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Abstract

We survey Colmez’s theory and conjecture about the Faltings height and a product formula for the periods
of abelian varieties with complex multiplication, along with the function field analog developed by the authors.
In this analog, abelian varieties are replaced by Drinfeld modules and A-motives. We also explain the necessary
background on abelian varieties, Drinfeld modules and A-motives, including their cohomology theories and
comparison isomorphisms and their theory of complex multiplication.
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1 Introduction

One purpose of this survey is to give a brief introduction to abelian varieties with complex multiplication over
number fields, some of their cohomology theories with comparison isomorphisms, and to explain Colmez’s con-
jectures [Col93] on a product formula for the periods and on the Faltings height of these abelian varieties. The
second purpose is to explain the function field analog of this theory. There abelian varieties are replaced by
Drinfeld modules [Dri76, [Gos96] and their higher dimensional generalizations, so-called A-motives. So we give
a brief introduction to Drinfeld modules and A-motives with complex multiplication, some of their cohomology
theories with comparison isomorphisms, and explain the conjecture [HS20] of the authors on periods of these
A-motives. We point out that recently other surveys on Colmez’s conjectures were written by Gross [GrolS], by
Yuan [Yual9], and by Gao, van Kénel and Mocz based on a lecture of Shou-Wu Zhang. However,
these do not discuss the function field analog that we are discussing in Part [l In [GrolS] it is explained how
Colmez’s conjectures generalize the Chowla-Selberg formula. And in [Yual9] the consequences of the recently
proved averaged Colmez Conjecture for the André-Oort Conjecture are explained. In [GvKM19] in addition to
these aspects, the proof of Yuan and Shou-Wu Zhang of the averaged Colmez conjecture, and the work
of Yun and Wei Zhang on the Gross-Zagier formula for intersection numbers in the Chow group of
moduli spaces of PGLs-shtukas is discussed.

1.1. We begin with a review of product formulas for global fields. For a rational number a € Q*, all of its
absolute values |a|, are linked by the product formula [, |a|, =1 where only finitely many factors are different
from 1. Here v runs through the set P of places of QQ consisting of all prime numbers p together with oo, and the
p-adic absolute values |.|, are normalized such that |p|, = p~*. This product formula extends to number fields,
i.e. finite extensions of Q, as follows. Let Q8 be the algebraic closure of Q in C, and if p is a prime number let
Qp be the completion of Q with respect to |.|, and let leg be an algebraic closure of Q,. The p-adic absolute
value | .|, extends canonically to Q3'8. We denote by | .| the usual absolute value on C. In addition to the
embedding Q*& C C we fix once and for all an embedding of Q% in leg for every p and consider the induced
absolute value | .|, on Q. For a finite field extension K of Q we set Hy := Homg (K, Q#). Then the product
formula [Lan94, Chapter V, §1, bottom of page 99| for 0 # « € K can be written as

IT IT @), =1. (1.1)
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1.2. The product formula also holds for function fields. More precisely, let Q) be a finitely generated field of
transcendence degree one over the finite field F, = Z/pZ. Let F; := {a € Q: a is algebraic over F,} C @ be
the field of constants, see [VS06, Definition 2.1.3], which is a finite field with ¢ elements. Then Q is the field
of rational functions on a smooth, projective curve C' over F, by [Liu02, Chapter 7.3, Proposition 3.13] which
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is geometrically irreducible by [Gro65, IVs, 4.3.1 and Proposition 4.5.9¢)]. Every closed point v of C' is called a
place. We denote its residue field by F, and set ¢, := #F, = ¢lF»Fal. The local ring Oc,v is a discrete valuation
ring by [Sil86], Proposition 1.1]. We denote the corresponding valuation also by v and the corresponding absolute
value on @ by |.|,. Both are normalized such that v(z,) = 1 and |z, |, = ¢, ! for a uniformizing parameter z, € Q
at v. Then every a € Q ~ {0} satisfies [], |al, = 1 where again only finitely many factors are different from
1, see [Cas67, Chapter II, § 12, Theorem|. This can be reinterpreted in terms of divisors on C. Namely, since
lal, = 2 " we have — log IL lalo =3, v(a) - [Fy : Fy] -loggq = 0, because ), v(a) - [F, : F,] is the degree of the
principal divisor of a which is zero, see [VS06, Corollary 3.2.9].

Let Q'8 be a fixed algebraic closure of ). For every place v of Q let @, be the completion of @ with respect
to | .|, and let Q2! be an algebraic closure of Q,. The v-adic absolute value |. |, extends canonically to Q2. We
fix once and for all an embedding of Q& in Q% for every v and consider the induced absolute value | .|, on Q.
For a finite field extension K of Q we set Hy := Homg (K, Q*#). Then by transformations of equations as in
[Lan94, Chapter V, §1, bottom of page 99] the product formula [Cas67, Chapter II, § 12, Theorem] for 0 # a € K

can be written as
II II @l =1 (1.2)
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1.3. In [Col93] P. Colmez considers product formulas for periods of abelian varieties. Let X be an abelian variety
defined over a number field K with complex multiplication by the ring of integers in a CM-field £ and of CM-
type @, see Section [0 for explanations. Assume that K contains ¢ (FE) for every v € Hg. For a ¢ € Hg let
wy € HiR (X, K) be a non-zero cohomology class such that b*wy = 1)(b) - wy, for all b € F, see Section @3l For
every embedding 7: K < Q8, let X" := X Xgpec k,Specy Specn(K) and wy, € Hig (X", n(K)) be deduced from
X and wy, by base extension. Let (up)y € [, ¢, Hi(X7(C),Z) be a family of cycles compatible with complex
conjugation, see Section [LJ] Let v be a place of Q. If v = oo the de Rham isomorphism between Betti and
de Rham cohomology (Theorem [I4) yields a complex number fun wzj and its absolute value | fun wZ|OO eR If
v corresponds to a prime number p € Z, Colmez [Col93] associates a period f% wz in Fontaine’s p-adic period
field B, ar, see Notation [£.4] and an absolute value Uun wy|, € R. He considers the product [T, [T, e, |fun wil,
and (after some modifications which we explain in Section B) conjectures that this product evaluates to 1; see
Conjecture for the precise formulation. This conjecture implies a conjectural formula for the Faltings height
of a CM abelian variety in terms of the logarithmic derivatives at s = 0 of certain Artin L-functions. Colmez
proves the conjectures when FE is an abelian extension of Q, see Theorem BI0l On the way, he computes
[Len ‘ fun w:”v at a finite place v in terms of the local factor at v of the Artin L-series associated with an Artin

character a%mq,: Gal(Q¥#/Q) — C that only depends on E, 1) and ® but not on X and v; see Theorem 8.3l
There has been further progress on Colmez’s conjecture on which we report in Section [l

We point out that Colmez’s formulation generalizes various previous results. Namely, when [E : Q] = 2 his
Theorem is equivalent to the formula proved by Lerch [Ler97] and rediscovered by Chowla-Selberg [SC67]
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where A() is the modular discriminant of the lattice I C E C C. A new geometric proof of (I3)) was given by
Gross [Gro78|, who together with Deligne conjectured a generalization to a formula for the archimedean periods of
certain CM motives up to multiplication by algebraic numbers. Anderson [And82] reformulated the Gross-Deligne
conjecture in terms of the logarithmic derivative of an L-function at s = 0 and proved it when the CM field E is
abelian over Q. Colmez added the consideration of the non-archimedean periods and thus removed the ambiguity
of the algebraic factors in Anderson’s theorem.

1.4. There is a beautiful analog to the theory of elliptic curves and abelian varieties in the “Arithmetic of function
fields”. Namely, Drinfeld [Dri76] invented the analog of elliptic curves under the name “elliptic modules”. These
are today called Drinfeld modules, see Section [dl Since then, the arithmetic of function fields has evolved into an
equally rich parallel world to the arithmetic of number fields. As higher dimensional generalizations of Drinfeld
modules and analogs of abelian varieties, Anderson [And86] has defined abelian t-modules and the dual notion
of t-motives, which are a kind of “global Dieudonné-modules” for abelian t-modules, see Remark They can
be slightly generalized to A-motives as follows. In the notation of §[I.2] let oo be a fixed closed point on C and
let A =T(C~ {x},0c) ={a € A:v(a) > 0forallv # co}. Let K C Q8 be a finite field extension of Q.
We write Ax := A ®p, K and consider the endomorphism o* := ids ® Froby x of A, where Frob, i (b) = b9
for b € K. For an Ag-module M we set 0*M = M ®a, -~ Ax and for a homomorphism f: M — N of



Ag-modules we set o*f := f®ida,: "M — o*N. Let v: A — K be the inclusion A C @ C K, and set
J=(a®1-1®~v(a): a € A) C Ax. Then v can be recovered as the homomorphism A — A /J = K.

Definition 1.5. An (effective) A-motive of rank r and dimension d over K is a pair M = (M, 7as) consisting of
a locally free Ax-module M of rank r and an Ax-homomorphism 7a;: 0*M — M such that

(a) dimg (cokerty) = d.
(b) (a —~(a))?- cokertys = 0 for all a € A.
We write rk M := r and dim M := d.
A-motives possess cohomology realizations in analogy with abelian varieties, see Section [I3]

1.6. Let us now explain the analog of Colmez’s theory from §[I.3] which was developed by the authors in [HS20].
Let M be a uniformizable A-motive defined over a finite extension K C Q& of @) with complex multiplication by
the ring of integers in a CM-algebra FE and of CM-type @, see Sections [[3.1] and [[Hl for explanations. Assume that
K contains ¥(E) for every ¢ € Hp := Homg(E, Q*8). For a ¢ € Hg let wy € Hig (M, K[z — (]) be a non-zero
cohomology class such that b*w, = 1(b) - wy, for all b € E, see Section [[3.31 For every embedding n: K — Q8
let M" := M @k, n(K) and w;, € Hig (M, n(K)[z — ¢]) be deduced from M and wy, by base extension. Let
(un)y € H"IEHK Hi gewi(M", A) be a family of cycles, see Section [3.I] Let v be a place of Q. If v = oo the
comparison isomorphism between Betti and de Rham cohomology (Theorem [I3.18) yields an element f% wz in the

completion Cy, of Q218 with respect to | .|~ and its absolute value ‘ f“n wz ’OO € R. If v corresponds to a maximal

ideal of A, the period isomorphism between v-adic and de Rham cohomology (Theorem [[4.12) gives a period
fun wz in the analog C,((zy, — (y)) of Fontaine’s p-adic period field B, gqr and an absolute value ’fun wZ’v € R,

see Definition 414 We consider the product [[, [], ¢, | f% wZ‘U and (after some modifications analogous to

Colmez’s which we explain in Section [I7)) we conjecture that this product evaluates to 1; see Conjecture [I'.0] for
the precise formulation. In [HS20] we have computed [], c 5, If wZ‘U at all finite places v # oo in terms of the
n

local factor at v of the Artin L-series associated with an Artin character a%1w1¢: Gal(Q*#/Q) — C that only
depends on E, ¢ and ® but not on M and v; see Theorem [I7.3}

If M is the A-motive associated with a Drinfeld module G, then Conjecture [I7.6]is equivalent to a formula for
the Taguchi height (Definition [6.3) of G in terms of the logarithmic derivatives at s = 0 of an Artin L-function.
This formula was established by Fu-Tsun Wei [Wei20] by first proving the function field analogs of Kronecker’s
limit theorem and Lerch’s formula [[.3] see Theorem below. Previously, formulas of Chowla-Selberg type
expressing the periods at co of CM Drinfeld modules in terms of I'-values were obtained by Thakur [Tha91l
for certain CM-fields. Also when proving his results in [And82] Anderson had considered the analogous case of
A-motives, but without publishing his results.

This survey contains no new results, except for Theorems and which give a formula for the Taguchi
height of a Drinfeld module with complex multiplication. Our presentation summarizes material from various
sources. But all shortcomings of the exposition are solely due to the authors. We describe the content of the
individual sections of this survey. In Part [l we first define elliptic curves and abelian varieties and discuss
their torsion points in Section Section [3 is concerned with simple and semi-simple abelian varieties and
their endomorphism rings. In Section M we review the singular (co-)homology, Tate modules and the f-adic
(co-)homology, and the de Rham (co-)homology of abelian varieties and period isomorphisms between these (co-
Yhomologies. The period isomorphism between ¢-adic and de Rham (co-)homology is explained in Section Bl It
is based on the concept of p-divisible groups, which we also review in this section. The definition of complex
multiplication of abelian varieties, of CM-fields, CM-algebras and CM-types is explained in Section A short
review of the Faltings height of an abelian variety fills Section [l Finally, in Section [§] we discuss Colmez’s
conjecture alluded to in §[I.3] above.

In Part [[Il we discuss the analog of Colmez’s theory in the “Arithmetic of function fields”. We define Drinfeld
modules and A-motives in Section [ and isogenies and semi-simplicity in Section [[0] where we also describe the
endomorphism rings of semi-simple A-motives. The analytic theory of Drinfeld modules via lattices is explained
in Section [[Il Section [[2] is devoted to torsion points and Tate modules of Drinfeld modules. In Section [I3] we
review the singular (co-)homology, Tate modules and the v-adic (co-)homology, and the de Rham (co-)homology
of A-motives and period isomorphisms between these (co-)homologies. The period isomorphism between v-adic
and de Rham (co-)homology is explained in Section [[4l It is based on the concept of z-divisible local Anderson
modules and local shtukas, which we also review in this section. In Section[IH] we introduce the concept of complex



multiplication of A-motives and of their CM-types. Section [Lf] contains a brief review of the Taguchi height of a
Drinfeld module. Then in Section [[7l we present the theory of the authors on the product formula for periods of
A-motives analogous to Colmez’s conjecture. In the last Section [[§ we compute an interesting example for this

product formula where @ and C have genus 1.
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Part I
Abelian Varieties and Elliptic Curves

Our exposition of the theory of abelian varieties and elliptic curves follows [Mum?70l Mil86, [Mil08], [Sil86l [DS05],
which serve as background material for this article.

2 Basic Definitions

Notation 2.1. As usual we denote by Q and R the fields of rational and real numbers, respectively, by Z the
ring of integers and by Ny, respectively N5 the set of non-negative, respectively positive integers. By a place
of Q we mean either co or a maximal ideal v = (p) C Z for a prime number p € N5. It defines a normalized
absolute value |.|,: Q — Rxq given for v = oo by the usual absolute value |z| = z if z > 0 and |2|ec = —2
if < 0, and for v = (p) by the p-adic absolute value |z|, := |z|, = p~*»®) where v,(z) = n if 2 = p"¢ with
a,b € Z and p1{ ab. Let Q, be the completion of Q with respect to the valuation v, that is Qo = R and Q, = Q,
for v = (p). Let Q2 be a fixed algebraic closure of Q, and let C, be the completion of Q& with respect to the
canonical extension of the absolute value |. |, to Q8. Note that C, is algebraically closed. It equals the field of
complex numbers C when v = oo, and is usually denoted C, when v = (p). We also fix an algebraic closure Q1
of Q and an embedding Q*& < Q'8 for every place v of Q. We let Oc, be the ring of integers of C,.

Definition 2.2. Let K be an arbitrary field, let K¢ be a fixed algebraic closure and let K5°P be the separable
closure of K in K& and ¥ := Gal(K*?/K). We mean by a (smooth) group variety over K an irreducible
smooth separated scheme G of finite type over K with a group law mult : G xxg G — G, an inverse map
inv : G — G and a K-rational point 0 € G(K), the identity element, such that mult and inv are morphisms of
varieties satisfying the usual axioms, see [Mum?70, Chapter ITI, § 11]. A morphism of group varieties is a morphism
of varieties which is also a homomorphism of groups.

For a group variety G over K, let Lie(G) = ToG be the tangent space to G at the identity element 0. It is
also called the Lie algebra of G. For every endomorphism f of G we let Lie(f) be the induced endomorphism of
LieG.

Definition 2.3. An elliptic curve over a field K is a smooth projective curve E of genus 1, together with a
distinguished point 0 € E(K). Every such can be written as a smooth projective plane curve which is the zero
locus of an equation

Y2Z + a1 XYZ 4+ a3sYZ? = X3+ as X?Z +au XZ? + agZ® witha; € K (2.1)

and with distinguished point 0 = (0 : 1 : 0). It carries a group law making it into a commutative group variety
with identity element 0 (see [Sil86], [Hus04]).

Let E be an elliptic curve over C. Then E(C) inherits a complex structure as a sub-manifold of P?(C). It is
a complex manifold (because E is nonsingular) and compact (because it is closed in the compact space P?(C)).
It is connected and carries a commutative group structure. Therefore, F is a compact connected complex Lie
group of dimension 1. Let ToE(C) be the tangent space of F(C) at the identity element 0. It is also called the
Lie algebra of F(C) and denoted Lie E. Then there is a unique homomorphism

exp: ToE(C) — E(C)

of complex Lie groups such that, for each v € ToE(C), z — exp(zv) is the one parameter subgrou;ﬂ fo: C— E(C)
corresponding to v. The differential of exp at 0 is the identity map

ToE(C) — ToE(C),

1 For a complex Lie group G, a one parameter subgroup of G is a holomorphic homomorphism f : C — G. In complex analysis
one proves that for every tangent vector v to G at e, there is a unique one-parameter subgroup f, : C — G such that f,(0) = e and
(dfv)(1) = v, see [Hoc65, pp. 79 and 195].



and the map exp is surjective, and its kernel is a lattice A = A(F) in the complex vector space ToE(C). So
E(C) = C/A as a complex Lie group (for more details see [Mum70, Chapter I, §1]).

Now we explain how one associates an elliptic curve with a lattice. Let A be a lattice in C, that is, a discrete
Z-module A C C which is free of rank 2. With A, we associate its Weierstrass p-function

1 1 1
pr(z) =5+ D G (2.2)
weAN{0}

Then pa(z) is A-invariant and meromorphic on C with poles of order 2 at all w € A. It satisfies the equation

Ph ()" = 463(2) = 92(M)pa2) — ga(A) (2:3)
where go(A) = 60G4(A) and g3(A) = 140G6(A), and

Gr(A) = > $,

weA—{0}
is the Eisenstein series of the lattice A for k > 2 even. g2 and g3 satisfy the relation
A= g3 —27g32 # 0. (2.4)
This means (pa(2), p)\(z)) € C? for z ¢ A is a point on the smooth affine curve E4T (since A # 0) with equation
Y2 =4X% - g2 X — g3 (2.5)

/

and (pa(2) : P}y (2) : 1) € P*(C) for all z € C is a point on the projective model of the above curve with equation
Y27 =4X3 — g2 X 7% — g3 75, (2.6)

The above yields a biholomorphic isomorphism of the complex torus C/A with Ej(C), well-defined through its
restriction to (C~\A)/A by z — (pa(2) : ¢}y (2) : 1). Note that E(C) inherits a group structure from C/A, which
may however be defined in purely algebraic terms on the algebraic curve E, and which turns E into an elliptic
curve. This is the elliptic curve associated with the lattice A. In fact, each elliptic curve E over C has the form
E = E, for some lattice A as above, and two such, Ex and Ej+, are isomorphic as elliptic curves (i.e., as algebraic
curves through some isomorphism preserving the group structures) if and only if A’ and A are homothetic, that
is, A’ = cA for some ¢ € C*.

Definition 2.4. An abelian variety over a field K is a smooth projective connected group variety. The group law
is automatically commutative; see [Mum70, Chapter II, §4, Corollary 2]. Abelian varieties are higher-dimensional
generalizations of elliptic curves, which in turn are abelian varieties of dimension 1.

A homomorphism f: X — Y between abelian varieties over K is a morphism of varieties over K which
is compatible with the group structure. The abelian group of homomorphisms f: X — Y over K is denoted
Hompg (X,Y) and we write Endg (X) = Homg (X, X). We also write QHom (X,Y) = Homg (X,Y) ®z Q and
QEndy (X) = QHomg (X, X) = Endg (X) ®z Q. For an abelian variety X over K and an integer m € Z, there
is an endomorphism [m] € Endg (X) given as the multiplication by m on the points. Thus if m > 0, then

[m](P)=P+P+---+ P (m times)

For m < 0, we set [m](P) = [-m](—P), and we define [0](P) = 0.

A morphism f: X — Y between abelian varieties is an isogeny if it is surjective with finite kernel. Every
isogeny is finite, flat, surjective, see [Mil86, Proposition 8.2]. The degree of an isogeny f : X — Y is its degree as
a regular map, i.e., the degree of the field extension [K(X): f*K(Y)]. If there exists an isogeny X — Y defined
over K we will say that X and Y are isogenous over K and write X ~g Y. Note that ~x is an equivalence
relation. In fact, for every isogeny f : X — Y there is an isogeny ¢ : ¥ — X such that go f = [n] on X for
some n € Z, see [Mil08, Remark 6.5]. This means that f becomes invertible in QHom (X, Y), in the sense that
f7li=g® 1 € QHom (Y, X) is its inverse.

Remark 2.5. (a) Let X and Y be abelian varieties over K. If X and Y are isogenous over K via an isogeny
f, then
QEnd g (X) = QHomy (X,Y) =2 QEndg(Y), h+s fohr foho f1.

More precisely, QHom (X, Y) is a free right QEnd i (X )-module of rank 1 and a free left QEnd g (Y')-module
of rank 1. If X and Y are not isogenous then QHom (X,Y) = (0).



(b) The homomorphism [m] € End (X) is an isogeny of degree m??, where g = dim X. It is always étale when
K has characteristic zero, and when K has characteristic p > 0 it is étale if and only if p does not divide
m, see [Mum70, Chapter 11, §6].

(c) The kernel X[m] := ker([m]: X — X) is a finite group scheme over K of order m?29.

Definition 2.6. Let X be an abelian variety and let m € Z with m > 1. The m-torsion subgroup of X, denoted
by X [m](K®#), is the subgroup of points of X (K*#) of order m,

X[m](K*8) = {P € X(K*8): [m]P = 0}.
It equals the group of K®#-valued points of the finite group scheme X [m].

Remark 2.7. For any m not divisible by the characteristic of K, X[m](K®#) has order m?9 and is contained in
X (K®°P). Since this is also true for any n dividing m, X[m](K*8) must be a free Z/mZ-module of rank 2g.

Finally, if X is an abelian variety over C of dimension g, then X (C) is isomorphic to a complex torus C9/A,
X(C)=C9/A

for some lattice A = A(X) in CY under an isomorphism of complex manifolds which preserves the group structures.
Here A C CY is a discrete Z-submodule which is free of rank 2g. However, when g > 1, not every lattice A C C9
arises from an abelian variety, that is, the quotient C9/A of C9 by an arbitrary lattice A does not always arise
from an abelian variety. There is a criterion on A for when C9/A is an algebraic (hence abelian) variety, namely,
that (C?, A) admits a Riemannian fornﬂ, see [Mum?70, Chapter I, § 3].

3 Semi-simple Abelian Varieties

Theorem 3.1. For two abelian varieties X and 'Y over a field K the Z-module Homg (X,Y") is finite projective
of rank < (2dim X) - (2dimY").

Proof. See for example [Mum70, Chapter IV, § 19, Corollary 1]. O
Definition 3.2. Let X be an abelian variety over K. Then X is called

(a) simple over K if X is non-trivial and there does not exist an abelian subvariety ¥ C X over K other than
(0) and X.

(b) semi-simple over K if X is isogenous over K to a direct product of simple abelian varieties, i.e. X ~g
Xl XK ... XK Xn with Xi simple.

Remark 3.3. The Theorem of Poincaré and Weil [Mil08, Proposition 9.1] states that any abelian variety is
semi-simple over K. More precisely, for any abelian variety X over K, there are simple abelian subvarieties
X1, -+, X, C X such that the map Xy xg -+ X X, = X, (a1, ,an) = a1 + -+ + ap, is an isogeny. The
proof of this is analogous with a standard proof for the semi-simplicity of a representation of a finite group G on
a finite-dimensional vector space over Q, see [Mil08, Remark 9.2].

Let X be a simple abelian variety, and let 0 # f € Endg(X). Then f is an isogeny, because by the simplicity
of X, the image of f equals X and the connected component of ker f equals {0}, as both are abelian subvarieties.
So f is surjective with finite kernel. From this it follows that QEnd (X)) is a division algebra or equivalently a
skew-field, i.e., a ring, possibly non commutative, in which every nonzero element has an inverse.

Remark 3.4. Let X be a simple abelian variety over K, and let D = QEnd(X). Then QEndg(X™) = M, (D)
is the ring of n X n matrices with coefficients in D.

Now consider an arbitrary abelian variety X. Then X is isogenous over K to a product X" X g -+ x g X',
where each X; is simple, and X; is not isogenous to X; for ¢ # j over K. The above remarks show that

QEnd e (X) = [[ Mn,(Ds), Di = QEnd(X,).

2For a complex torus V/A where V is a complex vector space and A is a full lattice in V, a skew-symmetric form F : Ax A — Z, that
is F(w,v) = —F (v, w), extended to a skew-symmetric R-bilinear form Fg : V X V — R is a Riemannian form if Fg(iv, iw) = Fr(v, w)
and the associated Hermitian form H: V x V — C with H(v,w) := Fgr(wv,w) + ¢ Fr(v, w) and Fr(v,w) = IJm(H (v, w)) is positive
definite.



Since Endx (X) is a free Z-module of finite rank < (2dim X)? we know that QEnd(X) is a finite dimensional
Q-algebra.

In the following we recall a few facts about semi-simple algebras. Let @ be a field, let B be a semi-simple
Q-algebra of finite dimension, and let B = [[ B; be its decomposition into a product of simple algebras B;. A
simple @-algebra is isomorphic to a matrix algebra over a division )-algebra. The center of each B; is a field Fj,
and each degree [B; : Fj] is a square. The reduced degree of B over @ is defined to be

[B: Qlrea = Z[Bi cF]Y2[F - Q).

3

For any field Q' containing Q,
[B:Q]=[B®qQ :Q] and [B:Qlreda=[B®gQ" : Q' ea-

Proposition 3.5 ([Mil06, Proposition 1.2]). Let B be a semi-simple Q-algebra which is finite dimensional over
Q. For any faithful B-module M,
dimg M > [B : Qlred;

and there exists a faithful module for which equality holds if and only if the simple factors of B are matrix algebras
over their centers.

Proposition 3.6 ([Mil06, Proposition 1.3]). Let char(Q) = 0 and let B be a semi-simple Q-algebra. FEvery
maximal étale Q-subalgebra of B has degree [B : Qlreq over Q. Here we mean by an étale Q-algebra a finite
product of finite separable field extensions of Q.

4 Cohomology
4.1 Singular Cohomology

Let X be an abelian variety of dimension g over C. Let V be the tangent space of X at the identity element
and let A be the kernel of the exponential map exp : V' — X. Now the space V = CY is simply connected, and
exp : V — X is a covering map, therefore it realizes V' as the universal covering space of X, and so m1(X) is its
group of covering transformations, which is A. In particular, it is abelian. As for any good topological space we
obtain for the singular cohomology of X

H' (X, Z) = Homgroups(m1(X), Z) = Homgz(A,Z).

Since we have seen that X is a complex torus of dimension g, it is isomorphic to (R/Z)?9 = (51)%9 as a real
Lie group, where S! is the circle group. We claim that for all r € Ny

A H'(X,Z) = H'(X,Z)

under the natural map defined by the cup product. Indeed, by the Kiinneth formula if the above map is an
isomorphism for spaces X; and Xo with finitely generated cohomologies, then it is an isomorphism for X; X x Xo.
Since it is an isomorphism for S' for all » > 0, where the module is (0) for r > 2, the result for X follows.
Since X is compact and orientable and H" (X, Z) is torsion free, the duality theorems gives us for the singular
homology of X
H,(X,Z) = H"(X,Z)" and in particular Hi(X,Z)=A.

4.2 [(-adic Cohomology

We follow [Mil86, §15]. Let X be an abelian variety of dimension g over a field K, and let £ be a prime different
from char(K). Recall that, for any m not divisible by the characteristic of K, X[m](K*®P) has order m?9. Define
the (-adic Tate module of X as

T(X) = lim (X[P7](K0), 1],

It follows that T;(X) is a free Zy,-module of rank 2g. There is a continuous action of ¥k on this module.



Let X and Y be two abelian varieties over K. A homomorphism f : X — Y induces a homomorphism
X[¢"] — Y[¢"], and hence a homomorphism

Tl(f) : TZ(X) - TE(Y)v (a17a27 o ) = (f(al)vf(QQ)v o )

Therefore, Ty is a functor from abelian varieties to Z;-modules. It is easy to see that for any prime ¢ # char(K),

the natural map
Homg (X,Y) — Homg, (Ty(X), Te(Y))

is injective. From this one obtains that the Z-algebra Homg (X,Y") of morphisms X — Y of group varieties
is torsion-free. The following theorem was conjectured by Tate [Tat66] and proved by him for finite fields K.
It was proved by Zarhin [Zar75] for fields of positive characteristic and by Faltings [Fal83| [Fal84b|] for fields of
characteristic zero.

Theorem 4.1 (Tate conjecture for abelian varieties). Let X and Y be two abelian varieties over a finitely
generated field K and let £ be a prime different from the characteristic of K. Then the natural map

HOIDK(X, Y) Rz Ly — HOmZe[gK](T[X, T[Y), f XKar—a- Tg(f)
18 an isomorphism of Zg-modules.

The theorem is known to fail for some classes of fields which are not finitely generated (e.g. local fields and of
course algebraically closed fields).
Now we write X gz 1= X X ¢ Spec K& and denote by 75" (X a1z, 0) the étale fundamental group, then

HY, (X geate, Zg) 22 Hom ™™ (n$8 (X jeas, 0), Zg).

For each n the map [("] : X — X is a finite étale covering of X with group of covering transformations X [¢("](K*P).
By definition 7" (X gais, 0) classifies such coverings, and therefore there is a canonical epimorphism 7§* (X gals, 0) —
X[¢™]. On passing to the inverse limit, we get an epimorphism 7$*(X gai,0) — Ty(X), and consequently an
injection
Homz, (Te(X), Ze) < Hiy (X gurs, Ze),

which actually is an isomorphism, see [Mil86, Theorem 15.1]. So we obtain for the first ¢-adic homology group of
X

Hi ¢t (X gate, Ze) = Tp(X) and Hy ¢ (X gats, Q) = To(X) ®z, Qe
and for the first ¢-adic cohomology group of X
HY (X gots, Zo) = Hy g0 (X geote; Zg)Y and H (X geats, Q) = Hy g0 (X geats, Qp)V.
y [Mil86, Theorem 15.1] the cup product pairings define isomorphisms
Hy 6t (X geats, Zg) = /\ Hiy et (X g, Ze) and He (X s, Qp) = /\ He, (X gears, Qo).
Now, over the field K = C the choice of an isomorphism X (C) = C9/A determines X [m](C) = m~!A/A. Then
Ty(X) = 1<£n(X [€"](C), [0]) = {iin(ﬁan/A, multiplication with ¢)
= 1<£n(A @z (Z/0"Z), mod (™)
~A®y {iin(Z/E"Z), because A is a free Z-module
= A®zZy.
Taking duals and exterior powers, we can summarize the results as a

Theorem 4.2. For every abelian variety X over C there are canonical comparison isomorphisms between singular
and f-adic (co-)homology

H (X,Z¢) 2 H"(X,Z) ®z Z¢ and Hy6(X,Z) 2 H,(X,Z) Q7 Zs .



Example 4.3. Also for the multiplicative group scheme G,, := G, = Spec Q[z,z~!] there is a period iso-
morphism between Hy(G,,,(C),Z) ®z Z¢ and Hy ¢;(Gy, ¢, Z¢). Namely, Hy(G,,(C),Z) = Z - u, where u: [0,1] —
G (C) = C~ is the cycle given by u(s) = exp(2mis). Also let 5?1) := exp(2mi/¢™) € Q& C C. It is a primitive ¢"-
th root of unity with (e"*V)¢ = £\ for all n. Let ¢ := (/™) e € TuGpn. Then Hy ¢ (G, Zo) = TyGyy = €2
and the comparison isomorphism

H1(G(C),Z) @7 Zi = Hi 6t(Gm.c, Ze)

exp(2mi

sends u to .. This can be seen from the exact sequence 0 — Z = 7 (C*) — C oPCT o )y ©x 4 0 and the

induced comparison isomorphism 71 (C*) ®z Z¢ == TG, 1 — (exp(2m’/€"))neN.

4.3 De Rham Cohomology

We will now explain the construction of the Dolbeault complex associated with X which is an analog of the de
Rham complex for complex manifolds. Let X be an abelian variety over C.

Let €™ = ®p4q=rE"? be the sheaf of C*> complex valued differential n-forms, where €74 is the sheaf of C*>
complex valued differential forms of type (p,¢). In terms of local coordinates, let (z1,--- , z4) be a holomorphic
coordinate system. First we decompose the complex coordinates into their real and imaginary parts: z; = x; +iy;
for each j. Letting dz; = dx;+idy;, dz; = dx;j—idy;, one sees that any differential 1-form with complex coefficients

can be written uniquely as a sum
n

> (fidz + 9;d%)

j=1

for C-valued C>°-functions f; and g;. Let €10 be the sheaf of C*° complex valued differential 1-forms where all
g; are zero, and let €% be the sheaf of C*° complex valued differential 1-forms where all f; are zero. Then the
space €77 of type (p, q)-forms is defined by taking linear combinations of the wedge products of p elements from
%10 and q elements from €%!. Symbolically,

p q
@Pa — /\%1,0 A /\%O,l
In particular for each n and each p and ¢ with p+ ¢ = n, there are canonical projection maps which we denote by
) gy g,

The exterior derivative defines a map d : €™ — €™ i.e. if p € €77 then d(p) € €PT19 @ P9+, Using d and
the projections maps, it is possible to define the operators:

d=nPthiod.gPd - @gPtla 9 =qgPitloq. gPd — EPatl

In terms of local coordinates z = (21, - - z4) we can write ¢ € €77 as
Y= Z frydzy Ndzy; € €91
#I=p, #J=q
where I and J are multi-indices and dzr = A,.; dz; and dzr = \,.; dZ;. Then
ofr. _ 5 ofrr ,_ _
dp = Z Z (;;Ii] dzi Ndzy Ndzy and dp = Z Z ngi] dz; Ndzp A dz”.
#I=p,#J=q i #I=p,#J=q 1

It is not difficult to see the following properties:

d=8+0
9% =9%>=0d+d0 = 0.

Then the Poincaré lemma gives that the complex

05Coe" Let 4.
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is a fine resolution of the constant sheaf C. It is called the de Rham resolution. We define the de Rham cohomology
as the cohomology of this complex i.e.

{global n-forms ¢ € ¥"(X) on X which are d-closed, i.e. dp =0}
{dy : where ¢ € €"~1(X) is a global (n — 1)-form on X}

Hir(X,C) =

Let V = ToX be the tangent space to X at 0 (regarded as a complex vector space). Let TV = Homc(V,C)
be the complex cotangent space to X at 0 and T = Homg _antitinear(V; C). Then from linear algebra

Homg (V, C) 2 Home(V, C) @ Home -angitinear(V; C) i.e. Homg(V,C) 2TV & T,

and

/\HomRV(C @/\T\/@)/\

p+q=r

By translation under the group law on X every complex co-vector ¢ € APTY ® AT’ extends to a unique
translation invariant w, € €79, and therefore every complex co-vector ¢ € A" Homg(V,C) extends to a unique
translation invariant form w, belonging to ™. For all d-closed n-forms w, there is unique translation invariant
w,, for ¢ € A" Homg(V,C), such that

w — wy, = dn, for some (n — 1)-form 7.
Therefore, Hjg (X, C) = A" Homg(V,C), and has the decomposition
, - P -y
X0 P ANTVe AT
ptg=r

For the sheaf QP := ker(9: €7° — €P') of holomorphic p-forms on X we know from [Mum70, Chapter I, §1,
Theorem)] that
1(x,0x) =2 \N'T" and H(X, ") = N'TV o \'T’
S0
r(X,C)= @ HPY(X), where HPY(X):=H!(X,QP).
prq=r

This is the famous Hodge decomposition.

Now we obtain the de Rham isomorphism
H'(X,C) = H (X, Z) ®z C = Homgz(A, Z) ®z C = Homg(V,C) = Hiz (X, C).

Then, Hjgp (X,C) = H"(X,Q) ®g C. Note that complex conjugation on the right tensor factor of the target
defines a conjugate-linear automorphism of Hjji (X, C). For more details see [Mum70, Chapter I, § 1]. Taking also
exterior powers, we can summarize the results as a

Theorem 4.4 (De Rham isomorphism). For every abelian variety X over C there are canonical comparison
isomorphisms between singular and de Rham cohomology

RX,C)2H"(X,Z) 2z C.

Example 4.5. Also for the multiplicative group scheme G, := G,,, ¢ = Spec C[z, x71] there is a de Rham isomor-
phism between H'(G,,,(C), Z) and Hig (G,,,C) = C2z. Asin Example[d3 the singular homology Hi (G, (C),Z) =
Z - u, where u: [0,1] = G,,(C) = C* is the cycle given by u(s) = exp(2mis). The de Rham isomorphism is given
as the pairing

H (G, Z) x Hig(G,,,C) — C, (nu,w) — n [ w, (u, %) — = 2mi.
The corresponding isomorphism H*(G,,,Z) @z C =~ Hig(G,,,C) sends the generator of Hl(Gm, Z), which is

dual to u, to (2mi)~! - 4.
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5 p-divisible Groups and the p-adic Period Isomorphism

Let R be a commutative ring. Let p be a prime number, and A an integer > 0. A p-divisible group G over R of

height h is an inductive system
(Gnyin), n>0

where
(a) G, is a finite flat commutative group scheme of finite presentation over R of order p™",

(b) for each n >0,
0— Gy 2 Gn+1 1, Gnt1

is exact (i.e., G, can be identified via i,, with the kernel of multiplication by p" in Gp41).

These axioms for ordinary abelian groups would imply
Gy = (Z/p"Z)" and G =1l G, = (Qy/Z)".

A homomorphism f : G — H of p-divisible groups is defined in the obvious way: if G = (G, i), H = (Hp,in)
then f is a system of homomorphisms f, : G,, = H,, of group schemes over R, satisfying i,, o f,, = fr41 0, for
alln > 1.

Example 5.1. Let G be a commutative group variety over a field K, which is either an abelian variety or G,,.
We can associate a p-divisible group with G:

Define G[m] as the kernel of multiplication by m. Then (G[p"],i,) is a p-divisible group, where 4,, denotes the
obvious inclusion. This p-divisible group is sometimes denoted G[p*°].

(a) If G = X is an abelian variety, then the height of G[p*°] is 2dim X.

(b) If G = G, is the multiplicative group scheme, then G,,[p>] = jpe := (ftpn,in) with height 1. Here
ppn = Spec K[z]/(xP" — 1) is the group scheme of p"-th roots of unity.

Let us see how p-divisible groups generalize Tate modules. Suppose p # char(K). Then for a p-divisible group
(G, in) of height h over K each G, is a finite étale group scheme over K and each M, := G,,(K*?P) is a discrete
“r-module of size p"" annihilated by p”™ and M, [p"] = M,,. It follows that M,, = (Z/p"Z)". We can form two
kinds of limits:

(1) the direct limit My = lim M, is (Qp/Zy)" with a continuous Fx-action for the discrete topology, and

(ii) multiplication by p on M, 1 provides a quotient map M,,+1 — M, of discrete ¥x-modules yielding an inverse
limit T,,(M) = {iﬂMn that is a finite free Z,-module of rank h equipped with a continuous action of ¥ for the
p-adic topology.

We can recover the direct system (M, 4, ) from both limits, namely M, = M[p"] and M,, = T,(M)/(p™).
The viewpoint of My, explains the p-divisible aspect of the situation (since multiplication by p is surjective
on (Q,/Zy)"), whereas T,(M) has a nicer Z,-module structure. Since the étale group scheme G, is uniquely
determined by the ¥x-module M,,, this proves:

Proposition 5.2. If K is a field with p # char(K), then the functor G — T,(G) is an equivalence from the
category of p-divisible groups over K to the category of finite free Z,-modules with continuous Yk -action. O

On the other hand let K be a finite extension of Q, and let X be an abelian variety over K. Assume
that X has good reduction, i.e. there exists a smooth projective commutative group scheme X over O with
X 2 X X0, Spec K. Then X[p"] admits an integral model G,, := X[p"] with G, = G,41[p"] for all n > 1 and
G = (Gn, in) is a p-divisible group over O with Gi := G x o, Spec K = X [p*].

Now due to Tate [Tat67] we know that if G and H are p-divisible groups over Ok then

Hom@K (g, 7‘[) = HomK(gK, HK)

Remark 5.3. p-divisible groups over a perfect field & of characteristic p have a description via semi-linear algebra
by their Dieudonné module. The latter is a finite free module M over the ring W (k) of p-typical Witt-vectors
over k, equipped with a Frob,-semi-linear morphism F': M — M, called Frobenius, and a Frob, !_semi-linear
morphism V : M — M, called Verschiebung, satisfying FV =p=VF.
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This was generalized by Fontaine [Fon77] to p-divisible groups G over the ring of integers Ok of a finite
field extension K of Q,. Those p-divisible groups are described by the Dieudonné module D of the special fiber
G X, Speck together with a decreasing exhaustive and separated filtration Fil* on Dx = D ®, K satisfying
Fil’(Dg) = Dk, Fil*(Dg) = (0), where Ko = W (k)[p~'] is the maximal unramified subextension of K.

Notation 5.4. Let OC = hm(O@ ,Frob,) = {z = (z(™),en, € (Oc,)No: (V)P = 2™} and Apy := W(O(bcp)
be the ring of Witt vectors. Every element of Aj,¢ can be written in the form Y :° [z;]p’ where [z] denotes the
Teichmiiller lift of the element z = (z(™),, € (9(% Let © : Ainf[l] — C, be the morphism sending Y, [z;]p’
to >, x(o)pi The de Rham period ring B ».dr 18 the completion of Amt[ | at the maximal ideal ker ® and

Bpar = Frac(IB%+dR) is the field of p-adic perwds The de Rham per1od ring IB 4r 1s a complete discrete

valuation ring Wlth residue field C, and maximal ideal ker@ One can show that the ideal ker©® C Aj.r is
principal and generated by an element [pb] p € Ajnt, where p° = (p,pl/p,pl/p ,oot) € OCP. Any other generator
is of the form ([p"] — p) - u for u € A,. For more details see [Fon77]. There is a filtration on B, qr defined
by putting Fil' (B, ar) = ([p°] — p)° B;dR for i € Z, and we define 0,(x) for z € By ar \ {0} by 0,(x) = ¢ if

z € Fil'(B, qr) ~ Fil't' (B, ar). For z € B, ar ~ {0}, the quantity

vp(x) = vp (@(x . ([pb] —p)_ﬁp(w))) ceQ (5.1)

does not depend on the choice of the generator [p°] — p of Aju¢ Nker ©. Indeed, if we replace the generator [p”] —
of ker © C Ajpnr by another generator ([p°] — p) - u with u € A}, s because then v, (O (([p°] = p) - u)~ @) =
v (O(z - ([p°] = p) ")) +0,(O(u)) =% @) = v, (O(z- ([p’] —p)~ ”P )) as O(u) € O¢, - If z and y are two elements
of B, ar, then 9, (zy) = 0,(x) + 9,(y), and hence v,(zy) = vp(x) + vp(y). But note that v, does not satisfy the
triangle inequality.

Finally, if K C C, is a finite field extension of @, then there is an action of ¥k on B, qr which respects the
filtration, and (B, qr)“% = K. Also note that there does not exist a lift of the absolute Frobenius ¢, on B, 4r.

The p-adic period isomorphism is provided by the following theorem which was proved by Fontaine and
Messing [FMS87] using the associated p-divisible group.

Theorem 5.5. Let K, C @glg be a finite extension of Q, and let X be an abelian variety over K,. Then for
every n > 0 there is a period isomorphism from p-adic Hodge theory

hpar : Hi (X x g, Spec Q2. Z,)) @z, By ar = Hjjg (X, Kp) ®k, Bp.dr,

which is Yy, -equivariant and compatible with the filtrations, where on the left hand side, 9r, acts on both factors

and the filtration is induced only by B, ar, and on the right hand side 9y, acts only on By, ar and the filtration

is induced by the Hodge filtration on Hig (X, K,) and the filtration on By ar, i.e. Fil® (HéR(X, K,) ®k, Byar) ==
> Fil'Hig(X, K,) ®k, Fil’ By gr.

itj=k

It was conjectured by Fontaine [Fon82, A.6] and proved by Faltings [Fal89, Theorem 8.1], Niziol [Niz98] and
Tsuji [Tsu99], that the theorem also holds for arbitrary smooth proper schemes over K.

Example 5.6. Also for the multiplicative group scheme G, := Gy, 0, = Spec Qp[z, 27| there is a period
isomorphism between Hét(Gmﬂleg,Zp) and Hig(Gm,Qp) = Qp%, see Example As in Example L3 let

) e Qe ¢ Q3’8 be a primitive p”-th root of unity with (e, (1 yp — &0 such that e, = (e5), € O(bc Then
H17ét (Gm)Q;lg, Zp) = Tme = E%p a,nd Hét(Gm7Q:1g7Z ) ( )V — ( —1)ZP On the lattel' Gal(@dlg/(@p) acts

through the inverse of the cyclotomic character. The series t, := log[e,] == — >, .o =(1 — [¢,])" converges in
B,.ar- Under the period isomorphism

hyp,ar : Héc (Gmnglgv Zyp) ®z, Bp,ar = H(liR(va Q) ®q, Bp.dr,

of G,, the element 4= - ®1 is mapped to ¢, '® tp. Therefore t, can be viewed as the p-adic analog of the complex

period 27i from Example It satisfies vp(tp) =1land vy(ty) = v,(O(t,- ([P’ —p)7 1)) = pl 7, see [Col93, §0.2].
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6 Complex Multiplication

We follow [Mil06]. Complex conjugation on C (or a subfield) is denoted by ¢ or simply by a — a@. A complex
conjugation on a field K is an involution induced by an embedding of K into C and by complex conjugation on

C.

A number field E is a CM-field if it is a quadratic extension E/F where the base field F is totally real but E is
totally imaginary. i.e., every embedding of F' — C lies entirely within R, but there is no embedding of £ — R
or equivalently there exists an automorphism cg # id of F such that p o cg = co p for all homomorphisms
p: E — C. In other words, there is a subfield F of E such that E = F[/a], F totally real, o € F and p(a) < 0
for all homomorphisms p: F — C.

Remark 6.1. A finite composite of CM-subfields of a field is CM. In particular, the Galois closure of a CM-field
in any larger field is CM.

A CM-algebra is a finite product of CM-fields. Equivalently, it is a finite product of number fields admitting an
automorphism cg that is of order 2 on each factor and such that pocg = cop for all homomorphisms p : £ — C.
The fixed algebra of cg is a product of the largest totally real subfields of the factors.

Let E be a CM-algebra. The set Homg(E, C) of Q-homomorphisms E — C is a union in complex conjugate pairs
{¢,cop}t. A CM-type on E is the choice of one element from each such pair. More formally:

Definition 6.2. A CM-type on a CM-algebra F is a subset ® C Homg(F, C) such that
Homg(E,C) = ®Ucd (disjoint union).
Here ¢® := {cop | ¢ € ®}).

Let X be an abelian variety over the complex numbers C. We have seen that QEndg(X) is a semi-simple Q-
algebra which acts faithfully on the (2 dim X )-dimensional Q-vector space H; (X, Q). Therefore, by Proposition3.H

2dim X > [QEndq(X) : Qlred
and when equality holds, QEnd(X) is a product of matrix algebras over fields.

Definition 6.3. An abelian variety X over a subfield K C C is said to have complex multiplication (or be of
CM-type, or be a CM abelian variety) over K if

2dim X = [QEnd;(X) : Q)red-

By Proposition this definition is equivalent to the statement that QEndy (X) contains an étale Q-subalgebra
of degree 2dim X over Q. Indeed, if the latter holds then 2 dim X is less or equal to the degree of a maximal étale
Q@-subalgebra. By Proposition [3.0] the latter degree equals [QEnd g (X) : Q]req. And the inequality [QEnd g (X) :
QJrea < 2dim X proves the claim.

Note that when X is a CM abelian variety over a field K C C then QEndg(X) € QEnds(X) implies that
this inclusion is an equality.

Remark 6.4. Let X ~g [[, X;" be the decomposition of X (up to isogeny) into a product of isotypic abelian
varieties over K. Then D; = QEnd (X;) is a division algebra, and QEnd (X) & [[ My, (D) is the decomposition
of QEnd (X)) into a product of simple Q-algebras. From the above definition and Proposition we see that X
has complex multiplication if and only if D; is a commutative field of degree 2dim X; for all 5. In particular, a
simple abelian variety X has complex multiplication if and only if QEndj (X) is a field of degree 2 dim X over Q,
and an arbitrary abelian variety has complex multiplication if and only if each simple isogeny factor does.

Let X be an abelian variety over C. An endomorphism « of X defines an endomorphism of the vector space
H;(X,Q) of dimension 2dim X over Q. Therefore, the characteristic polynomial P, of « is defined as

Po(T) := det (« — T| Hy (X, Q)).

It is monic, of degree 2dim X, and has coefficients in Z. More generally, we define the characteristic polynomial
of any element of QEnd(X) by the same formula.
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Consider an endomorphism « of an abelian variety X over C, and write X = C9/A with A = H;(X,Z). If a is
an isogeny, then a : A — A is injective, and it defines an isomorphism

ker(a) = a 'A/A =5 AJaA.
Therefore, for an isogeny v : X — X
deg v = # ker(ar) = |det (o] Hi (X, Q))| = [Pa(0)].

More generally, for any integer r we have deg(cv — ) = |det (v — r| H1(X, Q))| = |Pa(r)|; compare [CS86, Chap 5
§ 12].
For the convenience of the reader we reproduce the proof from [Mil06] of the following results.

Lemma 6.5 ([Mil06, Lemma 3.7]). Let F' be a subfield of QEnd(X), where X is an abelian variety over C. If F
has a real prime, then [F : Q] divides dim X .

Proof. First note that Hy(X,Q) is a vector space over F' of dimension m := 2dim X/[F : Q]. So for any
a € End(X) N F, the characteristic polynomial P, (T) is the m-th-power of the characteristic polynomial of « in
F/Q. In particular,

Normp/g(a)™ = dega > 0.

However, if F' has a real prime, then from the weak approximation theorem « can be chosen to be large and
negative at that prime and close to 1 at the remaining primes so that Normpg,g(a) < 0. This gives a contradiction
unless m is even. O

For the next proposition recall the definition of a Rosati involution on QEnd ; (X). By [Mum?70, Chapter III,
§13, Corollary 5] there exist polarizations on X, that is, isogenies A: X — XY = Pic’(X) which over K2
are of the form A\(z) = 2*£ ® £~! for an ample line bundle £ on X . Every polarization A has an inverse
At e QHomy (XY, X). The Rosati involution on QEnd g (X) corresponding to A is

aal =X Toa" o) (6.1)

Proposition 6.6 ([Mil06, Proposition 3.6]). (a) A simple abelian variety X has complex multiplication if and
only if QEnd(X) is a CM-field of degree 2dim X over Q.

(b) An isotypic abelian variety X has complex multiplication if and only if QEnd(X) contains a field of degree
2dim X over Q (which can be chosen to be a CM-field invariant under some Rosati involution,).

(c) An abelian variety X has complex multiplication if and only if QEnd(X) contains an étale Q-algebra E
(which can be chosen to be a CM-algebra invariant under some Rosati involution) of degree 2dim X over
Q. In this case H1(X,Q) is free over E of rank 1.

Proof. @ QEnd g (X) is a field extension of Q of degree 2dim X by Remark We know that it is either totally
real or CM because it is stable under the Rosati involutions (G1]). Now Lemma [65 shows that QEnd (X) is a
CM-field.

For [(b)| and [(c)] see [Mil06], Proposition 3.6]. O

Definition 6.7. Let X be an abelian variety with complex multiplication, so that QEnd(X) contains a CM-
algebra E for which H;(X,Q) is a free E-module of rank 1, and let ® be the set of homomorphisms £ — C
occurring in the representation of E on To(X), i.e., To(X) = @ .4 C, where C,, is the one-dimensional C-vector

ped
space on which a € E acts as ¢(a). Then, because

Hi(X,R) 2 To(X) & To(X), (6.2)

® is a CM-type on F, and we say that, X together with the injective homomorphism £ — QEnd(X) is of CM-type
(E,®).

Let e be a basis vector for H; (X, Q) as an E-module, and let a be the Og-lattice in E such that ae = Hy (X, Z).
Under the above isomorphism

H,(X,R) = P C, o & C,, (6.3)

ped pecd
e®1 p_>(...,e@,...;...7ecow,...)
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where each e, is a C-basis for C,. The e, determine an isomorphism

To(X) = @ C,.

ped

Next we state two important results on abelian varieties with complex multiplication from [ST61] and [ST68]
which we will need later.

Proposition 6.8. [ST61, Prop 26 §12.4] Let X be an abelian variety over K = K%P C C with complex multi-
plication, then there exists an abelian variety isogenous to X defined over a field which is a finite extension of

Q.

Theorem 6.9. [ST6S, Thm 6] Let X be an abelian variety over a finite extension K/Q with complex multiplica-
tion, then there exists a finite extension L/K such that X has good reduction at every place of O,.

7 The Faltings Height of an Abelian Variety

We recall the definition of the Faltings height of an abelian variety. It was introduced by Faltings in his proof of
the Mordell Conjecture and the Tate Conjecture [l for abelian varieties; see [Fal83] or [CS86, Chapter 2, § 3] for
the English translation. Let K be a number field, O the ring of integers in K. We define a metrized line bundle
on Spec(Ok) to be a projective Ox-module P of rank 1, together with norms || .||, on P ®p,, K, for all infinite
places v of K, where K, denotes the completion of K at v. We define €, = 1 or 2 according to whether K, 2 R
or K, 2 C. The degree of the metrized line bundle is defined as

deg(P, |- ||) = log(#(P/Ox - 2)) = Y _ evlog |,
v|oo

where x is a nonzero element of P and the sum runs over all infinite places of K. The right-hand side is of course
independent of x because of the product formula (LI).

Let now X be an abelian variety of dimension g over K, and let X be the relative identity component of the
Néron model of X over Ok. Assume that X is semi-abelian, i.e. a smooth algebraic group ¢ : X — Spec O, whose
fibers are connected of dimension g, and are extensions of an abelian variety by a torus. Let s : X — Spec Ok be
the zero section. Let wx /0, = S*(ng/oK>’ Wx/oy 18 a line bundle on Ok. The metrics at the infinite places v

of K are given by
1

la|? = / anal  for  a€w(Xy)=T(X,0% ),
(2m)9 Jx, () X

where X, denotes the base change of X under the map K — K. Then Faltings [CS86, Chapter 2, § 3] defines a

moduli-theoretic height as follows.

Definition 7.1. The (stable) Faltings height ht5t (X) of X is defined as

hta (X) 1= deg(wx/o | -11)- (7.1)

1
(K : Q]

It is easy to check that At (X) is invariant under extension of the ground field. Since every abelian variety
is potentially semi-stable by Grothendieck [SGA7, Exposé IX, Théoreéme 3.6], the Faltings height is defined for
every abelian variety over a number field. It measures the arithmetic complexity of the abelian variety and is
“not far” from an actual height on the moduli space of principally polarized abelian varieties.

8 Colmez’s Conjecture on Periods of CM Abelian Varieties

In [Col93] P. Colmez considers product formulas for periods of abelian varieties in the following

Situation 8.1. Let X be an abelian variety defined over a number field K with complex multiplication by the
ring of integers O in a CM-field E and of CM-type (E,®). Let Hp := Homg(E, Q*2) be the set of all ring
homomorphisms £ < Q*& and assume that K contains 1(E) for every v € Hg. By Theorem [6.9/ we may assume
moreover, that K is a finite Galois extension of Q and that X has good reduction at every prime of Ok. For
a fixed 1 € Hp let w, € Hiz(X, K) be a non-zero cohomology class such that b*wy = ¥(b) - wy, for all b € E.
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For every embedding n: K — Q& let X7 := X X Spec K,Specn Opec K and wz S H(liR(X", K) be deduced from
X and wy, by base extension. Let (up), € [, cp, Hi(X7(C),Z) be a family of cycles compatible with complex
conjugation ¢, that is u., = ¢(u,). Let v be a place of Q.

If v = co the de Rham isomorphism (Theorem [£4]) between Betti and de Rham cohomology yields a pairing

(- Dot HI(X(C),Z) x Hop (X", K) —+ C, (g, w)) = (g, w))oo
We define the complex absolute value ’fun wi| = g, @)oo loo € R.

If v corresponds to a prime number p € Z, the comparison isomorphism H' (X" (C), Z) ®7Z, -~ H}, (X(g;lg L)
together with the comparison isomorphism from p-adic Hodge theory (Theorems and [1.0)) yield a pairing

(o, )pt H(XT(C),Z) x Hig(X", K) — Brar, () — (uy,07),.

We define the absolute value | [, wZ}p = (U, Wil )plp == P77 p((un ) ¢ R, where the “valuation” v, on B, qr
n
was defined in (E1)) in Notation 5.4

Colmez [Col93] now considers the product [] [] ‘ f ww| or equivalently Fie H times its logarithm
v nEHK
#HK E E 1ogU w¢| E 10g‘ Unvww oo| #HK > > vp(<umwz>p) logp. (8.1)

v=vpF#oo NEHK

The right sum over all v = v, does not converge. Namely, Colmez [Col93, Theorem II.1.1] proves the following
Theorem B3] below. To formulate the theorem we need a

Definition 8.2. In this definition we denote by @ the function field from the introduction or the field Q, and
by @, the completion of @ at a place v # oco. The case Q = Q is relevant in the present section, and the
other case will be relevant in Section [l For FF = Q or F = Q, let F*P be the separable closure of F' in
F& and let 9 = Gal(F*°?/F). Let C(¥r,Q) be the Q-vector space of locally constant functions a: ¥r — Q
and let C°(¥%r, Q) be the subspace of those functions which are constant on conjugacy classes, that is, which
satisfy a(h=tgh) = a(g) for all g,h € ¥p. Then the C-vector space C°(¥r,Q) ®g C is spanned by the traces
of representations p: ¥r — GL,,(C) with open kernel for varying n by [Ser77, §2.5, Theorem 6]. Via the fixed
embedding Q%P — Q5P we consider the induced inclusion %5, C 4o and morphism C(%g, Q) — C(%o,,Q). If x
is the trace of a representation p: 93 — GL,(C) with open kernel we let L(x, s) := [[.;, , Lv(X, s), respectively
L>(x, 8) := [], 00 Lv(X, 8) be the Artin L-function of p with, respectively without the factor at co. Note that
the latter factor involves the Gamma-function if ) = Q. These L-functions only depend on y and converge for all
s € C with Re(s) > 1; see [Lan94, Chapter XII, §2] for Q = Q and [Ros02, pp. 126ff] for the function field case.
We also let g, be the cardinality of the residue field of @, (this means ¢, = p if @ = Q and @, = Q,,) and we set

s L (% 8) 5

e’} . ds ? _ :

Z (X, S) = W = — Z Z»U (X, S) log Qv with (82)
iLU L Ly(x;s)

Zo(xs) o= — a8 . (8.3)

_LU(Xv S) ' log Qv q Lv(Xv S)

Moreover, we let f,, be the Artin conductor of x. If Q@ = Q, it is a positive integer f,, = pr“A”’P(X) € Z, and if
Q is the function field of the curve C' it is an effective divisor f,, = >, pare,0(X) - [v] on C; see [Ser79, Chapter VI,
§82,3], where parto(x) is denoted f(x,v). In particular, only finitely many values pare () are non-zero. We set

pe(x) = log(fy) Z frart,w(X) 1og gy if @ = Q, respectively (8.4)
VF#00
pars(x) = deg( fX logq = Z HArt, o : Fq] logq = Z HArt, +(X) log ¢, and
all v all v
P00 = Y Barw(X) log g, if Q is a function field . (8.5)
VF#00

By linearity we extend Z>°(.,s) and u%, to all a € C°(¥%g, Q) and Z,(.,s) and part,, to all a € C%(%g,, Q). The
map Z,(.,s) takes values in Q(g; ®).

17



For our CM-type (F, ®) and for every 1) € Hg we define the functions

1 when gy € ®

and
0 when gy ¢ ®

AE )@ g@%Z, g'—>{

#{ne Hx:n 'gny € ®}
dpype: %= Q 9= gie X aBgpae(g) = (8.6)

nEHk #Hyk

which factor through Gal(K/Q) by our assumption that ¢¥(E) C K for all ¢ € Hg. In particular, agy o €
C(“, Q) and a}; , 4 € C°(%, Q) is independent of K.

We also define integers vp(wZ) which are all zero except for finitely many. Let K, be the p-adic completion
of K c Q"8 C Q3¢ C C, and let X" be an abelian scheme over O, with X7 X0k, Spec K = X X i Spec Kp.
Then there is an element x € K5,

unique up to multiplication by le(p, such that x’lwz is an Ok, -generator of
the free Ok, -module of rank one

H™ (X", 0k,) = {we Hjg(X",0k,): b'w=np(b) w Vbe Op},

and we set
vp(wy) = vp(2) € Z. (8.7)

This value does not depend on the choice of the model X7 with good reduction, because all such models are
isomorphic over Og,. Now Colmez [Col93, Theorem II.1.1] computed the terms in (B.1]) as follows.

Theorem 8.3. If the image of u, in Hi(X"(C),Q,) = Hl)ét(Xnglg,Zp) is a generator of the O ®z Z,-module

Q
Hl,ét(X(gglg,Zp) =T,X", then

#—IIJK > Up(<wq7nun>v) = Zp(a%,w,cbal) _NArt,p(a%,uz,{)) + #%K Z Up(wzj)' (8.8)
neEHk neHg

Since —piar p(a% 4 o) + #%K >~ vp(w,)) vanishes for all but finitely many primes p and > Zp(a% o 1)
neHg P

diverges, the sum (BI]) diverges. Colmez [Col93, Convention 0] assigns to this divergent sum a value by the

following

Convention 8.4. Let (xp)p-£00 be a tuple of complex numbers indexed by the prime numbers p in Z. We will give

a sense to the (divergent) series ¥ z Zp <0 Tp in the following situation. We suppose that there exists an element
a € C%(%y, Q) such that z, = —Z,(a,1)logp for all p except for finitely many. Then we let a* € C%(%y, Q) be
defined by a*(g) := a(g~!). We further assume that Z°(a*, s) does not have a pole at s = 0, and we define the

limit of the series }_ _  xp as

Y = —Z%(",0) — uX(a) + Z (xp + Zp(a, 1) Ing) (8.9)

p<oo
inspired by the functional equation relating L(a, s) with L(a*,1 — s) deprived of the terms at oo.

Example 8.5. The convention allows to prove the product formula for the multiplicative group G, := G, ¢ =
Spec Q[z, z71]. Namely, for the generator w = d;”” of H(liR(Gm, Q) = Q-w and for the cycle u: [0,1] —» G,,(C) = C*
given by u(s) = exp(2wis) with Hy (G,,,(C),Z) = Z - u, we have computed in Examples [L.3] and

(W, u)oo = 2mi and log|<w,u>oo|oo = log(27),
(W, u)py = t, and  log|(w,u)y|, = logltyl, = —2EF = —Z,(1,1)logp,
where 1(g) = 1 for every g € 9. So Convention B4 implies > _ log[{w, u)plp = —%Egg = —log(2m) for the

Riemann Zeta-function ¢z and ), log|(w,u),|, = 0. Therefore [] [{w,u)y|, = 1.
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The Convention8 4 and the Theorem[83]allow us to give to the divergent sum (8.1 a convergent interpretation.
In order to remove the dependency on the chosen cycles (uy), € [, c g, Hi(X"(C),Z), Colmez considers the value

1
(Wi ung)o \
n n o Py N
(Wi Woys Un)y = (t”'iwzw,um , (8.10)

where oo = 27 and for v = v, # o0, t, = t, is the p-adic analog of 2mi from Examples and Note
that ® U ¢c® = Hg implies a%, , 4 + 0% oy = 1, and hence Z,(a% 4 5,1) + Zp(a% oy 5,1) = Zp(1,1) and
fiartp(0% o) + Harep(a% oy o) = HAre,p(1) = 0. Therefore, Theorem B3| implies

1
#11{K > vp(<w:/iaw2¢vun>v) = 3 (Zp(]lv 1)+ Z;D(a(});,w,q»a 1) - /LArt,p(a%‘,w,@) + #;:[K > U;D(WZ;)
neEHk nEHk

— Zy(ay ey ) + arn (0 cp0) = . O 0p(wly)

n€Hk
1
= Zp(a%,d;,{n 1) - /LArt,p(a%W@) + 5 (#%K Z vp(wZ) — vp(wgw)) .
neEHk
Using Convention [8.4] one thus obtains
7 2 2 logllwi,wly,un)l, (8.11)
v n€EHK
oo * 1
= _Z ((a%,w,é) 70) + #[1-[K (log“wZuwau u7]>oo}oo - 5 Z ('Up(WZ) - vp(wz¢)) 1ng>
neEHgk p<oo

which is independent of the chosen u,. Colmez formulated the following
Conjecture 8.6 ([Col93| Conjecture 0.1]). The sum BII) is zero, or equivalently the product formula holds:
IT IT el i unho], =1
v neHx
He then proved
Lemma 8.7 ([Col93| Lemme 11.2.9]). In Situation [81] the value
(B0, @) = i Y (1og\<wg,wgw,un>oo\oo _% 3 (wp(@?) = vplw?,)) 1ogp) (8.12)
n€Hk p<oo
only depends on E,v and ® and not on the choice of X, wy,u, and K.
Colmez also relates the product formula to the Faltings height, see Definition [7.1]
Theorem 8.8 ([Col93, Théoreme I1.2.10(ii)]). In Situation[81] the Faltings height ht3t,(X) of X satisfies
Pa(X) = = 3 (h(E v, ) + Lufi(ohy0) ) (8.13)
heP
This immediately implies the following
Corollary 8.9. In Situation [81l the following assertions are equivalent.
(a) ht(E, 1, ®) = Z*((al, )", 0).

(b) The product formula holds, that is, the expression ([8I1) is zero and Hnel;[I ’(wz,wzw, un>v}v =1.
v K

]f and hold for all ¢ € ® then htjf (X) = — Zwe{) (Zw((a%)w)q))*, 0) + %ufrt(a%)w@)). O

Colmez [Col93 Conjecture I1.2.11] conjectures that statements @ and @of Corollary B9 hold for all E, ), ®.
There are various partial results in this direction. The first is due to Colmez himself who was able to prove the
following theorem up to a rational multiple of log 2, which was then removed by Obus:
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Theorem 8.10 ([Col93] Théoreme 0.5], [Obul3l Theorem 4.9]). If E is abelian over Q, then the product formula
holds true for every v, ®, and hence

BEa(X) = = 30 (2%((0h.4.0)",0) + SuFalabpa) (8.14)
Pped

There has been much further work and progress on Colmez’s conjecture by many people. For example,
Yang [Yanl3| proved it for a large class of CM-fields F of degree [E : Q] = 4, including the first known cases
when E/Q is non-abelian. Let us also mention the most recent results by Andreatta, Goren, Howard, Madapusi
Pera [AGHMP18|, Yuan, Shou-Wu Zhang [YZ18] and Barquero-Sanchez, Masri [BSM18§].

Theorem 8.11 ([AGHMPIS, Theorem A], [YZI8, Theorem 1.1]). For every CM-field E Colmez’s conjecture
holds true on average over all CM-types ®, that is

DD Wt ®) = Y Y Z%((apye)"0).

d Yed P Yed

Remark 8.12. In [YZ1§|] the averaged Colmez conjecture (Theorem BII]) follows from a generalized Chowla-
Selberg formula [YZ18, Theorem 1.7]. Moreover, (generalized) Chowla-Selberg formulas are special cases of
generalized Gross-Zagier formulas. In the case when [F : Q] = 2, the generalized Chowla-Selberg formula [YZ18|
Theorem 1.7] is actually equivalent to the classical Lerch-Chowla-Selberg formula ([3]), and it is also equivalent
to the Colmez conjecture for E, by using a result of Faltings [Fal84a, Theorem 7.b)]. See [Col93, §0.6] and
[GvKM19, §4.3] for additional explanations.

As a consequence of Theorem [BT1] Barquero-Sanchez and Masri [BSM18, Theorem 1.1] proved that for any
fixed totally real number field F' of degree [F' : Q] > 3 there are infinitely many effective, “positive density” sets
of CM extensions E//F such that E/Q is non-abelian and Colmez’s conjecture (814) on the Faltings height holds
true for E and any ®. Moreover, they prove

Theorem 8.13 ([BSMI8| Theorem 1.4]). In Situation[81 if the Galois closure of E has degree 24X . (dim X)!
over Q, then

htin(X) = = > Z%((a%,p,0)",0) = 51Ru(akp.0)
Ped

As another consequence of Theorem BTl and of previous work by Edixhoven [EMOOQI, Problem 14], Pila,
Wilkie, Yafaev, Zannier and many others [EY03| [PT14, [PW06| [PZ0§|, Tsimerman [Tsil8] proved the André-
Oort-Conjecture for the Siegel modular varieties:

Theorem 8.14 ([Tsil8, Theorem 1.3]). Let A, be the Siegel modular variety parameterizing principally polarized
abelian varieties of dimension g over C. Let X C Ay be an irreducible closed subvariety which contains a Zariski
dense subset of special points of Ag. Then X is a special subvariety.

The averaged Colmez conjecture (Theorem [BT1]) enters in this result by implying that the Galois orbit of a
special point, that is a CM abelian variety, is large. This result and the André-Oort-Conjecture were previously
obtained in several cases conditionally under assumption of the generalized Riemann Hypothesis.

Part 11
Drinfeld Modules and A-motives

9 Basic Definitions

Following the general philosophy about similarities between number fields and function fields, we now transfer the
contents of Part[[[to characteristic p. Here Drinfeld modules replace elliptic curves and A-motives replace abelian
varieties. We follow the expositions in [Gos96, Ch.4], [Tha04, Ch.2] and begin with the analog of Notation 2]

Notation 9.1. Let ', be a finite field with ¢ elements and characteristic p. Let C' be a smooth projective,
geometrically irreducible curve over F, with function field @ = F,(C). Let co € C be a fixed closed point and let
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A :=T(C \ {00}, O¢) be the Fy-algebra of those rational functions on C' which are regular outside co. Let v
be the valuation associated with the prime cc.

By a place of C' we mean a closed point v € C. So either v = co or v is a maximal ideal of A. It defines a
normalized valuation on @ which we also denote by v, respectively by vo, and which takes the value v(z,) = 1 on
a uniformizing parameter z, € @Q at v. We now fix such a uniformizer z, at every v and if v = co we abbreviate
Zoo to z. We denote the residue field of v by F,, its degree over F, by d, = [F, : F,] and its cardinality by
¢y = #F, = ¢%. Thus if a € A\ F, then vy(a) < 0, because F, is the field of constants in Q as C is
geometrically irreducible, see [Gro65, IVs, 4.3.1 and Proposition 4.5.9¢)]. The ring A and its fraction field @ play
the role of Z and Q in the arithmetic of function fields.

Let @, be the completion of @ with respect to the valuation v and let A, C @, be the valuation ring of v.
Then there is a canonical isomorphism A, = F,[z,]. Let Q%lg be a fixed algebraic closure of @, and let C, be
the completion of Q8 with respect to the canonical extension of v. We also use v to denote this extension to
Q% and thus to C,. However, we denote the image of z, in C, by (, and abbreviate (., to (. Note that C, is
algebraically closed. On C, and all its subrings we consider the normalized absolute value |.|,: C, — R>q given

by |z|, = @ " We let Oc, = {z € Cy: |z], < 1} be the valuation ring of C,. We also fix an algebraic closure
Q%8 of @ and an embedding Q*® — Q# for every place v of Q.

Let K be a field extension of Fy and fix an F,-morphism v : A — K. We will call the pair (K,v: A — K)
an A-field. The prime ideal ker(y) C A is called the A-characteristic of K and is denoted A-char(K,~) or simply
A-char(K). If A-char(K) = (0) we say K has generic A-characteristic. Then + is injective and K is via v a
field extension of Q. If A-char(K) = v C A is a maximal ideal, we say that A-char(K) is finite and K has finite
A-characteristic v. Then K is via v a field extension of IF,,.

Let G4 x = Spec(K[X]) be the additive group scheme over K and let 7 € Endg (G, k) be the ¢g-th power
Frobenius endomorphism given by 7*(X) = X9. Also every b € K induces an endomorphism ¢, € Endg (G, k)
given by ¢} (X) = bX. These endomorphisms satisfy 7o ¢y, = 1)ya o 7. Then the ring Endg r,(Gq,x) of Fy-linear
endomorphisms of group schemes over K equals the non-commutative polynomial ring over K in 7:

K{r} = {ZbiTi:néNo,biEK} with 7b=b7.
i=0

For Y b7t € K{7} we set deg, (Z biﬂ) = max{i: b; # 0}.
i=0 i=0

Definition 9.2. Let (K,v : A — K) be an A-field. A Drinfeld A-module over K is a pair G = (G, ) with
G = G4k and ¢ is an Fy-algebra homomorphism ¢ : A — Endg r, (G) =2 K{7}, a > @4, such that

(a) Lie(pq) = v(a) ie. (a—y(a))-Lie(G) =01in K for all a € A.
(b) There exists an a € A such that p, € K{7} \ K i.e. ¢, # v(a) - 7° i.e. deg, (¢q) > 0.

Then there is an integer r > 0 such that deg (¢q) = —rdecveo(a) for every a € A, see [Gos96, §4.5]. It is called
the rank of (G, ¢) and is denoted rk G or rk ¢. Also sometimes a Drinfeld A-module G = (G, ) is simply denoted
by ¢.

A morphism between Drinfeld A-modules (G, ¢) and (G, ¢’) over K is a homomorphism f : G — G’ of group
schemes such that ¢/, o f = f o ¢, for every a € A. We denote the set of morphisms between G and G’ by
Homg (G, G') and we write Endg (G) := Homg (G, G).

In particular, for every ¢ € A the commutation @, 0 Qe = Yac = Pea = Pe © o implies that ¢, € Endg (G).
Thus Endg (G) is an A-algebra via A — Endg(G), ¢ — ¢, and Homg (G, G’) is an A-module. So we may also
define QHom (G, G’) := Homg (G, G’) ®4 Q and write QEnd (G) := QHom (G, G) = Endk (G) ®4 Q.

Remark 9.3. Drinfeld A-modules possess higher dimensional generalizations, which are called abelian Anderson
A-modules, see [Harl7, Definition 1.2]. They were originally defined by Anderson [And86] for A = F,[t] under the
name abelian t-modules. These are group schemes which carry an action of the ring A subject to certain conditions.
Abelian Anderson A-modules are the function field analogs of abelian varieties. Although Anderson worked over
a field, abelian Anderson A-modules also exist naturally over arbitrary A-algebras as base rings. They possess an
(anti-)equivalent description by semi-linear algebra objects called A-motives, which we will define next. Through
the work of Drinfeld and Anderson it was realized very early on that a Drinfeld module or abelian Anderson
A-module over a field is completely described by its A-motive. The same is true over an arbitrary A-algebra R, as
is shown for example in [Harl7]. So in a way the situation in function field arithmetic is much better than in the
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arithmetic of abelian varieties (which only have a local p-adic semi-linear algebra description via the Dieudonné
module of the associated p-divisible group, see Remark [1.3)): the A-motive is a “global” Dieudonné module which
integrates the “local” Dieudonné modules for every prime in a single object. We will return to this in Section [I4]
and Proposition [[4.7

Before we define A-motives we have to fix some

Notation 9.4. For an A-field (K, ) we write A := A®p, K andset J := (a®1-1®7(a): a € A) C Ax. We
consider the endomorphism o* :=id4 ® Frob, x of Ak, where Froby i (b) = b7 for b € K. For an Ax-module M
we set 0*M 1= M ®a, o+ Ax and we write o3, : M — 0*M, m — m®1 for the natural c*-semilinear map. For a
homomorphism f: M — N of Ax-modules we set o* f := f ®id4, : 0*M — c*N. Note that the endomorphism
o* corresponds to a morphism of schemes

o :=1id¢ x Spec(Frobg i ): Ck := C xy, Spec K — Ck (9.1)

which is the identity on points and on sections of O¢ and the g-Frobenius on K. It satisfies o|gpeca, =
Spec(c*): Spec Ax — Spec Ag.
Example 9.5. Before we give the general definition of A-motives, we define the A-motive associated to a Drinfeld
A-module G = (G, ) over K as in [And86]. Namely, we set

M = M(Q) = M(QD) = HOIHKJFQ (G, Ga,K)u

where Hompg r,(—,—) is the group of Fy-linear homomorphisms of group schemes over K. Every choice of an
isomorphism G = G,k induces an isomorphism M (G) = K{7}. We make M (G) into an Ax{7} = A ®p, K{7}
module in the fashion given below:

(a,m) — mop, for me M, ac A (9.2)
(b,m) — ¢Ypom for mebM, be K, (9.3)
(1,m) — mm = Frob, g, om for Ggx = Ggrx: me M. (9.4)

Since the actions of a € A and of b € K commute, i.e. a(b-m) = 1 o mo ¢, = b(a-m), this makes M into a
module over Ax := A ®p, K. It is not difficult to see that M is a locally free Ax-module of rank r :=rk G, see
[Gos96| Lemma 5.4.1]. Now for a € A and b € K we have

To(a®b)(m)=To(Ypomop,) =Y oTomoyp, =(a®b?)orm.

Since the action of 7 is not A-linear but o*-semi linear, it induces an Ag-linear map 75 : 0*M — M defined by
v (m ® 1) = 7m. Sending m € M := Homgp,(G,Gq k) to Liem € Homg (Lie G, Lie G4, k) = Homg (Lie G, K)
defines a canonical isomorphism of Ag-modules

cokertyy = M/mp(0* M) == Hompg (LieG, K), mmod mpr(c*M) —— Liem, (9.5)

where a € A acts on Lie E via Lie pg; see [And86, Lemma 1.3.4]. This implies dimg (coker 7ps) = 1, which can
also be seen directly from M = K{r} and mas(c*M) =2 K{r} - 7.

The above construction motivates the definition of A-motives:

Definition 9.6. An (effective) A-motive of rank r and dimension d over K is a pair M = (M, 7as) consisting of
a locally free Ag-module M of rank r and an Ax-homomorphism 7p;: 0*M — M such that

(a) dimg (cokerTy) = d.
(b) (a —~(a))?- cokertpy = 0 for all a € A.

We write rk M := r and dim M := d.

A morphism between A-motives f: (M, 1pr) — (N,7n) over K is an Ag-homomorphism f: M — N with
forar = Tyoo* f. We denote the set of morphisms between M and N by Homg (M, N) and we write Endg (M) :=
Hompg (M, M). Since 0*(a) = a for all @ € A and 7)s is Ak-linear, we have a -idy; € Endg (M). Thus Endg (M)
is an A-algebra via A — Endg (M), a — a-idy and Homg (M, N) is an A-module. So we may also define
QHomy (M, N) := Homg (M,N) ®4 @ and write QEnd g (M) := QHomy (M, M) = Endg (M) ®4 Q.
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On the relation with Drinfeld A-modules we have the following theorem, see [And86| or [Gos96, §5.4].

Theorem 9.7. The contravariant functor G — M(G) from Drinfeld A-modules to A-motives over K is fully
faithful. Its essential image consists of all M = (M, Tpr) such that M is free over K{7} of rank 1. The latter
implies that dim M = 1.

In this sense we view A-motives as higher dimensional generalizations of Drinfeld A-modules. As an illustration
of the claim that A-motives (and abelian Anderson A-modules) play the role of abelian varieties, see for example
[BHO9] where the theory of A-motives over finite fields is developed in analogy with [Tat66].

Example 9.8. Let C = Pﬁ-q, and set A = F,[t]. Then Ax = K[t]. Let K = F,(f) be the rational function field
in the variable 6 and let v : A — K be given by v(t) = 6. The Carlitz module over K is given by G = (G4, k, ¢)
with ¢: Fyt] — K{7} defined by ¢, = 0 + 7. The A-motive associated with the Carlitz module is given by
C = (C = KJt],7¢ =t — 0) and is called the Carlitz motive. Both G and C have rank 1. As we will see in
Examples 12.3] and below, the Carlitz module is the function field analog of the multiplicative group G, g
from Example [£.31

10 Isogenies and Semi-simple A-Motives

If we define the rank of an abelian variety X ad rk X := 2. dim X, see Remark below, the analog of
Theorem B.1]is the following

Theorem 10.1. For two A-motives M and N over an A-field K the A-module Homy (M, N) is finite projective
of rank < (tk M) - (tk N). The same is true for Drinfeld A-modules over K.

Proof. For A-motives this was proved by Anderson [And86, Corollary 1.7.2] and for Drinfeld A-modules it can be
found in [Gos96, Theorem 4.7.8]. O

Definition 10.2. Let G = (G, ) and G’ = (G’,¢’) be two Drinfeld A-modules over K. A non zero morphism
f € Homg (G, G") is called an isogeny. If there is an isogeny f : G — G, then G and G’ are isogenous.

From [Gos96| 4.7.13], we know that if there is an isogeny f : G — G’, then there exists a some nonzero a € A
and an isogeny f : G’ — @ such that A A
ff=v¢a and ff=¢.
In particular, if 0 # f € Endg(G), then f is invertible in QEnd(G) := Endk (G) ®4 Q, so QEnd(G) is a finite
dimensional division algebra over Q.

Definition 10.3. Let M and N be two A-motives over K. A morphism f € Homg (M, N) is called an isogeny
if f is injective and coker f is a finite dimensional K-vector space. If there exists an isogeny f € Homg (M, N)
then M and N are said to be isogenous over K and we write M =~y N. This defines an equivalence relation by

Remark [[0.4)(d) below.

Remark 10.4. (a) Two Drinfeld A-modules are isogenous if and only if their associated A-motives are isoge-
nous, see [Harl7, Theorem 5.9 and Proposition 5.4].

(b) If two A-motives M and N are isogenous then rk M = rk N and dim M = dim N, see [Harl7, Proposi-
tion 5.8].

(¢) Conversely, let f: M — N be a morphism of A-motives with rk M = rk N. Then f is injective if and
only if coker f is a finite dimensional K-vector space, and in this case f is an isogeny. Indeed, since M is
locally free over A, it is contained in M ® 4, Quot(Ag) where Quot(Ax) denotes the fraction field of Ak.
Since rk M = rk N the injectivity of f is equivalent to f inducing an isomorphism M ® 4, Quot(Ax) —
N ®4, Quot(Ag), and this in turn is equivalent to coker f being torsion, and hence finite.

(d) If f: M — N is an isogeny between A-motives, then there exists non-canonically an isogeny f N - M
and a non-zero element a € A with ff = a-ida and ff = a-idy by [Harl7, Corollary 5.15]

(e) Let M and N be A-motives over K. If M and N are isogenous over K via an isogeny f, then
QEndy (M) = QHomy (M, N) = QEnd o (N), hws fohws foho [

More precisely, QHomy (M, N) is a free right QEndg (M )-module of rank 1 and a free left QEndy (V)-
module of rank 1. If M and N are not isogenous then QHom (M, N) = (0).
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Definition 10.5. Let M be an A-motive over K.

(a) An A-factor-motive over K of M is an A-motive M’ together with a surjective morphism M —» M’ of
A-motives over K.

(b) M is called simple over K if M is non trivial and M has no A-factor-motives over K other than (0) and M.

(¢) M is called semi-simple over K if M is isogenous to a direct sum of simple A-motives over K, i.e. M =~
@M, with M, simple.
Remark 10.6. (a) In comparison to the analogous Definition for abelian varieties, A-motives behave dually.
This is due to the fact that the functor from Drinfeld A-modules to A-motives is contravariant.

(b) For any Drinfeld A-module ¢ over K the A-motive M () is simple by [BH11, Corollary 7.5].

(c) But in contrast to abelian varieties (Remark B3) not every A-motive is semi-simple up to isogeny. This was
observed in [BH09, Examples 6.1 and 6.13].

(d) Let M and N be two A-motives over K of same rank and let M be simple over K. Then every non-zero
morphism f € Homg (M, N) is an isogeny. Namely, the image of f is a non-zero A-factor-motive of M, and hence
isomorphic to M via f, because M is simple. So f is injective and hence an isogeny by Remark

In particular, if M is simple over K then every non-zero endomorphism 0 # f € Endg (M) is an isogeny and
therefore invertible in QEnd (M) by Remark This implies that QEnd g (M) is a division algebra over

Q.

Moreover, if M is semi-simple over K with decomposition M ~x M, @& --- ® M, up to isogeny into simple
A-motives M, over K, then QEndy (M) decomposes into a finite direct product of full matrix algebras over the
division algebras QEnd (M) over @, compare Remark B4

11 Analytic Theory of Drinfeld Modules

In this section we consider Drinfeld A-modules over C,, which is an A-field via the natural inclusion A C Q C
Qoo C C denoted by ~.
If G = (Ga,cos ) With 91 A — Coo{7} is a Drinfeld A-module over Co then there is a uniquely determined

power series expg(z) = Y- e;z? with e; € Co, e = 1 satisfying

va(expg(2)) = expg(v(a) - 2)

for all a € A, see [Gos90, 4.6.7]. It is called the exponential function of G. The power series exp. converges
for every z € C4 and its kernel A(G) is an A-lattice in Co, (that is, a finitely generated projective, discrete
A-submodule) of the same rank as the Drinfeld A-module G. Note that Co, is infinite dimensional over Q and
therefore contains A-lattices of arbitrarily high rank.

Conversely, let A C C, be an A-lattice of rank r. Then the function
expy(z) = z H (1-3%) (11.1)
0£AEA

converges for every z € Co and can be written as an everywhere convergent power series in z. Moreover
expp: Coo = Cx is a surjective Fy-linear map whose zeroes are simple and located at A. For more details see
[Gos96], §4.2]. For a € A\ {0} we can now define the polynomial

M) = y(a) -z H (1- m) € Cuolx]. (11.2)
0£ EY(a)~TA/A
It satisfies
expy (Y(a) - 2) = @5 (expa(2)) (11.3)
and makes the following diagram with exact rows commutative

expy

0 A Coo Coo 0. (11.4)
J 'v(a)l ls@ﬁ
0 A Coo —222 4 C oo 0

It is easy to see that
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(a) o2 (x) is an Fy-linear polynomial, i.e. p? € Coo{7}, of T-degree deg, (¢2) = —rdvoo(a);
(b) o™ :a s ¢ defines a ring homomorphism ¢*: A — C.{7}.

The additive group C, considered as the quotient C, /A via exp,, thus carries a new structure as an A-module
given by z +— 2 (z) for a € A. Therefore, for every A-lattice A C Co, of rank r we get a Drinfeld A-module
GM = (Gac.., ™) of rank r over Co.

Definition 11.1. Let A;, As be two A-lattices of the same rank. A morphism from A; — As is an element
¢ € Cy, with ¢A; C Ay. If the ranks of A; and As are different, then we only allow 0 € Co, to be a morphism.

Theorem 11.2 ([Dri76, Proposition 3.1]). The functors G — A(G) and A — G* give an equivalence of categories
between the category of Drinfeld A-modules over Coo and the category of A-lattices in Coo.

Corollary 11.3. If G is a Drinfeld A-module over a field K of generic A-characteristic, then QEndg (G) is a
commutative field whose degree over @) divides tkG.

Proof. Since G and all elements of QEnd - (G) are defined over a finitely generated subfield Ky of K, we can choose
a @Q-embedding Ky — C, and it suffices to prove the corollary when K = C,. In this case G = G» for an A-
lattice A C C4 of rank equal to rk G. By Theorem we have isomorphisms Endg (G) == {c € Coo: cA C A},
f— Lie(f) and QEnd(G) = {c € Cso: ¢(Q - A) C Q- A}. In particular QEnd(G) C Cy is a commutative
field. Since @ - A C Cy is a Q-vector space of dimension rk G and also a QEnd, (G)-vector space, the formula
rkG = dimg(Q - A) = [QEnd (G) : Q] - dimqgnd, () (@ - A) tells us that [QEnd (G) : Q] divides rk G. O

We regard Drinfeld A-modules and particularly those of rank two as analogs of elliptic curves, where the
functional equation (II3]) for exp,(z) corresponds to the group law derived from (23)). The point is that (23]

defines a Z-module structure on the elliptic curve C/A = E5(C), while (IL2) and (II3]) define the above
A-module structure on the additive group scheme G .

Definition 11.4. Let G be a Drinfeld A-module of rank r over C. The Betti (co-)homology realization of G is
defined by
Hpi(G. R) :=AG) ®aR  and  Hipewi(G, R) := Homa(A(G), R)

for any A-algebra R. Both are free R-modules of rank r.

12 Torsion Points and v-adic Cohomology of Drinfeld Modules

Definition 12.1. Let G = (G,¢) be a Drinfeld A-module over an A-field K and let G(K®®) be the set of
K?&_valued points of G. For an element a € A, we set

Gla](K™%) := pla](K™8) := {P € G(K™®) | pa(P) = 0},
and we call Gla](K?¢) the module of a-torsion points of G = (G, ). If a C A is an ideal, we set
Gla](K™8) := pa](K*8) := {P € G(K™#) | p,(P) =0 for all a € a}.

The latter are the K®8-valued points of a closed subgroup scheme GJa] of G, which is an A/a-module scheme via
@~ ¢a|g[a)- If @ = (a) then Gla](K*8) = Gla](K™#).

Remark 12.2. We have the following observation, see [Gos96, §4.5], where we denote the A-characteristic of K
by p = A-char(K) := ker(y: A — K):

(a) If a € Ais prime to A-char(K ), we see that the polynomial ¢, is separable and #G/[a](K®8) = (#A/(a))™ <.
Since this holds for every a € A and G[a](K®#) is an A/a-module, one obtains Gla](K?#) = (A/a)* € as
A-modules.

(b) #G[p](K*8) = (#A/(p))**E~" and Gp](K*8) = (A/(p))™ ¥, where h is the height of the Drinfeld A-
module defined by h := m for every a € A, where w(a) is the smallest integer i > 0 with 7°
occurring in ¢,, with nonzero coeflicient.
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Example 12.3. The Carlitz module G = (G, k, @) over K = F,(0) with ¢, = 6 + 7 from Example has
rank 1. For every a = Y  a;t" with a; € F, and a, # 0, we have ¢, = Y i jaipy = i gai(f +7)" =
(i aif™) -0+ ...+ a7t = y(a)T’ + ...+ a,". Therefore, the polynomial ¢, (z) = y(a)x + ...+ a,z?" has
degree ¢" and is separable, because y(a) # 0. From this it follows that #G[a](K?®) = ¢" = #(A/(a)) and that
Gla](K*8) = A/(a) for every a € A. This illustrates that the Carlitz module is the function field analog of the
multiplicative group G,, = Gy, ¢ from Example L3} which for a € N+q satisfies G,,[a](Q%#) := ker[a](Q%#) =
{reQ¥8: 2% =1} 2 Z/(a).

Definition 12.4. Let v be a prime ideal of A. Let G = (G, ¢) be a Drinfeld A-module over K of fixed rank r
and define the A,-module G[v*>®°](K?8) := U,>1G[v"](K*8). The A,-module

Hi (G, Ay) :=T,(G) = Homy, (Qu/Av, G(K™#)) = Homa, (Qu/Av, Gv™](K™)). (12.1)

is called the v-adic homology realization or the v-adic Tate module of G. It carries a continuous ¥x-action.
Note that when z = ¢ € @ is a uniformizing parameter of A, then the map ¢. := ¢; ! 0 @, Gv"](K*8) —
Gv"1](K?#) is well defined and
~1; n alg .
T,(G) = lim (G[v"|(K™%), ¢2) ;
see for example [HK20, after Definition 4.8]. A morphism f : G — G’ of Drinfeld A-modules gives a morphism
T,(f) : To(G) = Ty(G") of A,[%k]-modules. If v is different from the A-characteristic A-char(K) of K, then

T,(G) is isomorphic to AP".

Remark 12.5. The results of this section parallel Remark 2.7 for abelian varieties. Since the f-adic Tate module
of an abelian variety X is isomorphic to (Zg)?9™ X while the v-adic Tate module of a Drinfeld A-module G is

isomorphic to A€ it is natural to call the number rk X := 2dim X the rank of the abelian variety X, compare
also Theorems [3.1] and [T0.11

There is a similar theory of Tate modules for A-motives which we will explain in the next section.

13 Cohomology Realizations and Period Maps for A-Motives

13.1 Uniformizability and Betti Cohomology

In this section we discuss the notion of uniformizability, cohomology realizations and period maps for A-motives
from [HJ20] and also we generalize the results to the case doo = [Foo : Fy] # 1. For a field extension K of F, we
consider the closed subscheme oog := oo xp, Spec K C Ck := C xp, Spec K. If K contains F,, then oo is the
disjoint union of d.,-many K-rational points of C.

In order to define the notion of uniformizability for A-motives we have to introduce some notation of rigid
analytic geometry as in [HP04]. For a general introduction to rigid analytic geometry see [BGR84].

Notation 13.1. With the curve Cc_, and its open affine part Cg_ := Cc,, \ ooc,, one can associate by [BGR84,
§9.3] rigid analytic spaces €c,, = (Cc,,)"® and € := (Cp_ )" = €¢_, \ ooc,,. The underlying sets of Cc_, and
€<Ic,,o are the sets of Coo-valued points of Cc_ and Cc_, \ coc_,, respectively. The endomorphism o of Cc_, from
(@) induces endomorphisms of €c_, and €¢_ which we denote by the same symbol o.

Let Oc_. be the valuation ring of C, and let xc_, be its residue field. By the valuative criterion of properness
every point of €¢_ = Cc_ (Co) = C(Cx) extends uniquely to an O¢_-valued point of C' and in the reduction
gives rise to a k¢ -valued point of C'. This gives us a reduction map

red: €c,, = C(Cs) — C(kc.,) - (13.1)

The subscheme oo, C Ck._ contains do, points. We denote them by {oo; for i € Z/dwZ} in such a way that
the map ¢ from (@.1]) transports 0o; to 00,41 and (o%<)* stabilizes each oo;. Since the curve Cle__ is non-singular,
[BL85, Proposition 2.2] implies for each ¢ that the preimage D; of co; € 00, under red is an open rigid analytic
unit disc in €¢_ around oo;. Let D) := D; \ 00; be the punctured open unit disc around oo; in €¢_ . Then o
maps D; isomorphically onto ©;41. We let O(D;) and O(€¢_ \ U;D;) be the coordinate rings of rigid analytic
functions on the spaces ©; and €¢_ \ U;D;, respectively. The uniformizer z € O(D;) is a coordinate function on
the disc ®; for every i.
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Example 13.2. If C = ]P’]%‘q, A = Fy[t], and [Fo : F,] = 1, we can give the following explicit description.
Do C P1(Cy) is the open unit disc around oc.

O(Cc, D) :=Cux(t) := {Zaiti, a; € Coo, a; >0 asi— oo}
i=0

and €c_ \ Dy is the closed unit disc inside C'(Co) N 00c,, = Cs on which the coordinate ¢ has absolute value less
or equal to 1. Also we can take z = 1/t as the coordinate on the disc Dy, and suggestively write Do = {|z| < 1}.

Definition 13.3. For an A-motive M over C,, we define the T-invariants

AM) = (M ®a._ OCc,, NUD;))" :={me M®a._ Oc, ~UiD;): Ty(oym)=m}.

Since the ring of o*-invariants in O(Cc_ ~\ U;D;) equals A, the set A(M) is an A-module. It was shown
implicitly by Anderson [And86, Proof of Lemma 2.10.6] that A(M) is finite projective of rank at most equal to
rk M.

Definition 13.4. An A-motive M is called uniformizable (or rigid analytically trivial) if the natural homomor-
phism
h]\_42 A(M) XA O(Q:(Cm AN Ulgz) — M ®ACoo O(Q:(Cm AN Uigi), A® f — f A

is an isomorphism.

Example 13.5. We keep the notation from Example We recall that the Carlitz motive over Co, is given by
C=(C=Cxlt],rc =t—10). Weset £~ :=]]2,(1- 9%) € O(€¢_ ) C O(€c,, Do) and choose an 7 € Coe With

nt~9 = —0. Then we see that n¢~ € A(C), because

(o)) = (=)ot T~ ) =m0 - T[(~ ) = e
1=0 =1

K3

Since n¢~ has no zeroes outside D it generates the O(€¢_ \ Dp)-module C ® 4
and so h¢ is an isomorphism and C is uniformizable.

- O(@Cm N @0) = O(@Cm AN @0)

C

Anderson [And86] proved the following criterion for uniformizability.
Lemma 13.6. Let M be an A-motive of rank r.
(a) The homomorphism hyy is injective and it satisfies hpr o (idaay) ® id) = (Tar ® id) 0 0 hyy.
(b) M is uniformizable if and only if tka A(M) = r.
Proof. [(b)] was proved by Anderson [And86, Lemma 2.10.6].
[(a)] is implicitly proved by Anderson [And86]. It is explicitly stated for example in [BHOT7, Lemma 4.2]. O

Next we state the generalization of [HJ20, Proposition 3.25], which we will need to define period maps. The
point V(J) € Cc, (Cx) lies in one of the discs ®;, because |y(a)|s > 1 for all a € A\ F,. We normalize the
indexing of the ®; in such a way that V(J) € ©o. Then for any i € Ny, we consider the pullbacks o™*J =
(a®1—-1®7(a)? : a € A) C Ac, and the points V(o™*J) of Cc,. and €_. They correspond to the
point V(z — ¢7) € ®; and have coc,, = {00, -+ ,004. 1} as accumulation points. More precisely, for each
k=0,1,--- ,ds — 1 the point ooy is the limit of the sequence V(g(Ftdei* 7) = V(z — C‘IHdW) for i € Np.
Therefore, € \ Ujen, V(o™ J) is an admissible open rigid analytic subspace of C('Cw.

Proposition 13.7. [HJ20, Proposition 3.25] Let M be a uniformizable effective A-motive over Coo. Then A(M)
equals {m € M®a, _ O(€x_ ) : Tm(oym) = m} and the isomorphism hyy extends to an injective homomorphism

har: A(M) @4 O(Cr) — M ®a._ OLc_), A f = f-A
with hy o (idyay ® id) = (Ta ® id) o 0 hp. At the point V(J) its cokernel satisfies coker hy ® Coollz —

¢] = M/7tam(0*M). The morphism has is a local isomorphism away from Uien, V(0™ T), and o*hy is a local
isomorphism away from Uien., V(o™ J).
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Proof. This follows in the same way as [HJ20, Proposition 3.25]. O

Definition 13.8. Let M be an A-motive of rank r over Co.. Anderson defined the Betti cohomology realization
of M by setting

Hyooi;(M,R) := A(M)®4 R and Hi Betti (M, R) := Homa(A(M), R)

for any A-algebra R. This is most useful when M is uniformizable, in which case both are locally free R-modules
of rank equal to rk M.

Example 13.9. We keep the notation from Example There we have calculated A(C) as the A-module
generated by nf~, so

H]13etti(gv A)y=mnt~- A and Hi Betti(M, A) = (7767)71 - A.

Remark 13.10. To explain the compatibility with Definition ITT4llet QY JF, be the module of K&hler differentials

of A over F,. Then 9}4 /F,® AQ = Q}Q R, = Q dz because the field extension Q/F,(z) is separable as it is unramified
at oo.

Proposition 13.11 ([And86l Corollary 2.12.1]). Let G = (G, ) be a Drinfeld A-module over Co, and let M =
M(G) be the associated A-motive. Then M is uniformizable and there is a perfect pairing of A-modules

Hl,Betti(Qu A) X H]]:D)Ctti(Mu A) — Q}4/]Fq ) ()\7m) — wA,)\,m

where wa xm s determined by the residues Resoo(a - wa xm) = —m(expg(Lie <pa(/\))) € Fy foralla € Q. The
pairing yields a canonical isomorphism

Hi Betti (M, A) ®a Qk/}pq = Hipetti(G, A),

which s functorial in G.

13.2 wv-adic Cohomology
Definition 13.12. For an A-field K consider the v-adic completion A, g :=lim Ax /v" Ak of Ax. Let M be an
—

A-motive over K and let v C A be a maximal ideal with v # A-char(K). Since (A, gse» )™ = A, we can define
the v-adic cohomology realizations of M as the A,-modules

HY(M,A,) = (M®a, Ay xeer)” :={m € M @4, Ay xeer | Tar(ohm) =m} and (13.2)
Hl,’U(MvA’U) = HOmAU (H'})(M; A'U)vA’U)-

They are free A,-modules of rank equal to rk M, carrying a continuous action of the Galois group ¥x by [TW96|
Proposition 6.1], and the inclusion Hll) (M,A,) C M ®a, Ay keer induces a canonical isomorphism of A, gsep-
modules

HY (M, A,) @a, Ay rcsor = M @4y Ay fcoon

which is both ¥k and T-equivariant, where on the left module ¥k acts on both factors and 7 is id ® o* and on
the right module @ acts only on A, gser and 7 is (Tar 0 0};) ® 0*. One also sometimes denotes H. (M, A,) by
T,(M) and calls this the v-adic dual Tate module associated with M at v. We also define the Q,-vector spaces
with continuous ¥k -action

Hy(M,Q,) =HL(M,A,)®4,Q, and
le”(M’ QU) = HOHlAU (Hi(Ma A'U)v Qv) = Hl,v(M7 Av) ®AU Q’u .

The association M +— HL (M, A,) or M — HE(M,Q,) is a covariant functor which is exact and faithful.

The analog of the Tate conjecture is the following theorem which was proved by Taguchi [Tag95] and Tama-
gawa [Tam94l §2].

Theorem 13.13 (Tate conjecture for A-motives). If K is a finitely generated A-field and v # A-char(K) then
Hom(M, M) @4 Ay =+ Hom, g, (H, (M, A, ), Hy (M', Ay))

is an isomorphism of A,-modules for A-motives M and M'.
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Let us explain the relation between T,,G and T, M (G) := Hll) (M(G), A,) for a Drinfeld A-module G. The A,-

~

module Homp, (Q,/A,,F,) is canonically isomorphic to the A,-module Q}% /By = A, dz, of continuous differential

forms; see [HK20, Equation (4.5)], and therefore, it is a free A,-module of rank 1. If G is a Drinfeld A-module
over K and M = M(G) is its associated A-motive, then there is a natural x-equivariant perfect pairing of

A,-modules 5 R
(.,.): TG xT,M — Homg,(Qu/Ay,F,) = Qy p, (f;m):=mof, (13.3)

which identifies T, G with the contragredient ¥x-representation Hom 4, (T, M, Qxl%/lFu) of T, M ; see [HK20, Propo-
sition 4.9]. Together with Theorems and [[3.13 this implies the following

Corollary 13.14 (Tate conjecture for Drinfeld A-modules). Let G and G’ be two Drinfeld A-modules over a
finitely generated field K. Then the natural map

HOIIlK (Qv Q/) ®a A'u — HOIDAW 9] (T'UQ) T’L}Q/)7 f Kara- Tv(f)

s an isomorphism of A,-modules.

13.3 De Rham Cohomology and Period Isomorphisms

In this subsection let (K,v) be an A-field of generic A-characteristic. Then K is a field extension of @ via v and
we set ¢ := y(z). There is an identification lim Ax /J" = K[z — (] from [HJ20, Lemma 1.3].
—

Definition 13.15. Let M be an A-motive over an A-field K of generic A-characteristic. The de Rham realization
of M is defined as

Hap (M, K[z () = o"M®a, limAx/T",
Hig(M,K((z—¢) = Hig(M,K[z—(]) ®x.—q K(z—¢)  and
Hip(M,K) = o"M®a, Ax/T

= Hin(M. K[z~ (]) @k K[z = ¢1/(z = 0).
The Hodge-Pink lattice of M is defined as g := 7' (M ®a, lim Ax/J") C Hig (M, K((z — (), and the
descending Hodge-Pink filtration of M is defined via pM := Hig (M, K[z — ¢]) and
F'Hip(M, K) = (0¥ 0 (z=0"™)/((z = Op¥ N (z = O)'q¥)
= image of (c*M N7y, (J'M)) @r K in Hig(M,K);

compare also with [Gos96 §2.6]. Since M is effective, we have pM C ¢ with 7a7: g™ /pM = coker 7y and
FOH\R(M,K) = Hig(M,K). Note that the de Rham realization with Hodge-Pink lattice and filtration is a
covariant functor on the category of A-motives over K with quasi-morphisms.

Definition 13.16. If G is a Drinfeld A-module over an A-field K of generic characteristic, let M = (M, 7)) =
M (G) be the associated A-motive. Then the de Rham cohomology realization of G is defined to be

Hip (G, K) = Homa (e, 0*M/T -0*M),
Hir(G, K[z —(]) = Homa (s, o"M @4, K[z —(]),
Hiar(G, K[z —(¢]) = Homu, (¢"M, Qyp._¢/x) and
Hiar(G, K) = Homa, (0" M, Qg o) Oxpa—cg K[z = /(2= ¢),

where 9114/11?(1 is the module of Kéhler differentials of A over F, and ﬁ}{ﬂz—C]]/K = K[z—(]dz is the K[z —(]-module
of continuous differentials. We define the Hodge-Pink lattices of G as the K[z — (]J-submodules

€ = Hom 4 (Qzl‘\/]Fq’ 7_]\741 (M) ®a, K[z — C]]) - H(lm(ga K(z~- O)) and
e = () @idg(a—cy) (Homa, (M, O}, /1)) € Hiar(G K(z—-().
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In both cases the Hodge-Pink filtrations F* H(liR(Q, K) and F? Hi,4r(G, K) of G are recovered as the images of
Hig (G, K[z — ¢]) N (z — ¢)'q% in Hix(G, K) and of Hy4r (G, K[z — ¢]) N (z — {)ige in Higr(G, K) like in
Definition All these structures are compatible with the natural duality between Hig and Hy gr.

Remark 13.17. It was shown in [HJ20, Remark 4.45 and Lemma 5.46] that this definition coincides with the
definitions given by Deligne, Anderson, Gekeler and Jing Yu, see [Gos94, Definition 2.6.1], [Gek89 § 2] and [Yu90].
Moreover, it was shown in [HJ20, Diagram (5.36) in the Proof of Theorem 5.40] that the dual of the sequence of
K[z — ¢(]J-modules 0 — pM — ¢ — coker 7py — 0 is isomorphic to the sequence

0 — q¢ — Hiar(G, K[z — (]) — LieG — 0.
Since z — ¢ = 0 on Lie G we obtain modulo (z — {) Hy qr(G, K[z — (]) the exact sequence of K-vector spaces
0 — F'Hy 4r(G, K) — Hy ar(G, K) — LieG — 0, (13.4)
which is the analog of the decomposition (6.2)).

For a uniformizable A-motive M over C, the morphism hjy; from Proposition I3.7] induces comparison iso-
morphisms between the Betti and the v-adic, respectively the de Rham realizations as follows.
Since v # oo the points in the closed subscheme {v} xr, SpecCo, C Cc,, do not specialize to 0o, € C. and

so this closed subscheme lies in Cc_ \ U;D;. This gives us isomorphisms O(Cc_ ~\ U;D;)/v"O(Ce,, \U;D;) =
Ac,, /" Ac,, for all n € N and lim O(Cc_, \ U;D;)/v"O(Ce, \ U;D;) == lim Ac__ /v"Ac,, = Ayc,,- The
— —

isomorphism hjs from Proposition [[3.7 induces a T-equivariant isomorphism
Hpei(M, A) @4 hilo(ccoo N UiD;) /v"O(Ce,, NUiD;) =5 M @4, Avc,. -
Taking 7-invariant on both sides provides us with the isomorphism between the Betti and the v-adic realization
hBetti,o * Hperei (M, Ap) = Hpops (M, A) @4 Ay = HL(M, A,), A® f = (f - A mod v™)pen.
On the other hand, Proposition [[3.7] implies that o*has is an isomorphism locally at V(J7) that is
o*hy @ide_[o—¢] : Heri (M, A) ®4 Coc[z — (] = 0" M ®4._ Coo[z — (]
This induces an isomorphism between the Betti and the de Rham realization

hBettidr = 0" hy @ ide[o—¢] ¢ Hpei (M, Cooz — ¢]) = Hig (M, Coo[z — (),
PBetti.dr = 0 hyr mod J : Hpoii(M,Coo) == Hig (M, Cy).

We summarize the above result as follows, compare [HJ20, Theorem 3.39].

Theorem 13.18. If M is a uniformizable A-motive over Co, there are canonical comparison isomorphisms,
sometimes also called period isomorphisms

hBetti,o * Hiersi (M, Ap) = Higopis (M, A) @4 Ay = Hy (M, Ay), A® f > (f - A mod v™)pen (13.5)
and
hBettiar = 0 by @ ide [2—¢) : Hperni (M, Coollz — ) == Hig (M, Coo [z — C]),
hBettiar = 0*hy mod J : Hpoi (M, Coo) = Hig (M, Co). (13.6)
The latter yields a pairing

<' 9 . >OO: Hl,Betti(Mu (COO) X H}iR(Mu (COO) — (COO ) (137)

(u, w) — (U,Ww)ee = u®ide,, (hgclcci,dR(W)) :

All these cohomology realizations and period isomorphisms are functorial in M and by [HJ20, Theorem 5.49]
compatible with the functor from Drinfeld A-modules to A-motives, Proposition [[3.11] and the pairing (I3.3).
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Example 13.19. For the Carlitz motive C = (C = F4(0)[t], 7¢ =t — 0) from Example[0.§ the period isomorphism
hBetti,dr is given as follows. By Example [[3.5] the generator n¢- of Hll?,em(g, Co) = A-nl~ is sent under hpeyi dr

to the element o*(nf~)|1=g = n? [[;=, (1 — 14"} € Co which has absolute value In? T2, (1— 91*‘1i)‘00 = |70 =
10|4/079 = g=9/(a=1) This element is the analog of the period (2ri)~! from Example @5, because the Carlitz
module and Carlitz motive are the analogs of the multiplicative group G, see Example [2.3l

Theorem 13.20. Let G be a Drinfeld A-module over Co and let M = (M, ) = M(G) := Home, 7, (G,Ga,c..)
be the associated A-motive. Let ¢4 and pM = Hig (M, Coo[z—C]) be as in DefinitionI3T3. Let m € ¢ be such
that its image m under the isomorphism Tar @ idc  [2—¢]* qM /pM s coker Ty generates the one dimensional
Coo-vector space coker Tay. Let w = —(z — () -m € (z — )q™ C pM. Consider the pairing

cokery x LieG — LieG,c,, = Cw, (m, \) — m(A\) (13.8)
induced from (@) and the isomorphism
Ba: Hipewi(G, Q) == Hipewi(M,Q) ®q QlQ/]Fq = Hj petti(M, Q) - dz

from Proposition [I311] using Remark [I3100 Let A € Hj petti(G, Q) C LieG and let w € Hy petti(M, Q) be such
that fa(\) =udz. Then the pairing (I31) can be computed as

(U, w)oo = TM(A). (13.9)
Proof. As in [HJ20, Diagram (5.36) in the proof of Theorem 5.39] the isomorphism 4 fits into a commutative

diagram

Hi gewi(M, Q) ®¢ QlQ/]Fq L) Homc__ (coker 7a7, Coo) (13.10)
ﬁ)l\ﬂA =Ko’
Hi Betti(G, Q) C LieG

where the isomorphism « is induced from the pairing (I3.8]), and the map ¥4 is given by
Aa: Hiewi(M, Q) ®¢ QlQ/]Fq = HiBetti(M,Q)-dz — Homc_ (cokerTys,Coo),
udz —  [m— —Res.—¢ u(m)dz] .

Here u(m) € Coo (2 — €)) is defined as

wm) = (u®ide (z—¢))° (hy @ide (z—¢)) " o (Tn @ ide (z—¢))(m)
= (u®ide (=-¢)) © (hpaiar @ i (z—¢)) (M)

where
hy ®@ide (:—¢): Hpewi(M, Q) ©@ Cos((z2 = () == M @4, Cool((z =)

is the isomorphism from Proposition 3.7 with hys = 7ar 0 0*hpy and hpetti,ar = 0*hy ® ide_ [.—¢]- Note that
u(m) is only well defined up to adding elements of C [z — (], because the preimage m of m is only well defined
up to pM and (uo hgclttiydR)(pM) = u(Hpey; (M, Coo[z — €])) € Coo[z — ¢]. This shows that, nevertheless, the
residue — Res,—¢ u()dz is well defined and independent of the preimage m of M. We may thus compute

m(A) = a(\)(m) = (JaoBa)A)(m) = Fa(udz)(m) = —Res.=c u(m)dz.

N.oiz(\;m =—(z—¢7 ' -wand ufm) = (uo hg;tti)dR)(m) =—(z—0"' (u,w)e in Coo((z — C))/(Coo[[z —¢]. This
yields
M(\) = — Res,—¢ u()dz = Resz:<(<u,w>md%0) = (u,W)oo -
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14 Local Shtukas and the v-adic Period Isomorphism

We next describe the function field analog of p-divisible groups.

Notation 14.1. We fix a place v # oo of Q. Let K C Q*# be an A-field which is a finite extension of Q via
7. Under the fixed embedding Q*# — C, let L be the v-adic completion of K C C,. Let R be the valuation
ring of L, let w1, be a uniformizing parameter of R and let k be the residue field of R. Then R = k[rz]
and L = k((wz)). The homomorphism v: A — K extends by continuity to v: A, — L and factors through
~v: Ay = R with ¢, = v(2,) € mp R~ {0}. Let R[z,] be the power series ring in the variable z, over R and &, the
endomorphism of R[z,] with 6, (z,) = 2, and 4, (b) = b% for b € R, where o = #F,. For an R[z,]-module M we
let 6 M := M @R[z ].6x Rl20] as well as M[ == M ®R[z.] R[[zv]][ U] and M[%] =M ®R[z] R[[zv]][%]
We obtain a canonical embedding Ag := A ®]F R — R[z,] by mapping zv 1z, and 1 ® (, — (-

The function field analog of p-divisible groups is given by the following

Definition 14.2. A z,-divisible local Anderson module over R is a sheaf of Fy[z,]-modules G on the big fppf-site
of Spec R such that

(a) G is z,-torsion, that is G = lim G[2]'],
—

(b) G is z,-divisible, that is z,: G — G is an epimorphism,

(c) for every n the F,-module G[2!] is representable by a finite locally free strict F,-module scheme over R in
the sense of Faltings (see [Fal02] or [HS20, Definition 4.7]), and

(d) locally on Spec R there exists an integer d € Zxo, such that (z, — (,)* = 0 on wg where wg = limwgpsn
> A 3

and wgpn) = €*Q [

Gl2n]/ Spec r Tor the unit section & of G[z]] over R.

Example 14.3. Let G = (G, ¢) be a Drinfeld A-module over R which is defined as in Definition by replacing
K by R. By [Harl7, Theorem 6.6] the torsion module G[v"] is a finite locally free strict F,-module scheme and
the inductive limit G[v*°] := lim G[v"] is a z,-divisible local Anderson module over R for which one can take

d = 1 in Definition

Similarly to Remark [5.3] divisible local Anderson modules have a description by semi-linear algebra. It is
given by local &, -shtukas.

Definition 14.4. A local 6, -shtuka of rank r over R is a palr M = (M, Ty;) consisting of a free R[[zv]] module
] =5 M| It is effective if TM(A*M) C M and étale if

M of rank r, and an isomorphism UTE U*M[

= el

Ty (65 M) = M. We write rk M for the rank of M

A morphzsm of local shtukas f : M = (M, Ty) — N = (N, Ty) over R is a morphism of the underlymg
modules f : M — N which satisfies TR © orf=1r Oy We denote the A,-module of homomorphisms f: M— N
by HomR(]\_/[,H) and write EndR(]\_/[) HomR(]\_/[ZM). K

A quasi-morphism between local shtukas f: (M,7y) — (N,7g) over R is a morphism of R[[zv]][%]—modules
[ M[E o N[+ - with 75067 f = fory,. Itis called a quasi-isogeny if it is an isomorphism of R[[z, ][ L —- modules.
We denote the QU vector space of quasi-morphisms from M to N by QHomR(M N ) and write QEnd r(M ) =
QHom (M, M).

Note that ﬁorpR(M N) is a finite free A,-module of rank at most rkM rkA]_\A] by [HK20, Corollary 4.5]
and QHomp(M,N) = HomR(M N ) ®a, Q. Also every quasi-isogeny f: M — N induces an isomorphism of
Q.-algebras QEnd (M) == QEndz(N), g — fgf ", similarly to Remark 25(a).

The analog of the (“local”) Dieudonné functor from Remark is given by the following

Theorem 14.5 ([HS20, Theorem 8.3]). There is an anti-equivalence between the category of z,-divisible local
Anderson modules over R and the category of effective local &, -shtukas over R given by the contravariant functor

_Mqv defined by ]\_7[% (G) = {iLn_Mqu (G[2]]), where

Mqu (Glzy]) = (Homp-groups,F,1in(G[2)]; Ga,R), 7A'J\z{q(G[ZL‘]))

and Tar,(clzn]) 18 provided by the relative q,-Frobenius of the additive group scheme Go r over R like in ©4).
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It turns out that like with abelian Anderson A-modules, one can dispense with the notions of z,-divisible
local Anderson modules, because their equivalent description by local 6, -shtukas can be obtained purely from
A-motives as in the following

Example 14.6. Let M = (M, 7)) be an A-motive over K and assume that it has good reduction, that is, there
exist a pair M = (M, 7pq) consisting of a locally free module M over Ag := A®p, R of finite rank and a morphism
TMm 2 0*M — M of Agp-modules whose cokernel is annihilated by a power of the ideal J := (a ® 1 — 1 ® v(a) :
a € A) C Ag, such that M ®r L =& M ®x L. The reduction M ®p k is an A-motive over k of A-characteristic
v =ker(y: A — k). The pair M is called an A-motive over R and a good model of M.

We consider the v-adic completions A, g of Ap and M ®4, Ay r := (M @4, Av.r,TMm @1d) of M. We let
dy := [F, : Fy] and discuss the two cases d, = 1 and d,, > 1 separately. If d, = 1, and hence ¢, = ¢ and 6, = o*,
we have A, p = R[z,], and M ®4, A, r is an effective local 6, -shtuka over Spec R which we denote by Mv (M)
and call the local 6, -shtuka at v associated with M.

If d, > 1, the situation is more complicated, because F, ®r, I and A, r fail to be integral domains. Namely,

F,or, R= [ Fo®s, R= [[ Foor, R/(a®1-1@7()? :ackF,)
Gal(F, /F,) €L/ dyT

and o* transports the i-th factor to the (i + 1)-th factor. In particular 6, stabilizes each factor. Denote by a; the

ideal of A, p generated by {a® 1 —1®(a)? :a € F,}. Then

Avr= J] ABeR= [[ Aur/a.
Gal(F, /F,) i€Z)dy 7

Note that each factor is isomorphic to R[z,] and the ideals a; correspond precisely to the places v; of Cy, lying
above v. The ideal J decomposes as follows J - Ay, r/ag = (2 — () and J - Ay r/a; = (1) for ¢ # 0. We define
the local 67 -shtuka at v associated with M as M, (M) = (M,TM) = (M ®a, Avr/00, (Tm ® 1)%), where
Tff/”l = Tpm 00 Tp 0. .. 00@=Dxr - Of course if d, = 1 we get back the definition of ]\_7[U (M) given above. Also
note that M /7ap(0* M) = M/TM(:};M).

The local shtuka ]\_Zf »(M) allows to recover M ® 4, Ay r via the isomorphism

dy—1 dy—1
D (rs © 1) mod a;: (@ (M @4, Avr/ao), (T @ 1)% @ @id) s M®a, Avr,
i=0 i=0 i#0

because for i # 0 the equality J-A, r/a; = (1) implies that 74 ® 1 is an isomorphism modulo a;; see [BH11]
Propositions 8.8 and 8.5] for more details.

Proposition 14.7 ([Harl7, Theorem 7.6]). Let G = (G, ¢) be a Drinfeld A-module over R and let G[v™>°] :=
lim G[v"] be its z,-divisible local Anderson module over R from Example [I{.3. Let M(G) be the associated A-
—

motive over R and let _Mqv (G[v®™]) be the associated local &, -shtuka over R. Then ]\_7[% (G[v®™]) is canonically
isomorphic to the local 6 -shtuka M, (M) from Ezample [T7.0,

Example 14.8. It was shown in [HK20, Example 2.7] that the local 6,"-shtuka at v associated with the Carlitz
motive C = (C = Fy(0)[t],7¢ = t — 0) from Example equals M,(C) = (F,[¢][z], 7y = (20 — ). Here
L=TF,(&)) and R = O =TF,[].

Next we define the v-adic realization and the de Rham realization of a local shtuka M = (M ,Tyy) over R.
Since 7, induces an isomorphism 7 : 6:M ®R[z] Llzo] = M ®R[z,] Ll#zv], we can think of M ®R[z] Llzv]
as an étale local shtuka over L.

Definition 14.9. The v-adic realization HL(M, A,) of a local 6*-shtuka M = (M,TM) is the ¢r-module of
T-invariants

HL(M, Ay) = (M ®gpayy LP[2])7 = {m € M ®pp.,) L*P[z0] : 7y (65,m) = m},

where we set &A*;Im =m®leM QR[z],6 R[zy] =: 0*M for m € M. One also writes sometimes TUM =

HL(M, A,) and calls this the dual Tate module ofA]\_7[. By [HK20, Proposition 4.2] it is a free A,-module of the
same rank as M. We also write H (M, B) := H. (M, A,) ®.4, B for an A,-algebra B.
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If M = (M,7p) is an A-motive over L with good model M and M = MU(M) is the local shtuka at v
associated with M, then H} (M, A,) is by [HK20, Proposition 4.6] canonically isomorphic as a representation of
4 to the v-adic realization H}, (M, A,) of M.

Example 14.10. We describe the v-adic realization H(C, A,) = H(M,(C), A,) of the Carlitz module from
Example [Z8 by using its local shtuka M (C) = (Fol¢ollz0], 5y = (20 — ¢v)) at v computed there. For all i € Ng
let ¢; € L*°P be solutions of the equations ég” = —(, and £" + (,¢; = ¢;_1. This implies |€Z| = |Cv|q;i/(q“*1) <
1. Define the power series ¢ = Y2 l;zl € Opsen[z,]. It satisfies 6, ;(3) = (20 — Go) - £, but depends on
the choice of the ¢;. A different choice yields a d1fferent power series 6* which satisfies é* = wl} for a unit

w e (L5P[z,] )% =14 = F,[2,]* = A, , because & (u) = 2 Eii; = % = u. The field extension F,(((,))(¢;: i € No)

of F,((¢y)) is the function field analog of the cyclotomic tower Qp( n/1:i € No); see [Har09, § 1.3 and § 3.4]. There
is an isomorphism of topological groups called the v-adic cyclotomic character

Xv* Gal(Fv((Cv))(€i5 te NO)/FU((CU))) - A;(a

which satisfies g(¢}) := >0 g(€:)z5 = xu(g) - € in L*°P[z,] for g in the Galois group. It is independent of the
choice of the £;. The v-adic (dual) Tate module T,M = H! (M, (C), A,) of M, (C) and C is generated by (£;)~!
on which the Galois group acts by the inverse of the v-adic cyclotomic character. The reader should compare this
to Example

Definition 14.11. Let M = (M, Ty;) be alocal G, -shtuka over R. We define the de Rham realizations of M as
Hin(M,R) = 6"M /(20 — Co)M = 67 M O R[20],20¢, B, as well as
Hip(M, L[z = Gol) = 6; M @pgz,g Llzo — G]  and
Hap(M, L) 1= 67 M ®Rpe) s, L = Har(@, Llzo = G]) ©1gz,—c.) Lz = G/ (20 = G)
= H\R(M,R)®r L.

It carries the Hodge-Pink lattice g™ := =Ty YoM ®R[z,] Llzo — G]) C Hig (M, Lz, — U]])[Zv_CU]

If M = (M,7y) is an A-motive over L with good model M and M = M, (M) is the local shtuka at v
associated with M and d,, = [F, : F,] is as in Example [[4.6] the map

*__dy—1 2% (dv

o'ty =0"Tmyoot o000 “Drr o M ®ap Av.r/00 == "M &4, Av.r/%0

is an isomorphism, because Tas is an isomorphism over A, r/a; for all i # 0. Therefore, it defines canonical
isomorphisms of the de Rham realizations

o*riy ™t Hig (M, Lzo — G])) = Hig (M, L[z, — ¢,])  and
o*ri ™t Hig(M, L) = Hip(M, L),
which are compatible with the Hodge-Pink lattices and the Hodge-Pink filtrations.

The v-adic period isomorphism for an A-motive M over a field K C Q8 is provided by the following theorem
by using the local 6, -shtuka M := M ,(M).

Theorem 14.12 ([HK20, Theorem 4.14]). If M is a local & -shtuka over R then there is a canonical comparison
isomorphism

hv,dR5 H11; (_Man) ®Q. Cv((zv - Cv)) - HéR(_M,L(( Cv))) ®L (20— Cv)) (( Cv))

If M is an A-motive over L (which does not need to have good reduction) then there is a canonical comparison
isomorphism

hoar: Hy (M, Qu) ®q, Col(z0 = G) = Har(M, L((20 = C)) @1 (z0—c,) Collzo = C0)) (14.1)

Both isomorphisms are equivariant for the action of 91, where on the source this group acts on both factors of
the tensor product and on the target it acts only on C,.
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In comparison with the p-adic comparison isomorphism for an abelian variety over a finite extension of @,
from Theorem [55] the ring C,((z, — (,)) is the function field analog of B, 4r.

Example 14.13. For the Carlitz motive C = (C = F,(0)[t],7¢c = t — 0) from Example 0.8 we have H}(C,Q,) =
Qo (65)™r =2 Q, and HiR(C,Fy(0)[20 — G]) = Fy(0)[20 — Co] =: p, see Example The Hodge-Pink lattice
is ¢ = (2o — ¢,)"'p and the Hodge filtration satisfies F'' = Hiz(C,F,(0)) D F? = (0). With respect to the bases
(¢5)~" of HL(C,Q,) and 1 of Hix(C,F,(0)[2, — ¢o]) the comparison isomorphism h, qg from Theorem TZI2 is
given by the v-adic Carlitz period (z, — (,) 1 (¢3)~1 = 6*(¢;)~1. Tt has a pole of order one at z, = ¢, because
;€ Fv((Cv))sep<Z_z>X - (Cv[[zv - Cv]]X- So hvvdR(Hi(gan) ®Q, Cv[[zv - Cv]]) = (Zv - Cv)_l(cv[[zv - Cv]] =
q ®K[[zv7<jy]] (Cv [[Zv - Cv]]

Definition 14.14. On the power series ring Oc, [2,] we consider the O¢, -embedding Oc, [2,] — Cyl[z0 — (o]
given by z, — 2, = (4 (20 — (). Let © : Cy[zp — (o] = Cy, 2y — (p be the residue map. Then Oc, [z,] Nker O is
a principal ideal of O, [z,] generated by z, —(,. Any other generator is of the form (z, —,)-u with u € O¢, [2.] -
On C,((zy — (v)) we define a valuation ¢ by

0] ( Z bi(zy — CU)Z) :=min{i: b; # 0}.

i=—N

and we extend the valuation v on C, to C,((z, — (»)) by

o(f) = v(Of - (20 — G)°)). (14.2)

If f and g are two elements of C,((z, — (y)), then 9(fg) = 0(f) + #(g), and hence v(fg) = v(f) + v(g). But note
that v does not satisfy the triangle inequality. The valuation v(f) is unchanged, if we replace the generator z, — (,
of Oc, [zy] Nker © by another generator (z, —(,)-u with u € Og, [2,]”, because then v(O(f - ((zy — (o) -u)~*W)) =
V(O(f (20 — Co) 7D +0(O(w) *E) = v(O(f - (20 — ()7 as O(u) € OF.

Example 14.15. The inverse (z, — ,)(¢}) = 67 (¢;) of the v-adic Carlitz period o*(¢,;)~! from Example

satisfies 0((20 — Go)(6))) = 1 and v, (67 (65)) = vp((20 — C)(65)) = vp(O(6)) = vp (3.2 £iCh) = vp(lo) = -7
see Example The reader should compare this to Example

15 Complex Multiplication

Definition 15.1. Let M be an A-motive over an A-field K. If QEnd (M) contains a commutative semi-simple
Q-algebra E of dimension dimg £ = rkM, then we call M a CM A-motive over K and we say that M has
complex multiplication by E over K.

Here semi-simple means that E is a product of fields. Note that we do not assume that E is itself a field.
By [Sch09, Theorem 4.2.5] any CM A-motive M is semi-simple. We know from [Sch09, Theorem 4.4.7] if M is
simple, uniformizable then dimg QEndy (M) < rk M and if in addition M has complex multiplication by E, then
E = QEndy (M) is a field.

Let M be an A-motive over K with complex multiplication through F and let Og be the integral closure of A
in E. If E = [[, E; is a product of finite field extensions of @, then O = [[, OF,, where O, is the integral closure
of Ain E;. By [Sch09, Theorem 3.3.3] there exists an A-motive M’ isogenous to M such that O C Endg (M’).
So for all aspects which only depend on the isogeny class of M we can assume that O C Endg (M). Then M is
a locally free module over the ring O ®r, K and

M = @(M ®oy OF,)-

K2

Since Op < Endg (M) is injective, M ®o, Og, is a locally free module over the ring O, ®r, K of rank > 1,
because otherwise Op, acts as 0 on M, which is a contradiction. Now the estimate

tkae M =) 1ka (M @0, Op,) = Y k(0 @0, 5)(M ®0, Op,) - [Ei : Q]

EZ[Ei:Q]:[E:Q]:rkAKM

shows that rko,, s, 1)(M ®o, Op,) =1 for all i. Therefore, M is a locally free module over Op ®r, K of rank
1. Thus we have the following proposition.
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Proposition 15.2. [Sch09, Proposition 3.3.5] Let M = (M, 1ar) be an A-motive over K with complex multipli-
cation E such that O C Endg (M), then

(a) M is a locally free Op ®r, K-module of rank 1.
(b) 7o 2 0*M — M is an Op ®F, K-linear injection.

Theorem 15.3 ([Sch09, Theorem 6.3.6]). Let M be an A-motive over an A-field K with complex multiplication E
such that O C Endg (M) and E is separable over Q. Then M is already defined over a finite separable extension
L of the A-field Quot(A/A-char(K)) which is Q or a finite field, i.e. M = M; ®1 K for an A-motive M over
L.

Theorem 15.4 ([Pel09, Section 3.6]). If M is an A-motive defined over a finite extension K/Q with complex
multiplication by a separable Q-algebra E, then there exists a finite separable extension L/K such that M has
good reduction at every prime of Of.

Remark 15.5. If M = M(G) is the A-motive of a Drinfeld A-module G then both theorems are well known.
Namely, in this case there is exactly one place of F above co by [Gos96l, Proposition 4.7.17]. Then G can be viewed
as a Drinfeld Og-module of rank 1. All these are defined over the Hilbert class field of F and have everywhere
good reduction by [Hay79|, see [Tha04, Theorems 2.6.4 and 3.4.2].

Definition 15.6. A CM-type is a pair (E, (dy)yen,) consisting of a finite dimensional, semi-simple, commutative
Q-algebra E and a tuple of integers (dy)yen, indexed by Hg := Homg (E, Q¥8).

An isomorphism f: (E,(dy)yens) = (E',(dy )yem,,) of CM-types is an isomorphism f: E == E’ of
Q-algebras with dy/of = d, for all ' € Hp.

Remark 15.7. The analog of a classical CM-type (E,®) as in Definition would be a tuple (dy)ypen, for
which dy € {0,1}. Then one can set ® := {¢y € Hg: dy = 1} and has dy, = 1 for all ¢ € ® and dy, = 0 for all
¥ € Hg . ®. But note, that we need a more flexible definition of CM-type here, due to the construction of the
CM-type of a CM A-motive in Definition [5.8] below.

To prepare for this construction let z € @ be a uniformizer at co and denote by ¢ the image of z in Q*® under
the natural inclusion Q C Q8. We consider the power series ring Q*#[z — (] over Q*# in the “variable” z — ¢
as a Q-algebra via z — ( + (z — (). Let E be a finite dimensional, semi-simple, commutative Q-algebra. Then by
[HS20, Lemma A.3] there is a decomposition

E@qQ [z =] = [[ @"lyy — vyl (15.1)

YEHE

where yy is a uniformizer at a place of E such that ¥ (y,) # 0. By [HJ20, Lemma 1.5] the factors are obtained as
the completion of O ®4 Agus = Op ®r, Q™ along the kernels (a®1—1®1(a): a € O) of the homomorphisms
Y @idgae: Op @, Q*8 — Q& for ¢ € Hg. If (E, (dy)yeny) is a CM-type, then there is a finite free Q*5[z — (]-
submodule .y

0= T (= 0)™™  Q"%lys — ys)] € E g Q"¢(= () (15.2)

YEHE

with q- Q¥8((2 — ¢)) = E®q Q¥&((z — (). Conversely, every such Q*#[z — (]-submodule g uniquely determines a
tuple (dy)yeny of integers satisfying (I5.2). So we could equivalently call (E, q) a “CM-type”. In this description,
an isomorphism f: (F,q) == (E’,q’) of CM-types is an isomorphism f : F = E’ of Q-algebras which satisfies
(f ®idQus(z—¢y)(a) = 4"
Definition 15.8. Let M be an A-motive over a finite field extension K C Q% of ) with complex multiplication
through E. We assume that K contains ¢(E) for all v € Hg. Then the decomposition (I5E]]) exists already with

Q*® replaced by K. The E®¢ K[z — ¢(J-module Hig (M, K[z — (]) is finite free of rank one, and correspondingly
decomposes into eigenspaces

HY (M, K[yy — ¥(yy)]) = Hip(M, K[z — (]) @peqrp—q Klye — ¥ (yw)]

each of which is free of rank one over K[y, — 1¥(yy)], that is

pY o= Hig(M K[z =) = [[ H'(M, K[yy — v (ys)]) -
YEHE
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Since the Hodge-Pink lattice ¢ from Definition [ZI1lis also an E ®¢g K[z — (J-module and contains p, there
are non-negative integers dy € Zx>o such that

o = I (e —v(ye) " B (M, Kyy — ¥ (yy)]) -
YEHE

The tuple (dy)yer, is the CM-type of M. Since cokertyy = qM/Hig (M, K[z — ¢]) we see that dy is the
dimension over K of the generalized 1-eigenspace of the action of E' on coker 7y;.

If we fix an isomorphism a: Hig (M, K[z — ¢]) == E ®q K[z — (], then the CM-type of M can equivalently
be described as (E, a(qX)).

Example 15.9. Let G be a Drinfeld A-module over an A-field K of generic A-characteristic, such that M := M (G)
has CM by Op for a field extension E of @ with [F : Q] = rkM = rkG. By Remark we may assume that
K is a finite extension of @, and we can fix an embedding K C Q*#. Theorem and Corollary [1.3] imply
that QEnd (M) = QEnd, (G)°P is a (commutative) field extension of @Q of degree dividing rk G and containing
E. Thus, E = QEndx (M) = QEndk(G). The field E acts K-linearly on the one dimensional K-vector space
Lie G. Therefore, there is a Q-homomorphism tg: F — Endg (Lie G) = K, that is, an element 1)y € Hg such that
every a € F acts on Lie G via multiplication with ¢g(a). If K contains (E) for all v) € Hg, then as E-modules,
sequence ([I3.4) takes the form

0— @ Kw — Hl,dR(QuK) — Kwo —0
#o

where Ky denotes the 1-dimensional K-vector space on which E acts via 9. In particular Lie G = Ky, and hence
(@34) is analogous to the decomposition ([G.3). Since cokerty = (LieG)Y is 1-dimensional with the induced
E-action also given by 1o, the CM-type of G is (E, (dy)yeny) with dy, = 1 and dy = 0 for all ¢ # . This
yields an isomorphism

ar: (Yoo — Yo(ywe))~ HY (M, K [yp, — to(yso)]) /HY (M, K[y, — to(ys,)]) = ¢ /pM = cokerrys.

Let wy, € B (M, K [y, —vo(ys)]) be a K [ys, —vo(ys,)]-generator. Then m := (yy, — vo(yy,)) " - wy, € 4
and the image of m in coker Tpy = g /pM generates the one dimensional K-vector space coker 7p;. In particular,

if E/Q is separable, we can take y,, = z and o(yy,) = ¢ by [HJ20, Lemma 1.3]. Then yy, — o(yy,) = 2 — ¢
and K[[ywo - wo(ywo)]] = K[[Z - d]

16 The Taguchi height of a Drinfeld module

Pushing the analogy between abelian varieties and Drinfeld modules forward, Taguchi [Tag93, Section 5] defined
the analog of the Faltings height for Drinfeld modules. It is today called the Taguchi height. Taguchi used it to
prove the Tate Conjecture [[3.14] for Drinfeld modules. We follow the exposition of Wei [Wei20, §5.1].

Definition 16.1. For an A-lattice A C Cy of rank 7, a Qoo-basis {\;i}1<i<r of Qoo - A is called orthogonal if
A1, ..., A, satisfy that

(a) i eAfor1<i<r,
(b) Jar A1 + ... + arAr|oo = max{ a;\iloo; 1 < i <7} forall ag,...,a, € Qoo
(€) Qoo A=A+ (Acchi + ...+ A),) .

Note that if \; € Q- A for 1 <4 <r such that ®&;_;Q\; = Q - A and @ holds, then @ and can be achieved
by multiplying all A; with some a € A that has vy (a) < 0. Then we define the A-volume D4(A) of A by

Da(A) = [Ticicr Pilo l/r_ 1-gq . [li<ic, [Niloo v (16.3)
AT BN AN Ay ) Ty wl B .

where gg is the genus of @
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Example 16.2. Let E be a finite imaginary field extension of (), that is, Fo := E ®¢g Q is still a field. Then
the absolute value |. |, on Qo extends in a unique way to an absolute value on F.,. The latter equals the
restriction of the absolute value |. | on Cy for any Qoc-embedding Fow < Co. Under any such embedding O
is an A-lattice in Co of rank [E : @], and we can define D 4(Op), which is independent of the chosen embedding.
If the ramification of oo in E/Q is tame then

1

log DA(OE) = Q] log #(A/00,/4)

by [Wei20, Remark 5.6] where ¢, /4 is the (relative) discriminant of O over A.

For the Taguchi height [Tag93| § 5] of a Drinfeld module the following alternative, equivalent definition was
given by Wei [Wei20, §5.1].

Definition 16.3 ([Tag93l §5], [Wei20, §5.1]). Let G = (G, ¢) be a Drinfeld A-module of rank r over a finite
field extension K C Q8 of Q. For every n € Hx := Homg (K, @*#) the embedding n: K — Q8 C Q218 allows
to restrict the valuation v on Q2 to a valuation, that is, a place 0, of K, such that the completion K3, equals
the closure of 7(K) in Q8. Conversely, for each place ¥ of K with ¥|v, we let K; be the completion of K at @.
We choose a Q,-embedding n: K5 — Q% and the induced Q-embedding 7: K — Q8. Then & = Uy. In this
way the place ¥ is obtained [K; : @Q,]-many times. We let G” = (G, ¢") be the base change of G to Q*# via
n: K — Q™8 and also to Cy, via the fixed inclusion Q*& C C.

We choose an isomorphism m: G == G, x and consider the induced isomorphisms m": G = G, g1z and

Liem": Lie G" =~ Q¢ for every n € Hy. The local height of G at 55, with respect to m is given by
hireg s, (G/K) = —[Ks, : Qso) - log, Da(Liem” (Hy pei(G", A))). (16.4)

To define the local height of G at a finite place 0, of K with 0, |v # oo we write

rdega
mﬁongo(mn)—l — 7(a)+ Z 902,1‘ e Enanlg,]Fq(Ga,Qalg) — Qalg{T} with (pZ,i c Qalg'
i=1
[ e(@yv) - v(eq ;) . S
for each a € A. We put ordg, (G) := min — -1 @€ ANTF,, 1 <i<rdega,, where e(,|v) is the
ql —

ramification index of @, in K/Q. The local height of G at ¥,, with respect to m is given by
htTag,ﬂn (Q/K) = —[F{,n : Fq] . \_Ol‘d{,n (Q)J N (165)

where [z] denotes the largest integer n < x, and Fj, is the residue field of o,,.
Then the Taguchi height htrag(G/K) of G is defined by taking the sum over all places of K

htTag(Q/K) = [Kl Q] . <Z htTag,f/(Q/K) + Z htTag,Sé(Q/K)>' (166)

vfoo 0| oo
It does not depend on the isomorphism m.

Remark 16.4. (1) Let K’ be a finite field extension of K. Let n': K’ < Q*# be a Q-homomorphism and let
n: K < Q™ be its restriction to K. Let 66;7, and 00, be the corresponding places of K’ and K, respectively. It

is clear that Liem(Hl,Betti(in,A)) = Liem(HLBetti(Q”, A)) C Cs, and

htra s, (G/K') = (K, K, hirag s, (G/K).

For places ¥ of K and ¢’ of K" with ¢’ | ¥ 1 0o, one has ordy (G) = e(?|0)-ords(G), where e(?']9) is the ramification
index of ¥'/0. Thus we get
httago (G/K') < [Kp : K] - htmag 5 (G/K).

In particular, assume that G has stable reduction at v, that is, there is an x € K3 such that v(xqi_lgoz_’i) > 0 for all
i and a, and for every a € A N\ F, there is an ¢ > 1 such that v(qu’lwzﬂ-) = 0. Then ords(G) = —e(D|v) - v(x) =
—0(zx) is an integer, which implies that htrag s (G/K') = [KL : Kp) - httag,s(G/K). In conclusion, we have
htrag(G/K') < htrag(G/K), and the equality holds when G has stable reduction everywhere.
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(2) Note that every Drinfeld A-module G over K has potentially stable reduction everywhere by [Dri76l Propo-
sition 7.1]. Define the stable Taguchi height of G as

htng(G) = log q- K//lli(nf}]nim htTag (Q/K/),

which is always convergent by (1).

(3) Let G and G’ be two Drinfeld A-modules over Q& which are isomorphic over Q2. Then

s, (G).

Tag (G) htSt

Tag

17 The Analog of Colmez’s Conjecture for CM A-Motives

In [HS20] the authors have formulated the analog of Colmez’s conjecture (Section[8]) for periods of CM A-motives.
We consider the following

Situation 17.1. Let M be a uniformizable A-motive over a finite extension K C Q& of ) with complex
multiplication of CM-type (E, (dy)yecHz), in the sense of Definition such that F is a product of separable
field extensions of @) and M has complex multiplication by the ring of integers O of E. As an abbreviation
we denote the CM-Type of M by (E,®) with ® = (dy)ycm,- Let Hg := Homg(E, Q2) be the set of all Q-
homomorphisms E < Q*# and assume that K contains 1(E) for every ¢» € Hg. By Theorems and [[5.4] we
may assume moreover, that K is a finite Galois extension of ) and that M has good reduction at every prime of
K. For a fixed ¢ € Hg let wy be a generator of the K[y, — 1(yy)]-module H” (M, K[y, — 1(yy)]). The image
of wy, in Hig (M, K) is non-zero and satisfies a*wy, = 1(a) - wy, for all a € E. For every embedding n: K < Q#,
let M":= M @, K and w,, € H"™ (M", K [yny — 1% (yne)]) be deduced from M and w, by base extension, and

let u,, € Hi Beti(M", Q) = Homy (H%etti(]\_/[", A), Q) be an E-generator. Let v be a place of Q.
If v = oo the pairing (I3.7) from Theorem [[3.18 between Betti and de Rham cohomology gives a pairing

<' ) >oo Hl,Bctti(MnaQ) X H}iR(MnaK) — Coo; (un,wZ) — <u’r7;w3,>oo = funwzf .

e ()

We define the absolute value U wdj‘ = [(uy, Wy )ooloo = Goo eR.

If v C A is a maximal ideal, the comparison isomorphism Apetti, from (I3.5) in Theorem [[3.18 between Betti

and v-adic cohomology together with the comparison isomorphism h, qr between v-adic and de Rham cohomology
from (IZ1) in Theorem [I4T12]yield a pairing

<- ) ->'u: Hl,Bctti(anQ) XHéR(anK) — C’U((Z'U_C'U))7
(un,wZ) — <un,w3}>v = Uy @ide, (z0—c) (hBettl O h;ldR(wZ)) .

—o((unwi)o)

We define the absolute value U ww‘ = [{ug, wy)olo = qu € R, where the “valuation” v on C,((z, —

Cv)) was defined in (IZ2) in Definition 14

In analogy with Section 8l we now consider the product [[ ] ‘ f ww| over all places v of @, or equivalently
v neHgk
times its logarithm

T 2 log’f ww’ Z log’f ww‘ #HK > u( [, ww)logqv. (17.1)

v nEHgk VF# 00 nEHK

#HK

Again the right sum over all v # oo does not converge. Namely, we prove in [HS20, Theorem 1.3] the following
Theorem [I7.3] below. To formulate the theorem we recall Definition For our CM-type (E, ®) and for every
1 € Hg we define the functions

apype: 99 =L, g+ dgy and (17.2)

aE b, q:, gQ — Q, g — #HK Z a/E,’r]’l/J T]‘P(g) = ﬁ Z dnflgnw (17.3)
neEHk neEHk

which factor through Gal(K/Q) by our assumption that ¢¥(E) C K for all ¢ € Hg. In particular, agy o €
C(%,Q) and a, , 5 € C°(¥o,Q) is independent of K.
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We also define integers ’U(WZ) and vy (uy) for all v # oo which are all zero except for finitely many. Let
O, =0 ®4 A, and let c € £, := E ®¢ @, be such that c_lu77 is an Op,-generator of Hy pei(M", A) ®4 Ay
= H;,,(M", A,), which exists because O, is a product of discrete valuation rings. Then ¢ is unique up to
multiplication by an element of O and we set

Uny (ug) = v(my(c)) € Q, (17.4)

where we extend ¢ € Hg by continuity to n¢: E, — Q8.
Also let K, be the v-adic completion of K C Q& C Q& C C, and let M" = (M", Trrn) be an A-motive over
Ok, with good reduction and M" ®e, K, = M" @k K,; see Example [4.6l On HtliR(M", K,) we consider the

following two integral structures arising from Hig(M", Ok, ) := o* M" QAo ,y®ido,. Ok

v

H™(M",OF,) = {we Hig(M",0k,): [a]*w =np(a) -w Ya € Op} and

H™ (M, 0k,) == Hig(M", Ok,)/([a]* —m(a): a € Op) - Hig(M", Ok,).

By [HS21 Lemma 1] (see also the arXiv version of [HS20, Lemma B.1]) these are free O, -modules of rank one
contained in _
H™(M", K,) = HY(M",0k,) ®o,, K, = HY(M",0k,) @0y, K,

and satisfying H™ (M", O,) C H™(M", Ok, ) with H"(M", Ok, ) /H™ (M", Ok, ) = Ok, /(Do /), where
Doy, is the different of Op over A. Then there are elements z,2 € K, unique up to multiplication by Of .
such that

i_lwz mod Yy — N (Yny) is an Ok, -generator of H"™ (M", Ok,) and

1

z w,, mod Yy — nP(yyye) is an Ok, -generator of H™(M", Ok,).
We set
vY(wy) = v(@) € Q and (17.5)
v(wy) = wv(z) € Q. (17.6)
Then

v(wy) = v (W) = v (Dog/a)) = vO@nyE.)/e.)
by [HS21l, Corollary 2] (see also the arXiv version of [HS20], Corollary B.2]), and consequently

> v(wy) — v (wy) = Y v((Doga)) = U( El;[{ W)(@oE/A)) = v(Nk/Q(Dy(0p)/a))

nEHk neEHk
= o(Nuy@ (Vi @uoma))) = (K (E)] - v(@y0p4) and
> 2 (v(wy) —v¥(wy) logge = [K :9(E)] - log #(A/dy0p)/a) - (17.7)

NEH K v#0o

These value only depend on the image of wZ in HéR(]\_/[ " K). They also do not depend on the choice of the model
M with good reduction, because all such models are isomorphic over Ok, by [Gar(03, Proposition 2.13(ii)].
Remark 17.2. In [HS20, Formula (1.13) and Definition 4.10] there is an error in the definition of v(w,,). Namely,
there v(w,)) is defined to be v™(w,;) as in (ITH). However, in the rest of [HS20] the above definition (IT.G) for
v(w,}) is used; see [HS21] or the arXiv version of [HS20, Erratum BJ.

In [HS20, Theorem 1.3] we computed the terms in (') as follows, where we use (I7.7)) and the logarithmic
derivative Z, of the Artin L-function from (83)) in Definition

Theorem 17.3. Let 0y(0,)/4 denote the discriminant of the extension of Dedekind rings ¢(Og)/A. Then for
every v # oo we have

7w~ o, wy)
#HKnEHK f“n Y

0
Zu(a$.001) = Barto (0 0) - ”[Lé”é‘i’i”@?) e O (v(wh) + vgu(un)

nEHk

= Zv@%,u;,@ 1) — MArt,v(a%‘,w,@) + ﬁ Z (UN(WZ) + Unw(un)) .
neHk

This formula holds more generally for all tuples of E,-generators u, € Hi Betti(M", Qv) = Hi o(M", Qo).
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v(0y(05)/4) 1 . .
+ > (v(w!) 4 vy (uy)) vanishes for all but finitely many places
6B @)+ I ()t ()

v and ; Zv(a%ﬁw@, 1) diverges, the sum (I71]) diverges. But as in Section [§] we can assign to this divergent
VFOO

Since —,UArt,v(a%‘,w,@) o

sum a value by the following

Convention 17.4. Let (2,)y#00 be a tuple of complex numbers indexed by the finite places v of Q. We will give

a sense to the (divergent) series ¥ z EU#}O T, in the following situation. We suppose that there exists an element

a € C°(¥%g,Q) such that x, = —Z,(a,1)logg, for all v except for finitely many. Then we let a* € C°(%g, Q) be
defined by a*(g) := a(g~!). We further assume that Z°(a*, s) does not have a pole at s = 0, and we define the
limit of the series Evioo T, as

S = =2%(0",0) = uFula) + Y (20 + Zu(a,1) loga,) (17:8)
vF# 00

inspired by Weil’s [Weid8| p. 82] functional equation

Z(x,1—38) = —Z(x",s) — (2-genus(C) — 2)x(1) log g — part(x)
deprived of the summands at oo, where the genus term is considered as belonging to oco.

Convention [[7.4] Theorem [I7.3 and (I77) allow us to give to the divergent sum (7)) the convergent inter-
pretation

1 A/
= Z2%((a%4.0)",0) + Ogﬁ;(é)f(gff)/ﬁ + #;IK Z (1og‘funw3}’m - Z (v(wZ) + vy (un)) 1ogqv)
n€Hk vF#00
= —7%((a%p.0)"0) + g Z (log| uanJ‘oo - Z (v™ (wih) + vy (uy)) log qv). (17.9)
neEHk VF#00

Remark 17.5. The problem arises that formulas (IZ1) and (IZ9) depend on the choices of the E-generators
Uy of Hy Bewi (M, Q). Namely, multiplying one u, with an element a € E changes these sums by the summand
ﬁ D allw v(m/;(a)) log q», which may be different from zero. On the other hand, if all u, are simultaneously
multiplied with the same a € E then the term #—IlfK D oneHy 2oall v v(nY(a)) log g, is added, which is zero by (2.

Colmez [Col93] faces the same problem and overcomes it by considering the terms (8I0) instead, which are
independent of the chosen w,,. This is not possible for general A-motives, because it relies on the existence of a
Q-automorphism ¢ of Q*# such that the set of integers {dy,d.y} does not depend on ¢ € Hp. In &I0), c is
complex conjugation and {dy,dcy} = {0,1} for every ¢ € Hg. These conditions are not satisfied for the more
general CM-types we considered so far for A-motives.

It should also be noted, that it is in general not possible to choose all u, in a compatible way, although
this is possible for the generators wZ by pulling back w, under 1. However, it is possible for A-motives to pull
back the induced F,-generators u, ®1 € Hy getti(M", Q) ®q Qv = Hi,,(M", Q,) under additional automorphisms
N € 9o = Gal(Q**P/Q). Namely, it follows from the definition in (I3:2)) that applying 7 yields an O, -isomorphism

f: HE(M", A,) = HE(M™,A,), m — fij(m).

If 1 = r € Gal(Q**P/K) then this isomorphism is just pan (k) where pyn: 9 — Auto,, Hi (M7, Ay) = OF s
the Galois representation. Then 7j(u, ® 1) € Hy (M, Q,) = Homg, (HL(M™,Q,),Q.) is defined by requiring

i(uy @ 1) (7(m)) = (uy ®1)(m) for every m € HL(M",Q,). (17.10)

fi(u, ® 1) is an E,-generator of Hy ,(M™,Q,). If 7j is replaced by 7/ = ij o k with x € Gal(Q*P/K) then
M7 = M7 and i’ (m) = pam (k) - 7j(m), and hence 7' (u, ® 1) = pan (£) 71 - 7wy ® 1) = pYpn (k) - 7i(uy ® 1). In
particular, the value v,y (77(u, ®1)) only depends on the image of 7 in Gal(K/Q) = H. We abbreviate n(up®1)
to u?] Allthough the notation is similar to wz, it is understood, that uz does not exist in Hlygctti(]\_/[ﬁ", Q), but
only in Hy getsi(M™, A%) = [T, o0 Hi,o (M, Q,) where A% is the adele ring of Q. Then for every fixed n € Hg

41



Convention [[7.4] Theorem [[7.3 and (7.7 yield

log| [, wi| . + #ﬁﬁgk = log| [,z wy’|, = (17.11)
o « log #(A/0y(05)/4)
- IOgUUnmeO_Z ((a%’d”(b) ’O)—’— W(E)uz(Ql]ﬂ)/ #HK Z Z +U7mw( )) log g
NEH K v#oc0
= IOgUunw:z]z’oo_ ((a%w{) 0 #HK Z Z ")+ iy (u ))IOng'
neEHk v#oco

If we restrict to imaginary CM-fields £, which means that F := F ®g Q« is still a field and carries a unique
extension of the valuation v., then this sum is independent of the choice of the E-generator u, € Hi getti(M7, Q).
Indeed, if u, is multiplied with a unit ¢ € E*, then in (I7.I1]) the term

~Voo (M)(a)) 108 oo — #%KGZ > v((a)logge = —gg—= > > v(i(n(a))) logg,

Hg v#oco nEHk all v

is added, which is zero by (LZ). Imaginary CM-fields are particularly relevant for Drinfeld modules, see Theo-
rem [[7.8 below. On the other hand, if F has more than one place above oo, then only the place induced from the
embedding n¢: E — Q%8 C C, contributes to (IZ.11)), and then this formula is not invariant under changing
Us,.

We thus propose to average twice over n,n € Hi and make the following

Conjecture 17.6. Let E be a finite imaginary field extension of Q, which means that Foo = F ®g Qo 15 still
a field. Then the sum

log #(A/0y(05)/4) !

> (log|funwzz,\m—Z°°<<a%,w,¢>*,o>+ % (0@l) + vgplu ))logqv>

nEHrx [W(E): Q] - FHx A€ H voo
= 5 (toglf, @~ 2% )0~ e & T (7 + o) oz (17.12)
neEHk neEH K v#o0o

is zero, or equivalently the product formula holds:

II (\funwﬁm' [T 1/l v> = ] (\ wn, i [ Gl ) = 1.

n,meEH Kk vF#00 nmeEHK vF#00

Example 17.7. Similarly to Example B3], the convention allows to prove the product formula for the Carlitz
motive C = (C =TF4(0)[t], ¢ =t —0) from Example 0.8 over the field K = Fy(0) = Q for which Hx = {idx}. We
let u € Hy petti(C, A) be the generator which is dual to nf~ € Hp,.;(C, A) and we let w = 1 € Hig(C, Cs). Then
we have computed in Examples 13.19, [4.13] and that

(wwhe = 7 [[A-60)"  and  logl(u,whe],, = log(® @) = L logq,
i=1
(u,w)y = 6, (£5) and  log|(u,w),|, = —v(67(6]))logg, = — % = —7Z,(1,1)logg,,
where 1(g) = 1 for every g € 9. Here the CM-field is E = @, Hg = {id} and the CM-type is given by diq = 1.
This implies that a}, ;44 = 1. So Convention [7.4] implies D utoo 108 [(U, W)o|y = —gﬁggg = — L logq for the
Riemann Zeta-function
—s\— —s\— 1
Ca(s) = H(l_(#Fv) )t = H(l_QU )7t = T

VF# 0O VF# 0O
We conclude ) log |[(u,w)y|y =0 and [] |[(u,w)y|s = 1.

In Section [I§ we will discuss an interesting example where C' and @ have genus 1. In the remainder of this
section we focus on CM A-motives which come from Drinfeld modules. As analog of Colmez’s Theorem [B.8] we
have the following
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Theorem 17.8. Let G be a Drinfeld A-module over a finite separable field extension K C Q& of Q with complex
multiplication of CM-type (E,®) as in Example 159, where ® = (dy)yenm, with dy, = 1 for one v € Hg and
dy =0 for all ¥ # 1pg. Assume that G has complex multiplication by O and that E is a separable field extension
of Q. Let M = M(G) and choose wy, and uy as in Situation [T71} Then the stable Taguchi height ht3,,(G) of
G satisfies

htTag(G) = #%K Z( log’funwwo +#HK Z Z J’_’Uﬁnwo( )) IOgQU)

neEHgk neEH Kk v#o0o
log #(A/00,,/4)
g s DA(OF) (17.13)
= #%K Z ( log’funw’d)o + #HK Z Z +”7mwo( )) IOng) —log Da(OF) .
neEHgk neEH K v#oco

Proof. 1. Since both sides of the claimed equality (I7.I3]) are invariant under extending the field K, we may
assume that K is Galois over @ and that G has good reduction at every finite place of K. Via the inclusion
K C Q™8 C Q2 the restriction of the valuation v, on Q& to K corresponds to a place 50 of K such that the
completion Kz equals the closure of K in Q2. For every n € Hy = Gal(K/Q) we denote the image of 5o under
n by o0,. Note that 60, = o0, if and only if n'n~! € Gal(Ks/Q o).

For n € Gal(K/Q), we obtained G" = (G",¢"), M" and w) € H™(M", K[z — (]) from G = (G, ), M
and wy, in Situation 7] by applying 7 to the coeflicients in K. Note that K[yu, — ¥o(yy,)] = K[z — (] by
[HJ20, Lemma 1.3] because E/Q is separable. In addition, we chose E-generators u, € Hi pei(M "7, Q) and as in
Remark[I7.5 we obtain E,-generators uz € Hy ,(M™,Q,) for every v # oo and every 7j € Hg. As in ExampleI5.9
let m" := —(z —¢)~! ‘W € qM". The image " = T (m") of m" in coker Tn = Homg (Lie G7, K) provides
an isomorphism

m’: LieG" = K.
using ([@.5]). We can lift 2" in a unique way to an element m” € M" which is an isomorphism m": G" == G, k.
Indeed, if we choose any isomorphism n: G" == G, g with n € M", then m" = b - Lien for some b € K*, and

we may take m” := b-n. In particular, m" is obtained from m := m'4: G = G, x by pull back under 1. We
recall the F-equivariant isomorphism for Betti-homology from Proposition [[3.11]

Hi Betti (M7, A) ®4 QL/FQ = Higetti(G", A) . (17.14)

We tensor it to ) and observe that 9114 /F, ®4A Q = QlQ JF, = Q dz; see Remark Under the isomorphism
(ITI4) we consider the element \, := u, dz € Hi Beti(G", Q). We may multiply u, by an element a € A such
that we can assume u, € Hy Bewi(M", A) and A, € Hy Beri(G", A). Since ¢ € E acts on Lie G" as multiplication
with 7o (c), Theorem implies for every c €

‘feunwzolm = ’<Cu”’wzo>°°’oo = ‘mn(c)\n)‘m = ’nwo(c)‘w.’mﬁ(/\n)’w.

2. We want to compute htr,g =, (G/K) as in Equations (16.4) and (16.3)). From [Gos96, Proposition 4.7.17] we
know that Es = E®¢g Qo is still a field, that is £/Q is imaginary in the sense of Example[I6.21and Remark [[7.5]
For every n € Hg we consider the ()o-homomorphism nig ® idg__ : Foo = Kz C Q%8 which is hence injective.
Therefore, the restriction to F., of the valuation v, on leog is the unique valuation on F., extending v, on
Qoo- It is thus independent of . By [Ser79l §1.4, Proposition 10] and [BGR84l §3.6.2, Proposition 5] there are
elements c¢i,...,¢, € E such that = ®]_,Q - ¢; and

’Zai “no(ci)

for every tuple a1,...,ar € Qo. Under the isomorphism (IT7.I4) we consider the elements A\, ; = ¢; - A\, =
Ci-Updz € Hi etti(G"7, Q). Then Hy getsi(G7, Q) = 22:1 Q- Ayi, because u, is an E-generator of Hy (M", Q). We
will check whether the tuple m"7(X\y1),...,m"(A;,-) is orthogonal in the sense of Definition [[6.1] for the A-lattice

= max { |a; ~771/)0(ci)}00 } (17.15)

AG") = m"(HLBCm(Q",A)) C m(LieG" @k Cx) = Csx
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., ar € Qoo equation (IT7IH) implies
’ Zai m"(An,i) ‘ Z ai - mpo(ci) 'mn()‘n)’oo
- ’Z% o) - [mT (M)

o0
By multiplying all ¢; by the same element a € A with vy (a) < 0, we may assume that ¢; € Og for all ¢ and

that conditions [(b)] and [(c)] from Definition [[6.1] are satisfied for m"(Ay,;). We observe that (37 _; Ac¢;)A,; C

Or Ay C Hi Betti(G", A), and hence
Hi Betti (G", A) ) _ (Hl,Betti(Q", A)) ( O\ )
#( -7 Or Ay " (22:1 Aci))‘n

( 22:1 A Ci) Ay
_ Hypeti(G", 4) ) Og
B #( Or Ay ) #<Zf_1f40i) '

For a4, ..

= max{ }ai mn(Anvi”oo } :

Then
ht 'ag, 00 Q }( 1;
M =log, Da (m” (Hl,Betti(_n7 A)))

_[K&Sn : Qoo]
1/r
w,r»))

[Ticicr M7 (M) loo

= log, (#(A(G")/(A-m’?()\n,l) +--+A-m"

e (s ol |yl )
T\ #(Hypewi(G",A)/(X1_, Aci)Ay)

Hi Beti(G", A)
= togy ], .~ tog, ¢ (el )

1 H e iQnuA
= log, ’funwzo}m - log, # (—LB(;E(/\U )) +log, Da(Og) ,

where the last equation is the definition of D4(OFg) from Example[I6.2] In particular, this formula holds equally

)1/T+1 (HlﬁsT\Wo(Ci)!oo)l/r
T\ #(0p/ X Ac)

(17.16)

for all ' € Hx with oo,y = o0, of K, that is for all 7' € Gal(Kx, /Qoo) - 1

3. We compute further
Hi Bewi(G", A)/Or Ay = H (HiBeti(G", A)/Op Ay) ®a Ay = H Hi Bewi(G", Ay) /Op, Ay -

VF#00

VF# 00

Under the isomorphism ([7.I4), tensored to A, we have
OEv )\77 C Hl,Betti(Qn7 Av)

Op, uy ®a, Aydz+ ——= Op, U, @4 Q}LX/JFq C Hipetti(M", Ay) ®a Qk/Fq ;

where the dashed arrow in the lower left corner comes from a comparison of A,-modules of rank one, which is an
inclusion A, dz C 9}4 /F, ®A A, or A,dz D 934 /F, @4 A, and even an equality for almost all v. Therefore,
lqu #(Hl,Betti(gn, Av)/OEv )\77) =T Ordv(dz) . [Fv : Fq] + 10gq #(Hl,Betti(Mna A’U)/OEv un) .

Here the factor r = rks, Op, comes from the tensor product with O, u,, and ord,(dz) is the order at v of the
rational section dz of the line bundle Qlc/qu' That is, if A, dz C Qk/mq ®a Ay then log, #(Qi/m‘q ®a AU/AU dz) =

[F, : F4] ord,(dz). Adding over all places v # oo we obtain
log, #(H1 peei (G, 4)/Op Ay) = > (rordv(dz) [Py : Fy] + log, # (Hy e (M, 4,) /O, u,,)). (17.17)

VF# 00
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4. We now fix a place v # oo and let ¢,, € E,, :== E®gQ, such that e;lun is an Op, -generator of Hy pewi (M, 4,) =
Hy(M", A,). Then Og,/e,Op, = HLBCm(]\_/[",AU)/OEv u, under a — ae;lun. By the definition of u?] in
(CZI0) also e, 'u is an O, -generator of Hy ,(M"", A,). This means

Vi (u) = v (iimbo(en)) -

The @,-algebra E,, decomposes into a product of fields E,, = Hl E, ;. To compute the cardinality of O, /e,Or, =
I, Og, ./eqyOE, ,, note that each Og, ,/e,OF, , is an F,-vector space. We denote its dimension by n;. Let K,
be the closure in C, of K C Q& C Q8 C C,, let Ok, be its valuation ring and k, its residue field. For every
@Q,-homomorphism 1;1 € Hg,, := Homg, (£, , Q#) the F,-vector space

(05,./€408..) @0, 3, O, = O, /vi(eq)Ok,

has dimension n; - [K, : JZ(EM)], because Ok, is free over O, , of rank [K, : {/)Vl(E“)] This dimension is equal
to [ky : Fy - ordg, (¥i(ey)) = [Ky - Qo] - v(15(ey)). We conclude that

[Kv : Qv] i

n; = dimg, (Og,,/¢,0p,,) = o on(Bor)] v(Wi(en)) = [Bui: Qo] - v(vien))

and log, #(Hl,Bctti(Mn; A,)/ O, un) = an [y i Fy].
We now consider the following maps

Hg —» Hp — Hova(Englg)

The set Homg, (E,, Q%8) is equal to [[, H B, because every @Z ®idg, factors in a unique way

¢ @idg,: By =[], Bys — Qs (17.18)

N, ‘/{E = (P ®idg,)|s

E .

~ 0,1 (%)
v,3(3)

for an index Z(J) The number of elements 77 € Hy which are mapped to the same 7,; = by € Hg equals
# Gal(K/mbo(E)) = [K : no(E)] = %, and the number of 7 € Hyx which are mapped into the set Hp, ,
equals

K:Q] _ . K:Q
#Hp,,  tal = [Bui: Qo] et (17.19)

For each of the latter 7 the valuation v(fmo(ey)) = U(Ji(en)) = m is the same. This implies

e 2 () s Fo) = e 3 wlimbo(eq) - [Py By
A€Hk AEHK
_  [KQ] ni (Bt Q] pop
#HKZ;[EU,Z-:QU] Eoq i
1
= ; logq #(Hl,Bctti(Mn,Ay)/OEv ’u,n> . (1720)

Putting equations (I710), (ITI7) and (IT20) together we can compute

htTa ,00n (Q/K) 5
Ki—' = —log, |fu w:l]lo}oo + #%}h >y (ordv(dz) + Viinaso (uZ)) [F, : Fq] — log, D4(Og). (17.21)
[ [ Qoo] K neHgv#oo
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5. Now we take a finite place 0, of K and let v # oo be the place of @ with v,|v. We choose an ) € H such
that ¥, is the place induced from v via n: K — Q& c Q& c C, and view G" as a Drinfeld module over C,.
We use the isomorphism m"” from Step 1 above to write

rdega

mho@lo (@)™ = y(a)+ Y ¢l 7 € Ende,r,(Gac,) = Co{r} with ¢}, € C,.
=1

Since G has good reduction at v, there exists an element x,, € Kgn such that

rdega
{_grdega

zym oo (m") "z, = y(a) + Z O -x}]_qi € Oc,{r} and Po rdega Ty € Of .
=1

v

e(Tplv) - U(‘PZ,Z' : x}y_ql)

q -1

e(p|v) - v(p? . e(ty|v) - v(" -zl
We have (5 ) 1(90'“) = (©alv) .(spa’ll 1 )—|—e(f;n|v)~v(:1:n). Note that
ql — qZ J—
7 and equal to 0 for i = rdega. So

> 0 for all

6(7777|U) U(S"Zz)

ordg, (G) = min{ — ta € ANE,, lgigrdega} = e(ylv) - v(zy,) € Z.
ql_

Then
httags,(G/K) = —[Fs, : Fq] - e(0y|v) -v(z,) = —[Ks, : Qu] - v(zy) - [Fy : Fy . (17.22)

It remains to relate v(x,) to v(wy, ). For this let G” be the good model of G" over Oc, and let M" be the
A-motive of G". The latter is the good model of M" over Oc,. Then x,m" extends to a coordinate system

zym": G5 Gg 0., over Oc, of G" and induces an isomorphism
Endocv Fq (Ga,(’)cv) = OCU {T} = M = Homocu Fq (an Ga,ocu) s f > fo Iﬁﬁln :

This implies that z,,m" generates the Oc,-module coker To4n. Next let w = w,, be the place of E which is induced
from the place ¥, of K under the embedding 19: £ — K. Then w, is induced from the valuation v on C, under
the embedding ny: E — C, and lies above the place v of Q). Let y,, € Og be an element which is a uniformizing
parameter at w, that is, which satisfies w(y,) = 1. Set 8, := nbo(yw) € Oc,. We use the isomorphism induced
from Tazm

(o = 0) " HT0 (M7, Co g — 0])/ BT (M7, Coyu = 0u]) = g™ /p" =5 cokermarn

In the source of this isomorphism the elements z,m" and 7']\_/[17, (xz,m") are equal, because both have the same
image x,m" in the target coker 7asn. Therefore, z,m" is a generator of the canonical O¢, -module structure on
the source induced from M". Multiplication with y,, — 6, maps this O¢,-structure isomorphically onto the Oc,-
module H"°(M", Oc,), which is hence generated by (yu, — 04)x,m". On the other hand, after multiplication
with —(z — ¢) mod (2 — ¢)? we obtain Tpw,, = —(z = Q)zym" in

HnwO(Mnu(Cv) = Han(Mna(Cv[[yw - ew]])/(yw - ew) Hnwo(Mnu(cv[[yw - ew]]) .

All these are one dimensional C,-vector spaces. Note that y,, — 0, and z — ¢ are not equal. Namely, if we write
I :=ker(Op ®5, O = Op, a®d —ad') = (a®1—1®a: a € O), the element (z — ¢) mod (z — ¢)? of C, is
the image of dz :== (2 ®1 —1® 2) mod I* € Q%QE/IFQ := I/I? under the Op-homomorphism

Q%’)E/]Fq — Q%QE/]F (Og Qr, Cy)/(a®1—-1®nYo(a): a € Op) = Q%’)E/JF ® C,.

®
? 0pROE/I,ido, @Yo ? Op,nvo

On the other hand, y,, — ,, is the image of dy,, = (Y, ® 1 —1®y,,) mod I? and is a generator of the O¢,-module
Q}DE/IF,, ®0p, mpo Oc,. Therefore, x,, y‘;:?” -w,),is an Oc,-generator of H7°(M", Oc,), and hence

ordy, (dz)

e(wnv)

vl ) = vz, Em5m) = vz, ombo(£2) = —ul(a) +

46



where again ord,, (dz) € Z is the order at w,, of the rational section dz of the line bundle Q%QE /F,- From @@=
we obtain for the local Taguchi height at v,

ordy, (dz) - [Fu, : Fql
[Ewn : Qv]

htTag 5, (G/K)

emr i S A B R S

(17.23)

6. The summand on the right is related to the different ©¢ /4. Namely, by [Ser79, §II1.7, Proposition 14] the
Opg-module of relative differentials Q%QE /A is generated by one element and is isomorphic to Op/®¢, /4. This
gives rise to the exact sequence [EGAL Oryv, Théoréme 0.20.5.7]

0—— Q) )p ®108 —— Qg g —O0p/Doy/a —0.
There is an element 0 # a € A with adz € Q}L; B, Dividing out Op - adz yields the exact sequence
0—— (Qzlé\/]Fq XA OE)/OE cadz —— Q%’)E/]Fq/OE cadz —— OE/:DOE/A — 0.

Counting elements, and denoting the places of E' by w and their residue fields by F,,, we obtain

H (#Fw)ordw(adz) — #(Q}DE/]F,,/OE . adz)

wfoo
= #(08/D0p/a) - #((Qh)p,/A-adz) ®4 Og)

= #(OE/QOE/A) '#(Qi/wq/A'adZ)[oE:A]

= #(OE/:DOE/A) . ( H (#Fv)ordu(adz))r'

VF#£00
We observe ord,(adz) = w(a) + ord,(dz) and that for every place v # oo of Q
H(#Fw)W(a) — H(#Fv)[ﬂ‘"w:Fu]'e(w\v)'v(a) — (#Fv)zw\v[FwiFv]-e(WIv)'v(a) — (#IFU)T'”(“).
wlv wlv
Taking log,, this yields
> [Fu iyl - ordy(dz) =7+ Y [Fy : Fyl -ordy(dz) = log, #(Or/Do,/a) = log, #(A/d0,4),  (17.24)
wfoo v#00

where 00,74 = Ng/g(Do,,/4) is the discriminant of Op over A, and the last equality comes from the fact that
for all maximal ideals B C O and p := AN*P C A with residue fields Foz, respectively Fy, and for every n € N

we have Np /(") = pl™ ™" and #(Op/P") = #(Fyp)" = (HEF,)» 5" = #(A/Np/q($")).

7. Fix a place w of E above v. In terms of the decomposition E, := E®q Q, = [[; Ev,; from diagram (IZ.I8) the
completion E,, of I at w equals F, ; for some 7 and the number of € Hx which give rise to the same w,, = w
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equals [Ey, : Qy] - [[— by (TI9). This together with (IT23), (IC21) and (I724) finally implies

1
htSTtag(G) = [I;g qQ] : (Z htTag,ﬁ(Q/K) + Z htTag,&F(Q/K>)
vfoo o0 |oo
_ logq ( hitags,(G/K)  htreg s, (G/K )>
[K : Q] WEZHK v;o [K"Jn :Qv] [Kgén Qoo]
B log q ' (! ) . 3 ordy, (dz) - [Fu, : Fq]
- [K : Q] neZHK (U;O( (w’l/Jo) [F'U . Fq] [Ewn : Qv] )
—log, ‘funw:l]lo’oo + #%K%Z: ; (ordy (dz) + viny, (u)) [Fy : Fq] — log, DA(OE))
neEH gv#oo
= ﬁ Z ( 1Og}funw’¢o + #HK Z Z "’Unm/m( )) IquU) —log D4(Ok)
neEHk NeEH Kk v#00
logg  [K:Q] . . B,
e ( o S [Fu: Fyl-ordy, (dz) + [K : Q) Y [F, : Fy ordv(dz))
' ' wfoo v#£00
- #—IlfK Z ( 1Og‘funw¢o +#HK Z Z wwo +’Ufm¢o( )) logQU)
neEHk neHk v#0o
log #(A/20,/4)
T EQ log DA(OF)
which finishes the proof. o

Remark 17.9. For a Drinfeld module G of rank r over a finite Galois extension K/Q with CM by Og for a
separable field extension E/Q with CM type as in Theorem [[7.8 the functions from (I7.2)) and (IT73]) are

{ 1 if g € Gal(K/¢o(E))

0 else } = ﬂGal(K/dJoE)(Q) and

agpo,o(9) =

Gal
a%,wo,é(g) = #;IK ez}; ﬂGal(K/non)(g) = ( -In dGZlEKjw(zE) ﬂGal(K/on))(g)a
n K

where lgai(x/mu, k) is the characteristic function of the subset Gal(K/nyo(E)) C Gal(K/Q) and Ind denotes the
induction of characters; see [Cas67, Chapter VIII, §3, Property (V), page 222]. Then (a%7¢07¢)* = a%wm@ and
[Cas67, loc. cit.] implies
[e'e) * T fe's) Gal K
L ((afpo0) "5 K/Q)" = L(Indm ()2 o) Maaie oy 5, K/Q)
L= (Mgai(x /o) $: K /Yo E)
COE (S) )

and hence ()
2 (he)0) = TGy

If oo is tamely ramified in F/Q then Example and [HS20, Lemma 5.17 and Proposition 5.18] imply that

log#(A/aO A) 1 0o
log Da(OF) = TE/ = §'MArt(a%,wo,<I>)v

where %2, was defined in (83]). This puts Theorem [[7.8 in a form analogous to Colmez’s Theorem B8
Thus to establish the product formula in Conjecture [[7.6] for a CM Drinfeld A-module G it suffices to relate

the Taguchi height of G to the logarithmic derivative of the Zeta-function {p,. This was achieved by Fu-Tsun
Wei [Wei20]:

Theorem 17.10 ([Wei20, Theorem 1.6]). In Situation[I7.1)let M = M(G) for a Drinfeld A-module G of rank r
with complex multiplication by O over K which has everywhere good reduction. Then the stable Taguchi height

(Definition [I6.3) satisfies

1 ¢, (0)
r COE (O)

htTag(G) = - _IOgDA(OE)
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Theorems and and Remark imply the following
Corollary 17.11. The product formula from Conjecture [I7.6] holds for CM Drinfeld A-modules. O

In [Wei20] Theorem [I7.10 follows from the function field analogs of Kronecker’s limit theorem and Lerch’s
formula (L3). In that sense, Wei’s theorem can be viewed as the analog of Colmez’s Theorem in the abelian
case. Analogously to Remark [B12] it would be interesting to describe, also in the function field case, the relation
on the one hand between the Kronecker limit and the Lerch-type formulas in [Wei20], and on the other hand
Gross-Zagier formulas like the ones proved by Yun, Wei Zhang, Howard and Shnidman [YZ17, [YZ19, [HS19| for
the intersection numbers of Heegner cycles on moduli spaces of global PGLa-shtukas.

In the direction of the André-Oort conjecture over function fields there is the following analog of Theorem [R.14]
by Breuer and Hubschmid.

Theorem 17.12. The André-Oort-Conjecture holds for irreducible closed subvarieties X in Drinfeld modular
varieties M in the following cases:

(a) [Bre07] M is a product of Drinfeld modular curves which parameterize Drinfeld A-modules of rank 2.

(b) [Brei2] M is a Drinfeld modular variety parameterizing Drinfeld A-modules of rank r and X is a curve.

(¢) [Hubl3] M is a Drinfeld modular variety parameterizing Drinfeld A-modules of rank r such that (q,r) = 1.
That is, in both cases X C M is a special subvariety if and only if it contains a dense set of CM points.

Like in Theorem [B.14] one crucial ingredient is to show that the Galois orbit of a special point, that is a CM
Drinfeld module, is large. This is done by following the strategy of Edixhoven [EMOOT] [Edi05], who proved
cases of the original André-Oort-Conjecture for Shimura varieties conditionally under assuming the generalized
Riemann Hypothesis. Over function fields various zeta functions are known to satisfy the Riemann Hypothesis by
Deligne [Del74]. So this approach to the André-Oort-Conjecture over function fields can become unconditional.
One the other hand, Conjecture might also imply lower bounds for Galois orbits once it is related to heights
of A-motives.

18 Example

We give an example for Conjecture [[7.6 in case of an A-motive M of rank 1 where the curve C has genus 1.
In this case, Conjecture [[7.6 follows from Theorem [I7.I0l This example was studied in detail by Green and
Papanikolas [GP16]. It is a beautiful exercise in computing with elliptic curves.

18.1. Let C be an elliptic curve over F,, given by the (non-homogeneous) Weierstrafl equation

F

F(t,y) = 3?4+ arty + asy — t> — aot® — ast — ag, with a; € Fy,

in the variables t = % and y = 2, compare (). Let co € V(Z - F) C ]P’]%q be the Fy-rational point with
(X:Y:Z)=(0:1:0) at which ¢ and y have pole order given by

Voo(t) = =2, veo(y) = —3.

We have A =T(C \ {0},0¢) = F,[t,yl/(F(t,y)). For any field extension L of F, there is exactly one point ooy,
on C7, above oo, because oo is Fg-rational. To shorten the notation we sometimes denote the point coz, again by
00.

We consider a second copy of the ring A given by F4[0,¢]/(F(6,¢)) in the variables 6 and ¢, and its fraction
field F4(0,¢). This is the function field of a second copy of the elliptic curve C, which we denote by Xy and which
has coordinates 6 and e. That is Fy(6,¢) = Fy(Xo). Let v: A — Fy(0,€) be given by v(t) = 0 and y(y) = . This
makes Fy (60, ¢) into an A-field. We use the isomorphism ~ : Q == F,(6,¢) to embed F,(0, ) canonically into C,
for all places v of Q. We note that

E=V{it-0,y—e) = V(I) for the ideal J = (a®1—-1®~v(a):a€ A) = (t—0,y—¢)

is an Fy (6, ¢)-rational point of C. Furthermore, Z € C(F4(0,¢)) C C(Cx) specializes to oo € C (ko) under the
reduction map red : C(Co) — C(koo) from (I3.0]). Recall the rigid analytic space € := €c_ = (Cc_ )"® and the
disc © C €, which is defined in Notation [[3.1] as the preimage in € = C(Cy) of 0o € C(ko). This disc D is the
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formal group of the elliptic curve C¢_ over Cy, see [Sil86, Example IV.3.1.3], where this formal group is denoted
C(my) for the maximal ideal mq, C Oc._ .

For any field extension L of I, the relative g-Frobenius isogeny Fr, ¢, /1, : Cr, — Cp, of Cp, over L is given on
Spec Ar, C Cf, by the L-homomorphism Fry o, : Ap — Ap, t =19, y — y9. For any point P € C(L) we denote
by P .= Fry.c, /0 (P) € Cp(L) the image of P. The composition o oFr, ¢, /1, = Fry ¢, /1 0 0 with the morphism
o: Cp, — Cp, from (@) equals the absolute g-Frobenius on Cj,, which is the identity on points and the g-power
map on the structure sheaf. For example, the morphism Fr, ¢/, sends = to =1 = Fryc/r, () = V(t—09,y—¢c).

The isogeny 1 — Fr, ¢/, : C — C' is separable by [Sil86, Corollary I11.5.5] and it induces an isomorphism of
formal groups 1 — Fry o/r, : C(ms) — C(moo) by [SiIR6, Corollary IV.4.3 and Lemma IV.2.4]. Therefore, we can

pick a unique point V € C’(moo) =9 C O(C4) so that under the group law of C
(1 —Frocm,)V)=V -V =z (18.1)

and moreover, (1 —Fry c/p, ) '(E) ={V + P | P € C(F,)}.

If weset V =V(t—a,y—f) with a,3 € Cy then K :=F,(8,¢)(a, ) = Fg(er, 8) C C is the Hilbert class
field of Fy(0, €) by [GP16] Proposition 3.3]. We view K as the function field of a third copy of the elliptic curve C,
which we denote by X7 and which has coordinates o and 3. The inclusion of fields F,(6,e) C K corresponds to a
morphism X; — X which is equal to the morphism 1 —Fr, ¢/p, : C — C under the identifications X; = C' = X.
In particular, the set X7(F,) equals the preimage of co = (0 : 1 : 0) € X under this map. This set consists
of the points with «, 8 € F, together with the point P = ooy € X; where a and 3 have poles of order 2 and 3
respectively. It follows that X1 \ X1(F,) = Spec Ok for the integral closure Ox of A in K.

18.2. Now by (I8) and the definition of the group law on C, see [Sil86] §1I1.2], the K-valued points V(1) =
Vit —aly—p7 and -V =V({t —a,y+ 8+ a1+ a3) and E in C(K) are collinear. We take m to be the slope
of the line connecting them:

. E—Bq N E—i—ﬂ—l—ala—l—ag . ﬂq+ﬂ+a10&+a3
 f—a1 0 — o ol — o

€ K. (18.2)

With respect to the valuation ve, on K C Co we compute voo (0) = voo () = —2 and veo(€) = voo(8) = —3, and

hence obtain v (m) = ’UOO(%) = —q. We extend this to the following

Lemma 18.3. Let P € X; be a closed point. Then the element m € K has a pole at P if and only if P €
X1(Fy) = X1\ Spec Ok . In particular, m € Og. Moreover, for the normalized valuation vp corresponding to P
we have
—1 when P e X (Fy),P # oo1,
vp(m) =
—q when P =o00;1.

Proof. This can be proved by computing a uniformizing parameter at P, but we use the following different strategy.
The element m € K was defined as the slope of the line through V(!), —V and Z. This also holds over X; for the
canonical extensions of V()| —V and = to X;-valued points of C X, X1. We now specialize to the residue field
L := k(P) of P. If m(P) = oo, that is -1 (P) = 0 then on the elliptic curve Cy, := C x5, Spec L the line through
V@, —V and E contains the neutral element cor, so V) = ooy or =V = ooy, or 2 = oor. If V) = ooy, or
—V = oo then V = ooy, because ooy, = —ooy, and this is the only point in Fr;ch/L(ooL). FromV = V(t—a,y—0)
it follows that P = co; € X1(Fy). In this case vp(§) = vp(a) = —2 and vp(e) = vp(B) = —3, and we obtain
vp(m) = vp(5227) = —q as above. If oo, = E=V — VW and V # oor, then VD =V = V(t — a,y — f)
lies in C(F;). Thus o, € F, and P € X;(FF,). In this case vp(a),vp(8) > 0, and Z = V(t — 0,y —¢) = oo,
implies vp(f) = —2 and vp(e) = —3. We obtain vp(m) = vp(Z:'gZ) = —1. Conversely, if P € X;(F,), then
V=V(t-ay—-pB)eCF,)and==V -V =V -V = oo, and so the line through V(!), —V and = has slope
m = 00. O

18.4. By (I81) and [Sil86, Corollary I11.3.5] the divisor [V()] — [V] + [E] — [oc] on Cf is principal. So there is
a function f € K(t,y) = Quot(Ag), called the shtuka function for A with

div(f) = [V = [V] + [E] — [oc] . (18.3)
The shtuka function f can be written as

f = vity)  y—e—m(t—-0) y+Btmataz—mit—o) y+5+“lo‘+“3_m, (18.4)
5(t) t—a t—a t—a
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for
v i=v(ty :=y—e—m-(t—0) € Oklt,y] and § = 6(t) = t—a € Oklt,yl,
with divisors on C'x given by
div(r) = VO] + [-V]+[E] —3[c] and  div(s) = [V]+[-V] — 2[c0). (18.5)

The formulas (I83]) and (I8E) also hold for the Cartier divisors of f, v and § on the two dimensional scheme

Coy = C xp, Spec Ok, because v and ¢ do not vanish on an entire fiber of Co,. over a closed point of Spec Ok

Here we consider the Og-valued points co := V(1, %) = {oo} xp, SpecOx and V = V(t — o,y — () and

E=V(t—0,y—c¢), etc. as Cartier divisors on Co,..
18.5. We consider the invertible sheaf O¢, ([V]) on Cx with

I'(Spec Ak, Oc ([V])) = {z € Quot(Ak): ordp(z) > 0V P € Ckx ~ {V,00} and ordy (z) > -1}

= {z € Quot(Ak): ordp(z) > 0VP # V,00 and (t — a)x, (y — B)z € Ak }.
Then we compute I'(Spec Ax,0*Oc . ([V])) as the Ax-module
{z®be Quot(Ax) ®a, o+ Ax: ordp(z) > 0V P # V,00 and (t — a)z, (y — B)z € Ak }
={2®b € Quot(Ak) ®ay o+ Ax: ordp(z) >0V P #V,00 and 2 @ b(t — o),z @ b(y — B7) € Ak }
= I'(Spec Ag, Oc,. ([VI]). (18.6)

~— —

We define an A-motive M = (M, 7ar) over K of rank 1 and dimension 1 as follows.

M =T(Spec Ak, Oc,([V]))
0*M =T(Spec Ax,Oc, ([VI])
™ =f:0"M 5 M®Oc,(—[E]) ¢ M
cokertyy 2 Ocy /Oc, (—[F]) &2 K.
This A-motive corresponds to a Drinfeld A-module of rank 1 over K, which is described more explicitly in [GP16|
§3]. In particular, M is uniformizable. Moreover, M has CM through O := A. We set E = @ and then

Hp = Homg(E, Q#) = {idg} consists of one single element ¢ = idg. Correspondingly we drop all occurrences
of ¢ from the notation used in Section [I7l The de Rham cohomology of M is

Han (M, K[t = 0]) = 0" M ®o,, lim A /J" = T(Spec Ak, Oc, (V) ®og, Kt — 0] = K[t - 0],

because lim Ag/J" = K[t — 0], and Oc, (VM) equals O, on the neighborhood Cx ~ {V(V} of Z. For the
—

—~

unique element ¢ = idg in Hp we have HY (M, K [yy — ¥(yy)]) = Hig (M, K[t — 0]) and the Hodge-Pink lattice
g4 =1 (M @4, lim Ac/J") C Hig (M, K((t—0)) of M satisfies

¢ = Hop (M, K[t - 0]) = (t — 0)~" - Hap (M, K[t — 6])
by ([I83]). So according to Definition [5.8 the CM-type of M is ® = (dia,) with dia, = 1.

18.6. We will next see that M has a good integral model M over Og. Namely, by a similar computation as in
(I8.6) the invertible sheaf Oc,, ([V]) on Co, satisfies

0*Oco, ([V]) = Oco, (V).
Then the good model M = (M, 7rq) of M over O is given by

M =T(Spec Ao, Oco,, (v1)
0" M =T (Spec Ao, Oco, (V)
™™ =[O M M Oc,, (—[E]) € M
cokerTpr = Aoy /Aoy (—[E]) = Ok.
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18.7. With respect to the inclusion K C C,, Papanikolas and Green [GP16, §4] calculate Hy,,; (M, A) as follows.
They fix (¢ — 1)-st roots of —a and m# — ¢, and set

(-0 T m \* AN
vy = (mf —¢) qH 1_<m9—€> t+(m6‘—£) v,
1=0

by = (—a)/(=D H (1 - ii >
o

=0

Since voo (@) = —2 in Cy, it follows that the product for d, converges in I'(€ \ {oo}, O¢), is invertible on € \ D
and has zeroes of order 1 at V®) and —V® for all i € Ny. Since voo(m) = —¢, and $0 veo (mf — €) = —q — 2 and
Voo (775==) = 2 it similarly follows that v, converges in I'(€ \ {oo}, O¢) and is invertible on € \ CD Moreover,
v, has zeroes of order 1 at 2 and —V@ and V+tD for all ¢+ € Ny, because 1 — 0+
1-— a———(B+aa+az)=0and 1 — al + B4 = 0. These functions satisfy the equations

e =0 and

mOa m@a

m@a m@a mOa

Vo =v-0'v, = (y—e—m-(t—190))-c*v, and dp = 00", = (t—0)-0"0,.

Thus with the corresponding (¢ — 1)-st root £/(4=1) of ¢ = —mé=e — _(m 4 'B+a++a3) we set

_ Ve _ qu-a Tt x
Ay = 5 = ¢ ]:[ @ © [(E\D,0)%. (18.7)

Then 7ar(0*Ay) = f - 0" Ay = Au, and A\ps is a meromorphic function on € N\ {oco} without poles or zeroes on
¢\ D. (By looking at the product decomposition of Ay one even sees that it has a simple pole at V' and simple
zeroes at =() for all i € Np.) So we obtain

Hpoi (M, A) = Apr- A (18.8)
Let u € Hy Betti(M, A) be the generator such that (u, Aps) = 1. We also write wiq,, = u.

18.8. We can take w := wy := 0"~ = (t — a?)~! as a generator of Hi (M, K[t — 0]). Then the comparison
isomorphism hpeti ar = 0*has from Theorem I3 I8 sends the generator Ay of Hpoyi (M, A) to oAy = 0% (Aard) -
w € HcliR(M, K|[t—6]) and the comparison isomorphism Apetti,dr = 0*hy mod J from (I3.6) sends the generator
A of Hhoi (M, A) to 0 (A\y6)(E) - w € Hig (M, K). Therefore,

¢a/a=1) 2 ¢

w —1. ww:ujo-* E_l. o = — =
(0 i an()oe = (0" OudE ™ M = gy H oy

To compute the absolute value of (u, ch ar(@))oo we observe that for every i € Ny

& } T
PR AINT=1 = & 7 =1,
@ NE) e 1= (Ga=)"0+ (=) oo
as well as V40 (€) = —¢, whence [€7/(@ V| = ¢ /@D and [(076)(2)|oe = |(t — aD)(E)]oe = |0 — %00 = [09]0e =
¢*4. Thus we obtain
a® _ _a__
’fuw LO = ‘ <u’h]§e1tti,dR(w)>OO . = qo 1 2q _ qa-1t q and
log ‘ Juw LO = (7% —a)logq. (18.9)

18.9. We consider the set Hx := Homg(K,Q"¢) = Gal(K/F,(f,¢)) which actually is a group, because K is
Galois over Fy(6,¢). It is isomorphic to the group C(Fy) under the map n — P, := V — n(V). Indeed, since
n(Z) = Z € C(K) is fixed by n we see that n(V) still satisfies n(V) — n(V)M) = (V) = (V) = y(E) = E =
V — V). Therefore, the point P, = V — (V) satisfies Prgl) = P,, and hence P, € C(FF,). Since the coordinates
(o, B) of V' generate the field extension K/F4(6,¢), the map n — P, is bijective. It is a group homomorphism,
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because Py, =V —im(V) =V —q(V) + (V) —im(V) = P; + 7(P,;) = P; + P, as P, € C(F,) is fixed by 7. In
particular, #Hx = #C(Fy).

We now fix an element 7 € Hy with n # idg and let the A-motive M" over O and w” € Hig(M", K[t —0])
be deduced from M and w by base extension. Then M" is isogenous to M by the theory of complex multiplication,
which was developed for Drinfeld modules by Hayes [Hay79] and for general A-motives by Pelzer [Pel09]. We give
an elementary and explicit treatment for our M. We claim that there is an isomorphism

gn: MT == M@ O(=[R)]) = M(=[P)]), (18.10)

where O(—[P,]) denotes the invertible sheaf on Spec Ao, associated to the divisor —[P,] xr,Spec O . Namely, the
A-motives M" and M(—[P,]) correspond to the invertible sheaves Oc,. ([7(V)]) = Oc, ([V —P,]) and Oc, ([V]) ®
Ocw (—[Py]) = Oc ([V] — [Py]) on Ck, respectively.

By (I81) and [Sil86], Corollary II1.3.5] the divisor [V — P,] — [V] + [P,] — [00] on Cf is principal and there is
a function g, € K(t,y) = Quot(Ag) with

div(gy) = [V = By] = [VI+ [Py] = [oo] = [V = B] + [=V] + [Py] = [V] = [=V] = [o0] . (18.11)

It can be written explicitly as follows. By construction of the group law on C, the three points V — P, = n(V)
and —V and P, lie on a single line whose slope is

nB) —yBy) _ nB)++matas  y(P)+L+amatas
—t(Py) n(a) —«a t(P,) — «

This slope is a priory an element of K, but we see that it lies in Ok by reasoning like in Lemma 183 Indeed,
the slope has a pole if and only if one of the points P, or =V or V — P, = n(V') equals co. If P, = oo, then the
bijectivity of the map 7 — P, implies n = idx which was excluded. If V — P, = o0, and hence V = P, € C(F,),
or if —V = oo, then = = 0o, and so the poles of the slope do not lie in Spec O . That is, the slope lies in O as

claimed. Then we can take (B)+B+arat
y—n(8) - P (t—n(a))
n(a) (18.12)

t—a«

€ Og.

gn =

as an isomorphism M" =5 M ® O(—[P,]). Here we use that formula (ISTII]) for the divisor of g, also holds on
Coy , because both numerator and denominator of g, lie in Ok |t,y] and do not vanish on an entire fiber of Co,
over a closed point of Spec Ok .

In order to see that g, is an isomorphism of A-motives, it remains to prove that g, on(f) = foo*g,. Since the
divisor on both sides equals [p(V) V] + [P,] — [V] + [E] — 2[cc], both sides differ by multiplication with an element
of K*. Multiplying both sides with the common denominator and comparing the coefficients of t?y shows that
both sides are equal as desired.

18.10. The isomorphism g, : M7 =+ M(—[P,]) induces isomorphisms on (co-)homology

9n: HcliR(an OK) — HcliR(M(_[Pﬁ])v OK) )

9n: H]%etti(MnaA) - Hll?,etti(M(_[Pn])vA)a and

gy Hietti(M", A) == Hi gewi(M(—[Py]), A4).
These are compatible with the period isomorphisms hpetti,ar and the pairing between H}gem and Hj Betti- So we
may replace M" by M(—[F,]) in the rest of our computation.

Since w = (t —a9)~! and w mod (t — 0) = (6 — a?)~' € Hizx(M, Ok) we obtain w” = (t — n(a)?)~" and

w” mod (t — ) = (0 — n(a)?)~!, and we set & := g,(w") € Hig(M(—[P,]), K[t — 0]) and &" mod (t — 6) =
gp(w") mod (t — ) € Hig(M(—[P,]),OK). By definition, Hiz(M,O) := c*M/Jo*M = o* M|z, with
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J = (t — 6,y — €) being the vanishing ideal of the Og-valued point E € C(Ok). We compute
@ = o (gy) - (t=n(e)?) 7!

y— 77(5)‘1 _ n(B)+B%4ar1a+as (t _ n(a)q)

_ n(a)?—ad o q\—1
= P (t —n()?)
_ q _ n1B)+B+ara+taz oy q
_ Y 1) ayi—ar_ (1 =) (t—a®)~!'  and
t —n(a)
(B)'+B7+ara+as
e—=n(B)! — T i 0 —n(a)
& mod (t —§) = ) ey —ar__ | ())~(9—oﬂ)*1
0 —n(a)?
_ q 74 By q
= (E n(p) _77(6) + A+ ma +a3)-wm0d(t—9).
0 —n(a)? n(@)? — ad
The element o*gy|= = ;:ZES;Z — "(ﬂ)q:(i;jf;‘jq'ms has absolute value
’0*9“5’00 = q7, and hence logla*gn|5}oo = qloggq, (18.13)

because the first summand has absolute value ¢ and is dominated by the second summand which has absolute
value ¢9.

18.11. We now compute v(w") for all places v # oo of @ and for all n € Hg. Observe that by ([I83]) the
multiplication with ¢ — a induces an isomorphism Oc,,, ([V]) == Oco,. (2[cc] — [-V]) and the multiplication
with ¢ — a induces an isomorphism Oc,, _ (v = Oco, (2[00] — [~V (D]). We restrict this morphism to the
Og-valued point =, that is, we pull it back under the corresponding morphism hz: Spec Ox — Cp,. To do so
we first claim that hz factors through the open subscheme of Cp,, which is the complement of {co} U {—V (1},
Indeed, the locus on Cp, where = = —V is equal to the locus where V' = oo, and the latter locus does not
lie above Spec O . The same is true for the locus where = = oco. We conclude that multiplication with 8 — a4
induces an isomorphism

0—at: Hig(M,0x) = htOcy, (V) =5 bt Ocy, (2loc] — [-V]) = %O, = Ox
wmod (t—0) = (H—a?)™' +— 1.

This shows that Hig(M,Ok) = O - w mod (t — ), and by base extension under 7, also Hig(M", Ok) =
Ok - w" mod (t — #). This yields

‘ v =0 for every place v # 0o and every n € Hy . ‘ (18.14)

18.12. We next compute Hp.;(M(—[P,]), A) for the A-motive M(—[P,]) = (Ock (V] = [Py]),7 = f). The
function Ay from (I87) satisfies 7(0*Ayr) = f - 0" A = Aug, but it does not have a zero at P, and hence does
not lie in M(—[P,]) @4, Oco and not in Hy..;(M(—[P,]), A). Instead,

H}%etti(M(_[Pn])vA) = Am -T'(Spec 4, OC(_[PH])) = Ay Py,

where p, C A is the maximal ideal defining the Fy-valued point P, € C. Correspondingly, when we take
Uy =t € Hy Betti (M (—[Py)]), Q) = Hi Betti (M, @), which pairs with Ay to (@y, Aar) = (u, Ayr) = 1, we obtain

Hy peris (M (—[P,]), 4) = iy - T(Spec A, Oc([Py]) = ity ;"
This yields

0 ifv orn =idg,
oy (@) - log gy = . 7 Py or « (18.15)
log g if v=yp, and n#idg .

Also from (I89) and (I8I3]) we compute the absolute value

log‘fﬁn@"‘w = 10g‘<u,a*gn|5 -w>oo‘oo =log U*gn|5‘oo + 10g’<u,w>oo‘oo = Llogg. (18.16)
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18.13. Finally, we recall the zeta functions for the elliptic curve C, which are defined as the following products
which converge for s € C with Re(s) > 1

L (g +1 = #C(F,))g~" +q' >

o) = JTa-wr ) = Jlu-a” = =i and
—s\—1 —s\—1 1- 1 —#C F‘I _° 1
) = JT0-@r " = Tla-a - ar1-pOC ta "

Since the CM-field is E = @, Hg = {id} and the CM-type is given by dig = 1, we have a%,id,@ = 1. Since
L>(1,s) = Ca(s) we obtain

7%(1,0) = ¢4(0) _ ( q+1—-#C(Fy) — 2 q q) 08 q = (1 —#CF,) — ¢

q
€a(0) 1—(¢g+1—-#C([F,)) +q 1 #C(F,) + q_l)logq. (18.17)

We now put everything together using Theorem [[7.3 and formula (I79]) to compute

R G e L
" #clw (757 —a) tews from ([E3)
Ay e
- % ~logg from (I814) and (I313)
=0.

Miraculously, all terms cancel and this shows that in the present example our Conjecture [I7.6] holds true.
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