an isomorphism over Av,R/ai for all i 6= 0. Therefore, it defines canonical
isomorphisms of the de Rham realizations

σ∗τdv−1M : H1
dR

(
M̂, L[[zv − ζv]]

)
∼−→ H1

dR

(
M,L[[zv − ζv]]

)
and

σ∗τdv−1M : H1
dR(M̂, L) ∼−→ H1

dR(M,L) ,

which are compatible with the Hodge-Pink lattices and the Hodge-Pink filtrations.

The v-adic period isomorphism for an A-motive M over a field K ⊂ Qalg
v is provided by the following theorem

by using the local σ̂∗v -shtuka M̂ := M̂v(M).

Theorem 14.12 ([HK20, Theorem 4.14]). If M̂ is a local σ̂∗v -shtuka over R then there is a canonical comparison
isomorphism

hv,dR : H1
v

(
M̂,Qv) ⊗Qv Cv((zv − ζv))

∼−→ H1
dR

(
M̂, L((zv − ζv))

)
⊗L((zv−ζv)) Cv((zv − ζv))

If M is an A-motive over L (which does not need to have good reduction) then there is a canonical comparison
isomorphism

hv,dR : H1
v

(
M,Qv) ⊗Qv Cv((zv − ζv))

∼−→ H1
dR

(
M,L((zv − ζv))

)
⊗L((zv−ζv)) Cv((zv − ζv)) (14.1)

Both isomorphisms are equivariant for the action of GL, where on the source this group acts on both factors of
the tensor product and on the target it acts only on Cv.
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In comparison with the p-adic comparison isomorphism for an abelian variety over a finite extension of Qp
from Theorem 5.5, the ring Cv((zv − ζv)) is the function field analog of Bp,dR.

Example 14.13. For the Carlitz motive C = (C = Fq(θ)[t], τC = t − θ) from Example 9.8 we have H1
v(C, Qv) =

Qv · (ℓ+v )−1 ∼= Qv and H1
dR(C,Fq(θ)[[zv − ζv]]) = Fq(θ)[[zv − ζv]] =: p, see Example 14.10. The Hodge-Pink lattice

is q = (zv − ζv)−1p and the Hodge filtration satisfies F 1 = H1
dR(C,Fq(θ)) ⊃ F 2 = (0). With respect to the bases

(ℓ+v )−1 of H1
v(C, Qv) and 1 of H1

dR(C,Fq(θ)[[zv − ζv]]) the comparison isomorphism hv,dR from Theorem 14.12 is
given by the v-adic Carlitz period (zv − ζv)−1(ℓ+v )−1 = σ̂∗v (ℓ+v )−1. It has a pole of order one at zv = ζv because
ℓ+v ∈ Fv((ζv))

sep〈 zvζv 〉
× ⊂ Cv[[zv − ζv]]

×
. So hv,dR

(
H1
v(C, Qv) ⊗Qv Cv[[zv − ζv]]

)
= (zv − ζv)−1Cv[[zv − ζv]] =

q⊗K[[zv−ζv ]] Cv[[zv − ζv]].

Definition 14.14. On the power series ring OCv [[zv]] we consider the OCv -embedding OCv [[zv]] →֒ Cv[[zv − ζv]]
given by zv 7→ zv = ζv+(zv−ζv). Let Θ : Cv[[zv−ζv]] → Cv, zv 7→ ζv be the residue map. Then OCv [[zv]]∩ker Θ is
a principal ideal of Ov[[zv]] generated by zv−ζv. Any other generator is of the form (zv−ζv) ·u with u ∈ OCv [[zv]]

×
.

On Cv((zv − ζv)) we define a valuation v̂ by

v̂

(
∞∑

i=−N

bi(zv − ζv)i

)
:= min{i : bi 6= 0}.

and we extend the valuation v on Cv to Cv((zv − ζv)) by

v(f) := v
(
Θ(f · (zv − ζv)

−v̂(f))
)
. (14.2)

If f and g are two elements of Cv((zv − ζv)), then v̂(fg) = v̂(f) + v̂(g), and hence v(fg) = v(f) + v(g). But note
that v does not satisfy the triangle inequality. The valuation v(f) is unchanged, if we replace the generator zv−ζv
of OCv [[zv]]∩ker Θ by another generator (zv−ζv) ·u with u ∈ OCv [[zv]]

×
, because then v

(
Θ(f ·((zv−ζv) ·u)−v̂(f)

)
=

v
(
Θ(f · (zv − ζv)−v̂(f)

)
+ v(Θ(u))−v̂(f) = v

(
Θ(f · (zv − ζv)

−v̂(f)
)

as Θ(u) ∈ O×
v .

Example 14.15. The inverse (zv − ζv)(ℓ+v ) = σ̂∗v (ℓ+v ) of the v-adic Carlitz period σ∗v (ℓ+v )−1 from Example 14.13
satisfies v̂

(
(zv − ζv)(ℓ

+
v )
)

= 1 and vp(σ̂
∗
v (ℓ+v )) = vp

(
(zv − ζv)(ℓ

+
v )
)

= vp(Θ(ℓ+v )) = vp(
∑∞

i=0 ℓiζ
i
v) = vp(ℓ0) = 1

qv−1
,

see Example 14.10. The reader should compare this to Example 5.6.

15 Complex Multiplication

Definition 15.1. Let M be an A-motive over an A-field K. If QEndK(M) contains a commutative semi-simple
Q-algebra E of dimension dimQE = rkM , then we call M a CM A-motive over K and we say that M has
complex multiplication by E over K.

Here semi-simple means that E is a product of fields. Note that we do not assume that E is itself a field.
By [Sch09, Theorem 4.2.5] any CM A-motive M is semi-simple. We know from [Sch09, Theorem 4.4.7] if M is
simple, uniformizable then dimQ QEndK (M) ≤ rkM and if in addition M has complex multiplication by E, then
E = QEndK (M) is a field.

Let M be an A-motive over K with complex multiplication through E and let OE be the integral closure of A
in E. If E =

∏
iEi is a product of finite field extensions of Q, then OE =

∏
iOEi , where OEi is the integral closure

of A in Ei. By [Sch09, Theorem 3.3.3] there exists an A-motive M ′ isogenous to M such that OE ⊆ EndK(M ′).
So for all aspects which only depend on the isogeny class of M we can assume that OE ⊆ EndK(M). Then M is
a locally free module over the ring OE ⊗Fq K and

M =
⊕

i

(M ⊗OE OEi).

Since OE →֒ EndK(M) is injective, M ⊗OE OEi is a locally free module over the ring OEi ⊗Fq K of rank ≥ 1,
because otherwise OEi acts as 0 on M , which is a contradiction. Now the estimate

rkAK M =
∑

i

rkAK (M ⊗OE OEi) =
∑

i

rk(OEi⊗FqK)(M ⊗OE OEi) · [Ei : Q]

≥
∑

i

[Ei : Q] = [E : Q] = rkAK M

shows that rk(OEi⊗FqL)
(M ⊗OE OEi) = 1 for all i. Therefore, M is a locally free module over OE ⊗Fq K of rank

1. Thus we have the following proposition.
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Proposition 15.2. [Sch09, Proposition 3.3.5] Let M = (M, τM ) be an A-motive over K with complex multipli-
cation E such that OE ⊆ EndK(M), then

(a) M is a locally free OE ⊗Fq K-module of rank 1.

(b) τM : σ∗M →M is an OE ⊗Fq K-linear injection.

Theorem 15.3 ([Sch09, Theorem 6.3.6]). Let M be an A-motive over an A-field K with complex multiplication E
such that OE ⊆ EndK(M) and E is separable over Q. Then M is already defined over a finite separable extension
L of the A-field Quot(A/A-char(K)) which is Q or a finite field, i.e. M ∼= ML ⊗L K for an A-motive ML over
L.

Theorem 15.4 ([Pel09, Section 3.6]). If M is an A-motive defined over a finite extension K/Q with complex
multiplication by a separable Q-algebra E, then there exists a finite separable extension L/K such that M has
good reduction at every prime of OL.

Remark 15.5. If M = M(G) is the A-motive of a Drinfeld A-module G then both theorems are well known.
Namely, in this case there is exactly one place of E above ∞ by [Gos96, Proposition 4.7.17]. Then G can be viewed
as a Drinfeld OE -module of rank 1. All these are defined over the Hilbert class field of E and have everywhere
good reduction by [Hay79], see [Tha04, Theorems 2.6.4 and 3.4.2].

Definition 15.6. A CM-type is a pair (E, (dψ)ψ∈HE ) consisting of a finite dimensional, semi-simple, commutative
Q-algebra E and a tuple of integers (dψ)ψ∈HE indexed by HE := HomQ(E,Qalg).

An isomorphism f : (E, (dψ)ψ∈HE ) ∼−→ (E′, (d′ψ′)ψ′∈HE′ ) of CM-types is an isomorphism f : E ∼−→ E′ of
Q-algebras with dψ′◦f = d′ψ′ for all ψ′ ∈ HE′ .

Remark 15.7. The analog of a classical CM-type (E,Φ) as in Definition 6.2 would be a tuple (dψ)ψ∈HE for
which dψ ∈ {0, 1}. Then one can set Φ := {ψ ∈ HE : dψ = 1} and has dψ = 1 for all ψ ∈ Φ and dψ = 0 for all
ψ ∈ HE r Φ. But note, that we need a more flexible definition of CM-type here, due to the construction of the
CM-type of a CM A-motive in Definition 15.8 below.

To prepare for this construction let z ∈ Q be a uniformizer at ∞ and denote by ζ the image of z in Qalg under
the natural inclusion Q ⊂ Qalg. We consider the power series ring Qalg[[z − ζ]] over Qalg in the “variable” z − ζ
as a Q-algebra via z 7→ ζ + (z − ζ). Let E be a finite dimensional, semi-simple, commutative Q-algebra. Then by
[HS20, Lemma A.3] there is a decomposition

E ⊗Q Qalg[[z − ζ]] =
∏

ψ∈HE

Qalg[[yψ − ψ(yψ)]], (15.1)

where yψ is a uniformizer at a place of E such that ψ(yψ) 6= 0. By [HJ20, Lemma 1.5] the factors are obtained as
the completion of OE⊗AAQalg = OE⊗FqQ

alg along the kernels (a⊗1−1⊗ψ(a) : a ∈ OE) of the homomorphisms
ψ⊗ idQalg : OE⊗Fq Q

alg → Qalg for ψ ∈ HE . If (E, (dψ)ψ∈HE ) is a CM-type, then there is a finite free Qalg[[z− ζ]]-
submodule

q :=
∏

ψ∈HE

(
yψ − ψ(yψ)

)−dψ ·Qalg[[yψ − ψ(yψ)]] ⊆ E ⊗Q Qalg((z − ζ)) (15.2)

with q ·Qalg((z− ζ)) = E⊗QQalg((z− ζ)). Conversely, every such Qalg[[z− ζ]]-submodule q uniquely determines a
tuple (dψ)ψ∈HE of integers satisfying (15.2). So we could equivalently call (E, q) a “CM-type”. In this description,

an isomorphism f : (E, q) ∼−→ (E′, q′) of CM-types is an isomorphism f : E ∼−→ E′ of Q-algebras which satisfies
(f ⊗ idQalg((z−ζ)))(q) = q′.

Definition 15.8. Let M be an A-motive over a finite field extension K ⊂ Qalg of Q with complex multiplication
through E. We assume that K contains ψ(E) for all ψ ∈ HE . Then the decomposition (15.1) exists already with
Qalg replaced by K. The E⊗QK[[z− ζ]]-module H1

dR(M,K[[z− ζ]]) is finite free of rank one, and correspondingly
decomposes into eigenspaces

Hψ(M,K[[yψ − ψ(yψ)]]) := H1
dR(M,K[[z − ζ]]) ⊗E⊗QK[[z−ζ]] K[[yψ − ψ(yψ)]]

each of which is free of rank one over K[[yψ − ψ(yψ)]], that is

pM := H1
dR(M,K[[z − ζ]]) =

∏

ψ∈HE

Hψ(M,K[[yψ − ψ(yψ)]]) .
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Since the Hodge-Pink lattice qM from Definition 14.11 is also an E ⊗Q K[[z − ζ]]-module and contains pM , there
are non-negative integers dψ ∈ Z≥0 such that

qM =
∏

ψ∈HE

(yψ − ψ(yψ))−dψ Hψ(M,K[[yψ − ψ(yψ)]]) .

The tuple (dψ)ψ∈HE is the CM-type of M . Since coker τM = qM/H1
dR(M,K[[z − ζ]]) we see that dψ is the

dimension over K of the generalized ψ-eigenspace of the action of E on coker τM .
If we fix an isomorphism α : H1

dR(M,K[[z − ζ]]) ∼−→ E ⊗QK[[z − ζ]], then the CM-type of M can equivalently
be described as (E,α(qM )).

Example 15.9. LetG be a Drinfeld A-module over anA-fieldK of genericA-characteristic, such thatM := M(G)
has CM by OE for a field extension E of Q with [E : Q] = rkM = rkG. By Remark 15.5 we may assume that
K is a finite extension of Q, and we can fix an embedding K ⊂ Qalg. Theorem 9.7 and Corollary 11.3 imply
that QEndK(M) = QEndK(G)op is a (commutative) field extension of Q of degree dividing rkG and containing
E. Thus, E = QEndK(M) = QEndK(G). The field E acts K-linearly on the one dimensional K-vector space
LieG. Therefore, there is a Q-homomorphism ψ0 : E → EndK(LieG) = K, that is, an element ψ0 ∈ HE such that
every a ∈ E acts on LieG via multiplication with ψ0(a). If K contains ψ(E) for all ψ ∈ HE , then as E-modules,
sequence (13.4) takes the form

0 −→
⊕

ψ 6=ψ0

Kψ −→ H1,dR(G,K) −→ Kψ0 −→ 0

where Kψ denotes the 1-dimensional K-vector space on which E acts via ψ. In particular LieG = Kψ0 , and hence
(13.4) is analogous to the decomposition (6.3). Since coker τM ∼= (LieG)∨ is 1-dimensional with the induced
E-action also given by ψ0, the CM-type of G is (E, (dψ)ψ∈HE ) with dψ0 = 1 and dψ = 0 for all ψ 6= ψ0. This
yields an isomorphism

τM :
(
yψ0 − ψ0(yψ0)

)−1
Hψ0

(
M,K[[yψ0 − ψ0(yψ0)]]

)/
Hψ0

(
M,K[[yψ0 − ψ0(yψ0)]]

)
= qM/pM ∼−→ coker τM .

Let ωψ0 ∈ Hψ0(M,K[[yψ0 −ψ0(yψ0)]]) be a K[[yψ0 −ψ0(yψ0)]]-generator. Then m := (yψ0 −ψ0(yψ0))−1 ·ωψ0 ∈ qM

and the image of m in coker τM ∼= qM/pM generates the one dimensional K-vector space coker τM . In particular,
if E/Q is separable, we can take yψ0 = z and ψ0(yψ0) = ζ by [HJ20, Lemma 1.3]. Then yψ0 − ψ0(yψ0) = z − ζ
and K[[yψ0 − ψ0(yψ0)]] = K[[z − ζ]].

16 The Taguchi height of a Drinfeld module

Pushing the analogy between abelian varieties and Drinfeld modules forward, Taguchi [Tag93, Section 5] defined
the analog of the Faltings height for Drinfeld modules. It is today called the Taguchi height. Taguchi used it to
prove the Tate Conjecture 13.14 for Drinfeld modules. We follow the exposition of Wei [Wei20, § 5.1].

Definition 16.1. For an A-lattice Λ ⊂ C∞ of rank r, a Q∞-basis {λi}1≤i≤r of Q∞ · Λ is called orthogonal if
λ1, . . . , λr satisfy that

(a) λi ∈ Λ for 1 ≤ i ≤ r ,

(b) |a1λ1 + . . .+ arλr|∞ = max{ |aiλi|∞; 1 ≤ i ≤ r } for all a1, . . . , ar ∈ Q∞ ,

(c) Q∞ · Λ = Λ + (A∞λ1 + . . .+A∞λr) .

Note that if λi ∈ Q · Λ for 1 ≤ i ≤ r such that ⊕ri=1Qλi = Q · Λ and (b) holds, then (a) and (c) can be achieved
by multiplying all λi with some a ∈ A that has v∞(a) ≪ 0. Then we define the A-volume DA(Λ) of Λ by

DA(Λ) :=

( ∏
1≤i≤r |λi|∞

#
(
Λ/(Aλ1 + · · · +Aλr)

)
)1/r

= q1−gQ ·
( ∏

1≤i≤r |λi|∞
#
(
Λ ∩ (A∞λ1 + · · · +A∞λr)

)
)1/r

, (16.3)

where gQ is the genus of Q
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Example 16.2. Let E be a finite imaginary field extension of Q, that is, E∞ := E ⊗Q Q∞ is still a field. Then
the absolute value | . |∞ on Q∞ extends in a unique way to an absolute value on E∞. The latter equals the
restriction of the absolute value | . |∞ on C∞ for any Q∞-embedding E∞ →֒ C∞. Under any such embedding OE

is an A-lattice in C∞ of rank [E : Q], and we can define DA(OE), which is independent of the chosen embedding.
If the ramification of ∞ in E/Q is tame then

logDA(OE) =
1

2[E : Q]
· log #(A/dOE/A)

by [Wei20, Remark 5.6] where dOE/A is the (relative) discriminant of OE over A.

For the Taguchi height [Tag93, § 5] of a Drinfeld module the following alternative, equivalent definition was
given by Wei [Wei20, § 5.1].

Definition 16.3 ([Tag93, § 5], [Wei20, § 5.1]). Let G = (G,ϕ) be a Drinfeld A-module of rank r over a finite
field extension K ⊂ Qalg of Q. For every η ∈ HK := HomQ(K,Qalg) the embedding η : K →֒ Qalg ⊂ Qalg

v allows
to restrict the valuation v on Qalg

v to a valuation, that is, a place ṽη of K, such that the completion Kṽη equals
the closure of η(K) in Qalg

v . Conversely, for each place ṽ of K with ṽ|v, we let Kṽ be the completion of K at ṽ.
We choose a Qv-embedding η : Kṽ →֒ Qalg

v and the induced Q-embedding η : K →֒ Qalg. Then ṽ = ṽη. In this
way the place ṽ is obtained [Kṽ : Qv]-many times. We let Gη = (Gη, ϕη) be the base change of G to Qalg via
η : K →֒ Qalg and also to C∞ via the fixed inclusion Qalg ⊂ C∞.

We choose an isomorphism m : G ∼−→ Ga,K and consider the induced isomorphisms mη : Gη ∼−→ Ga,Qalg and

Liemη : LieGη ∼−→ Qalg for every η ∈ HK . The local height of G at ∞̃η with respect to m is given by

htTag,∞̃η
(G/K) := −[K∞̃η

: Q∞] · logq DA

(
Liemη

(
H1,Betti(G

η, A)
))
. (16.4)

To define the local height of G at a finite place ṽη of K with ṽη|v 6= ∞ we write

mη ◦ ϕηa ◦ (mη)−1 = γ(a) +

r deg a∑

i=1

ϕηa,i τ
i ∈ EndQalg,Fq(Ga,Qalg) = Qalg{τ} with ϕηa,i ∈ Qalg .

for each a ∈ A. We put ordṽη (G) := min

{
e(ṽη|v) · v(ϕηa,i)

qi − 1
: a ∈ A r Fq, 1 ≤ i ≤ r deg a

}
, where e(ṽη|v) is the

ramification index of ṽη in K/Q. The local height of G at ṽη with respect to m is given by

htTag,ṽη(G/K) := −[Fṽη : Fq] · ⌊ordṽη (G)⌋ , (16.5)

where ⌊x⌋ denotes the largest integer n ≤ x, and Fṽη is the residue field of ṽη.
Then the Taguchi height htTag(G/K) of G is defined by taking the sum over all places of K

htTag(G/K) :=
1

[K : Q]
·
(∑

ṽ∤∞

htTag,ṽ(G/K) +
∑

∞̃|∞

htTag,∞̃(G/K)

)
. (16.6)

It does not depend on the isomorphism m.

Remark 16.4. (1) Let K ′ be a finite field extension of K. Let η′ : K ′ →֒ Qalg be a Q-homomorphism and let
η : K →֒ Qalg be its restriction to K. Let ∞̃′η′ and ∞̃η be the corresponding places of K ′ and K, respectively. It

is clear that Liem
(
H1,Betti(G

η′ , A)
)

= Liem
(
H1,Betti(G

η, A)
)
⊂ C∞, and

htTag,∞̃′
η′

(G/K ′) = [K ′∞̃′
η′

: K∞̃η
] · htTag,∞̃η

(G/K).

For places ṽ of K and ṽ′ of K ′ with ṽ′ | ṽ ∤ ∞, one has ordṽ′(G) = e(ṽ′|ṽ)·ordṽ(G), where e(ṽ′|ṽ) is the ramification
index of ṽ′/ṽ. Thus we get

htTag,ṽ′(G/K
′) ≤ [K ′ṽ′ : Kṽ] · htTag,ṽ(G/K).

In particular, assume that G has stable reduction at ṽ, that is, there is an x ∈ Kṽ such that v(xq
i−1ϕηa,i) ≥ 0 for all

i and a, and for every a ∈ Ar Fq there is an i ≥ 1 such that v(xq
i−1ϕηa,i) = 0. Then ordṽ(G) = −e(ṽ|v) · v(x) =

−ṽ(x) is an integer, which implies that htTag,ṽ′(G/K
′) = [K ′ṽ′ : Kṽ] · htTag,ṽ(G/K). In conclusion, we have

htTag(G/K ′) ≤ htTag(G/K), and the equality holds when G has stable reduction everywhere.
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(2) Note that every Drinfeld A-module G over K has potentially stable reduction everywhere by [Dri76, Propo-
sition 7.1]. Define the stable Taguchi height of G as

htstTag(G) := log q · lim
K′/K finite

htTag(G/K ′),

which is always convergent by (1).

(3) Let G and G′ be two Drinfeld A-modules over Qalg which are isomorphic over Qalg. Then

htstTag(G) = htstTag(G′) .

17 The Analog of Colmez’s Conjecture for CM A-Motives

In [HS20] the authors have formulated the analog of Colmez’s conjecture (Section 8) for periods of CM A-motives.
We consider the following

Situation 17.1. Let M be a uniformizable A-motive over a finite extension K ⊂ Qalg of Q with complex
multiplication of CM-type (E, (dψ)ψ∈HE ), in the sense of Definition 15.6 such that E is a product of separable
field extensions of Q and M has complex multiplication by the ring of integers OE of E. As an abbreviation
we denote the CM-Type of M by (E,Φ) with Φ = (dψ)ψ∈HE . Let HE := HomQ(E,Qalg) be the set of all Q-
homomorphisms E →֒ Qalg and assume that K contains ψ(E) for every ψ ∈ HE . By Theorems 15.3 and 15.4 we
may assume moreover, that K is a finite Galois extension of Q and that M has good reduction at every prime of
K. For a fixed ψ ∈ HE let ωψ be a generator of the K[[yψ − ψ(yψ)]]-module Hψ(M,K[[yψ − ψ(yψ)]]). The image
of ωψ in H1

dR(M,K) is non-zero and satisfies a∗ωψ = ψ(a) · ωψ for all a ∈ E. For every embedding η : K →֒ Qalg,

let Mη := M ⊗K,η K and ωηψ ∈ Hηψ(Mη,K[[yηψ − ηψ(yηψ)]]) be deduced from M and ωψ by base extension, and

let uη ∈ H1,Betti(M
η, Q) = HomA

(
H1

Betti(M
η, A), Q

)
be an E-generator. Let v be a place of Q.

If v = ∞ the pairing (13.7) from Theorem 13.18 between Betti and de Rham cohomology gives a pairing

〈 . , . 〉∞ : H1,Betti(M
η, Q) × H1

dR(Mη,K) −→ C∞ , (uη, ω
η
ψ) 7−→ 〈uη, ωηψ〉∞ =:

∫
uη
ωηψ .

We define the absolute value
∣∣∫
uη
ωηψ
∣∣
∞

:= |〈uη, ωηψ〉∞|∞ = q
−v∞(〈uη ,ωηψ〉∞)
∞ ∈ R.

If v ⊂ A is a maximal ideal, the comparison isomorphism hBetti,v from (13.5) in Theorem 13.18 between Betti
and v-adic cohomology together with the comparison isomorphism hv,dR between v-adic and de Rham cohomology
from (14.1) in Theorem 14.12 yield a pairing

〈 . , . 〉v : H1,Betti(M
η, Q) × H1

dR(Mη,K) −→ Cv((zv − ζv)) ,

(uη, ω
η
ψ) 7−→ 〈uη, ωηψ〉v := uη ⊗ idCv((zv−ζv))

(
h−1Betti,v ◦ h−1v,dR(ωηψ)

)
.

We define the absolute value
∣∣∫
uη
ωηψ
∣∣
v

:= |〈uη, ωηψ〉v|v := q
−v(〈uη ,ωηψ〉v)
v ∈ R, where the “valuation” v on Cv((zv −

ζv)) was defined in (14.2) in Definition 14.14.

In analogy with Section 8 we now consider the product
∏
v

∏
η∈HK

∣∣∫
uη
ωηψ
∣∣
v

over all places v of Q, or equivalently

1
#HK

times its logarithm

1
#HK

∑
v

∑
η∈HK

log
∣∣∫
uη
ωηψ
∣∣
v

= 1
#HK

∑
η∈HK

log
∣∣∫
uη
ωηψ
∣∣
∞

− 1
#HK

∑
v 6=∞

∑
η∈HK

v
(∫
uη
ωηψ
)

log qv . (17.1)

Again the right sum over all v 6= ∞ does not converge. Namely, we prove in [HS20, Theorem 1.3] the following
Theorem 17.3 below. To formulate the theorem we recall Definition 8.2. For our CM-type (E,Φ) and for every
ψ ∈ HE we define the functions

aE,ψ,Φ : GQ → Z, g 7→ dgψ and (17.2)

a0E,ψ,Φ : GQ → Q, g 7→ 1
#HK

∑
η∈HK

aE,ηψ,ηΦ(g) = 1
#HK

∑
η∈HK

dη−1gηψ (17.3)

which factor through Gal(K/Q) by our assumption that ψ(E) ⊂ K for all ψ ∈ HE . In particular, aE,ψ,Φ ∈
C(GQ,Q) and a0E,ψ,Φ ∈ C0(GQ,Q) is independent of K.
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We also define integers v(ωηψ) and vηψ(uη) for all v 6= ∞ which are all zero except for finitely many. Let

OEv := OE ⊗A Av and let c ∈ Ev := E ⊗Q Qv be such that c−1uη is an OEv -generator of H1,Betti(M
η, A) ⊗A Av

= H1,v(M
η, Av), which exists because OEv is a product of discrete valuation rings. Then c is unique up to

multiplication by an element of O×

Ev
and we set

vηψ(uη) := v
(
ηψ(c)

)
∈ Q , (17.4)

where we extend ηψ ∈ HE by continuity to ηψ : Ev → Qalg
v .

Also let Kv be the v-adic completion of K ⊂ Qalg ⊂ Qalg
v ⊂ Cv and let Mη = (Mη, τMη ) be an A-motive over

OKv with good reduction and Mη ⊗OKv Kv
∼= Mη ⊗K Kv; see Example 14.6. On H1

dR(Mη,Kv) we consider the

following two integral structures arising from H1
dR(Mη,OKv ) := σ∗Mη ⊗AOKv

, γ⊗idOKv
OKv

H̃ηψ(Mη,OKv) :=
{
ω ∈ H1

dR(Mη,OKv ) : [a]∗ω = ηψ(a) · ω ∀ a ∈ OE

}
and

Hηψ(Mη,OKv) := H1
dR(Mη,OKv)

/
([a]∗ − ηψ(a) : a ∈ OE) · H1

dR(Mη,OKv) .

By [HS21, Lemma 1] (see also the arXiv version of [HS20, Lemma B.1]) these are free OKv -modules of rank one
contained in

Hηψ(Mη,Kv) = H̃ηψ(Mη,OKv ) ⊗OKv Kv = Hηψ(Mη,OKv ) ⊗OKv Kv

and satisfying H̃ηψ(Mη,OKv) ⊂ Hηψ(Mη,OKv ) with Hηψ(Mη,OKv)
/

H̃ηψ(Mη,OKv) ∼= OKv/ηψ(DOE/A), where
DOE/A is the different of OE over A. Then there are elements x̃, x ∈ K×

v , unique up to multiplication by O×

Kv
,

such that

x̃−1ωηψ mod yηψ − ηψ(yηψ) is an OKv -generator of H̃ηψ(Mη,OKv ) and

x−1ωηψ mod yηψ − ηψ(yηψ) is an OKv -generator of H ηψ(Mη,OKv) .

We set

v∼(ωηψ) := v(x̃) ∈ Q and (17.5)

v(ωηψ) := v(x) ∈ Q . (17.6)

Then
v(ωηψ) − v∼(ωηψ) = v

(
ηψ(DOE/A)

)
= v(Dηψ(Ev)/Qv )

by [HS21, Corollary 2] (see also the arXiv version of [HS20, Corollary B.2]), and consequently

∑
η∈HK

v(ωηψ) − v∼(ωηψ) =
∑

η∈HK

v
(
ηψ(DOE/A)

)
= v

( ∏
η∈HK

ηψ(DOE/A)
)

= v
(
NK/Q(Dψ(OE)/A)

)

= v
(
Nψ(E)/Q

(
NK/ψ(E)(Dψ(OE)/A)

))
= [K : ψ(E)] · v(dψ(OE)/A) and

∑
η∈HK

∑
v 6=∞

(
v(ωηψ) − v∼(ωηψ)

)
log qv = [K : ψ(E)] · log #(A/dψ(OE)/A) . (17.7)

These value only depend on the image of ωηψ in H1
dR(Mη,K). They also do not depend on the choice of the model

Mη with good reduction, because all such models are isomorphic over OKv by [Gar03, Proposition 2.13(ii)].

Remark 17.2. In [HS20, Formula (1.13) and Definition 4.10] there is an error in the definition of v(ωηψ). Namely,

there v(ωηψ) is defined to be v∼(ωηψ) as in (17.5). However, in the rest of [HS20] the above definition (17.6) for

v(ωηψ) is used; see [HS21] or the arXiv version of [HS20, Erratum B].

In [HS20, Theorem 1.3] we computed the terms in (17.1) as follows, where we use (17.7) and the logarithmic
derivative Zv of the Artin L-function from (8.3) in Definition 8.2.

Theorem 17.3. Let dψ(OE)/A denote the discriminant of the extension of Dedekind rings ψ(OE)/A. Then for
every v 6= ∞ we have

1
#HK

∑
η∈HK

v(
∫
uη
ωηψ) = Zv(a

0
E,ψ,Φ, 1) − µArt,v(a

0
E,ψ,Φ) − v(dψ(OE)/A)

[ψ(E) : Q]
+ 1

#HK

∑

η∈HK

(
v(ωηψ) + vηψ(uη)

)

= Zv(a
0
E,ψ,Φ, 1) − µArt,v(a

0
E,ψ,Φ) + 1

#HK

∑

η∈HK

(
v∼(ωηψ) + vηψ(uη)

)
.

This formula holds more generally for all tuples of Ev-generators uη ∈ H1,Betti(M
η, Qv) = H1,v(M

η, Qv).
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Since −µArt,v(a
0
E,ψ,Φ) − v(dψ(OE)/A)

[ψ(E) : Q]
+ 1

#HK

∑
η∈HK

(
v(ωηψ) + vηψ(uη)

)
vanishes for all but finitely many places

v and
∑
v 6=∞

Zv(a
0
E,ψ,Φ, 1) diverges, the sum (17.1) diverges. But as in Section 8 we can assign to this divergent

sum a value by the following

Convention 17.4. Let (xv)v 6=∞ be a tuple of complex numbers indexed by the finite places v of Q. We will give

a sense to the (divergent) series Σ
?
=
∑
v 6=∞ xv in the following situation. We suppose that there exists an element

a ∈ C0(GQ,Q) such that xv = −Zv(a, 1) log qv for all v except for finitely many. Then we let a∗ ∈ C0(GQ,Q) be
defined by a∗(g) := a(g−1). We further assume that Z∞(a∗, s) does not have a pole at s = 0, and we define the
limit of the series

∑
v 6=∞ xv as

Σ := −Z∞(a∗, 0) − µ∞Art(a) +
∑

v 6=∞

(
xv + Zv(a, 1) log qv

)
(17.8)

inspired by Weil’s [Wei48, p. 82] functional equation

Z(χ, 1 − s) = −Z(χ∗, s) − (2 · genus(C) − 2)χ(1) log q − µArt(χ)

deprived of the summands at ∞, where the genus term is considered as belonging to ∞.

Convention 17.4, Theorem 17.3 and (17.7) allow us to give to the divergent sum (17.1) the convergent inter-
pretation

− Z∞((a0E,ψ,Φ)∗, 0) +
log #(A/dψ(OE)/A)

[ψ(E) : Q]
+ 1

#HK

∑

η∈HK

(
log
∣∣∫
uη
ωηψ
∣∣
∞

−
∑

v 6=∞

(
v(ωηψ) + vηψ(uη)

)
log qv

)

= −Z∞((a0E,ψ,Φ)∗, 0) + 1
#HK

∑

η∈HK

(
log
∣∣∫
uη
ωηψ
∣∣
∞

−
∑

v 6=∞

(
v∼(ωηψ) + vηψ(uη)

)
log qv

)
. (17.9)

Remark 17.5. The problem arises that formulas (17.1) and (17.9) depend on the choices of the E-generators
uη of H1,Betti(M

η, Q). Namely, multiplying one uη with an element a ∈ E changes these sums by the summand
1

#HK

∑
all v v

(
ηψ(a)

)
log qv, which may be different from zero. On the other hand, if all uη are simultaneously

multiplied with the same a ∈ E then the term 1
#HK

∑
η∈HK

∑
all v v

(
ηψ(a)

)
log qv is added, which is zero by (1.2).

Colmez [Col93] faces the same problem and overcomes it by considering the terms (8.10) instead, which are
independent of the chosen uη. This is not possible for general A-motives, because it relies on the existence of a
Q-automorphism c of Qalg such that the set of integers {dψ, dcψ} does not depend on ψ ∈ HE . In (8.10), c is
complex conjugation and {dψ, dcψ} = {0, 1} for every ψ ∈ HE . These conditions are not satisfied for the more
general CM-types we considered so far for A-motives.

It should also be noted, that it is in general not possible to choose all uη in a compatible way, although
this is possible for the generators ωηψ by pulling back ωψ under η. However, it is possible for A-motives to pull
back the induced Ev-generators uη⊗1 ∈ H1,Betti(M

η, Q)⊗QQv = H1,v(M
η, Qv) under additional automorphisms

η̃ ∈ GQ = Gal(Qsep/Q). Namely, it follows from the definition in (13.2) that applying η̃ yields an OEv -isomorphism

η̃ : H1
v(M

η, Av)
∼−→ H1

v(M η̃η, Av) , m 7→ η̃(m) .

If η̃ = κ ∈ Gal(Qsep/K) then this isomorphism is just ρMη (κ) where ρMη : GQ → AutOEv H1,v(M
η, Av) = O×

Ev
is

the Galois representation. Then η̃(uη ⊗ 1) ∈ H1,v(M
η̃η, Qv) = HomQv (H1

v(M η̃η, Qv), Qv) is defined by requiring

η̃(uη ⊗ 1)
(
η̃(m)

)
= (uη ⊗ 1)(m) for every m ∈ H1

v(Mη, Qv) . (17.10)

η̃(uη ⊗ 1) is an Ev-generator of H1,v(M
η̃η, Qv). If η̃ is replaced by η̃′ = η̃ ◦ κ with κ ∈ Gal(Qsep/K) then

M η̃′η = M η̃η and η̃′(m) = ρMη (κ) · η̃(m), and hence η̃′(uη ⊗ 1) = ρMη (κ)−1 · η̃(uη ⊗ 1) = ρ∨Mη (κ) · η̃(uη ⊗ 1). In

particular, the value vη̃ηψ
(
η̃(uη⊗1)

)
only depends on the image of η̃ in Gal(K/Q) = HK . We abbreviate η̃(uη⊗1)

to uη̃η. Allthough the notation is similar to ωηψ, it is understood, that uη̃η does not exist in H1,Betti(M
η̃η, Q), but

only in H1,Betti(M
η̃η,A∞Q ) =

∏′
v 6=∞H1,v(M

η̃η, Qv) where A∞Q is the adèle ring of Q. Then for every fixed η ∈ HK
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Convention 17.4, Theorem 17.3 and (17.7) yield

log
∣∣∫
uη
ωηψ
∣∣
∞

+ 1
#HK

∑
η̃∈HK

∑
v 6=∞

log
∣∣∫
uη̃η
ωη̃ηψ
∣∣
v

= (17.11)

= log
∣∣∫
uη
ωηψ
∣∣
∞

− Z∞((a0E,ψ,Φ)∗, 0) +
log #(A/dψ(OE)/A)

[ψ(E) : Q]
− 1

#HK

∑

η̃∈HK

∑

v 6=∞

(
v(ωη̃ηψ ) + vη̃ηψ(uη̃η)

)
log qv

= log
∣∣∫
uη
ωηψ
∣∣
∞

− Z∞((a0E,ψ,Φ)∗, 0) − 1
#HK

∑

η̃∈HK

∑

v 6=∞

(
v∼(ωη̃ηψ ) + vη̃ηψ(uη̃η)

)
log qv .

If we restrict to imaginary CM-fields E, which means that E∞ := E ⊗Q Q∞ is still a field and carries a unique
extension of the valuation v∞, then this sum is independent of the choice of the E-generator uη ∈ H1,Betti(M

η, Q).
Indeed, if uη is multiplied with a unit a ∈ E×, then in (17.11) the term

−v∞(ηψ(a)) log q∞ − 1
#HK

∑
η̃∈HK

∑
v 6=∞

v
(
η̃(ηψ(a))

)
log qv = − 1

#HK

∑
η̃∈HK

∑
all v

v
(
η̃(ηψ(a))

)
log qv

is added, which is zero by (1.2). Imaginary CM-fields are particularly relevant for Drinfeld modules, see Theo-
rem 17.8 below. On the other hand, if E has more than one place above ∞, then only the place induced from the
embedding ηψ : E →֒ Qalg

∞ ⊂ C∞ contributes to (17.11), and then this formula is not invariant under changing
uη.

We thus propose to average twice over η, η̃ ∈ HK and make the following

Conjecture 17.6. Let E be a finite imaginary field extension of Q, which means that E∞ := E ⊗Q Q∞ is still
a field. Then the sum

∑
η∈HK

(
log
∣∣∫
uη
ωηψ
∣∣
∞

− Z∞((a0E,ψ,Φ)∗, 0) +
log #(A/dψ(OE)/A)

[ψ(E) : Q]
− 1

#HK

∑
η̃∈HK

∑
v 6=∞

(
v(ωη̃ηψ ) + vη̃ηψ(uη̃η)

)
log qv

)

=
∑

η∈HK

(
log
∣∣∫
uη
ωηψ
∣∣
∞

− Z∞((a0E,ψ,Φ)∗, 0) − 1
#HK

∑
η̃∈HK

∑
v 6=∞

(
v∼(ωη̃ηψ ) + vη̃ηψ(uη̃η)

)
log qv

)
(17.12)

is zero, or equivalently the product formula holds:

∏

η̃,η∈HK

(∣∣∫
uη
ωηψ
∣∣
∞

·
∏

v 6=∞

∣∣∫
uη̃η
ωη̃ηψ
∣∣
v

)
:=

∏

η̃,η∈HK

(∣∣〈uη, ωηψ〉v
∣∣
∞

·
∏

v 6=∞

∣∣〈uη̃η, ωη̃ηψ 〉v
∣∣
v

)
= 1 .

Example 17.7. Similarly to Example 8.5, the convention allows to prove the product formula for the Carlitz
motive C = (C = Fq(θ)[t], τC = t− θ) from Example 9.8 over the field K = Fq(θ) = Q for which HK = {idK}. We
let u ∈ H1,Betti(C, A) be the generator which is dual to ηℓ− ∈ H1

Betti(C, A) and we let ω = 1 ∈ H1
dR(C,C∞). Then

we have computed in Examples 13.19, 14.13 and 14.15 that

〈u, ω〉∞ = η−q
∞∏

i=1

(1 − θ1−q
i

)−1 and log
∣∣〈u, ω〉∞

∣∣
∞

= log(qq/(q−1)) = q
q−1 log q ,

〈u, ω〉v = σ̂∗v (ℓ+v ) and log
∣∣〈u, ω〉v

∣∣
v

= −v
(
σ̂∗v (ℓ+v )

)
log qv = − log qv

qv−1
= −Zv(1l , 1) log qv ,

where 1l(g) = 1 for every g ∈ GQ. Here the CM-field is E = Q, HE = {id} and the CM-type is given by did = 1.

This implies that a0E,id,Φ = 1l. So Convention 17.4 implies
∑

v 6=∞ log |〈u, ω〉v|v = − ζ′A(0)
ζA(0) = − q

q−1 log q for the

Riemann Zeta-function

ζA(s) :=
∏

v 6=∞

(1 − (#Fv)−s)−1 =
∏

v 6=∞

(1 − q−sv )−1 =
1

1 − q1−s
.

We conclude
∑

v log |〈u, ω〉v|v = 0 and
∏
v
|〈u, ω〉v|v = 1.

In Section 18 we will discuss an interesting example where C and Q have genus 1. In the remainder of this
section we focus on CM A-motives which come from Drinfeld modules. As analog of Colmez’s Theorem 8.8 we
have the following
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Theorem 17.8. Let G be a Drinfeld A-module over a finite separable field extension K ⊂ Qalg of Q with complex
multiplication of CM-type (E,Φ) as in Example 15.9, where Φ = (dψ)ψ∈HE with dψ0 = 1 for one ψ0 ∈ HE and
dψ = 0 for all ψ 6= ψ0. Assume that G has complex multiplication by OE and that E is a separable field extension
of Q. Let M = M(G) and choose ωψ0 and uη as in Situation 17.1. Then the stable Taguchi height htstTag(G) of
G satisfies

htstTag(G) = 1
#HK

∑

η∈HK

(
− log

∣∣∫
uη
ωηψ0

∣∣
∞

+ 1
#HK

∑

η̃∈HK

∑

v 6=∞

(
v(ωη̃ηψ0

) + vη̃ηψ0(uη̃η)
)

log qv

)

− log #(A/dOE/A)

[E : Q]
− logDA(OE) (17.13)

= 1
#HK

∑

η∈HK

(
− log

∣∣∫
uη
ωηψ0

∣∣
∞

+ 1
#HK

∑

η̃∈HK

∑

v 6=∞

(
v∼(ωη̃ηψ0

) + vη̃ηψ0(uη̃η)
)

log qv

)
− logDA(OE) .

Proof. 1. Since both sides of the claimed equality (17.13) are invariant under extending the field K, we may
assume that K is Galois over Q and that G has good reduction at every finite place of K. Via the inclusion
K ⊂ Qalg ⊂ Qalg

∞ the restriction of the valuation v∞ on Qalg
∞ to K corresponds to a place ∞̃ of K such that the

completion K∞̃ equals the closure of K in Qalg
∞ . For every η ∈ HK = Gal(K/Q) we denote the image of ∞̃ under

η by ∞̃η. Note that ∞̃η′ = ∞̃η if and only if η′η−1 ∈ Gal(K∞̃/Q∞).

For η ∈ Gal(K/Q), we obtained Gη = (Gη, ϕη),Mη and ωηψ0
∈ Hηψ0(Mη,K[[z − ζ]]) from G = (G,ϕ),M

and ωψ0 in Situation 17.1 by applying η to the coefficients in K. Note that K[[yψ0 − ψ0(yψ0)]] = K[[z − ζ]] by
[HJ20, Lemma 1.3] because E/Q is separable. In addition, we chose E-generators uη ∈ H1,Betti(M

η, Q) and as in
Remark 17.5 we obtain Ev-generators uη̃η ∈ H1,v(M

η̃η, Qv) for every v 6= ∞ and every η̃ ∈ HK . As in Example 15.9

let mη := −(z − ζ)−1 · ωηψ0
∈ qM

η

. The image mη = τMη (mη) of mη in coker τMη = HomK(LieGη,K) provides
an isomorphism

mη : LieGη ∼−→ K .

using (9.5). We can lift mη in a unique way to an element m̃η ∈Mη which is an isomorphism m̃η : Gη ∼−→ Ga,K .

Indeed, if we choose any isomorphism n : Gη ∼−→ Ga,K with n ∈ Mη, then mη = b · Lien for some b ∈ K×, and

we may take m̃η := b · n. In particular, m̃η is obtained from m̃ := m̃id : G ∼−→ Ga,K by pull back under η. We
recall the E-equivariant isomorphism for Betti-homology from Proposition 13.11

H1,Betti(M
η, A) ⊗A Ω1

A/Fq
∼−→ H1,Betti(G

η, A) . (17.14)

We tensor it to Q and observe that Ω1
A/Fq

⊗A Q = Ω1
Q/Fq

= Qdz; see Remark 13.10. Under the isomorphism

(17.14) we consider the element λη := uη dz ∈ H1,Betti(G
η, Q). We may multiply uη by an element a ∈ A such

that we can assume uη ∈ H1,Betti(M
η, A) and λη ∈ H1,Betti(G

η, A). Since c ∈ E acts on LieGη as multiplication
with ηψ0(c), Theorem 13.20 implies for every c ∈ E

∣∣∫
cuη

ωηψ0

∣∣
∞

=
∣∣〈cuη, ωηψ0

〉∞
∣∣
∞

=
∣∣mη(cλη)

∣∣
∞

=
∣∣ηψ0(c)

∣∣
∞

·
∣∣mη(λη)

∣∣
∞
.

2. We want to compute htTag,∞̃η
(G/K) as in Equations (16.4) and (16.3). From [Gos96, Proposition 4.7.17] we

know that E∞ := E⊗QQ∞ is still a field, that is E/Q is imaginary in the sense of Example 16.2 and Remark 17.5.
For every η ∈ HE we consider the Q∞-homomorphism ηψ0 ⊗ idQ∞ : E∞ → K∞̃ ⊂ Qalg

∞ which is hence injective.
Therefore, the restriction to E∞ of the valuation v∞ on Qalg

∞ is the unique valuation on E∞ extending v∞ on
Q∞. It is thus independent of η. By [Ser79, § I.4, Proposition 10] and [BGR84, § 3.6.2, Proposition 5] there are
elements c1, . . . , cr ∈ E such that E = ⊕ri=1Q · ci and

∣∣∣
∑

i

ai · ηψ0(ci)
∣∣∣
∞

= max
{ ∣∣ai · ηψ0(ci)

∣∣
∞

}
(17.15)

for every tuple a1, . . . , ar ∈ Q∞. Under the isomorphism (17.14) we consider the elements λη,i := ci · λη =
ci ·uη dz ∈ H1,Betti(G

η, Q). Then H1,Betti(G
η, Q) =

∑r
i=1Q ·λη,i, because uη is an E-generator of H1(Mη, Q). We

will check whether the tuple mη(λη,1), . . . ,mη(λη,r) is orthogonal in the sense of Definition 16.1 for the A-lattice

Λ(Gη) := mη
(
H1,Betti(G

η, A)
)

⊂ mη(LieGη ⊗K C∞) = C∞ .
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For a1, . . . , ar ∈ Q∞ equation (17.15) implies
∣∣∣
∑

i

aim
η(λη,i)

∣∣∣
∞

=
∣∣∣
∑

i

ai · ηψ0(ci) ·mη(λη)
∣∣∣
∞

=
∣∣∣
∑

i

ai · ηψ0(ci)
∣∣∣
∞

·
∣∣mη(λη)

∣∣
∞

= max
{ ∣∣aimη(λη,i)

∣∣
∞

}
.

By multiplying all ci by the same element a ∈ A with v∞(a) ≪ 0, we may assume that ci ∈ OE for all i and
that conditions (a), (b) and (c) from Definition 16.1 are satisfied for mη(λη,i). We observe that

(∑r
i=1Aci

)
λη ⊂

OE λη ⊂ H1,Betti(G
η, A), and hence

#

(
H1,Betti(G

η, A)(∑r
i=1 Aci

)
λη

)
= #

(
H1,Betti(G

η, A)

OE λη

)
· #

( OE λη(∑r
i=1 Aci

)
λη

)

= #

(
H1,Betti(G

η, A)

OE λη

)
· #

( OE∑r
i=1 Aci

)
.

Then

htTag,∞̃η
(G/K)

−[K∞̃η
: Q∞]

= logqDA

(
mη
(
H1,Betti(G

η, A)
))

= logq

( ∏
1≤i≤r |mη(λη,i)|∞

#
(
Λ(Gη)

/
(A ·mη(λη,1) + · · · +A ·mη(λη,r))

)
)1/r

= logq

( ∏
1≤i≤r

∣∣ηψ0(ci)
∣∣
∞

·
∣∣ ∫
uη
ωηψ0

∣∣
∞

#
(

H1,Betti(G
η, A)

/
(
∑r

i=1 Aci)λη
)
)1/r

= logq
∣∣∫
uη
ωηψ0

∣∣
∞

− logq #

(
H1,Betti(G

η, A)

OE λη

)1/r

+ logq

(∏
1≤i≤r

∣∣ηψ0(ci)
∣∣
∞

#
(
OE

/∑r
i=1Aci

)
)1/r

= logq
∣∣∫
uη
ωηψ0

∣∣
∞

− 1

r
logq #

(
H1,Betti(G

η, A)

OE λη

)
+ logqDA(OE) , (17.16)

where the last equation is the definition of DA(OE) from Example 16.2. In particular, this formula holds equally
for all η′ ∈ HK with ∞̃η′ = ∞̃η of K, that is for all η′ ∈ Gal(K∞̃η

/Q∞) · η.

3. We compute further

H1,Betti(G
η, A)

/
OE λη =

∏

v 6=∞

(
H1,Betti(G

η, A)
/
OE λη

)
⊗A Av =

∏

v 6=∞

H1,Betti(G
η, Av)

/
OEv λη .

Under the isomorphism (17.14), tensored to Av we have

OEv λη
�

�

// H1,Betti(G
η, Av)

OEv uη ⊗Av Av dz oo //❴❴❴❴

∼=

OO

OEv uη ⊗A Ω1
A/Fq

⊂ H1,Betti(M
η, Av) ⊗A Ω1

A/Fq
,

∼=

OO

where the dashed arrow in the lower left corner comes from a comparison of Av-modules of rank one, which is an
inclusion Av dz ⊂ Ω1

A/Fq
⊗A Av or Av dz ⊃ Ω1

A/Fq
⊗A Av and even an equality for almost all v. Therefore,

logq #
(
H1,Betti(G

η, Av)
/
OEv λη

)
= r ordv(dz) · [Fv : Fq] + logq #

(
H1,Betti(M

η, Av)
/
OEv uη

)
.

Here the factor r = rkAv OEv comes from the tensor product with OEv uη, and ordv(dz) is the order at v of the
rational section dz of the line bundle Ω1

C/Fq
. That is, if Av dz ⊂ Ω1

A/Fq
⊗AAv then logq #

(
Ω1
A/Fq

⊗AAv
/
Av dz

)
=

[Fv : Fq] ordv(dz). Adding over all places v 6= ∞ we obtain

logq #
(
H1,Betti(G

η, A)
/
OE λη

)
=
∑

v 6=∞

(
r ordv(dz) · [Fv : Fq] + logq #

(
H1,Betti(M

η, Av)
/
OEv uη

))
. (17.17)

44



4. We now fix a place v 6= ∞ and let eη ∈ Ev := E⊗QQv such that e−1η uη is an OEv -generator of H1,Betti(M
η, Av) =

H1,v(M
η, Av). Then OEv/eηOEv

∼−→ H1,Betti(M
η, Av)

/
OEv uη under a 7→ a e−1η uη. By the definition of uη̃η in

(17.10) also e−1η uη̃η is an OEv -generator of H1,v(M η̃η, Av). This means

vη̃ηψ0(uη̃η) := v
(
η̃ηψ0(eη)

)
.

The Qv-algebra Ev decomposes into a product of fields Ev =
∏
iEv,i. To compute the cardinality of OEv/eηOEv =∏

iOEv,i/eηOEv,i , note that each OEv,i/eηOEv,i is an Fv-vector space. We denote its dimension by ni. Let Kv

be the closure in Cv of K ⊂ Qalg ⊂ Qalg
v ⊂ Cv, let OKv be its valuation ring and kv its residue field. For every

Qv-homomorphism ψ̃i ∈ HEv,i := HomQv (Ev,i, Q
alg
v ) the Fv-vector space

(
OEv.i/eηOEv,i

)
⊗OEv,i , ψ̃i OKv = OKv

/
ψ̃i(eη)OKv

has dimension ni · [Kv : ψ̃i(Ev,i)], because OKv is free over OEv,i of rank [Kv : ψ̃i(Ev,i)]. This dimension is equal

to [kv : Fv] · ordKv (ψ̃i(eη)) = [Kv : Qv] · v(ψ̃i(eη)). We conclude that

ni := dimFv

(
OEv.i/eηOEv,i

)
=

[Kv : Qv]

[Kv : ψ̃i(Ev,i)]
· v(ψ̃i(eη)) = [Ev,i : Qv] · v(ψ̃i(eη))

and logq #
(

H1,Betti(M
η, Av)

/
OEv uη

)
=
∑

i

ni · [Fv : Fq] .

We now consider the following maps

HK
// // HE

∼ // HomQv (Ev, Q
alg
v )

η̃ ✤ // η̃ηψ0 =: ψ̃
✤ // ψ̃ ⊗ idQv

The set HomQv (Ev, Q
alg
v ) is equal to

∐
iHEv,i , because every ψ̃ ⊗ idQv factors in a unique way

ψ̃ ⊗ idQv : Ev
∏
i Ev,i

$$ $$■
■■

■■
■

// Qalg
v

Ev,i(ψ̃)

-




ψ̃i := (ψ̃ ⊗ idQv )|E
v,i(ψ̃)

<<②②②②②

(17.18)

for an index i(ψ̃). The number of elements η̃ ∈ HK which are mapped to the same ψ̃ := η̃ηψ0 ∈ HE equals

# Gal(K/ηψ0(E)) = [K : ηψ0(E)] = [K:Q]
[E:Q] , and the number of η̃ ∈ HK which are mapped into the set HEv,i

equals

#HEv,i · [K:Q]
[E:Q] = [Ev,i : Qv] · [K:Q]

[E:Q] . (17.19)

For each of the latter η̃ the valuation v(η̃ηψ0(eη)) = v(ψ̃i(eη)) = ni
[Ev,i:Qv ]

is the same. This implies

1
#HK

∑

η̃∈HK

vη̃ηψ0(uη̃η) · [Fv : Fq] = 1
#HK

∑

η̃∈HK

v(η̃ηψ0(eη)) · [Fv : Fq]

= [K:Q]
#HK

∑

i

ni
[Ev,i : Qv]

· [Ev,i : Qv]

[E : Q]
· [Fv : Fq]

=
1

r
logq #

(
H1,Betti(M

η, Av)
/
OEv uη

)
. (17.20)

Putting equations (17.16), (17.17) and (17.20) together we can compute

htTag,∞̃η
(G/K)

[K∞̃η
: Q∞]

= − logq
∣∣∫
uη
ωηψ0

∣∣
∞

+ 1
#HK

∑
η̃∈HK

∑
v 6=∞

(
ordv(dz) + vη̃ηψ0(uη̃η)

)
[Fv : Fq] − logq DA(OE) . (17.21)
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5. Now we take a finite place ṽη of K and let v 6= ∞ be the place of Q with ṽη|v. We choose an η ∈ HK such
that ṽη is the place induced from v via η : K →֒ Qalg ⊂ Qalg

v ⊂ Cv and view Gη as a Drinfeld module over Cv.
We use the isomorphism m̃η from Step 1 above to write

m̃η ◦ ϕηa ◦ (m̃η)−1 = γ(a) +

r deg a∑

i=1

ϕηa,i τ
i ∈ EndCv ,Fq(Ga,Cv) = Cv{τ} with ϕηa,i ∈ Cv .

Since G has good reduction at ṽη there exists an element xη ∈ K×

ṽη
such that

xηm̃
η ◦ ϕηa ◦ (m̃η)−1x−1η = γ(a) +

r deg a∑

i=1

ϕηa,i · x1−q
i

η τ i ∈ OCv{τ} and ϕηa, r deg a · x1−q
r deg a

η ∈ O×

Cv
.

We have
e(ṽη|v) · v(ϕηa,i)

qi − 1
=
e(ṽη|v) · v(ϕηa,i · x1−q

i

η )

qi − 1
+ e(ṽη|v) · v(xη). Note that

e(ṽη|v) · v(ϕηa,i · x1−q
i

η )

qi − 1
≥ 0 for all

i and equal to 0 for i = r deg a. So

ordṽη (G) := min

{
e(ṽη|v) · v(ϕηa,i)

qi − 1
: a ∈ Ar Fq, 1 ≤ i ≤ r deg a

}
= e(ṽη|v) · v(xη) ∈ Z .

Then
htTag,ṽη (G/K) := −[Fṽη : Fq] · e(ṽη|v) · v(xη) = −[Kṽη : Qv] · v(xη) · [Fv : Fq] . (17.22)

It remains to relate v(xη) to v(ωηψ0
). For this let Gη be the good model of Gη over OCv and let Mη be the

A-motive of Gη. The latter is the good model of Mη over OCv . Then xηm̃
η extends to a coordinate system

xηm̃
η : Gη ∼−→ Ga,OCv

over OCv of Gη and induces an isomorphism

EndOCv ,Fq (Ga,OCv
) = OCv{τ} ∼−→ Mη := HomOCv ,Fq(G

η,Ga,OCv
) , f 7−→ f ◦ xηm̃η .

This implies that xηm
η generates the OCv -module coker τMη . Next let w = wη be the place of E which is induced

from the place ṽη of K under the embedding ψ0 : E →֒ K. Then wη is induced from the valuation v on Cv under
the embedding ηψ0 : E →֒ Cv and lies above the place v of Q. Let yw ∈ OE be an element which is a uniformizing
parameter at w, that is, which satisfies w(yw) = 1. Set θw := ηψ0(yw) ∈ OCv . We use the isomorphism induced
from τMη

(yw − θw)−1 Hηψ0(Mη,Cv[[yw − θw]])
/

Hηψ0(Mη,Cv[[yw − θw]]) ∼−→ qM
η

/pM
η ∼−→
τMη

coker τMη .

In the source of this isomorphism the elements xηm
η and τ−1Mη (xηm̃

η) are equal, because both have the same
image xηm

η in the target coker τMη . Therefore, xηm
η is a generator of the canonical OCv -module structure on

the source induced from Mη. Multiplication with yw − θw maps this OCv -structure isomorphically onto the OCv -
module Hηψ0(Mη,OCv ), which is hence generated by (yw − θw)xηm

η. On the other hand, after multiplication
with −(z − ζ) mod (z − ζ)2 we obtain xηω

η
ψ0

= −(z − ζ)xηm
η in

Hηψ0(Mη,Cv) = Hηψ0(Mη,Cv[[yw − θw]])
/

(yw − θw) Hηψ0(Mη,Cv[[yw − θw]]) .

All these are one dimensional Cv-vector spaces. Note that yw − θw and z − ζ are not equal. Namely, if we write
I := ker

(
OE ⊗Fq OE → OE , a⊗ a′ 7→ aa′

)
= (a⊗ 1 − 1 ⊗ a : a ∈ OE), the element (z − ζ) mod (z − ζ)2 of Cv is

the image of dz := (z ⊗ 1 − 1 ⊗ z) mod I2 ∈ Ω1
OE/Fq

:= I/I2 under the OE-homomorphism

Ω1
OE/Fq

−→ Ω1
OE/Fq

⊗
OE⊗OE/I, idOE

⊗ηψ0

(OE ⊗Fq Cv)/(a⊗ 1 − 1 ⊗ ηψ0(a) : a ∈ OE) = Ω1
OE/Fq

⊗
OE , ηψ0

Cv .

On the other hand, yw− θw is the image of dyw := (yw⊗ 1− 1⊗ yw) mod I2 and is a generator of the OCv -module
Ω1
OE/Fq

⊗OE, ηψ0 OCv . Therefore, xη
yw−θw
z−ζ · ωηψ0

is an OCv -generator of Hηψ0(Mη,OCv ), and hence

v(ωηψ0
) = v

(
x−1η

z−ζ
yw−θw

)
= v

(
x−1η · ηψ0( dz

dyw
)
)

= −v(xη) +
ordwη(dz)

e(wη|v)
,
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where again ordwη (dz) ∈ Z is the order at wη of the rational section dz of the line bundle Ω1
OE/Fq

. From (17.22)

we obtain for the local Taguchi height at ṽη

htTag,ṽη (G/K)

[Kṽη : Qv]
= −v(xη) · [Fv : Fq] = v(ωηψ0

) · [Fv : Fq] −
ordwη (dz) · [Fwη : Fq]

[Ewη : Qv]
. (17.23)

6. The summand on the right is related to the different DOE/A. Namely, by [Ser79, § III.7, Proposition 14] the
OE-module of relative differentials Ω1

OE/A
is generated by one element and is isomorphic to OE/DOE/A. This

gives rise to the exact sequence [EGA, 0IV, Théorème 0.20.5.7]

0 // Ω1
A/Fq

⊗A OE
// Ω1
OE/Fq

// OE/DOE/A
// 0 .

There is an element 0 6= a ∈ A with a dz ∈ Ω1
A/Fq

. Dividing out OE · a dz yields the exact sequence

0 //
(
Ω1
A/Fq

⊗A OE

)/
OE · a dz // Ω1

OE/Fq

/
OE · a dz // OE/DOE/A

// 0 .

Counting elements, and denoting the places of E by w and their residue fields by Fw, we obtain

∏

w∤∞

(#Fw)ordw(a dz) = #
(
Ω1
OE/Fq

/
OE · a dz

)

= #
(
OE/DOE/A

)
· #
(
(Ω1

A/Fq
/A · a dz) ⊗A OE

)

= #
(
OE/DOE/A

)
· #
(
Ω1
A/Fq

/A · a dz
)[OE :A]

= #
(
OE/DOE/A

)
·
( ∏

v 6=∞

(#Fv)ordv(a dz)
)r
.

We observe ordw(a dz) = w(a) + ordw(dz) and that for every place v 6= ∞ of Q

∏

w|v

(#Fw)w(a) =
∏

w|v

(#Fv)
[Fw:Fv]·e(w|v)·v(a) = (#Fv)

∑
w|v [Fw:Fv]·e(w|v)·v(a) = (#Fv)

r·v(a).

Taking logq this yields

∑

w∤∞

[Fw : Fq] · ordw(dz) − r ·
∑

v 6=∞

[Fv : Fq] · ordv(dz) = logq #
(
OE/DOE/A

)
= logq #

(
A/dOE/A) , (17.24)

where dOE/A = NE/Q(DOE/A) is the discriminant of OE over A, and the last equality comes from the fact that
for all maximal ideals P ⊂ OE and p := A ∩P ⊂ A with residue fields FP, respectively Fp, and for every n ∈ N
we have NE/Q(Pn) = p[FP:Fp]n and #(OE/P

n) = #(FP)n = (#Fp)[FP:Fp]n = #
(
A/NE/Q(Pn)

)
.

7. Fix a place w of E above v. In terms of the decomposition Ev := E⊗QQv =
∏
i Ev,i from diagram (17.18) the

completion Ew of E at w equals Ev,i for some i and the number of η ∈ HK which give rise to the same wη = w
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equals [Ew : Qv] · [K:Q]
[E:Q] by (17.19). This together with (17.23), (17.21) and (17.24) finally implies

htstTag(G) =
log q

[K : Q]
·
(∑

ṽ∤∞

htTag,ṽ(G/K) +
∑

∞̃|∞

htTag,∞̃(G/K)
)

=
log q

[K : Q]
·
∑

η∈HK

(∑

v 6=∞

htTag,ṽη (G/K)

[Kṽη : Qv]
+
htTag,∞̃η

(G/K)

[K∞̃η
: Q∞]

)

=
log q

[K : Q]
·
∑

η∈HK

(∑

v 6=∞

(
v(ωηψ0

) · [Fv : Fq] −
ordwη (dz) · [Fwη : Fq]

[Ewη : Qv]

)

− logq
∣∣∫
uη
ωηψ0

∣∣
∞

+ 1
#HK

∑
η̃∈HK

∑
v 6=∞

(
ordv(dz) + vη̃ηψ0(uη̃η)

)
[Fv : Fq] − logq DA(OE)

)

= 1
#HK

∑

η∈HK

(
− log

∣∣∫
uη
ωηψ0

∣∣
∞

+ 1
#HK

∑

η̃∈HK

∑

v 6=∞

(
v(ωη̃ηψ0

) + vη̃ηψ0(uη̃η)
)

log qv

)
− logDA(OE)

+
log q

[K : Q]
·
(
− [K : Q]

[E : Q]

∑

w∤∞

[Fw : Fq] · ordw(dz) + [K : Q]
∑

v 6=∞

[Fv : Fq] · ordv(dz)
)

= 1
#HK

∑

η∈HK

(
− log

∣∣∫
uη
ωηψ0

∣∣
∞

+ 1
#HK

∑

η̃∈HK

∑

v 6=∞

(
v(ωη̃ηψ0

) + vη̃ηψ0(uη̃η)
)

log qv

)

− log #(A/dOE/A)

[E : Q]
− logDA(OE)

which finishes the proof.

Remark 17.9. For a Drinfeld module G of rank r over a finite Galois extension K/Q with CM by OE for a
separable field extension E/Q with CM type as in Theorem 17.8, the functions from (17.2) and (17.3) are

aE,ψ0,Φ(g) =

{
1 if g ∈ Gal(K/ψ0(E))
0 else

}
= 1lGal(K/ψ0E)(g) and

a0E,ψ0,Φ(g) = 1
#HK

∑
η∈HK

1lGal(K/ηψ0E)(g) =
(

1
r · Ind

Gal(K/Q)
Gal(K/ψ0E) 1lGal(K/ψ0E)

)
(g) ,

where 1lGal(K/ηψ0E) is the characteristic function of the subset Gal(K/ηψ0(E)) ⊂ Gal(K/Q) and Ind denotes the
induction of characters; see [Cas67, Chapter VIII, § 3, Property (V), page 222]. Then (a0E,ψ0,Φ

)∗ = a0E,ψ0,Φ
and

[Cas67, loc. cit.] implies

L∞
(
(a0E,ψ0,Φ)∗, s,K/Q

)r
= L∞(Ind

Gal(K/Q)
Gal(K/ψ0E) 1lGal(K/ψ0E), s,K/Q)

= L∞(1lGal(K/ψ0E), s,K/ψ0E)

= ζOE (s) ,

and hence

r · Z∞
(
(a0E,ψ0,Φ)∗, 0

)
=

ζ′OE (0)

ζOE (0)
.

If ∞ is tamely ramified in E/Q then Example 16.2 and [HS20, Lemma 5.17 and Proposition 5.18] imply that

logDA(OE) =
log #(A/dOE/A)

2r
=

1

2
· µ∞Art(a

0
E,ψ0,Φ) ,

where µ∞Art was defined in (8.5). This puts Theorem 17.8 in a form analogous to Colmez’s Theorem 8.8.

Thus to establish the product formula in Conjecture 17.6 for a CM Drinfeld A-module G it suffices to relate
the Taguchi height of G to the logarithmic derivative of the Zeta-function ζOE . This was achieved by Fu-Tsun
Wei [Wei20]:

Theorem 17.10 ([Wei20, Theorem 1.6]). In Situation 17.1 let M = M(G) for a Drinfeld A-module G of rank r
with complex multiplication by OE over K which has everywhere good reduction. Then the stable Taguchi height
(Definition 16.3) satisfies

htstTag(G) = −1

r
·
ζ′OE (0)

ζOE (0)
− logDA(OE)
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Theorems 17.10 and 17.8 and Remark 17.9 imply the following

Corollary 17.11. The product formula from Conjecture 17.6 holds for CM Drinfeld A-modules.

In [Wei20] Theorem 17.10 follows from the function field analogs of Kronecker’s limit theorem and Lerch’s
formula (1.3). In that sense, Wei’s theorem can be viewed as the analog of Colmez’s Theorem 8.10 in the abelian
case. Analogously to Remark 8.12, it would be interesting to describe, also in the function field case, the relation
on the one hand between the Kronecker limit and the Lerch-type formulas in [Wei20], and on the other hand
Gross-Zagier formulas like the ones proved by Yun, Wei Zhang, Howard and Shnidman [YZ17, YZ19, HS19] for
the intersection numbers of Heegner cycles on moduli spaces of global PGL2-shtukas.

In the direction of the André-Oort conjecture over function fields there is the following analog of Theorem 8.14
by Breuer and Hubschmid.

Theorem 17.12. The André-Oort-Conjecture holds for irreducible closed subvarieties X in Drinfeld modular
varieties M in the following cases:

(a) [Bre07] M is a product of Drinfeld modular curves which parameterize Drinfeld A-modules of rank 2.

(b) [Bre12] M is a Drinfeld modular variety parameterizing Drinfeld A-modules of rank r and X is a curve.

(c) [Hub13] M is a Drinfeld modular variety parameterizing Drinfeld A-modules of rank r such that (q, r) = 1.

That is, in both cases X ⊂M is a special subvariety if and only if it contains a dense set of CM points.

Like in Theorem 8.14 one crucial ingredient is to show that the Galois orbit of a special point, that is a CM
Drinfeld module, is large. This is done by following the strategy of Edixhoven [EMO01, Edi05], who proved
cases of the original André-Oort-Conjecture for Shimura varieties conditionally under assuming the generalized
Riemann Hypothesis. Over function fields various zeta functions are known to satisfy the Riemann Hypothesis by
Deligne [Del74]. So this approach to the André-Oort-Conjecture over function fields can become unconditional.
One the other hand, Conjecture 17.6 might also imply lower bounds for Galois orbits once it is related to heights
of A-motives.

18 Example

We give an example for Conjecture 17.6 in case of an A-motive M of rank 1 where the curve C has genus 1.
In this case, Conjecture 17.6 follows from Theorem 17.10. This example was studied in detail by Green and
Papanikolas [GP16]. It is a beautiful exercise in computing with elliptic curves.

18.1. Let C be an elliptic curve over Fq, given by the (non-homogeneous) Weierstraß equation

F := F (t, y) := y2 + a1ty + a3y − t3 − a2t
2 − a4t− a6, with ai ∈ Fq,

in the variables t = X
Z and y = Y

Z , compare (2.1). Let ∞ ∈ V(Z3 · F ) ⊂ P2
Fq

be the Fq-rational point with

(X : Y : Z) = (0 : 1 : 0) at which t and y have pole order given by

v∞(t) = −2, v∞(y) = −3 .

We have A = Γ(C r {∞},OC) = Fq[t, y]/(F (t, y)). For any field extension L of Fq there is exactly one point ∞L

on CL above ∞, because ∞ is Fq-rational. To shorten the notation we sometimes denote the point ∞L again by
∞.

We consider a second copy of the ring A given by Fq[θ, ε]/(F (θ, ε)) in the variables θ and ε, and its fraction
field Fq(θ, ε). This is the function field of a second copy of the elliptic curve C, which we denote by X0 and which
has coordinates θ and ε. That is Fq(θ, ε) = Fq(X0). Let γ : A→ Fq(θ, ε) be given by γ(t) = θ and γ(y) = ε. This

makes Fq(θ, ε) into an A-field. We use the isomorphism γ : Q ∼−→ Fq(θ, ε) to embed Fq(θ, ε) canonically into Cv
for all places v of Q. We note that

Ξ = V(t− θ, y − ε) = V(J ) for the ideal J := (a⊗ 1 − 1 ⊗ γ(a) : a ∈ A) = (t− θ, y − ε)

is an Fq(θ, ε)-rational point of C. Furthermore, Ξ ∈ C
(
Fq(θ, ε)

)
⊂ C(C∞) specializes to ∞ ∈ C(κ∞) under the

reduction map red : C(C∞) → C(κ∞) from (13.1). Recall the rigid analytic space C := CC∞ = (CC∞)rig and the
disc D ⊂ C, which is defined in Notation 13.1 as the preimage in C = C(C∞) of ∞ ∈ C(κ∞). This disc D is the
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formal group of the elliptic curve CC∞ over C∞, see [Sil86, Example IV.3.1.3], where this formal group is denoted
Ĉ(m∞) for the maximal ideal m∞ ⊂ OC∞ .

For any field extension L of Fq the relative q-Frobenius isogeny Frq,CL/L : CL → CL of CL over L is given on
SpecAL ⊂ CL by the L-homomorphism Fr∗q,CL/L : AL → AL, t 7→ tq, y 7→ yq. For any point P ∈ CL(L) we denote

by P (1) := Frq,CL/L(P ) ∈ CL(L) the image of P . The composition σ ◦Frq,CL/L = Frq,CL/L ◦σ with the morphism
σ : CL → CL from (9.1) equals the absolute q-Frobenius on CL, which is the identity on points and the q-power
map on the structure sheaf. For example, the morphism Frq,C/Fq sends Ξ to Ξ(1) = Frq,C/Fq (Ξ) = V(t−θq, y−εq).

The isogeny 1 − Frq,C/Fq : C → C is separable by [Sil86, Corollary III.5.5] and it induces an isomorphism of

formal groups 1 − Frq,C/Fq : Ĉ(m∞) → Ĉ(m∞) by [Sil86, Corollary IV.4.3 and Lemma IV.2.4]. Therefore, we can

pick a unique point V ∈ Ĉ(m∞) = D ⊂ C(C∞) so that under the group law of C

(1 − Frq,C/Fq )(V ) = V − V (1) = Ξ, (18.1)

and moreover, (1 − Frq,C/Fq )
−1(Ξ) = {V + P | P ∈ C(Fq)}.

If we set V = V(t − α, y − β) with α, β ∈ C∞ then K := Fq(θ, ε)(α, β) = Fq(α, β) ⊂ C∞ is the Hilbert class
field of Fq(θ, ε) by [GP16, Proposition 3.3]. We view K as the function field of a third copy of the elliptic curve C,
which we denote by X1 and which has coordinates α and β. The inclusion of fields Fq(θ, ε) ⊂ K corresponds to a
morphism X1 → X0 which is equal to the morphism 1−Frq,C/Fq : C → C under the identifications X1 = C = X0.
In particular, the set X1(Fq) equals the preimage of ∞ = (0 : 1 : 0) ∈ X0 under this map. This set consists
of the points with α, β ∈ Fq together with the point P = ∞1 ∈ X1 where α and β have poles of order 2 and 3
respectively. It follows that X1 rX1(Fq) = SpecOK for the integral closure OK of A in K.

18.2. Now by (18.1) and the definition of the group law on C, see [Sil86, § III.2], the K-valued points V (1) =
V(t− αq, y − βq) and −V = V(t− α, y + β + a1α+ a3) and Ξ in C(K) are collinear. We take m to be the slope
of the line connecting them:

m =
ε− βq

θ − αq
=

ε+ β + a1α+ a3
θ − α

=
βq + β + a1α+ a3

αq − α
∈ K. (18.2)

With respect to the valuation v∞ on K ⊂ C∞ we compute v∞(θ) = v∞(α) = −2 and v∞(ε) = v∞(β) = −3, and

hence obtain v∞(m) = v∞( ε−β
q

θ−αq ) = −q. We extend this to the following

Lemma 18.3. Let P ∈ X1 be a closed point. Then the element m ∈ K has a pole at P if and only if P ∈
X1(Fq) = X1 r SpecOK . In particular, m ∈ OK . Moreover, for the normalized valuation vP corresponding to P
we have

vP (m) =

{
−1 when P ∈ X1(Fq), P 6= ∞1 ,

−q when P = ∞1 .

Proof. This can be proved by computing a uniformizing parameter at P , but we use the following different strategy.
The element m ∈ K was defined as the slope of the line through V (1), −V and Ξ. This also holds over X1 for the
canonical extensions of V (1), −V and Ξ to X1-valued points of C ×Fq X1. We now specialize to the residue field
L := κ(P ) of P . If m(P ) = ∞, that is 1

m (P ) = 0 then on the elliptic curve CL := C ×Fq SpecL the line through

V (1), −V and Ξ contains the neutral element ∞L, so V (1) = ∞L or −V = ∞L or Ξ = ∞L. If V (1) = ∞L or
−V = ∞L then V = ∞L, because ∞L = −∞L and this is the only point in Fr−1q,CL/L(∞L). From V = V(t−α, y−β)

it follows that P = ∞1 ∈ X1(Fq). In this case vP (θ) = vP (α) = −2 and vP (ε) = vP (β) = −3, and we obtain

vP (m) = vP ( ε−β
q

θ−αq ) = −q as above. If ∞L = Ξ = V − V (1) and V 6= ∞L, then V (1) = V = V(t − α, y − β)
lies in C(Fq). Thus α, β ∈ Fq and P ∈ X1(Fq). In this case vP (α), vP (β) ≥ 0, and Ξ = V(t − θ, y − ε) = ∞L

implies vP (θ) = −2 and vP (ε) = −3. We obtain vP (m) = vP ( ε−β
q

θ−αq ) = −1. Conversely, if P ∈ X1(Fq), then

V = V(t−α, y− β) ∈ C(Fq) and Ξ = V −V (1) = V −V = ∞L and so the line through V (1), −V and Ξ has slope
m = ∞.

18.4. By (18.1) and [Sil86, Corollary III.3.5] the divisor [V (1)] − [V ] + [Ξ] − [∞] on CK is principal. So there is
a function f ∈ K(t, y) = Quot(AK), called the shtuka function for A with

div(f) = [V (1)] − [V ] + [Ξ] − [∞] . (18.3)

The shtuka function f can be written as

f =
ν(t, y)

δ(t)
=

y − ε−m(t− θ)

t− α
=

y + β + a1α+ a3 −m(t− α)

t− α
=

y + β + a1α+ a3
t− α

−m, (18.4)
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for

ν := ν(t, y) := y − ε−m · (t− θ) ∈ OK [t, y] and δ := δ(t) := t− α ∈ OK [t, y],

with divisors on CK given by

div(ν) = [V (1)] + [−V ] + [Ξ] − 3[∞] and div(δ) = [V ] + [−V ] − 2[∞]. (18.5)

The formulas (18.3) and (18.5) also hold for the Cartier divisors of f , ν and δ on the two dimensional scheme
COK := C ×Fq SpecOK , because ν and δ do not vanish on an entire fiber of COK over a closed point of SpecOK .
Here we consider the OK-valued points ∞ := V(1t ,

t
y ) = {∞} ×Fq SpecOK and V = V(t − α, y − β) and

Ξ = V(t− θ, y − ε), etc. as Cartier divisors on COK .

18.5. We consider the invertible sheaf OCK ([V ]) on CK with

Γ(SpecAK ,OCK ([V ])) =
{
x ∈ Quot(AK) : ordP (x) ≥ 0 ∀P ∈ CK r {V,∞} and ordV (x) ≥ −1

}

=
{
x ∈ Quot(AK) : ordP (x) ≥ 0 ∀P 6= V,∞ and (t− α)x, (y − β)x ∈ AK

}
.

Then we compute Γ(SpecAK , σ
∗OCK ([V ])) as the AK-module

{
x⊗ b ∈ Quot(AK) ⊗AK ,σ∗ AK : ordP (x) ≥ 0 ∀P 6= V,∞ and (t− α)x, (y − β)x ∈ AK

}

=
{
x⊗ b ∈ Quot(AK) ⊗AK ,σ∗ AK : ordP (x) ≥ 0 ∀P 6= V,∞ and x⊗ b(t− αq), x⊗ b(y − βq) ∈ AK

}

= Γ(SpecAK ,OCK ([V (1)])) . (18.6)

We define an A-motive M = (M, τM ) over K of rank 1 and dimension 1 as follows.

M = Γ(SpecAK ,OCK ([V ]))

σ∗M = Γ(SpecAK ,OCK ([V (1)]))

τM := f : σ∗M ∼−→ M ⊗OCK (−[Ξ]) ⊂ M

coker τM ∼= OCK/OCK (−[Ξ]) ∼= K .

This A-motive corresponds to a Drinfeld A-module of rank 1 over K, which is described more explicitly in [GP16,
§ 3]. In particular, M is uniformizable. Moreover, M has CM through OE := A. We set E = Q and then
HE = HomQ(E,Qalg) = {idE} consists of one single element ψ = idE . Correspondingly we drop all occurrences
of ψ from the notation used in Section 17. The de Rham cohomology of M is

H1
dR(M,K[[t− θ]]) = σ∗M ⊗OCK lim

←−
AK/J n = Γ(SpecAK ,OCK (V (1))) ⊗OCK K[[t− θ]] = K[[t− θ]],

because lim
←−

AK/J n = K[[t − θ]], and OCK (V (1)) equals OCK on the neighborhood CK r {V (1)} of Ξ. For the

unique element ψ = idE in HE we have Hψ(M,K[[yψ − ψ(yψ)]]) = H1
dR(M,K[[t− θ]]) and the Hodge-Pink lattice

qM := τ−1M (M ⊗AR lim
←−

AK/J n) ⊂ H1
dR

(
M,K((t− θ))

)
of M satisfies

qM = f−1 · H1
dR

(
M,K[[t− θ]]

)
= (t− θ)−1 · H1

dR

(
M,K[[t− θ]]

)

by (18.3). So according to Definition 15.8 the CM-type of M is Φ = (didE ) with didE = 1.

18.6. We will next see that M has a good integral model M over OK . Namely, by a similar computation as in
(18.6) the invertible sheaf OCOK

([V ]) on COK satisfies

σ∗OCOK
([V ]) = OCOK

([V (1)]).

Then the good model M = (M, τM) of M over OK is given by

M = Γ(SpecAOK ,OCOK
([V ]))

σ∗M = Γ(SpecAOK ,OCOK
([V (1)]))

τM := f : σ∗M ∼−→ M⊗OCOK
(−[Ξ]) ⊂ M

coker τM ∼= AOK/AOK (−[Ξ]) ∼= OK .

51



18.7. With respect to the inclusion K ⊂ C∞ Papanikolas and Green [GP16, § 4] calculate H1
Betti(M,A) as follows.

They fix (q − 1)-st roots of −α and mθ − ε, and set

νϕ := (mθ − ε)1/(1−q)
∞∏

i=0

(
1 −

(
m

mθ − ε

)qi
t+

(
1

mθ − ε

)qi
y

)
,

δϕ := (−α)1/(1−q)
∞∏

i=0

(
1 − t

αqi

)
.

Since v∞(α) = −2 in C∞, it follows that the product for δϕ converges in Γ(Cr {∞},OC), is invertible on CrD

and has zeroes of order 1 at V (i) and −V (i) for all i ∈ N0. Since v∞(m) = −q, and so v∞(mθ − ε) = −q − 2 and
v∞( m

mθ−ε) = 2 it similarly follows that νϕ converges in Γ(C r {∞},OC) and is invertible on C r D. Moreover,

νϕ has zeroes of order 1 at Ξ(i) and −V (i) and V (i+1) for all i ∈ N0, because 1 − m
mθ−εθ + 1

mθ−εε = 0 and

1 − m
mθ−εα− 1

mθ−ε (β + a1α+ a3) = 0 and 1 − m
mθ−εα

q + 1
mθ−εβ

q = 0. These functions satisfy the equations

νϕ = ν · σ∗νϕ = (y − ε−m · (t− θ)) · σ∗νϕ and δϕ = δ · σ∗δϕ = (t− α) · σ∗δϕ .

Thus with the corresponding (q − 1)-st root ξ1/(q−1) of ξ = −mθ−ε
α = −(m+ β+a1α+a3

α ) we set

λM :=
νϕ
δϕ

= ξ1/(1−q)
∞∏

i=0

σi∗f

ξqi
∈ Γ(CrD,OC)×. (18.7)

Then τM (σ∗λM ) = f · σ∗λM = λM , and λM is a meromorphic function on C r {∞} without poles or zeroes on
CrD. (By looking at the product decomposition of λM one even sees that it has a simple pole at V and simple

zeroes at Ξ(i) for all i ∈ N0.) So we obtain

H1
Betti(M,A) = λM · A. (18.8)

Let u ∈ H1,Betti(M,A) be the generator such that 〈u, λM 〉 = 1. We also write uidK := u.

18.8. We can take ω := ωψ := σ∗δ−1 = (t − αq)−1 as a generator of H1
dR(M,K[[t − θ]]). Then the comparison

isomorphism hBetti,dR = σ∗hM from Theorem 13.18 sends the generator λM of H1
Betti(M,A) to σ∗λM = σ∗(λMδ) ·

ω ∈ H1
dR(M,K[[t−θ]]) and the comparison isomorphism hBetti,dR = σ∗hM mod J from (13.6) sends the generator

λM of H1
Betti(M,A) to σ∗(λM δ)(Ξ) · ω ∈ H1

dR(M,K). Therefore,

〈u, h−1Betti,dR(ω)〉∞ = 〈u, σ∗(λMδ)(Ξ)−1 · λM 〉∞ =
ξq/(q−1)

(σ∗δ)(Ξ)

∞∏

i=1

ξq
i

(σi∗f)(Ξ)
.

To compute the absolute value of 〈u, h−1Betti,dR(ω)〉∞ we observe that for every i ∈ N>0

∣∣∣∣
ξq
i

(σi∗f)(Ξ)

∣∣∣∣
∞

=

∣∣∣∣
1 − θ

αqi

1 − ( m
mθ−ε )qiθ + ( 1

mθ−ε )qiε

∣∣∣∣
∞

= 1 ,

as well as v∞(ξ) = −q, whence |ξq/(q−1)|∞ = qq
2/(q−1), and |(σ∗δ)(Ξ)|∞ = |(t−αq)(Ξ)|∞ = |θ− αq|∞ = |αq|∞ =

q2q. Thus we obtain

∣∣∣
∫
u
ω
∣∣∣
∞

:=
∣∣∣ 〈u, h−1Betti,dR(ω)〉∞

∣∣∣
∞

= q
q2

q−1−2q = q
q
q−1−q and

log
∣∣∣
∫
u ω

∣∣∣
∞

=
(

q
q−1 − q

)
log q . (18.9)

18.9. We consider the set HK := HomQ(K,Qalg) = Gal
(
K/Fq(θ, ε)

)
which actually is a group, because K is

Galois over Fq(θ, ε). It is isomorphic to the group C(Fq) under the map η 7→ Pη := V − η(V ). Indeed, since
η(Ξ) = Ξ ∈ C(K) is fixed by η we see that η(V ) still satisfies η(V ) − η(V )(1) = η(V ) − η(V (1)) = η(Ξ) = Ξ =

V − V (1). Therefore, the point Pη = V − η(V ) satisfies P
(1)
η = Pη, and hence Pη ∈ C(Fq). Since the coordinates

(α, β) of V generate the field extension K/Fq(θ, ε), the map η 7→ Pη is bijective. It is a group homomorphism,
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because Pη̃η = V − η̃η(V ) = V − η̃(V ) + η̃(V ) − η̃η(V ) = Pη̃ + η̃(Pη) = Pη̃ + Pη, as Pη ∈ C(Fq) is fixed by η̃. In
particular, #HK = #C(Fq).

We now fix an element η ∈ HK with η 6= idK and let the A-motive Mη over OK and ωη ∈ H1
dR(Mη,K[[t− θ]])

be deduced from M and ω by base extension. Then Mη is isogenous to M by the theory of complex multiplication,
which was developed for Drinfeld modules by Hayes [Hay79] and for general A-motives by Pelzer [Pel09]. We give
an elementary and explicit treatment for our M. We claim that there is an isomorphism

gη : Mη ∼−→ M⊗O(−[Pη]) =: M(−[Pη]) , (18.10)

where O(−[Pη]) denotes the invertible sheaf on SpecAOK associated to the divisor −[Pη]×FqSpecOK . Namely, the
A-motives Mη and M(−[Pη]) correspond to the invertible sheaves OCK ([η(V )]) = OCK ([V −Pη]) and OCK ([V ])⊗
OCK (−[Pη]) = OCK ([V ] − [Pη]) on CK , respectively.

By (18.1) and [Sil86, Corollary III.3.5] the divisor [V − Pη] − [V ] + [Pη] − [∞] on CK is principal and there is
a function gη ∈ K(t, y) = Quot(AK) with

div(gη) = [V − Pη] − [V ] + [Pη] − [∞] = [V − Pη] + [−V ] + [Pη] − [V ] − [−V ] − [∞] . (18.11)

It can be written explicitly as follows. By construction of the group law on C, the three points V − Pη = η(V )
and −V and Pη lie on a single line whose slope is

η(β) − y(Pη)

η(α) − t(Pη)
=

η(β) + β + a1α+ a3
η(α) − α

=
y(Pη) + β + a1α+ a3

t(Pη) − α
∈ OK .

This slope is a priory an element of K, but we see that it lies in OK by reasoning like in Lemma 18.3. Indeed,
the slope has a pole if and only if one of the points Pη or −V or V − Pη = η(V ) equals ∞. If Pη = ∞, then the
bijectivity of the map η 7→ Pη implies η = idK which was excluded. If V − Pη = ∞, and hence V = Pη ∈ C(Fq),
or if −V = ∞, then Ξ = ∞, and so the poles of the slope do not lie in SpecOK . That is, the slope lies in OK as
claimed. Then we can take

gη =
y − η(β) − η(β)+β+a1α+a3

η(α)−α (t− η(α))

t− α
(18.12)

as an isomorphism Mη ∼−→ M⊗O(−[Pη]). Here we use that formula (18.11) for the divisor of gη also holds on
COK , because both numerator and denominator of gη lie in OK [t, y] and do not vanish on an entire fiber of COK
over a closed point of SpecOK .

In order to see that gη is an isomorphism of A-motives, it remains to prove that gη ◦η(f) = f ◦σ∗gη. Since the
divisor on both sides equals [η(V )(1)] + [Pη]− [V ] + [Ξ]− 2[∞], both sides differ by multiplication with an element
of K×. Multiplying both sides with the common denominator and comparing the coefficients of t2y shows that
both sides are equal as desired.

18.10. The isomorphism gη : Mη ∼−→ M(−[Pη]) induces isomorphisms on (co-)homology

gη : H1
dR(Mη,OK) ∼−→ H1

dR(M(−[Pη]),OK) ,

gη : H1
Betti(M

η, A) ∼−→ H1
Betti(M(−[Pη]), A) , and

gη : H1,Betti(M
η, A) ∼−→ H1,Betti(M(−[Pη]), A) .

These are compatible with the period isomorphisms hBetti,dR and the pairing between H1
Betti and H1,Betti. So we

may replace Mη by M(−[Pη]) in the rest of our computation.
Since ω = (t − αq)−1 and ω mod (t − θ) = (θ − αq)−1 ∈ H1

dR(M,OK) we obtain ωη = (t − η(α)q)−1 and
ωη mod (t − θ) = (θ − η(α)q)−1, and we set ω̃η := gη(ωη) ∈ H1

dR(M(−[Pη]),K[[t − θ]]) and ω̃η mod (t − θ) =
gη(ωη) mod (t − θ) ∈ H1

dR(M(−[Pη]),OK). By definition, H1
dR(M,OK) := σ∗M/J σ∗M = σ∗M|Ξ, with
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J = (t− θ, y − ε) being the vanishing ideal of the OK -valued point Ξ ∈ C(OK). We compute

ω̃η = σ∗(gη) · (t− η(α)q)−1

=
y − η(β)q − η(β)q+βq+a1α

q+a3
η(α)q−αq (t− η(α)q)

t− αq
· (t− η(α)q)−1

=
y − η(β)q − η(β)q+βq+a1α

q+a3
η(α)q−αq (t− η(α)q)

t− η(α)q
· (t− αq)−1 and

ω̃η mod (t− θ) =
ε− η(β)q − η(β)q+βq+a1α

q+a3
η(α)q−αq (θ − η(α)q)

θ − η(α)q
· (θ − αq)−1

=
( ε− η(β)q

θ − η(α)q
− η(β)q + βq + a1α

q + a3
η(α)q − αq

)
· ω mod (t− θ) .

The element σ∗gη|Ξ := ε−η(β)q

θ−η(α)q −
η(β)q+βq+a1α

q+a3
η(α)q−αq has absolute value

∣∣σ∗gη|Ξ
∣∣
∞

= qq , and hence log
∣∣σ∗gη|Ξ

∣∣
∞

= q log q , (18.13)

because the first summand has absolute value q and is dominated by the second summand which has absolute
value qq.

18.11. We now compute v(ωη) for all places v 6= ∞ of Q and for all η ∈ HK . Observe that by (18.5) the

multiplication with t − α induces an isomorphism OCOK
([V ]) ∼−→ OCOK

(2[∞] − [−V ]) and the multiplication

with t− αq induces an isomorphism OCOK
([V (1)]) ∼−→ OCOK

(2[∞] − [−V (1)]). We restrict this morphism to the
OK-valued point Ξ, that is, we pull it back under the corresponding morphism hΞ : SpecOK → COK . To do so
we first claim that hΞ factors through the open subscheme of COK which is the complement of {∞} ∪ {−V (1)}.
Indeed, the locus on COK where Ξ = −V (1) is equal to the locus where V = ∞, and the latter locus does not
lie above SpecOK . The same is true for the locus where Ξ = ∞. We conclude that multiplication with θ − αq

induces an isomorphism

θ − αq : H1
dR(M,OK) = h∗ΞOCOK

([V ]) ∼−→ h∗Ξ OCOK
(2[∞] − [−V ]) = h∗Ξ OCOK

= OK

ω mod (t− θ) = (θ − αq)−1 7−→ 1 .

This shows that H1
dR(M,OK) = OK · ω mod (t − θ), and by base extension under η, also H1

dR(Mη,OK) =
OK · ωη mod (t− θ). This yields

v(ωη) = 0 for every place v 6= ∞ and every η ∈ HK . (18.14)

18.12. We next compute H1
Betti(M(−[Pη]), A) for the A-motive M(−[Pη]) =

(
OCK ([V ] − [Pη]), τ = f

)
. The

function λM from (18.7) satisfies τ(σ∗λM ) = f · σ∗λM = λM , but it does not have a zero at Pη, and hence does

not lie in M(−[Pη]) ⊗AK OCrD and not in H1
Betti(M(−[Pη]), A). Instead,

H1
Betti(M(−[Pη]), A) = λM · Γ(SpecA,OC(−[Pη])) = λM · pη ,

where pη ⊂ A is the maximal ideal defining the Fq-valued point Pη ∈ C. Correspondingly, when we take
ũη := u ∈ H1,Betti(M(−[Pη]), Q) = H1,Betti(M,Q), which pairs with λM to 〈ũη, λM 〉 = 〈u, λM 〉 = 1, we obtain

H1,Betti(M(−[Pη]), A) = ũη · Γ(SpecA,OC([Pη])) = ũη · p−1η .

This yields

vη(ũη) · log qv =

{
0 if v 6= pη or η = idK ,

log q if v = pη and η 6= idK .
(18.15)

Also from (18.9) and (18.13) we compute the absolute value

log
∣∣∣
∫
ũη
ω̃η
∣∣∣
∞

= log
∣∣∣〈u, σ∗gη|Ξ · ω〉∞

∣∣∣
∞

= log
∣∣σ∗gη|Ξ

∣∣
∞

+ log
∣∣〈u, ω〉∞

∣∣
∞

= q
q−1 log q . (18.16)
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18.13. Finally, we recall the zeta functions for the elliptic curve C, which are defined as the following products
which converge for s ∈ C with Re(s) > 1

ζC(s) :=
∏

all v

(1 − (#Fv)
−s)−1 =

∏

all v

(1 − q−sv )−1 =
1 − (q + 1 − #C(Fq))q

−s + q1−2s

(1 − q−s)(1 − q1−s)
and

ζA(s) :=
∏

v 6=∞

(1 − (#Fv)−s)−1 =
∏

v 6=∞

(1 − q−sv )−1 =
1 − (q + 1 − #C(Fq))q

−s + q1−2s

1 − q1−s
.

Since the CM-field is E = Q, HE = {id} and the CM-type is given by did = 1, we have a0E,id,Φ = 1l. Since
L∞(1l, s) = ζA(s) we obtain

Z∞(1l, 0) =
ζ′A(0)

ζA(0)
=
( q + 1 − #C(Fq) − 2q

1 − (q + 1 − #C(Fq)) + q
− q

1 − q

)
log q =

(1 − #C(Fq) − q

#C(Fq)
+

q

q − 1

)
log q . (18.17)

We now put everything together using Theorem 17.3 and formula (17.9) to compute

1
#HK

∑
v

∑
η∈HK

log
∣∣∫
ũη
ωηψ
∣∣
v

=
(q + #C(Fq) − 1

#C(Fq)
− q

q − 1

)
· log q from (18.17)

+
1

#C(Fq)

( q

q − 1
− q
)
· log q from (18.9)

+
#C(Fq) − 1

#C(Fq)

q

q − 1
· log q from (18.16)

− #C(Fq) − 1

#C(Fq)
· log q from (18.14) and (18.15)

= 0 .

Miraculously, all terms cancel and this shows that in the present example our Conjecture 17.6 holds true.
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Publications. MR 1917232

[Mil86] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986,
pp. 103–150. MR 861974

[Mil06] James S. Milne, Complex Multiplication, Course notes (2006),
http://www.jmilne.org/math/CourseNotes/cm.html.

[Mil08] , Abelian Varieties, Course notes (2008), http://www.jmilne.org/math/CourseNotes/av.html.

[Mum70] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics,
No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press,
London, 1970. MR 0282985

[Niz98] Wies l awa Nizio l, Crystalline conjecture via K-theory, Ann. Sci. École Norm. Sup. (4) 31 (1998),
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