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Abstract

This is the first in a sequence of two articles investigating moduli stacks of global &-shtukas, which are
function field analogs for Shimura varieties. Here & is a flat affine group scheme of finite type over a
smooth projective curve, and global B-shtukas are generalizations of Drinfeld shtukas and analogs of
abelian varieties with additional structure. Our moduli stacks generalize various moduli spaces used
by different authors to prove instances of the Langlands program over function fields.

In the present article we explain the relation between global ®-shtukas and local P-shtukas, which
are the function field analogs of p-divisible groups with additional structure. We prove the analog of
a theorem of Serre and Tate stating the equivalence between the deformations of a global ®-shtuka
and its associated local P-shtukas. We also investigate local P-shtukas alone and explain their relation
with Galois representations through their Tate modules. And if P is a smooth affine group scheme
with connected reductive generic fiber we prove the existence of Rapoport—Zink spaces for bounded
local P-shtukas as formal schemes locally formally of finite type. In the sequel to this article we use
these Rapoport—Zink spaces to uniformize the moduli stacks of global &-shtukas.
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1 Introduction

Let F, be a finite field with ¢ elements, let C' be a smooth projective geometrically irreducible curve over
F,, and let & be a flat affine group scheme of finite type over C. A global &-shtuka G over an F,-scheme
S'is a tuple (G, s1,. .., 8,,7) consisting of a &-torsor G over Cg := C xp, S, an n-tuple of (characteristic)
sections (s1,...,8,) € C™(S) and a Frobenius connection 7 defined outside the graphs of the sections s;,
that is, an isomorphism 7: O'*g|cs\ui1"8i =~ g|cs\uipsi where 0* = (id¢ x Frobg g)*.

n [AHT3] we will show that the moduli stack V,(C,®) of global ®-shtukas, after imposing
suitable boundedness conditions and level structures, is an algebraic Deligne-Mumford stack over C™.
One can hope that V,.'(C, ®) may play the same role that Shimura varieties play for number fields.
More specifically one can hope that the Langlands correspondence for function fields is realized on its
cohomology. Note that in particular our moduli stack generalizes the space F'Shp, of F-sheaves (also
called “Drinfeld-shtukas”) which was considered by Drinfeld [Dri87] and Laurent Lafforgue [Laf02] in
their proof of the Langlands correspondence for & = GLgy (resp. & = GL;), and which in turn was
generalized by Varshavsky’s [Var04] moduli stacks F'Bun to the case where & is a constant split reductive
group. Varshavsky’s moduli stack and our generalization are used by Vincent Lafforgue to prove
Langlands parameterization over function fields. Strictly speaking Drinfeld and L. Lafforgue did not use
the language of GL,-torsors but rather the equivalent one of locally free sheaves. Our space V,, 2 (C, &)
likewise generalizes the moduli stacks Chty of Ngo and Ngo Dac [NNO§| who explain a simple method
to count B-shtukas over finite fields, the stacks £{¢ o 1 of Laumon, Rapoport and Stuhler [LRS93] who
used them to prove the local Langlands correspondence for GL,., and the stacks Ab-Sh'; jo 4 of the second
author [Har05]; see [AHI3l Remark 3.19] for a detailed comparison between these moduli stacks.

n [AHI3] we also prove that V,.#'(C,®) has a Rapoport-Zink uniformization by Rapoport-Zink
spaces for local P-shtukas. More precisely, let A, = F,[(] be the completion of the local ring O¢, at a
closed point v € C, let @, be its fraction field, and consider the group schemes P =P, := & x Spec A,
and P, = & x¢ SpecQ,. Let Nilp, denote the category of A,-schemes on which the uniformizer ¢ of
A, is locally nilpotent. A local P,-shtuka over a scheme S € Nilp,  is a pair L = (L4,7) consisting
of an LTP,-torsor £, on S and an isomorphism of the LP,-torsors 7: 6*£L =~ L. Here LP, (resp.
L*P,) denotes the group of loops (resp. positive loops) of P, (see Section 1)), £ denotes the LP,-
torsor associated with £y and 6*L the pullback of £ under the absolute F,-Frobenius endomorphism
Frobiur,),s: S — S. Building on earlier work of Anderson [And93], Drinfeld [Dri76], Genestier [Gen96],
Laumon [Lau96], Rosen [Ros03] and Taguchi [Tag93|], local GL,-shtukas were studied by the second
author in as function field analogs of p-divisible groups and F-crystals. Local P,-shtukas, which
can be viewed as function field analogs of p-divisible groups with extra structure by the group scheme P,,
were introduced by Viehmann and the second author in in the case where P, is a constant
split reductive group. Our definition is a generalization to flat affine group schemes P, of finite type.

As a preparation to [AH13] we show in this article that for P, smooth over A, and for a fixed local
P,-shtuka L over a field k, the unbounded Rapoport-Zink functor

My » (Nilpygep)® —  Sets
S — {Isomorphism classes of (£,8): where L is a local P,-shtuka
over S and 0: L5 — Lg 5 is a quasi-isogeny over S},

where S = V() C 9, is representable by an ind-scheme, ind-quasi-projective over Spf k[(]; see The-
orem .4l More precisely, if the LTP,-torsor underlying LO is trivial then ./\/l]L =~ Fip, Xr, SpfF,[(],
where F/lp, is the affine flag variety of P,; see Remark [4.3l To obtain a formal scheme locally formally
of finite type, as in the analog for p-divisible groups, one has to assume that P, has connected reductive
generic fiber, and one has to bound the Hodge polygon, that is the relative position of 6* £, and £ under
7. We give an axiomatic treatment of bounds in Section .21 and prove the representability of the bounded
Rapoport—Zink functor by a formal scheme locally formally of finite type over Spf k[(] in Theorem I8
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Our proof, which generalizes Theorem 6.3], is inspired by Rapoport’s and Zink’s original result
[RZ96], Theorem 2.16] for p-divisible groups.

In addition, in Chapter [3] we discuss the relation between local P-shtukas and Galois representations
which is given by the associated Tate module. This chapter is largely independent of the rest of this
article and is only used in Remark In Chapter Bl we consider the formal stack V,,.#1(C, )%, which
is obtained by taking the formal completion of the stack V,.#'(C,®) at a fixed n-tuple of pairwise
different characteristic places v = (v1,...,1,). This means we let A, be the completion of the local ring
Oc¢n ,, and we consider global ®-shtukas only over schemes S whose characteristic morphism S — C"
factors through Nilp, . Recall that with an abelian variety over a scheme in Nz’lpzp one can associate

its p-divisible group. In the analogous situation for global &-shtukas one can associate a tuple (f,,l (G))i
of local P,,-shtukas f,,i (G) with a global &-shtuka G in V,,#(C, &)%(S). We construct this global-local
functor in Section B2 by first generalizing the glueing lemma of Beauville and Laszlo [BLI5] in Lemma[5.1]
In analogy with a theorem of Serre and Tate relating the deformation theory of abelian varieties over
schemes in Nilpzp and their associated p-divisible groups, we prove in Theorem the equivalence
between the infinitesimal deformations of a global &-shtuka and the infinitesimal deformations of its
associated n-tuple of local P,,-shtukas. Note that unlike abelian varieties, ®-shtukas posses more than
one characteristic and we must keep track of the deformations of the local PP, -shtukas at each of these
characteristic places v;. This theorem for abelian 7-sheaves (corresponding to the case & = GL,) and
their associated z-divisible groups was first stated and proved by the second author in [Har(5].

Acknowledgements. We would like to thank E. Viehmann and L. Kramer for helpful discussions and
the anonymous referee for his careful reading and valuable remarks.

1.1 Notation and Conventions

Throughout this article we denote by

F, a finite field with ¢ elements and characteristic p,

C a smooth projective geometrically irreducible curve over F,

Q:=F,(C) the function field of C,

v a closed point of C, also called a place of C,

F, the residue field at the place v on C,

A, the completion of the stalk O¢ , at v,

Q, := Frac(A,) its fraction field,

F a finite field containing Iy,

Dpg := Spec R[] the spectrum of the ring of formal power series in z with coefficients in an F-
algebra R,

Dg := Spf R[] the formal spectrum of R[z] with respect to the z-adic topology.

When R =F we drop the subscript R from the notation of Dg and Dg.

For a formal scheme S we denote by Nilp g the category of schemes over S on which an ideal of definition
of S is locally nilpotent. We equip Nilp g with the fppf-topology. We also denote by

n € Nyg a positive integer,
vi= (Vi)i=1.n an n-tuple of closed points of C,
A, the completion of the local ring Ocn ;, of C™ at the closed point v = (1),

Nilp 4, = Nilpgs 4, the category of schemes over C™ on which the ideal defining the closed point
v € C" is locally nilpotent,



2 LOCAL P-SHTUKAS AND GLOBAL &-SHTUKAS 4

Nilplﬁ‘[[g]] := Nilpy, the category of D-schemes S for which the image of z in Og is locally nilpotent.
We denote the image of z by ( since we need to distinguish it from z € Op.

& a flat affine group scheme of finite type over C,

P, := & x¢c Spec A, the base change of & to Spec A4,,

P, ;= ® x¢ Spec@, the generic fiber of P, over Spec@,,

P a flat affine group scheme of finite type over D = SpecF[z],
P :=P xp SpecF((z)) the generic fiber of P over SpecF((2)).

Let S be an F; -scheme. We denote by og: S — S its F,-Frobenius endomorphism which acts as the
identity on the points of S and as the g-power map on the structure sheaf. Likewise we let 6g: .S — 5
be the F-Frobenius endomorphism of an F-scheme S. We set

Cs =C XSpCCFq S, and
g = idc X0og.

Let H be a sheaf of groups (for the fppf-topology) on a scheme X. In this article a (right) H-torsor
(also called an H-bundle) on X is a sheaf G for the fppf-topology on X together with a (right) action of
the sheaf H such that G is isomorphic to H on an fppf-covering of X. Here H is viewed as an H-torsor
by right multiplication.

2 Local P-Shtukas and Global &-Shtukas

Global ®-shtukas are function field analogs of abelian varieties. They were introduced by Drinfeld
in the case where & = GL, and used by him and by L. Lafforgue [Laf02] to establish the Langlands
correspondence for GL, over global function fields. As we mentioned in the introduction, they were
generalized by Laumon, Rapoport and Stuhler [LRS93|, Varshavsky [Var04], Ngoé and Ngo Dac [NNOS],
and in [Har05]. We further generalize all these variants in Definition Varshavsky’s and our gener-
alization are used by Vincent Lafforgue [Lafl2] to prove Langlands parameterization over function fields.
The local p-adic properties of abelian varieties are largely captured by their associated p-divisible groups.
In the theory of global ®-shtukas the latter correspond to local shtukas; see [Har09, Chapter 3.

2.1 Loop Groups and Local P-Shtukas

Since we want to develop the theory of local P-shtukas partly independently of global &-shtukas we let
F be a finite field and F[[z] be the power series ring over I in the variable z. We let P be a flat affine
group scheme of finite type over D := SpecF[z], and we let P := P xp D be the generic fiber of P over
D := SpecF((z)). We are mainly interested in the situation where we have an isomorphism D) 2 Spec A,
for a place v of C and where P =P, := & x ¢ Spec A,. We recall the following

Definition 2.1. The group of positive loops associated with P is the infinite dimensional affine group
scheme LT over F whose R-valued points for an F-algebra R are

LTP(R) := P(R[z]) := P(Dg) := Homp(Dg, P).

The group of loops associated with P is the fpgc-sheaf of groups LP over F whose R-valued points for an
F-algebra R are . .
LP(R) := P(R((2))) := P(Dg) := Homy(Dg, P),

where we write R((2)) := R[z][] and Dg := Spec R((2)). It is representable by an ind-scheme of ind-finite
type over F; see §1.a], or §4.5], [NPO1], [Fal03] when P is constant. Let ' (SpecF, LTP) :=
[SpecF/LTP] (respectively s (SpecF, LP) := [SpecF/LP]) denote the classifying space of LTP-torsors
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(respectively LP-torsors). It is a stack fibered in groupoids over the category of F-schemes S whose
category 71 (SpecF, LTIP)(S) consists of all LTP-torsors (resp. LP-torsors) on S. The inclusion of
sheaves LTIP C LP gives rise to the natural 1-morphism

L: #*(SpecF, LTP) — ' (SpecF, LP), L, — L. (2.1)

Definition 2.2. Let P be the formal group scheme over I) := Spf [F[=], obtained by the formal completion
of P along V(2). A formal P-torsor over an F-scheme S is a z-adic formal scheme P over Dg := D Ry S
together with an action P Xp P — P of P on P such that there is a covering Dy — Dg where S' — S is

an fpgc-covering and a ]P’—equlvarlant isomorphism

A~

P ?Ds Dgr == P 32]13) Dg:

Here P acts on itself by right multiplication. Let 57 1(]]5,[@’) be the category fibered in groupoids that
assigns to each F-scheme S the groupoid consisting of all formal P-torsors over Dg.

Remark 2.3. If P’ is smooth over D then for any P in A 1(]D) ]P’)(Spec R) one can find an étale covering
R — R’ such that P X iy Dp is isomorphic to Pr in 21 (D, P)(R'). Indeed, since P — Dy is smooth,

the restriction Py of P to V(z) C Dp, is likewise smooth over R. Therefore Py has a section over an étale
covering R — R’. Then by smoothness this section extends over Dg.

In Proposition 2.2.(a)] Viehmann and the second author proved that for a split reductive
group G, there is a bijection of (pointed) sets between the Cech cohomology I:II(Squc, L*G) and the set

of isomorphism classes of z-adic formal schemes over Dg. By the same arguments one can even see that
there is a canonical equivalence between the corresponding categories.

Proposition 2.4. There is a natural isomorphism
HHD,P) =~ #*(SpecF, LTP)

of groupoids. In particular, if P is smooth over D then all LTP-torsors for the fpgc-topology on S are
already trivial étale locally on S.

Proof. With a given element P of 1 (D, P)(S) one can associate the following sheaf

K: Spge — Sets
T — Homﬁs(DT,ﬁ),

where L?qucA denotes the big fpgc-site on S. This sheaf is a torsor under the action of LTP(T) =
Hom]ﬁ)(]DT,]P’).

Conversely let K be an LTP-torsor. Let S’ — S be an fpgc-covering that trivializes K and fix a
trivialization g =~ (LTP)g,. This gives a 1-cocycle g € LTP(S”), where S” = 58" xg S’. Now g =
g(mod 2™) can be viewed as a descent data on P XpD,, ¢ = PxpD,, g where D,, g := Spec F[2] /(") x5 S".
Since D, ¢+ — Dy, g is an fpge-covering and P is affine, the descent data is effective by §6.1,
Theorem 6] and gives an affine finitely presented scheme G,, over D, s by [EGAL IV,, Proposition 2.7.1],
which is moreover smooth by [EGA] IVy, Corollaire 17.7. 3] if P is smooth over D. These schemes form
an inductive system {Qn}neN Now set G := hm Gy, the existence of this limit (in the category of z-adic

formal schemes over ]D)S) follows from HEZE Ihew, Corollary 10.6.4]. This shows that the functor is
essentially surjective. By the above construction we see that the functor is also fully faithful.
The last statement now follows from Remark O
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Definition 2.5. Assume that we have two morphisms f,g: X — Y of schemes or stacks. We denote by
equi(f,g: X =Y the pull back of the diagonal under the morphism (f,g): X — Y xz Y, that is, we let

equi(f,g: X 3Y) == X X(s g yxyaY
where A = Ay/;: Y =Y Xz Y is the diagonal morphism.
Generalizing [HV1I] Definition 3.1] we define the space of local P-shtukas as follows.

Definition 2.6. Let X be the fiber product
%1(8136(3 ]F, L+]P) Xe%”l(SpeCF,LP) %I(Spec F, L+]P))

of groupoids. Let pr; denote the projection onto the i-th factor. We define the groupoid of local P-shtukas
Sht]g to be
Shtd = equi (6opri,pro: X = A (SpecT, L*P)) Xspecr SPEF[C].

(see Definition .5) where & := & 1 (specr,+p) 18 the absolute F-Frobenius of A (SpecF, L*P). The
category Shtﬁlﬁ) is fibered in groupoids over the category /\/’z’lpwd] of F[¢]-schemes on which ( is locally
nilpotent. We call an object of the category Sht%(S ) a local P-shtuka over S.

More explicitly a local P-shtuka over S € /\/’z’lpwd] is a pair £ = (£,,7) consisting of an LTP-torsor
L4 on S and an isomorphism of the associated loop group torsors 7: 6*£ — L from (21]).

Definition 2.7. A local P-shtuka (£, 7) is called étale if 7 comes from an isomorphism of L*P-torsors
6* Ly == L. We denote by EtS ht%(S ) the category of étale local P-shtukas over S.

Lemma 2.8. Let k be a separably closed field extension of F. If P is smooth over D with connected special
fiber, then for any b € LTP(k) there exists some ¢ € LTP(k) such that bo*(c) = c.

Proof. Let P be as in Definition Then LTP(k) = P(k[z]). We view P as the inductive limit li_II}l]P’n,

where P,, = P xp D,, with D,, := SpecF[z]/(z"). Let G,, denote the linear algebraic group over [ given
by the Weil restriction Resp,, /specr(Pr). The reduction of b mod 2" gives an element b, € Gy,(k). Since P

is smooth with connected special fiber, G, is connected by [CGPI0, Proposition A.5.9]. Thus by Lang’s
theorem [Lan56, Corollary on p. 557] there exists a ¢, € Gy, (k) such that b,6*(c,) = c,. Here ¢ is the
F-Frobenius on G, which coincides with the Frobenius ¢ induced from P. Now consider the reduction
map ay,: Gpy1(k) — Gp(k) and the element dy, = an(cni1) te, which satisfies &*(czn) = d,, and hence
lies in Gy, (F) = P(D,,41). Since P is smooth d,, lifts to an element d,, € P(D,41) = Gn11(F). Replacing
Cnt1 by ¢pt1d, we may assume that ay,(c,+1) = ¢, and then take ¢ := l(iglcn. O

Corollary 2.9. If P is smooth over D with connected special fiber, then every étale local P-shtuka over a
separably closed field k is isomorphic to ((L+]P’)k, 1-&*).

Proof. Let £ = (L4,7) be an étale local P-shtuka over k. By Proposition 2.4] there is a trivialization
of the LTP-torsor £, giving rise to an isomorphism £ = ((L*P),b-6*) for some b € LTP(k). By
Lemma there is an element ¢ € LTP(k) with b6*(c) = ¢ and multiplication with ¢ is an isomorphism
(LYP),1-6%) == ((LTP)g, b-6*). O

Local P-shtukas can be viewed as function field analogs of p-divisible groups. This inspires the
following notions of quasi-isogenies; compare Definition 3.8].

Definition 2.10. A quasi-isogeny f: L — L' between two local P-shtukas £ := (£, 7) and £ := (L, 7)
over S is an isomorphism of the associated LP-torsors f: £ — L' satisfying fo7 = 7/06* f. We denote by
QlIsogg(L, L) the set of quasi-isogenies between £ and £’ over S, and we write Qlsogg (L) := Qlsogg(L, £)
for the quasi-isogeny group of L.
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As in the theory of p-divisible groups, also our quasi-isogenies are rigid. Here we prove the case of
local P-shtukas which is analogous to p-divisible groups. Like for abelian varieties, the case of global ®-
shtukas only holds in fixed finite characteristics. We will define quasi-isogenies between global &-shtukas
in Section and prove rigidity for them in Proposition

Proposition 2.11 (Rigidity of quasi-isogenies for local P-shtukas). Let S be a scheme in Nilpwcﬂ and
let j: S — S be a closed immersion defined by a sheaf of ideals T which is locally nilpotent. Let £ and L'
be two local P-shtukas over S. Then

Qlsogg(L, L) — Qlsogg ("L, j* L)), =" f
is a bijection of sets.

Proof. This was proved in Proposition 3.9] when P = G xp D for a constant split reductive group
G over F. The proof carries over literally. Compare also Proposition O

2.2 Global &-Shtukas

Let IF, be a finite field with ¢ elements, let C' be a smooth projective geometrically irreducible curve over
F,, and let & be a flat affine group scheme of finite type over C'. The relation to Section [ZTlis as follows.
We are mainly interested in the case where F[z] = A, and P =P,,.

Definition 2.12. A global &-shtuka G = (G, s1, ..., Sp,T) over an Fy-scheme S is a tuple where
e G is a ®-torsor over Cyg,
® 5i,...,5, € C(S) are Fy-morphisms called the characteristic sections of G, and

e T:0 is an isomorphism of &-torsors. Here I';, C Cg denotes the

* ~
g\cs\rsl U...UTsp g\cs\rsl U...UTs)p
graph of the morphism s;.

We write 0 = id¢ xog for the Fy-Frobenius endomorphism og: S — S which acts as the identity on
the points of S and as the g-power map on the structure sheaf. We denote the moduli stack of global
&-shtukas by V,, 71 (C, ®). It is a stack fibered in groupoids over the category of F,-schemes. Sometimes
we will fix the sections (s1,...,s,) € C"(S) and simply call G = (G, 7) a global &-shtuka over S.

In [AHT3, Theorem 3.15] we prove that V,,(C, ®) is an ind-algebraic stack over C™ (in the sense
of [AH13, Definition 3.14]) which is ind-separated and locally of ind-finite type. However, we will not
use this result in the present article, as we will mainly focus on local P-shtukas, and the relation between
individual global &-shtukas and local P-shtukas. For a thorough discussion how our global &-shtukas
and their moduli spaces generalize similar concepts in the literature, we refer to the introduction and to

[AHI3| Remark 3.19].

There is also a notion of quasi-isogenies for global &-shtukas.

Definition 2.13. Consider a scheme S together with characteristic morphisms s;: S — C fori=1,...,n
and let G = (G,7) and G’ = (G',7’) be two global &-shtukas over S with the same characteristics s;. A
quasi-isogeny from G to G’ is an isomorphism f: G|cgpg = G'|cg- Dy satisfying 7/0*(f) = f7, where
D is some effective divisor on C'. We denote the group of quasi-isogenies of G to itself by QIsogg(G).

Like for abelian varieties, rigidity of global &-shtukas only holds in fixed finite characteristics; see
Proposition
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3 Tate Modules for Local P-Shtukas

In this chapter we assume that P is a flat affine group scheme of finite type over D. For a scheme
S e ./\/'ilpF[K]] let Og[z] be the sheaf of Og-algebras on S for the fpge-topology whose ring of sections on
an S-scheme Y is the ring of power series Og[z](Y) := I'(Y, Oy )[z]. Let Og((2)) be the fpgc-sheaf of
Og-algebras on S associated with the presheaf Y s T'(Y, Oy)[z][1]. A sheaf M of Og[z]-modules on S
which is finite free fpgc-locally on S' is already finite free Zariski-locally on .S by Proposition 2.3].
We call those modules finite locally free sheaves of Og[z]-modules. We denote by 6* the endomorphism
of Og[z] and Os((2)) that acts as the identity on the variable z, and is the F-Frobenius b +— (b)#F on
local sections b € Og. For a sheaf M of Og[z]-modules on S we set 6*M = M ®@pg4[.16+ Os[z]. We
recall the definition of local shtukas and their quasi-isogenies from Definition 4.1] and
Definition 2.1.1].

Definition 3.1. (a) A local shtuka over S is a pair (M, 7) consisting of a locally free sheaf M of Og[z]-
modules of finite rank on S and an isomorphism 7: 6* M ®p,[.] Os((2)) == M @p4.1 Os(2))-

(b) A local shtuka M := (M,7) is called étale if 7 comes from an isomorphism of Og[z]-modules
o*M = M.

(¢) A morphism f: (M,7) — (M',7') of local shtukas over S is a morphism f: M — M’ of Og|z]-
modules which satisfies 7/ 06* f = fo7. We do not require that f is an isomorphism. We denote by

Shtp(S) the category of local shtukas over S and by EtS htp(S) the category of étale local shtukas
over S.

Remark 3.2. There is an equivalence of categories between the category .#!(SpecF, L1 GL,)(S) and
the category of locally free sheaves of Og[z]-modules of rank r; see [HV11] §4]. It induces an equivalence
between the category of local GL,-shtukas over S and the category consisting of local shtukas over S of
rank r with isomorphisms as the only morphisms; see [HV11, Lemma 4.2].

Definition 3.3. A quasi-isogeny between two local shtukas (M,7) — (M’,7') is an isomorphism of
Os/((z))-modules
[ M ®pg4) Os(2) == M’ @011 Os((2))
with 7/ o6*f = fo 7.
In analogy with p-divisible groups and abelian varieties, one can also assign a Galois representation
to a given étale local shtuka as follows. Assume that S is connected. Let § be a geometric point of S

and let 7*(S,5) denote the algebraic fundamental group of S at 5. We define the (dual) Tate functor
from the category of étale local shtukas EtShtp(S) over S to the category Sﬁﬁodwzﬂ [(n4(5,3)] of finite free

F[z]-modules equipped with a continuous action of 7{*(S, 5) as follows
T E"tShtD(S) — S’gﬁOdFﬂz}][wft(s,g)p
M= (M,7) — T = (M ®0gp £(5)[2])"

Here the superscript 7 denotes 7-invariants. Sometimes also the notation H} (M, F[z]) := VM is used.
Inverting z we also consider the rational (dual) Tate functor

V_: EtShtp(S) — SModp () (xét(5,5))
M= (M,7) + Vi = (M Qo £3)[2])7 @ppg F(2)).

where sgthdF((z))[ﬂ—ft(&g)} denotes the category of finite F((z))-vector spaces equipped with a continuous

action of ﬂ‘ft(S, 5). The functor V_ transforms quasi-isogenies into isomorphisms.
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Proposition 3.4. Let S € Nilp[ﬁ‘[[g‘]] be connected. Then the functor T_ is an equivalence between the cat-

egories EtShtD(S) and $9ﬁodwzﬂ [7ét(5,8)] The functor V_ is an equivalence between the category of étale
local shtukas over S with quasi-isogenies as morphisms and the category SWOCZF((Z»[W?’@(SS)] with isomor-

phisms as the only morphisms. There is a canonical isomorphism Ty O] K(3)[2] == M ®04[-] K(5)[2]
of k(5)[2]-modules which is equivariant for the action of n$*(S,3) and 7, where 7$4(S, 5) acts trivially on
M and 7 acts trivially on Thy.

Proof. The statement for 7 follows by the same arguments as Proposition 1.3.7]. It is analogous
o [Kat73, Proposition 4.1.1] and can be thought of as a positive characteristic analog of the Riemann-
Hilbert correspondence. We describe the quasi-inverse functor. Consider an F[z][r{'(S, 5)]-module of rank
r and the corresponding representation 7: 7$'(S, 5) — GL,(F[2]). For each m € N let S, — S be the
finite Galois covering corresponding to the kernel of 7¢*(S,5) — GL,(F[z]) _mod=", GL, (FL=]/(z™)).
Let M, be the free module of rank r over Og, [2]/(z™) = Og,, ®r F[z]/(z™) and equip it with the
Frobenius 7 := ¢ ® id and the action of v € Gal(S,,/S) by v(b ® f) = v*(b) @ w(y~1)(f) for b € Og,, and

f €F[z]/(z™)®". Then M,, descends to a locally free Og [=]/(z™)- module M, of rank r and 7 descends
to an isomorphism 7: 6*M,, = M,,. This makes M := l(igle into an étale local shtuka over S and

yields the quasi-inverse to 7"_.

That V_ is essentially surjective follows from the fact that m¢ (S 5) is compact which implies that
every F((2))[n$*(S, 5)]-module arises by inverting 2 from an IF[[z]][ t(S,5)]-module. To see that V_
fully faithful con81der two local shtukas M and M’ over S and an 1somorphlsm f: VM =~ VM/ There
are powers 2NV and 2N of z such that 2V f and 2V f~! come from morphisms TM — T M’ respectively
TM/ — TM Under the equivalence T_ these in turn come from morphisms g: M — M’ and ¢': M’ — M.

N+N’

Then g¢' = 2 and this implies that g and ¢’ are quasi-isogenies. Clearly szNg fand VZ, Ny = = fL

This proves that V_ is an equivalence of categories. O

Let Vectp be the groupoid over Nz’lpmcﬂ whose S-valued points is the category of locally free sheaves
of Og[z]-modules with isomorphisms as the only morphisms. Let Reppp.) P be the category of represen-
tations p: P — GL(V) of P in finite free F[z]-modules V', that is, p is a morphism of algebraic groups
over F[[z]. Any such representation p gives a functor

pe: AV (SpecF, LTP) — Vectp

which sends an LTP-torsor £, € 2#'(SpecF, LT P)(S) to the sheaf of Og[z]-modules associated with the
following presheaf

Y (£+( ) x (V ®ppg Os=] (Y ))/Lﬂ?( (3.1)

The functor p,: #!(SpecF, L*P) — Vectp induces a functor from the category of local P-shtukas to the
category of local shtukas which we likewise denote p,. This functor is also compatible with quasi-isogenies.

Definition 3.5. Let Funct®(.RepF[[zﬂ P,S’modwzﬂ[ﬁt(&gﬂ), resp. Funct®(Reppp, P,SmOdF((z))[ﬂ?t(S7§)]),
denote the category whose objects are tensor functors from Repgp,j P to Simodwzﬂ [mt(5,5)] respectively
to §IMNody () (rét(s,5), and whose morphisms are isomorphisms of functors. We define the (dual) Tate

functor T_, respectively the rational (dual) Tate functor V_ as the functors

T_: EtSh2(S) — Funct®(RepFM P, S’imodwzmﬁc(&gﬂ)
L — T p—=T1, 1,

V_: EtSh2(S) — Funct®(Rep]F[[zﬂ P, §Modg( ) xé(s,5))
L +— Ve p= Vo
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That 7_ and V_ are indeed tensor functors, follows from the fact that £ — p,L is a tensor functor
and from the equivariant isomorphism 7}, o ®r[) K(5)[2] == p+L Rpg[z) #(5)[z] from Proposition B.41
If P is smooth with connected special fiber and £ is an étale local P-shtuka then the composition of the
tensor functor Tz followed by the forgetful functor F': Simodwzﬂ[wct(s 8) — §Modp[,] is isomorphic to
the forgetful fiber functor w®: Repppj P — §9Modp by Corollary Indeed, the base change L; of
L to 5 = Speck(§) is isomorphic to Ly := ((LTP)s,1-6 ) and the functor Fo ’E is 1somorph1c to w°
This yields a conjugacy class of isomorphisms Aut®(F o 72) Aut®(w®) = P. Slnce every v € m$t(S, s)
acts as a tensor automorphlsm of ’Tg, the tensor functor 72 corresponds to a conjugacy class of Ga101s
representations 7: 7{*(S, 5) — P(F[z]). Now Proposition [3.4] generalizes as follows.

Proposition 3.6. Let P be smooth over D with connected special fiber and let S € Nilpr‘[[g]] be a con-

nected scheme. Then the functor T_ is an equivalence between the category E,tShtg(S) and the category
Funct®(RepMzﬂ P, Si)ﬁodmzﬂ[ﬁt(s’g)]). The functor V_ from the category of étale local P-shtukas over S

with quasi-isogenies as morphisms to the category F' unct®(RepFﬂZﬂ P, SmOdF((Z))[ﬂ.?t(S’g)}) s fully faithful.

Proof. To construct the functor which is quasi-inverse to 7_ we fix a tensor functor F in

Funct®(Repgp,) P, §Modp(g(xé(s,5))- The difference of the two F[z]-rational fiber functors w® and FoF
on Repp(,| P is given by the torsor Isom®(w®, F o F) over P = Aut®(w°); use Corollary 5.20].
Since the special fiber of P is connected, this torsor has an F-valued point by Lang’s theorem [Lan56]
Theorem 2]. Since P and hence Isom® (w®, F o F) is smooth over D this point lifts to an F[[z]-valued point
of Isom®(w®, F o F), that is to a tensor isomorphism a: w® == F o F over F[z] inducing an isomorphism
. P s Aut®(F o F). Since 7$4(S, 5) acts as automorphisms of the fiber functor F o F, the functor
F corresponds to a representation 7: 7{*(S,5) — P(F[2]) which depends on « up to conjugation in
P. For each m € N we let S, — S be the finite étale Galois covering corresponding to the kernel of
(S, 5) = P(F[2]) _mode® p (F[2]/(z™)) where Py, := P xp SpecF[z]/(z™). Let Gm be the trivial
P,,-torsor over S,, xr SpecF[z]/(2™) and equip it with the Frobenius 7 := id: 6*G,, == Gy,. Via the
action of Gal(S,,/S) through 7 on G, the latter descends to a Pp,-torsor G, over S X SpecF[z]/(z")
and 7 descends to an isomorphism 7: 6*G,, — G,,. This makes Q = hm G, into a formal P-torsor over

S together with an isomorphism 7: 6*G == G; see Definition By Proposition 4] it corresponds to
an LtTP-torsor L together with an isomorphism 7: 6*£, =~ L., that is, to the étale local P-shtuka
L = (L4, 7). Tt satisfies Tz = F. A different isomorphism a gives a different local P-shtuka which is
canonically 1somorphlc to £. This yields the quasi-inverse to 7_.

To prove that V_ is fully faithful let £ = (£4,7) and £ = (£/,,7') be two étale local P-shtukas over

S and let §: Vé = f)g be an isomorphism of tensor functors. We consider the following functor

M_: A1 (SpecF, LTP)(S) — Funct®(Rep]F[[zﬂ P, Modpg[2]),
which sends an LTP-torsor £ to the tensor functor mapping the representation p to the Og[z]-module
p«Ly from BI). By Proposition [3.4] the isomorphism 4], between Ve(p) = V,,c and Vpi(p) =V, o
comes from a quasi-isogeny between p,L = (./\//\lg (p), ps?) and p, L' = (./T/l\ c, (p), p«7'). Therefore the

isomorphism & induces an isomorphism M L ®o4[:] Os((2)) = M ', Bog]] Os((z)). Take an fppf-cover
S" — S trivializing £ and £/, and fix trivializations £, = (LTP)g = £, . Then we have

Isom® (Mz,)., @0y Os(2), Miz,yo, ®oy ) Os(2) = Aut®(w°)(Os(2) = LP(S),

because .A//\l(LﬂP)S, = w° @pp Ogr((2)) and P = Aut®(w°) by Corollary 5.20]. Therefore § gives
an isomorphism hgs: (LP)g — (LP)g:. The morphism hgs inherits the descent datum coming from the
fact that ¢ is defined over S, and hence it defines an isomorphism h: £ = L', where £ and £’ denote
the LP-torsors associated with £ and £/ . One easily checks that h satisfies 7/ 0 6*h = h o 7 and gives
a quasi-isogeny h: £ — L. O
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Remark 3.7. In general the functor V_ does not need to be an equivalence, not even onto the category
of those tensor functors F: Reppp,) P — §Modp ) rer(s,5) for which FoF = w®®pp. F((z)). For example
let P be the Iwahori subgroup of GLs3, that is,

P(F[z]) = { A € GLa(F[2]): A= (;) mod z}.

Let = be transcendental over F and let S = SpecF(z). Set G := 7*(S,5) = Gal(F(2)*?/F(z)) and
consider a representation m: G — GLy(F[z]) such that the residual representation 7: G — GLy(F) is
irreducible. This implies that 7(G) ¢ P(F[2]) and hence the tensor functor F: Reppp.j P — §Modr (. q)
given by

p— [G 5 GLy(F[2]) = P(F(2)) - GL("(0)) (F(2))]

cannot come from a local P-shtuka over F(z).

Note that such a representation m exists. For example if ¢: F[t] — End G, p(,) is a Drinfeld-F[t]-
module of rank 2 over F(x) without potential complex multiplication, then for almost all primes v of
[F,[t] the Galois representation 7y, : G — GL2(A,) on the v-adic Tate module of ¢ has this property by
[PT06, Theorem A] or [PR09, Theorem 0.1]. For a concrete example let ¢ = 1 — 27 + 72 and v = (t).
Then ¢[t] = {y € F(z)*P: y?° — zy? +y = 0}. If ¢ = 2 it is easy to see that 3 — zy + 1 is irreducible in
F(x)[y] and has splitting field of degree 6 over F(z). This implies that 7, ;)(G) = GL2(F2). The reason
for the failure of V_ to be an equivalence of course lies in the fact that the Drinfeld-module ¢ does not
carry a level structure over F(z) whereas any étale local P-shtuka for the above Iwahori group P carries
a I'g(v)-level structure.

Even if we assume that P is a maximal parahoric subgroup of P as in Remark B3] we expect that
it depends on the group P whether V_ is an equivalence. Namely, in the proof of Proposition [B.6]
when we try to extend the construction of the quasi-inverse of 7_ to V_ we obtain a representation
74(S,5) — P(F((2))). For V_ to be an equivalence we need that up to conjugation this representation
factors through P(F[z]). We know that 7{'(S, 5) is a profinite group and hence compact. Therefore the
image of the representation is contained in a maximal compact subgroup. So the question arises whether
every maximal compact subgroup of P(F((z))) is conjugate to P(F[z]). This is true when P = GL, or
SL, and in this case V_ is an equivalence.

But in general the answer may be negative for two reasons. First of all, although every maximal
parahoric subgroup is maximally compact, the converse may fail. For example for P = PGLs the subgroup
generated by the Iwahori subgroup { A € PGLy(F[z]): A = (8 I) mod z } and by (2 (1]) is maximally
compact but not parahoric, because it is the stabilizer of the midpoint of an edge in the Bruhat—Tits
tree of PGLs. This group contains the Iwahori subgroup with index 2. Secondly, not all maximal
parahoric subgroups need to be conjugate, because they are the stabilizers of 0-simplices in the Bruhat—
Tits building, but not all O-simplices are conjugate in general. This occurs for example when P = Sp,,..

4 The Rapoport—Zink Spaces for Local P-Shtukas

In this chapter we assume that PP is a smooth affine group scheme over D.

Rapoport and Zink constructed a moduli space for p-divisible groups together with a quasi-isogeny to
a fixed one (and with some extra structure such as a polarization, endomorphisms, or a level structure).
They proved that this moduli space is ind-representable by a formal scheme locally formally of finite type
over Zy.

We already mentioned that local P-shtukas behave analogously to p-divisible groups. However, this
analogy is not perfect, unless we restrict to “bounded” local P-shtukas as the analogous objects corre-
sponding to p-divisible groups. More precisely we bound the Hodge polygon of a local P-shtuka (L4, 7),
that is, the relative position of 6* £ and £ under the isomorphism 7; see Definition below. This
is motivated by the fact that F-isocrystals and Dieudonné-modules also have bounded Hodge slopes. We
will show that Rapoport—Zink spaces for bounded local P-shtukas are formal schemes locally formally of
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finite type over Spf F[¢]. When P := Gy xp D for a connected split reductive group G over F this was
proved in [HVT1Il Theorem 6.3]. In the non-constant case for a smooth affine group P over D we will
give an axiomatic definition of the boundedness condition in Section We start with the unbounded
situation.

4.1 Unbounded Rapoport—Zink Spaces

For a scheme S in N ilpppep let S denote the closed subscheme Vg(¢) € S. On the other hand for a scheme
T over F we set T := T X Spec F SprF'[[C]] Then T is a C-adic formal scheme with T' = Vo #(¢). So the

underlying topological spaces of T' and T coincide. We let ./\lepT be the category of T’ T-schemes on which
( is locally nilpotent.

Definition 4.1. With a given local P-shtuka £, over an F-scheme T we associate the functor

My o Nilpz)°® — Sets
S — {Isomorphism classes of (£,8): where L is a local P-shtuka
over S and §: Lg — Ly g is a quasi-isogeny over Sh.

Here we say that (£,8) and (£', ') are isomorphic if 6! 0§ lifts via Proposition ZITlto an isomorphism
L' = L. The group Qlsogs(L,) of quasi-isogenies of L, acts on the functor M c, viag: (L, §) + (L, god)
for g € Qlsogs(Ly). We will show that M £, 18 representable by an ind-scheme which we call an unbounded
Rapoport—Zink space for local P-shtukas.

Remark 4.2. Note that by rigidity of quasi-isogenies (Proposition 2IT]) the functor M Lo is naturally
isomorphic to the functor

S {Isomorphism classes of (£,0): where L is a local P-shtuka
over S and 0: Lg — L, g is a quasi-isogeny over S}.

This also shows that idg is the only automorphism of (£,d), and for this reason we do not need to
consider M £, 35 a stack.

Remark 4.3. In order to show that M Lo is representable by an ind-scheme we recall the definition of
the affine flag variety F/¢p. It is defined to be the fpqc-sheaf associated with the presheaf

R — LP(R)/L"P(R) = P(R(2))/P(R[])

on the category of F-algebras; compare Definition 2]l Pappas and Rapoport [PRO8, Theorem 1.4] show
that F/¢p is represented by an ind-scheme which is ind-quasi-projective over F, and hence ind-separated
and of ind-finite type over IF. Moreover, they show that the quotient morphism LP — F/{p admits sections
locally for the étale topology. They proceed as follows. When P = SL, p, the fpgc-sheaf F/lp is called
the affine Grassmanian. It is an inductive limit of projective schemes over IF, that is, ind-projective over
F; see Theorem 4.5.1] or [Fal03, NPO1]. By Proposition 1.3] and [AHI3l Proposition 2.1]
there is a faithful representation P — SL, with quasi-affine quotient. Pappas and Rapoport show in the
proof of Theorem 1.4] that Flp — Flgy, is a locally closed embedding, and moreover, if SL, /P
is affine, then F¢p — Flgr,. is even a closed embedding and F/p is ind-projective. More generally, if
the fibers of P over D are geometrically connected, it was proved by Richarz [Ric13bl Theorem A] that
Flp is ind-projective if and only if P is a parahoric group scheme in the sense of Bruhat and Tits [BT72)
Définition 5.2.6]; see also [HRO8]. Note that, in particular, a parahoric group scheme is smooth with
connected fibers and reductive generic fiber.
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Let us view the formal scheme T' = T Xp Spf F[(] as the ind-scheme hi>n T xSpecF[¢]/(¢™). We may

form the fiber product ]:E = Flp %5 T in the category of ind-schemes (see [BD} 7.11.1]). Note that
this fiber product can be elther viewed as the restriction of the sheaf F/¢p to the fpgc-site of schemes in
Nilpz or also as the formal completion of Flp xp T xr SpecF[(] along the special fiber V(().

Theorem 4.4. If P is a smooth affine group scheme over D the functor Méo from Definition [4.1] is

represented by an ind-scheme, ind-quasi-projective over T = T XrSpfF[(], hence ind-separated and of
ind-finite type over T. If the fibers of P over D are connected then M£ is ind-projective if and only if P
is parahoric in the sense of Bruhat and Tits [BT72 m Définition 5.2.6] and [HROS].

If Ly is trivialized by an isomorphism a: Ly == ((LTP)5,b6*) over T with b € LP(T) then M, is

represented by the ind-scheme .ﬁp gi= Filp Xy T.

Proof. We first assume that L is trivialized by an isomorphism a. We regard M £, In the equivalent
form mentioned in Remark .2l Consider a pair (£,6) = ((L4,7),6) € M (S5). Choose an fppf-covering
S’ — S which trivializes £, then the quasi-isogeny ags 04 is given by an element g € LP(S’). The image
of the element ¢’ € LP(S’) in ]-"KP’?(S’ ) is independent of the choice of the trivialization, and since (£, d)
is defined over S, it descends to a point x € j—"\ﬁp’f(S ). Note in particular that 7 is determined by b and
g’ through the diagram

/

6*(LP)gy —5s (LP)g

6’*(9’)l Jg’

&*(LP)y —>— (LP)g

Conversely let © € j—"\ﬁpj(S) for a scheme S in Nilpf. The projection morphism LP — Flp admits
local sections for the étale topology by [PROS, Theorem 1.4]. Consequently there is an étale covering
S" — S such that x is represented by an element g’ € LP(S"). We set S” := S"xg.5" and define (£, 7',d")
over S as follows. Let L/, := (L1TP)g, let the quasi-isogeny ¢': (£,,7') — ((LTP)g,b6*) be given by
y — ¢'y, and the Frobenius by 7/ := (¢')~'b6*(¢')6*. We descend (£/,,7',8’) to S. For an S-scheme Y’
let Y/ =Y x589 and V" =Y’ xy V' =Y x5 8" and let p;: Y” — Y’ be the projection onto the i-th
factor. Since ¢’ comes from an element = € Flp 7(S) there is an h € LTP(S") with pi(g') = p5(g’) - h.
Consider the fpge-sheaf £, on S whose sections over an S-scheme Y are given by

Ly(Y) = {y e LTPY'): pi(y)=h"" - p5(y) in LTP(Y") }

on which LTP(Y") acts by right multiplication. Then £ is an LTP-torsor on S because over Y = S’ there
is a trivialization
(LTP)sr == (Ly)sr, [ hpi(f) € (LTP)(S”)

due to the cocycle condition for h. Moreover, 7/ descends to an isomorphism
726 L(Y) = L(Y), 67(y) = () 106" (9)5* (y))
making (L4, 7) into a local P-shtuka over S. Also ¢’ descends to a quasi-isogeny of local P-shtukas
6:L(Y) = LP(Y)={ € LP(Y'): pi(f') = ps(f)) in LP(Y")}
y = dy.
Note that this is well defined. Namely, if ¢’ is replaced by § with ' = (§')"'¢’ € LTP(S’) then left
multiplication with ' defines an isomorphism

(L*P)sr, (¢") 067 (9)5",9') == (LT P)s. ()" '06™(3)6™. &)
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Also h = pi(u/) hpt(v/)~! and hence left multiplication with u’ descends to an isomorphism £ - £ over
S. This establishes the last statement of the theorem.

To prove the first assertion we may choose an fppf-covering 77 — T and a trivialization o: Lyp =
((LTP)g,b6*) over T'. We set T = T' Xp Spf F[¢] and " =T SZ:FT\/’ and let pr;: 77 — T' be the
projection onto the i-th factor. By what we have proved above, we obtain an isomorphism

Mg, RpT' = Fly 7, 6 5 agrod =g - LTP(S').

Note that j—"\ﬁp 7 1s an ind-scheme which is ind-quasi-projective over T' by Remark [£3] and, when P has

connected fibers, even ind-projective if and only if P is parahoric. Over T" there is an isomorphism

pri(Flp 7)) —= Mg R3T" prs(Fly 7,) (4.1)

g’ . L+]P)(S’) }—>p7‘1‘o¢§,1 o g/ }—>p7‘§0¢5l OpT‘TOé;,l o g/ . L+]P)(S,)

It is given by left multiplication on prj (j—"\ﬁp ) = j-"\ﬁp T = DT3 (j—"\ﬁp 7) with the element prjag opry ag,l €
LTP(T").

We write Flp = li_n}lf@I(PN) for quasi-projective [F-schemes ]-"KI(PN). There is a line bundle F on F/p
N)

which is “ample” in the sense that its restriction to any ]-"K]%) is ample, and which is equivariant for
the LTP-action by left multiplication, i.e. “L*P-linearized” in the sense of Definition 1.6]. For
example one can take a faithful representation P < SL, p with quasi-affine quotient (Remark [4.3]), take
the fundamental line bundles £; on Flgr, from [Fal03, p. 46], take F as the pullback of a tensor product
of strictly positive powers of the £;, see [Fal03 p. 54], and take the f@I(PN) as the preimages in F/¢p of the
Schubert varieties in Flgy,.. Then (41]) defines a descent datum on the pair (F EI(PN) xp T xpF[C]/(C™), F)
for all N and m. This descent datum is effective by [SGA 1l VIII, Proposition 7.8], see also [BLRI0, § 6.1,

Theorem 7]. Therefore there is a quasi-projective scheme Mg’m) over T xp F[¢]/(¢™) with Mg’m) X
T = ]-"K(N) xgT" xp F[C]/(¢™). Moreover, if the fibers of P are connected then M(N’m) is projective if
and only if P is parahoric by Remark L3l Tt follows that M, = hm./\/l ) is an md (quasi-)projective

Nm

ind-scheme over T'. O

4.2 Bounded Local P-Shtukas

We want to introduce boundedness conditions for local P-shtukas where P is again a smooth affine group
scheme over . Due to the problem discussed in Example EI4] below we will base our boundedness
conditions on an axiomatic definition of “bounds”. For this purpose we fix an algebraic closure F((¢ ))alg
of F((¢)). Since its ring of integers is not complete we prefer to work with finite extensions of discrete
valuation rings R/F[¢] such that R C F((¢))™8. For such aring R we denote by kg its residue field, and we
let Nilp  be the category of R-schemes on which ¢ is locally nilpotent. We also set j—"\ER Rr:= Flp XpSpf R

and Flp := Flp g Before we can define “bounds” we need to make the following observations.

Definition 4.5. (a) For a finite extension F[¢] € R C F((¢)™8 of discrete valuation rings we consider
closed ind-subschemes Z r C ]:E]p r. We call two closed ind-subschemes 7 /R C ]:E]p .r and VAl r C ]:E]p R

alg

equivalent if there is a finite extension of discrete valuation rings F[(] C RC F((¢))*® containing R and

R’ such that Zp X spf r Spf R=2 o Xspf r Spf R as closed ind-subschemes of Fly 5

(b) Let Z = [Zg] be an equivalence class of closed ind-subschemes Zr C ﬁ]}», r and consider the group
G, = {7y € Autg (F(¢)™8): v(Z) = Z}. We define the ring of definition R, of Z as the intersection
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of the fixed field of G in F((¢))™® with all the finite extensions R C F((()™® of F[¢] over which a
representative Z Rr of 7 exists.

Let us give some explanations for this definition.

Remark 4.6 (about Definition [L5(a)). Consider an ind-scheme structure on F/¢p given as an induc-
tive limit Flp = li_n)l}"&%)m) of quasi-compact F-schemes .FEI(Pm) indexed by m € N. Then Flppr =

li_H)l(}—f]%m) xr Spec R/(¢™)) is an ind-scheme structure on j:\fp, r- A closed ind-subscheme Zp C ]-/'\E]R R is
of the form Zp = hi>nZA Rr,m for an inductive system of closed subschemes Z rRm C ]:E]%m) xF Spec R/({™).
The latter correspond to sheaves of ideals Z,,, C Oféé)m) ®r R/(¢™) for all m.

If RC R and Zg C Flp R is a closed ind-subscheme then Zz := Zr Xgpt g Spf R C fﬁpﬁ is a closed

ind-subscheme, such that Zg is the ind-scheme theoretic image of Z 5 in }/'\E]R r. Indeed, in terms of the
ideal sheaves Z,, C OH]%m) @rR/(C™) of Zr and Z,,, C OH]%W) ®r R/(C™) of Zj this means Z,, = Z,, ®r R

and Z,, = I, N O o) OF R/(¢"™). The latter equality follows from the commutative diagram
P

0 T In ®r R Znm ®r R/R

! [

0 ——Orm @ R/(C") — O om S R/(¢(™) — Oy ®F /(™) @ R/R—0,

in which the rows are exact and the vertical morphisms are injective because ]Aé/ R and R are finite free
R-modules.

It follows that two closed ind-subschemes Z r C ﬁ]p’ r and Z}%, - j—"\ER r are equivalent if and only
if Zp X spf r Spf R=727 v Xspf v Spf R for every finite extension of discrete valuation rings F[¢] C R C
F((¢)™8 containing R and R’

Another consequence is, that a morphism f: S — ]-/'\E]R g for S € Nilpp factors through Zg if and
only if the morphism f x idg: S X g Spf R — ﬁﬂ‘l 7 factors through Z 7 Indeed, this can be checked by

the vanishing of the ideals f*Z,,, respectively (f x id fz)*im’ using the injectivity Og — Og ®p R.

Remark 4.7 (about Definition [L(b)). Let R C F((¢ )™& be a finite extension of F[¢] over which a
representative Zr of Z exists.

(a) v(Z) = Z then means that v(Zg) C .ﬁ]p;y(R) is equivalent to Zg. In particular, if v(R) = R then,

by our previous remark, 7(2 ) = Z means that 7(2 R) = Zg. For example if Frac(R) is a normal
field extension of F((¢)) then y(R) = R.

(b) It follows that Autz(F((¢)™8) c @  because all R-automorphisms fix Zr.

(c) We let RY2 := {x € R: y(z) = x for all v € G }. It equals the intersection of R with the fixed
field of G, in F((¢)™®.

(d) Let i(R) := [Frac(R) : F((¢))]imsep e the inseparability degree. Then F[*®/C] c Rz and RYz
equals the ring of integers O in the fixed field K of G, inside the separable closure F((*%/C))*"
of F((*R/C)). To prove this we use the fact from field theory, that F((*®)/()) is contained in Frac(R)
and that this is a separable extension. In particular Frac(R) C F((*®/C))*® and Rz C Ok. From
[(B)] it follows that K C Frac(R), and hence Ox C R%Z. Finally, since Autgpq) (F((¢)™8) fixes all
elements of F((“R/C)) we find F[*R/C] ¢ RYz.

(e) If R’ is another finite extension of F[¢] over which a representative Zg of Z exists, such that
i(R) <i(R'), then R¢2 C (R")%2 by[(d)} If i(R) = i(R') then R®z = (R)%z.



4 THE RAPOPORT-ZINK SPACES FOR LOCAL P-SHTUKAS 16

(f)

We conclude from @ that the ring of definition of Z may be computed as follows. We choose a
finite extension R C F((¢)™® of F[¢] over which _a representative Zg of Z exists, and for which
i(R) is minimal. Then R, = — R%z. Moreover, let R be the ring of integers in the normal closure of

Frac(R) over IE‘(({ ). Then i(R) = Z(R) and therefore Frac(R) is Galois over Frac(R;) with Galois
group Autg, (R R) = {ye AutF[[q](R) with ’y(ZE) = Zﬁ} C Autgpep(R). We conclude that

= {ze R:~(z) =z for all y € Autpy (R) with ~ R}

We do not know whether in general Z has a representative Z R, over the ring of definition R,
although this is true in many cases; see our Examples [£.12] to 4.14]

Note that our Definition 5(b) is a direct translation of the analogous situation over number fields,

taking the inseparability problem into account. Namely in the number field case one considers

cocharacters u: G Qs G ae for a reductive group G over QQ),, and one considers a conjugacy
1P P

class C(p) = {Intyou: g € G(Q3®)}; see [Del7ll 3.7) or [RZ96, 1.31). (Our Example EI3 cor-
responds to this.) One defines the field of definition E, of C(u) as the fixed field inside leg of
{ve Gal(@%lg/Qp): Y(C(p)) :=C(v(n)) = C(p)}. The field of definition E), is automatically con-
tained in every field over which a representative of C(u) exists. Our above discussion applies mutatis
mutandis. If the group G is quasi-split over E,,, Kottwitz [Kot84, Lemma 1.1.3] proved that C(u)
has a representative over E,,.

After these preparatory observations we finally come to the announced

Definition 4.8. (a) We define a bound to be an equivalence class Z = [Z r| of closed ind-subschemes

Zr C ]:E]p R, such that all the ind-subschemes Zg are stable under the left LTP-action on Flp,
and the special fibers Zp = Z R Xspt g Spec kr are quasi-compact subschemes of Flp Xr Spec kp.
The ring of definition R, of Z is called the reflex ring of Z. Since the Galois descent for closed
ind-subschemes of F/p is effective, the Zr arise by base change from a unique closed subscheme
Z C Flp Xy k R, We call Z the special fiber of the bound Z. ltisa quasi-projective scheme over k R,
by Remark and [HVIIl Lemma 5.4] which implies that every morphism from a quasi-compact
scheme to an ind-quasi-projective ind-scheme factors through a quasi-projective subscheme. If P is
parahoric in the sense of Bruhat and Tits [BT72 Définition 5.2.6] and [HROS| then Z is projective.

Let Z be a bound with reflex ring R;. Let £, and £, be L*P-torsors over a scheme S in /\/z'lpRZ
and let §: £ =~ £’ be an isomorphism of the associated LP-torsors. We consider an fppf-covering
S’ — S over which trivializations a: £y =~ (LTP)g and o/: £, = (LTP)g exist. Then the
automorphism o’ o § o ™! of (LP)g corresponds to a morphism S’ — LP Xy Spf R,. We say that
§ is bounded by Z if for every such trivialization and for every finite extension R of F[¢] over which
a representative Zr of Z exists the induced morphism

S' %R, SptR — LP X5 Spf R — Flp p

factors through Zg. Furthermore we say that a local P-shtuka (L4, 7) is bounded by Z if the
isomorphism 7 is bounded by Z.

Remark 4.9. The condition of Definition is satisfied for all trivializations and for all such finite
extensions R of F[(] if and only if it is satisfied for one trivialization and for one such finite extension.
Indeed, by the L*P-invariance of Z the definition is independent of the trivializations. That one finite
extension suffices follows from Remark
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In Examples [12] to E.14] below we discuss the motivation for this definition and the relation to other
boundedness conditions like in [HVII]. Note that the definition of “bounds” given above suffices for our
purposes in this article and in [AH13]. For other purposes one may need more restrictive hypotheses on

bounds; see for example Section 2].

Remark 4.10. Let the ind-scheme structure on F/¢p be given as the limit Ffp = lii>n]:€]§nm) and the one

on Flpr as Flpp = lii>n]:€]§pm) xF Spec R/(¢™). Let Zgn) = ZR ?ﬁpﬁ(}'ﬁ]%m) xr Spec R/(¢™)). Then

Zp = hng}zm) and ZR,md = li_n}l(Z}zm))md = li_n>1(23 Xspf R SPEC KR X Frp f@l([mm))md = (ZR)red 1s a scheme.

This means that Zp is a “reasonable formal scheme” over Spf R in the sense of [BD) 7.11.1 and 7.12.17],
and hence a formal scheme in the sense of [EGAL Tew].

Proposition 4.11. Let Z be a bound with reflex ring Ry. Let Ly and L', be LTP-torsors over a scheme
Se /\/z’lpRZ and let §: L == L' be an isomorphism of the associated L P-torsors. Then the condition that

6 is bounded by Z is represented by a closed subscheme of S.

Proof. We consider a representative Zp of the bound Z over a finite extension R, C RCT(¢ ))alg. As
in Definition B.8 we consider trivializations of £, and L/, over an fppf-covering S — S and the induced
morphism S’ X R, SPfR — LP Xp Spf R — Flp r. Due to the LT P-invariance of Zg the closed subscheme

S’ Flon Zp of §' descends to a closed subscheme of S. By Remark FL9 this closed subscheme represents

the boundedness by Z. O

Example 4.12. Assume that [P is parahoric in the sense of Bruhat and Tits Définition 5.2.6] and
[HROS]; see Remark Consider the base change Py, of P to L = F8((2)). Let A be a maximal split
torus in Pp, and let T be its centralizer. Since F## is algebraically closed, Py, is quasi-split by [Ser97,
§11.2.3, Théoreme 1" and Remarque 1, p. 140] and so T is a maximal torus in Pr. Let N = N(T) be the
normalizer of T and let 70 be the identity component of the Néron model of T over O = F#8[2].

The Iwahori-Weyl group associated with A is the quotient group W =N (L)/T°(Or). It is an
extension of the finite Weyl group Wy = N(L)/T(L) by the coinvariants X, (7"); under I = Gal(L*P/L):

0—>X*(T)1—>W—>WO—>1.
By [HROS8, Proposition 8] there is a bijection
LTP(FY8)\ LP(F*2) /LT P(FYe) =~ WP\W /WP (4.2)

where WP := (N (L) N P(OL))/T°(OL).

Let w € WP\W/WP and let F, be the fixed field in F*!8 of {y € Gal(F*8/F): v(w) = w}. We show
that w has a representative g, € LP(F,). Indeed, let g € LP(F##) be any representative of w and let ~
be the F-Frobenius which generates Gal(F2!2 /F,). Since v(w) = w there are elements by, by € LTP(F218)
with v(g) = by 'gba. By Lemma 28 we find elements c;,co € LTP(F8) with b;v(c;) = ¢; for i = 1,2.
Then g, := cl_lg cy = ’y(cl_lg c3) € LP(F,) is the desired representative of w over F,. Clearly, by
definition of F,, there are no representatives of w over proper subfields of F,,.

We define the Schubert variety S(w) associated with w as the ind-scheme theoretic closure of the
LTP-orbit of g, in Flp XpF,. It is a reduced projective variety over F,,. For further details see
and [RicI3a]. The equivalence class of ZIFW[[C}] = S(w) Xp, Spf F,[¢] defines a bound with reflex ring

F,[¢]. Instead of “bounded by [ZIFW[[C]]]” we also say “bounded by w” in this case.

Example 4.13. In [HV11], Viehmann and the second author considered the case where P = G xp D
for a split connected reductive group G over F. In this case W' = Wy and WA\W /WF = X, (T), and
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any element p € X, (7T') has a representative over F,, = F. If u € X,(T") one could consider the bound
Z = [S(u) Xp SpfF[¢]] as in Example above.

However, in [HV11] we proceeded differently and instead fixed a Borel subgroup B of G and its oppo-
site Borel B. We considered a finite generating system A of the monoid of dominant weights X*(T")gom,
and for all A € A the Weyl module V) := (Ind%(—)\)dom)v. For the representation py: G — GL(V})
we considered the sheaves of Og[[z]-modules py,L and py.L!, associated in [BI) with the LTP-torsors
L4 and L over S. (For the definition of Og[z] see Chapter Bl) The isomorphism § of the associated
LP-torsors corresponds to an isomorphism p.d: pxLy @] Os(2)) == paLly ®ogp.) Os((2)). We
said in [HV1I] Definition 3.5] that “J is bounded by (u, 2)”, where Z =z or Z =z — (, if for all A € A

Pl (pacLly) C 2 ~(A ) domont) (pA*‘C/—I—)a (4.3)

and if for all geometric points 5 of S the image of the isomorphism 05 at s under the isomorphism (Z.2])
has the same image in 71 (G) than p. Note that the more important case Z = z — ¢ is useful to define
bounds on local P-shtukas, while the case Z = z is only useful to define bounds on quasi-isogenies between
local P-shtukas. In that sense the bound [S (1) Xp SprE‘[[C]]] from Example £.12] which corresponds to
Z = z, is not the right one to define bounds on local P-shtukas. Further note that in case Z = z — ( the
term z ~{(=Mdom:) in @3] can be viewed as the image under (—\)gom : LG(S) = LG,,(S) of the element
u(z—¢)~t € LG(S), which itself is the image of pu(z—¢)~* € G(F[c, z]][zflc]) in LG(S) = G((’)s[[z]][z%c])
using that ¢ is locally nilpotent on S.

In terms of Definition [4.8] the boundedness condition (43]) can be described as follows. Consider the
universal matrix M € L GL(V,)(S)) over the ind-scheme Sy := L GL(V)) Xp SpfF[¢]. Let Sy be the
closed ind-subscheme of S defined by the condition that the matrix # {(=Maem:#) M has entries in Og, [2],
and let R .

Zy = 8\/(LT GL(V}) X SpfF[¢]) C Flarwy) -

Let u” € m1(G) be the image of i in the fundamental group 71(G) and let (]-/'\E]p) u# be the connected

component of }/'\E]p corresponding to p# under the isomorphism Wo(ﬁp) >~ m11(Q); see Proposi-
tion 4.5.4] or [PRO8, Theorem 0.1]. Write A = {A1,..., A} and for each A; consider the morphism
Prixt (Flp),# — Flgry, ) induced from py;. Then the base change Z of the closed ind-subscheme

Zny XSptF[C] - - - XSpfF[¢] ZAn under the morphism [; px,«: (Flp),# — FlaLvi,) XF[] - - - XF] Flan(va,,)
is the bound representing the “boundedness by (i, 2)” from Definition 3.5]. It has reflex ring
F[¢] and Z is a representative of this bound over the reflex ring.

Instead of the Weyl modules V) one could of course also work with other representations of G. If
for example one takes the induced modules Ind%(—)\)dom, or tilting modules, one obtains different ind-

subschemes Z, but the underlying reduced ind-subschemes of these Z still coincide. If Z = z, this reduced
ind-subscheme equals the Schubert variety S(u) Xr Spec F[[(]. This already indicates that it is reasonable
to consider boundedness in terms of closed ind-subschemes of j—"\ﬁp. Note that here also for Z = z — ( the
bound Z only depends on w and the class of modules considered (Weyl modules, etc.). This is no longer
true for general P as one sees from the next example.

Example 4.14. We discuss a special case of Example[.121 Assume that charF, # 2 and set K := [F4((2)).
Let B := K[y]/(y?>—=2) be the ramified quadratic field extension with y? = 2. Let T be the one dimensional
torus ker(Ng/x : Resg/kx G — Gyp). Explicitly T = Spec K [a, b]/(a® — b*z — 1), with the multiplication
(a,b) * (c,d) = (ac+ bdz,ad + bc). Sending a — 1(t+¢~1) and b — i(t_1 —t) defines an isomorphism
Gm, g = Spec E[t,t™!] 2 Tk which we will use in the sequel to identify X.(T) := X.(Tg) with Z. Here
the finite Weyl group Wy = (1) is trivial and the inertia group I = Gal(E/K) = {1,~} acts on X.(T) =Z
via y(11) = —p. Therefore W = X, (T); = Z/2Z.

Consider the Néron-model 7" = ker(Nop, /0, : Reso, /0, Gm — Gy). As a scheme it is isomorphic
to SpecF,[2][a,b]/(a® — b%z — 1). Its special fiber has two connected components distinguished by a = 1
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or —1mod z. Therefore the connected component of identity of 7 is
7O := SpecF,[2][a’,b]/(2d’ + z(a’)? — b?),

where a = 1 + za’. In particular (—1,0) ¢ T°(F4((2))). We take P as the group scheme TV over
D = SpecF,[z]. Here F = F, and ¢ = o is the ¢g-Frobenius. By [HR08, Lemma 5 and its proof] the group
7Y is the unique parahoric group scheme with generic fiber 7.

In this example the isomorphism ({2 is given by the Kottwitz map rr: LT(Falg) — X.(T)g, see
[Kot85| 2.5]. Its inverse associates with each element of X,(T"); a d-conjugacy class in LT(FFy 2g)  For
example if we take i = 1 € X, (T); = 7Z/27 one has to choose a lift u € X, (Tg). If we choose = 1 then
with g =1 it associates

Ne/x(w(y) = ny)-v(uy))
= (G g =) (Ger— =g - ()

= (~1,0) € T(F2((2)).

The é-conjugacy class given by (—1,0) is independent of the choice of p and of the uniformizer y (and
of E) by [Kot85, 2.5]. The Schubert variety S(jz) for i = 1 from Example therefore equals

LYTF,) - (=1,0) - LY T°(F,)/LTT°(F,).

However, as we have mentioned in the discussion after equation (3], the bound [S(zz) X, Spf Fq[(]] is
only useful to bound quasi-isogenies between local P-shtukas.

Instead we want to define a bound [Z r| which is useful to bound local P-shtukas, and whose fiber
Zr:=2n Xspt R Spec ki over ki equals the Schubert variety S(f1) xr, Speckr C FL xp, Speckg. In Ex-
ample T3] we were able to achieve this by lifting 1(z) € LG(F,) to an element pu(z—() € G(Fy[z,(] [zflc]),
see the discussion after ([43]). This is not possible here. We can only lift (—1,0) over the ramified ex-
tension F,[C][£]/(€% — ¢) of Fy[¢]. Namely, consider the isomorphism K = F,((2)) — F,((¢)),z — ¢. Fix
an extension i: E < F,((¢))™® of this isomorphism, set & := i(y) and lift Ng/k(pu(y)) to g(E,p,i) :=
Ne/i (1(y —i(y))). For example if p =1 € Z = X,(Tg) we compute

(o, B) = g(B,1,i) = ply—&) -v(uy—¢) =

<(y—£)+(y—£)‘1 (y—ﬁ)‘l—(y—£)> ,,Y<(y—£)+(y—£)‘l (y—ﬁ)‘l—(y—£)>
2 ’ 2y 2 ’ 2y ’

with y(y) = —y and 7|r,(¢) = id. Then

a = ;(ly y O N ((~y—&+(-y—-6
—i(y s) ~ =) ((~y - = (~y—9)
1 —y — €)?
a 2( (y—9) >
N -
- &£,

and
B = 3 (-9+u-9")(~y—8" = (-y—9)
+5 (-9 -w-9) (~y -+ (-y-97)

28
(-2
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Thus, as a lift of (—1,0) we get

9(E,1,1) = Noyuc(uly — €)) = (“Z % ) |

(-2 C—z
This shows that we can define the desired bound by

~

ZMviqu[[ﬂ] = [+70. g(E, u, Z) . L+T0/L+T0 C ]:67—07]1%[[&]] .

However, this bound depends on the choice of 1 and of the embedding i. We first compute how g(F, , 1)
Ng/k(ply —i(y)))

Ng/k(u(y —iov(y))

depends on the chosen embedding i. For this purpose we compute . Changing i to

1 0y replaces £ by —¢ and we have

9(E,1,i07) = Nayc(uly +€)) = (C tE X ) |

(=2 C—z
Note that g(E,1,i) = g(F,1,i0~)~!. Therefore

g(E,1,1) (z+¢)2 +4¢2 4§(z+g)>
9(E,1,i07) (=22 T (C—-2?2)

This also shows what happens if we replace p € X.(Tg) = Z by another lift of i € Z/27Z, i.e.

— ot 1.7 = (

9(E, p+2,) : 52
——~ =g(E,2,i) = g(F,1,7)".
9(E, p, ) (20 =gl 1)
Observe that JB1io7) € TOUFy [z, £]) N T°(Fy[€, 2]). So the element g(E, 1,7 oi) does not lie in

the closure of the subscheme

LYT0 - g(B,1,i) - LT € LT° Kspeer, SpEF,[€].

A~

In particular the bounds Z,,; == [Z i F,[¢]) depend on the chosen embedding i: £ — Fy((¢))"® and on the
lift 4 € Xu(T') of i € X,(T);. For this reason we decided to treat bounds axiomatically in Definition L8|
Our discussion also shows that the reflex ring of the bound Z,,; is Fy[£], because ¥(Z,i) = Zy 0y # Zpji

for the non-trivial element 5 € Auty,_1¢](F,[¢])-

alg

4.3 Representability of the Bounded Rapoport—Zink Functor

In this section we assume that P is a smooth affine group scheme over D with connected reductive generic
fiber P. Let b € LP(k) for some field k € Nilpgpj. With b Kottwitz associates a slope homomorphism

Uyt Dy(z) = Pr(z)

called Newton polygon of b; see [Kot85, 4.2]. Here D is the diagonalizable pro-algebraic group over k((2))
with character group Q. The slope homomorphism is characterized by assigning the slope filtration of
(V ®p(2) k(2), p(b) - (id®6)) to any F((z))-rational representation (V;p) of P; see [Kot85, Section 3].
We assume that b € LP(k) satisfies a decency equation for a positive integer s, that is,

(b6)° = suyp(z)o°® in LP(k)x (7). (4.4)

Remark 4.15. Assume that b € LP(k) is decent with the integer s and let £ C k*# be the finite field
extension of F of degree s. Then b € LP(¢) because by (4.4) the element b has values in the fixed field of
6% which is £. Note that if k is algebraically closed and the generic fiber P of P is connected reductive,
any &-conjugacy class in LP(k) contains an element satisfying a decency equation; see [Kot85l 4.3] and
use [Ser97, §11.2.3, Théoreme 1’ and Remarque 1, p. 140] instead of Steinberg’s theorem.
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Remark 4.16. With the element b € LP(k) one can associate a connected algebraic group Jj, over F((z))
which is defined by its functor of points that assigns to an F((z))-algebra R the group

Jp(R) := {g € P(R ®F(2) E(2)): g 1bU = b}

Let b satisfy a decency equation for the integer s and let F be the fixed field of 6° in F#8((2)). Then v,
is defined over Fy and .J, Xp(z) s 1s the centralizer of the 1-parameter subgroup si;, of P and hence a
Levi subgroup of Pg,; see [RZ96, Corollary 1.14]. In particular J,(F((2))) C P(Fs) C LP({¢) where ¢ is
the finite field extension of F of degree s.

In the remaining part of the chapter we consider the bounded Rapoport—Zink functor and prove that
it is ind-representable by a formal scheme in the following important special situation. Let Z be a bound
with reflex ring R, = s[£] and special fiber Z C Flp Xp Speck ; see Definition @8 Let Ly = (LTP,b5*)
be a trivialized local P-shtuka over a field & in NilplF[[d]' Assume that b is decent with integer s and let

¢ C k& be the compositum of the residue field x of R, and the finite field extension of F of degree s.
Then b € LP(¢) by Remark So L is defined over ¢ and we may replace k by ¢. Note that ¢[{] is
the unramified extension of R, with residue field £.

Definition 4.17. Keep the notation from above and set T := Spec/ and L := L.
(a) Consider the base change My, X g1¢ Spf £[€] of the functor My, from Definition [f.I]and its subfunctor

MLZO: Nilpe))® —  Sets
S — {Isomorphism classes of (£,9) € My, (S): L is bounded by Z }

Note that the functor My, Xp¢) Spf ¢ [€] is represented by the ind-scheme ﬁﬂm’gﬂfﬂ := Flp Xy Spf L[¢] by
Theorem 4], and MLZO is a closed ind-subscheme by Proposition LTIl

(b) We define the associated affine Deligne—Lusztig variety over £ as the reduced closed ind-subscheme
Xz(b) C Flp Xp Specl whose K-valued points (for any field extension K of ¢) are given by

Xz(0)(K) = {g € Flo(K): g7 b3"(g) € Z(K)}.

If we W and Z = S(w) is the Schubert variety from Example IIZ we set X<, (b) := Xs(w)(b).

Theorem 4.18. If P is a smooth affine group scheme over D with connected reductive generic fiber, the
functor M]L (Nilpgep)° — Sets is ind-representable by a formal scheme over SpfL[¢] which is locally
formally Ofﬁmte type and separated. Its underlying reduced subscheme equals X z(b). In partjcular Xz(b)

is a scheme locally of finite type and separated over £. The formal scheme representing Mﬁo is called a
bounded Rapoport—Zink space for local P-shtukas.

Recall that a formal scheme over ¢[¢] in the sense of [EGAL 1,,c., 10] is called locally formally of finite
type if it is locally noetherian and adic and its reduced subscheme is locally of finite type over £. It is
called formally of finite type if in addition it is quasi-compact.

Remark 4.19. By our assumptions QIsogy(Ly) equals the group Ju(F((2)) from Remark This
group acts on the functor Mf via g: (£,6) — (L,g06) for g € Qlsog,(L,).

Proof of Theorem [{.18 The proof will use a sequence of lemmas and will eventually be complete after
Lemma [ Consider the universal local P-shtuka L,,,;, over Flp 4[] (see Theorem EZ). Let MZ
be the closed ind-subscheme of ]-"K]p Jeg over which L, is bounded by Z; see Proposition EITl By

construction ./\/l]L ind-represents the functor ./\/l]L It is clear that the reduced ind-subscheme equals
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Xz(b). We have to show that MLZO is a formal scheme locally formally of finite type and separated. Note
that the separatedness over Spf ¢[¢] follows from the ind-separatedness of j—"\ﬁpﬂ[ﬂ]; see Theorem 4l By

rigidity of quasi-isogenies the functor Mﬁo is equivalent to the following functor

(Nilpggep)®  —  Sets
S — { (L,8): L is a local P-shtuka over S bounded by Z

and 0: £ — Ly g is a quasi-isogeny }/ ~ .

We take a representation ¢: P — SL, p =: H with quasi-affine quotient H/P; see [PRO8| Proposition 1.3]
and [AHI3| Proposition 2.1]. It induces a 1-morphism

by i= HN (1) AN (SpecF, LTP)(S) — " (SpecF, LT H)(S).

For an LT P-torsor £ over S we denote by V(1. L) the sheaf of Og[z]-modules associated with the image
of L, in s (SpecF, LT GL,)(S) by Remark In particular V(1. (L1P)g) = Os[2]®". Let p* be the
half-sum of all positive coroots of H with respect to the Borel subgroup of upper triangular matrices in
H = SL,. X

For each non-negative integer n € Ny let M™ be the closed ind-subscheme of Mﬁo defined by the

following sub functor of MLZO
M™: (Nilpgpe))® —  Sets
S { (L,6) € M{ (S): " (1)(8) is bounded by 2np" }

where £ = (£4,7) and where we say that #(¢)(0) is bounded by 2np" if for all j = 1,...,r

. P .
éSM A )(0)(V(Ly)) C 2 (@==gm) . 295[[2}] V(s (LTP)g). (4.5)
By Lemma 4.3] the latter is equivalent to the boundedness condition considered in Defi-
nition 3.5], see Example [L13] because p¥ = (r — 1,...,1 —r) and (@I) is automatically an equality for
j =r as factors through H.

Lemma 4.20. The ind-scheme M™ representing the functor M™ is a &£-adic noetherian formal scheme
over ([¢], whose underlying topological space (M'™),eq is a quasi-projective scheme over Specl and even
projective if P is parahoric in the sense of Bruhat and Tits Définition 5.2.6] and [HROS).

Proof. Since H/P is quasi-affine, the induced morphism ¢, : ﬁﬂm’gﬂﬂ] — Fi H,[¢] 1 a locally closed embed-
ding by Remark .3l The representation ¢ induces a functor ¢, from local P-shtukas to local H-shtukas.
Consider the local H-shtuka Hg := vy = (LT H)g,¢(b)6*) over £ and view Flp 4] as a moduli space
representing the functor Mﬂo’ parametrizing local H-shtukas together with a quasi-isogeny dy to Hy; see

Theorem [£.4] Let j—"\ﬁgi)gm be the closed ind-subscheme of 7/ H,0[¢] defined by condition ([.3), that is, by
bounding dg by 2np”. It is a &-adic noetherian formal scheme over Spf ([¢] by Proposition 5.5]
whose underlying topological space is a projective scheme over Spec . Thus for all 4

n(: n < i A =) < i
M™Mi) = M" Kgppepep Specl[€]/(€") = ME X Flr o1e) Xspt efe] Spec L[€] /(€")

]/:\ZHJ[[E]]
is a locally closed subscheme of ]-/'\Egi)g[[gﬂ Xapf e[¢] SpecL[E]/ (¢1), and hence a scheme of finite type over
Spec £[€]/(¢%) with underlying topological space M™(1) independent of i. Moreover, M"(1) is (quasi-)

projective, because it is closed in the ind-quasi-projective ind-scheme Ffp X Specf which is even pro-
jective if P is parahoric. Now our claim follows from [EGAl I, Corollary 10.6.4]. O



4 THE RAPOPORT-ZINK SPACES FOR LOCAL P-SHTUKAS 23

For each non-negative integer n we define the following sub functor of MLZO

M, Nilpygep)® —  Sets
S — { (L£,9) € MfO(S): for any point s in S,
A(1)(ds) is bounded by 2np” }

This functor is represented by an ind-scheme M, which is the formal completion of MLZO along the
quasi-compact closed subscheme (M");.cq.

Lemma 4.21. M, is a formal scheme formally of finite type over Spf ([£].
To prove the lemma we need to start with the following definition. Recall that R, = x[£].

Definition 4.22. Let R = l<i£1Rm € Nz’lp,{m where (R, U m/) i & projective system of discrete
rings indexed by Ny. Suppose that all homomorphisms R — R, are surjective, and that all kernels
I, = ker(umo: Ry — Ro) C Ry, are nilpotent. A local P-shtuka over Spf R is a projective system
(L, )men, of local P-shtukas L, over R, with £,, | = L,, ®g,, Rm—1.

Lemma 4.23. Let R in /\/’ilpnﬂﬂ] be as in the above definition. The pull back functor defines an equivalence

between the category of local P-shtukas over Spec R bounded by Z and the category of local P-shtukas over
Spf R bounded by Z.

Proof. Since R is in Nz’lpnm there is an integer e € N such that £ =0 on R. Let £ := (£,,)men, be a
local P-shtuka over Spf R. By Proposition [2.4] there is an étale covering R, — Ry which trivializes Ly.
By [SGA 1, Théoreme 1.8.3] there is a unique étale R-algebra R’ with R’ ®r Ry = Rj. As in
Proposition 2.2(c)] this gives rise to compatible trivializations L, ®r,, R;, = ((LTP)g ,bmd* ) over
R;, := R'®gr Ry, for all m. Here b,, € LP(R;,) and by, ®r: R}, _| = bypp1.

By [PRO8, Proposition 1.3] and [AHI3l Proposition 2.1] we may take a faithful representation
t: P — SL,p and consider the induced closed immersion LP < LSL,p. The ind-scheme struc-

ture on Flsr, , is given by Flgr, , = liga]-'fgﬁ)rm where ]:E(SED is defined by condition (@H]). Let
LSLY) = LSLyp X e, | FLG) . Then

LSL&TL]D))(S) = {g€ LSL,p(S): all j x j-minors of g lie in z"(jz_jr)(’)S(S)[[z]] Vit

This implies that L SLfnn]D)), and hence also LP™ := LP x LSL,p L SL(n]]% is an infinite dimensional affine
scheme over F. By Remarkwe may choose a representative Z CcF € 7 of the bound Z over a finite

extension R of R, = k[€£] with Frac(R) Galois over Frac(R ). By Remark-the boundedness by Z can

be checked using Z~ Since Z~ = ZR Xspf B Spec R/(fe) has the same underlying topological space as
(n)

Zg = Z X i Speckg, it is qua51—compact So there is an n € N such that Z~ C .7-"€SL Xr Spec R/(fe)
by ﬂﬂm, Lemma 5.4]. As one sees from the following diagram

Spec R}, @[] E—bm—xid>LSL£,]I; R Spec R/(£9) LSL.p Xg SpecR/(£°)
Ziq UG, %= SpecR/(€) Fis,, %x SpecR/(€°),

the morphism b, x id: Spec R], Q] R — LP factors through Lp™ = Lp XLSL,.p L SL( " for all m.
Since LP™ is affine, the compatible collection of morphisms b,,: Spec R, Qxle] R — LP(") is given by
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a compatible collection of homomorphisms O(LP™) — R/ Qre] R. Tt corresponds to a homomorphism
% . (n) / 53 N / D : _ 7

bOOA. O(LPA ) = R ®,¢ R, beca~use R @Rm and R is a finite free x[¢] modul~e. By Remark E7[(T)]
Y(Zp) = Zp for all v € Aut,¢(R) and thus by construction the homomorphism b3, is invariant under
Aut,im(ﬁ). It follows that bf_ factors through a homomorphism b* : O(LP™) — R’'. The latter
corresponds to a morphism by : Spec R© — LP™. This gives the local P-shtuka ((LTP)gr, boo0™) over

Spec R’ bounded by Z , which carries a descent datum from the £,, and hence induces a local P-shtuka
over Spec R. O

Let us come back to the

Proof of Lemma [{.21] For each m > n let M be the formal completion of M™ along (M,,)req. It is
a noetherian adic formal scheme over ([{]. Let U be an affine open subscheme of (M,,);eq. By [EGA]
Inew, Proposition 2.3.5] this defines an affine open formal subscheme Spf R,,, of M with underlying set
U. Let R be the inverse limit of the projective system R,,+1 — R,, and let a,, C R denote the ideal such
that R,, = R/a,,. Let J be the inverse image in R of the largest ideal of definition in R,,. We want to
show that R is J-adic. We make the following

Claim. For any integer ¢ > 0 there is an integer mg such that for any m > mg the natural map
Ry, /IRy, — Ry /JC Ry, is an isomorphism.

To prove the claim let £, be the universal bounded local P-shtuka over Spf R,,. Consider the local
P-shtuka (L£,,,)m over Spf R and its pullback over Spf R/J¢. The latter comes from a local P-shtuka
L over SpecR/J¢ € Nz'lpg[[ﬂ] by Lemma [4.23] By rigidity of quasi-isogenies the quasi-isogeny &, over
R/J = R,,/J lifts to a quasi-isogeny § over R/J¢. Since Spec R/J¢ is quasi-compact, the quasi-isogeny
A1 (1)(0) satisfies condition (H]) for some myg, that is, it is bounded by 2mgp". By the universal property
of M7 the tuple (£, ) induces a morphism R,,, — R/J¢ making the following diagram commutative,
from which the claim follows

R Rm — /Rm()
R/JC== "~ R,./JRn, Ry /T Rong

The claim implies that the chain a, + J¢ 2 a,11 +J¢ D ... D a; + J¢ D ... stabilizes. Now set
Je =)0 +J° = ap, + J° for m > 0 and consider the descending chain J; O J» D .... Note that
Ji=J and Joy1 + JF = T Since J1/Jo = IR,/ J? Ry, for m > 0, it is a finitely generated R-module.
Therefore M,, is a locally noetherian adic formal scheme over Spf ¢[¢] by [RZ96, Proposition 2.5]. It is
formally of finite type because (M,)reqd = (M™)1eq 1S quasi-projective over ¢ by Lemma [£.201 O

From now on we use that L is decent with the integer s. In the sequel we consider points x € Mfo (K)

for varying field extensions K of £. For two points x := (£,d) and 2’ := (£',§) in MﬁO(K) we define
d(z,z') := min {n € Np: A1 (1) (6714 is bounded by 2np" }. (4.6)

By the definition of “being bounded by 2np*” in ([£3) we conclude that if z” € MLZO (K) is a third
point then d(z,2"”) < d(z,2’) + d(2’,2"”). Moreover, in the situation where 6 = g and §' = ¢ for
9,9 € LP(K), as well as x = ((LTP) g, g~ 1b6*(g),g) and 2’ = ((LTP)k, (¢')"1b6*(g'), g'), we also write
d(g,g') := d(z,2’). Note that a point z € MLZO(K) belongs to M,, if and only if d((Ly, id), z) < n.
Although we will not use this, note that d is a metric on Mﬁo. This follows from the fact that (35l

for n = 0 together with Cramer’s rule implies that s (1)(6; ' 2) is an isomorphism V(. Ly) = V(1.L1);
compare the discussion around [AHI3| Equations (3.2) and (3.3)].
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Lemma 4.24. For every integer ¢ > 0 there is an integer do > 0 with the following property. For every
g € LP(K) with d(g, b6*(g)) < ¢ there is a ¢ € LP({) with d(g,¢") < dp.

Proof. This is just a reformulation of [RZ99, Theorem 1.4 and Subsection 2.1] taking into account that
by functorial properties of Bruhat-Tits buildings (see [Lan00]) the representation ¢ induces an injective
isometric map of Bruhat-Tits buildings #(P) — #(H). O

Lemma 4.25. There is an integer dy € Ng such that sup {J(w,MLZO (0): xz € MLZO} <dp.

Proof. Let x := (L*,d) be a point in MLZO (K). After replacing K by a separable field extension, we
take a trivialization (L1,d) = ((LTP)k,hé*,g) with 6 = g € LP(K) and h = g~ 'b6*(g). Since the
local P-shtuka ((LTP)g, ho*) is bounded by Z and Z is quasi-compact by definition of the boundedness
condition (see Definition E8]), we have d(g, b6*(g)) = min{n € Ng: s#1(1)(h) is bounded by 2np"} < ¢
for a natural number ¢ which is independent of x. Let dy = dy(c) be the integer from Lemma .24l Then
there is a ¢ € LP(¢) with d(g,¢') < dy. Now the associated point 2’ := ((L*P)s, ¢’ 'b6*¢, ¢') of MLZO (0)
satisfies d(x,2') < dy and the lemma follows. O

For a point y € Mﬁo(ﬁ) set B(y,do) = {a € MLZO: d(z,y) < do}. Here z € MﬁO(K) for a field
extension K of . We set B, (y,dy) = B(y,dy) N M,,. Note that these are closed subsets.
For each integer r let
z, = U Bu(y,do)
yeMZ (0),d((Ly, id),y)>r
Then 2] = ZI N M,. Ify & Myiq, that is d((Ly, id),y) > n + do, and if 2 € M,, that is

d((Lyo, id), z) < n, then

d(x,y) > dN((LOv id),l‘) —n+ J(:Evy) > J((LO’ id),y) -—n> dO

and thus By, (y,dy) = 0. We get

yEMn+dO (Z)yd((L07 ld)yy)ZT
Since (Mn+do)m 4= (/\/l"erO)rC 4 1s quasi-projective over ¢ by Lemma [L.20] this union is finite.

Let U], be the open formal sub-scheme of M, whose underlying reduced set is M,, \. Z;. We claim
that the chain U], — U}, ,; — ... of open formal sub-schemes of M,, stabilizes. By the definition of M,, it

is enough to verify this on the underlying set of points. Suppose that there is some element x € U], | \Uj,.
By Lemma [£.25] there exists a y € Mﬁo (¢) such that d(z,y) < do. Since & € M1~ Z! 1 we must have

d((Ly, id),y) < r. Then
d((Ly, id), ) < d((Lg, id),y) + d(z,y) < r + do. (4.7)

Therefore, if n > r+dy then d((Ly, id), z) < n and x € M,, which is a contradiction. Consequently there
is no such z. X
Let U™ = U, U}, (which equals U], for n > r + dp). Note that every point x of Mﬁo lies in the union

of the U"s. Indeed, if J((LO, id),:z:) < r — dg for some r, then x is contained in U", because otherwise
there isa y € Mﬁo (¢) with d(x,y) < do and d ((Lg, id),y) > r, a contradiction. Now consider the chain

U Ut = M7



4 THE RAPOPORT-ZINK SPACES FOR LOCAL P-SHTUKAS 26

of open immersions of formal schemes formally of finite type, note that U" is open in MLZO‘ Indeed the
underlying topological space of U" is open in M,, for every n and the ind-scheme MHZ:O carries the limit
topology of the limit over the M,,. This shows that the formal scheme U" equals the formal completion of
the open ind-scheme Mﬁo |juer| of Mﬁo supported on || along the whole set [U4"| and thus Mﬁo r) =U".
Since U" is locally formally of finite type this implies that Mﬁo = |J, U" is locally formally of finite type
as well. This completes the proof of Theorem 18] O

Corollary 4.26. The irreducible components of the topological space MLZO are quasi-projective schemes
over £. In particular they are quasi-compact. They are projective if P is parahoric in the sense of Bruhat

and Tits Définition 5.2.6] and [HR0S).

Proof. Let T be an irreducible component and let  be its generic point. As in the proof of the theorem
there is an 7 such that x € U" = U, ; C M;14,. Since the underlying topological spaces of M, 14, and

M7 T coincide, are closed in MLO’ and (quasi-)projective over ¢ by Lemma[20, we see that T C M +do
is a closed subscheme and the corollary follows. O

In the rest of this section we fix an integer n and consider complete discrete valuation rings F;[z;]
for i = 1,...,n with finite residue fields F;, and fraction fields @; = F;((2;)). Let P; be a smooth affine
group scheme over SpecF;[z] with connected reductive generic fiber P := P; xp,[,] SpecF;((2:)), and
let Z; = [ZALR;] with ZAZ-,R; C }/'\Epi,R; := Flp, Xg, Spf R, be a bound in the sense of Definition with
reflex ring RZAZ_ =: R; = k;[&]. Let k be a field containing all ;. For all i let L; be a local P;-shtuka over
k which is trivialized and decent. By Theorem K18 the Rapoport—Zink space Mfi is a formal scheme

locally formally of finite type over Spfk[;]. Therefore the product []; ./\/lZ : Mfl R X, MZ” i
a formal scheme locally formally of finite type over Spf k[{] := Spf K[y, ... ,£n]] Recall that the group

Ju,(Q;) = Qlsogy(IL;) of quasi-isogenies of LL; over k acts naturally on M]L ; see Remark [4.19

Let I' C []; JL,(Q:) be a subgroup which is discrete for the product of the z;-adic topologies. We say
that T" is separated if it is separated in the profinite topology, that is, if for every 1 # g € T there is a
normal subgroup of finite index that does not contain g.

Proposition 4.27. Let I' C []; JL.(Q;) be a separated discrete subgroup. Then the quotient I'\ T]; Mf’
is a locally noetherian, adic formal algebraic Spf k[€]-stack locally formally of finite type. Moreover, the

1-morphism HZMfZ — I\ [, Mfl is adic and étale.

Here we say that a formal algebraic Spf k[¢]-stack X (see [Har05, Definition A.5]) is J-adic for a
sheaf of ideals J C Oy, if for some (any) presentation X — X the formal scheme X is JOx-adic,
that is, J"Ox is an ideal of definition of X for all ». We then call J an ideal of definition of X. We
say that X is locally formally of finite type if X is locally noetherian, adic, and if the closed substack
defined by the largest ideal of definition (see [Har05, A.7]) is an algebraic stack locally of finite type
over Spec k. Before proving the above proposition let us state the following lemma. Recall that (also an
infinite dimensional) scheme is quasi-compact if and only if it is a finite union of affine schemes. Further
recall that every morphism from a quasi-compact scheme to an ind-quasi-projective ind-scheme factors
through a quasi-projective subscheme by Lemma 5.4].

Lemma 4.28. Let I' C [], Ju,(Q;) be a separated discrete subgroup. Let U; C Filp, Xspecr; Speck be a
quasi-compact subscheme and set U = Uy Xy ... X U,. Then the set {y € T': vU NU # 0} is finite.

Proof. Note that Ji, (Q;) is contained in LP;(k¥#8). By Theorem B4l any point z € U(k¥#) can be
represented by a tuple (£;, g;)i, where £; is a trivialized local P;-shtuka over k8 and the quasi-isogeny
gi: L; — L, is given by an element g; € LP;(k¥#). By Theorem 1.4] the projection LP; — F/p,
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admits sections locally for the étale topology, and hence étale locally on F/p, the loop group LPF; is
isomorphic to the product Flp, xg, LTP;. In particular, by [EGA] IVs, Proposition 2.7.1] the projection
[L L X1, 76,, U — U is an affine morphism of schemes and therefore U :=[I,LP X7, U C
[L, LP; is a quasi-compact scheme. Consider the morphism

ﬁXFﬁ — Hi]:fpi (4.8)
(gi,90)i > (gigi'LTPi/ LTP;);.

Since the F/p, are ind-quasi-projective ind-schemes also [ [, Fp, is. Therefore ([A8)) factors through some
quasi-projective subscheme V' C [, F¢p, by [HVII Lemma 5.4]. Since L; is decent the group of quasi-
isogenies Ji, (Q;) C LP;(k™#) is contained in LP;(¢) for some finite field /; see Remark Let v € T
be such that z = (£;,9:); € U and yz = (£;,7:i9:) € U where ; € LP;({) is the projection of v onto the
i-th factor. Then (g;,7;9:)i € U x U and the image of v under the projection map 7: [[, LP; — [[; Fp,
lies in the finite set V(¢). Thus v lies in the compact set S = 7~ *(V (¢)) N]]; Jv,(Q:). On the other hand
I' is discrete and thus has finite intersection with S. O

Proof of Proposition [{.27. By Lemmald.23]there is a finite field £; and a constant d; such that any ball in
Mff with radius d; contains a rational point in Mff (4;). Let d be the maximum of the integers d; and let

¢ be the compositum of the fields ¢;. Let x := (x;); be a point of ], Mf: (¢). We use the notation of the
proof of Theorem I8 and consider in particular the metric d; on Mil defined as in (4.6]) after choosing
some representation ¢; of ;. For any positive integer ¢ we define the closed subscheme of (M]i?)md given
by

B(zi,c):={z € Mil di(z, x;) < c}.

Then every z € B(x;,¢) satisfies d;((L;, id), z) < di((L;, id), z;) + ¢ =: m and so B(x;,¢) C (Mp)red =

(M™)yeq. Therefore Lemma [£20] implies that B(z;,c) is a quasi-projective scheme over Spec/. In
particular the set of ¢-valued points B(x;,¢)(¢) is finite. Thus for all n > 2d the subscheme

Z/[sd(:pl) = B(:Elvn) ~ U B(y7d) - (Miz)red
yEB(w;n+d)(£), di(y,:)>2d
is open in B(z;,n + d) and quasi-compact. Note that for n > 3d all 22%(z;) coincide with U2%(x;) by an
argument similar to ([@7]). Since (Mff)red = lim B(z;,n + d) carries the limit topology, the subscheme
=1 —
U (z;) = U (z;) C (Mff)red is open and quasi-compact. By Lemma F.25 the union of the /??(x;) for

all z; € Mﬁ?(@) equals (./\/li?)md.

For x = (x;); set Uy := []; U (x;). Then 7.U, = .z and the open subsets U, cover []; Mf?, for
varying « € [[, M{*(£). Let I C [[, M{?(¢) be a set of representatives of the I'-orbits in [[, M (¢).
Fix an « € I. Since I' is separated, we may choose by Lemma [L2§ a normal subgroup I, C T' of
finite index in T such that U, N ~'U, = 0 for all v/ # 1 in I',. For all ¥ € T' the natural morphism
YUz — TN, Mff is an open immersion. Let V; be the (finite) union of the images of these morphisms

for all v € T'. Then (I,\I')\V, is an open substack of I'\ ][, Miz Moreover, (I7\I')\V,. is a finite
étale quotient of V, and the map [[ U, — (I'Z\I)\V; is adic and étale. Therefore the morphism

IL Mf — I\ 1, Mf is adic and étale above (I’ \I")\ V. Since (V;)req is a scheme of finite type over k,

7

its quotient ((F;\F)\Vx)md = (T2\T)\ (V2 )req is an algebraic stack of finite type over k. Since the open

subsets U, cover [], ./\/lf also the (I, \I')\V, cover I'\ T, Mi’ and the proposition follows. O

i
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Remark 4.29. For us it does not make sense to strengthen Proposition [f.27]like Rapoport and Zink [RZ96],
Proposition 2.37] do, who obtain that for Rapoport—Zink spaces for p-divisible groups the quotient is a
formal algebraic space if T' is torsion free. Namely in our case all unipotent subgroups of []; Ju,(Q;) are

torsion. So they cannot act fixed point free on [, Mf?' and the corresponding quotients cannot be formal
algebraic spaces. B

5 The Relation Between Global &-Shtukas and Local P-Shtukas

5.1 Preliminaries on &-Torsors

In Chapter B we assume that & is a flat affine group scheme of finite type over C. Let v € C be a closed
point of C' and set C" := C' ~ {v}. We let #!(C’, ®) denote the category fibered in groupoids over the
category of Fy-schemes, such that ' (C’, &)(S) is the full subcategory of [C%/®](CY) consisting of those
®-torsors over C% that can be extended to a B-torsor over the whole relative curve Cs. We denote by

() the restriction morphism ‘

( ): %1(0,6) — ‘%1(0/76)
which assigns to a ®-torsor G over C the G-torsor G := G Xcg Cq over Cg. Let P, := Resp, v, Pv
and P, = Resp, /r, P be the Weil restrictions. Then P, is a flat affine group scheme of finite type over

SpecF,[z]. We apply Definition for F = F, and let P, :=P, XgpecF,[z] SPE Fel2] = Resy, /p, P, be
the v-adic completion. We write A, = F,[z] for a uniformizer z € Fy(C). Then for every F,-algebra R
we have

A@r,R = (Rer,F)[2] = R[:]®r F, and
Q.&r,R = (Rer,F)(2) = R(2)®r,F,.

[12

This implies that
L*P,(R) = P,(R[z]) = P,(A,&r,R) and LB, (R) = P,(R(2)) = P.(Q,®r,R).

If G € #°1(C,®)(S), its completion G, := G Xcg(Spf A, Xp, S) is a formal P,-torsor (Definition Z2)) over
Spf A, Xp, S. The Weil restriction Resy, /Fq C?,, is a formal ]?’,,—torsor over SpfFy[2] Xr, S and corresponds
by Proposition 2.4] to an L*P,-torsor over S which we denote L} (G). We obtain the morphism

Lt: #YC, &) —s #"(SpecF,, LP,), G+ LI(G).
Finally there is a morphism
L,: HMC',&)(S) — #(SpecFy, LB,)(S), G+ L,(G)

which sends the ®-torsor G over C§, having some extension G over Cg, to the LP,-torsor L(L$(9))
associated with LG under (21)). We claim that L,(G) is independent of the extension G, and that we
therefore may write L, (G) := L(LF(G)). Indeed, let G’ be a second extension of G and let f: G = G’
be an isomorphism of &-torsors over C§. Without loss of generality S = SpecR is affine. We may
choose an fppf-covering Specﬁ — Cg over which trivializations a: G x¢q Specﬁ =~ & X Specﬁ
and o': G’ Xy Specﬁ =~ 6 xX¢ Specﬁ exist. Then o/ o f o a™! equals multiplication with an element
g € B(Spec R x¢ C'). The ring homomorphism F, — A, /v™ = F,[2]/(z") and the short exact sequence

0—TF, L A, /vt — A, /v — 0 of A-modules yield by tensoring with the flat A-algebra R the
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vertical maps and the bottom row in the following commutative diagram of A,-modules

0 Rfv—= (E/V)[[Zf/(ZNH) (E/V)[T]]/(Z") —0
0 R/v e R/t R/v" 0,

which proves by induction that (R/v)[z]/(z") == R/v" and (R/v)[z] == {Elﬁ/ v". The v-adic com-
pletion & of o is an isomorphism between G, Xspf(Rgy, F,)[2] Spf(R/v)[z] = G Xy Spf(R/v)[z] and the
trivial formal IP,-torsor (& x¢ Spec R) X . 5 SPE(R/v)[z] = Py Xspr a, SpE(R/v)[2] over Spf(R/v)[z].
For the base change (Resy, /r, Gv) X g[) SPE(R/v)[2] = HGal(F,,/qu) G, ;Zspf(R®]Fqu)[[zl] Spf(R/v)[z] we ob-

tain an isomorphism

11 @ : (Resy, m, Go) R e SPE(R/w)[2] = [T ®xeSpf(R/v)[2] = By R, Spt(R/v)[]
Gal(F, /F,) Gal(F, /Fy)

which under Proposition 2.4] corresponds to an isomorphism

I @ : L (9) xr Spec(R/v) == (L'P)g i)
Gal(F, /Fq)

We also have the analogous isomorphism for G/, := G/ X (Spf Ay Xg, S) and L} (G’). Under the v-adic
completion morphism, ¢ is mapped to an element § € 6((E/V)((Z))) = Py((ﬁ/u)((z))) It yields the
element (g, ..., 9) € [lgu, r,) P,((R/v)(2)) = (Resg,/r, P)((R/v)(2)) = LP,(R/v). The compo-
sition (I [gae, /r,) &) to(g,...,9)0 [lcae, /m,) & defines an isomorphism L(L}(G)) X g Spec(R/v) ==
L(L;}(G") x r Spec(R/v) which inherits the descent datum from f and defines the desired isomorphism
L(L$(G)) = L(L}(G")). This proves our claim that L,(G) is independent of the extension G. We write
Ly(G) == L(L(9)).

Lemma 5.1. The above maps assign to each &-torsor G over Cs a triple (G, L} (G), ) where p: L,(G) =
L(L$(G)) is the canonical isomorphism of LP,-torsors. 1 (C,&)(S) is equivalent to the category of such
triples. In other words, the following diagram of groupoids is cartesian

e s e

L] |z
A (SpecF,, L1P,) L, A (SpecF,, LP,).

Proof. This follows from the glueing result of Beauville and Laszlo [BL95]. Let us give more details. We
construct the inverse of the morphism

HNC,8) — AT, ) x A (SpecFy, LYP,).

(SpecFqy,LP,)
Over an F-scheme S we consider S-valued points G € ' (C’, &)(S) and L} € 2" (SpecF,, LTP,)(S),
as well as an isomorphism ¢: L,(G) == L(L}) in s (Spec Fq,L]S,,)(S). Let G be an extension of G to
Cs. There exists an fppf-covering ' — S and trivializations &: (£)g == (LTP,)g and 8: L} (G)g ==
(LTP,)g of the pullbacks to S’. We may assume that S’ is the disjoint union of affine schemes of the
form Spec R'.
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We glue Gg via the isomorphism & o ¢: L,(G)s == (LP,)s to (LTP,)g as follows. Consider the
algebraic torsor G x ¢y Spec(A,,@IFqR/) for the group scheme

& x¢o Spec(A,,@)]FqR') = P, Xgpec A, Spec(A,,®1FqR')
over Spec(A,,@FqR’ ). By [EGA Proposition 2.7.1] it is affine of the form Spec B. Its v-adic completion
(G)r = G Rcy SPE(A, @, R') = Spf B is affine with B = l(iLnB/VmB. Recall that L (G)p is the LTP,-
torsor associated with the Weil restriction Resy, /p, (G,) r' by Proposition 24l The trivialization 5 induces
a trivialization 3: Resy,, /Fq(gu) R = ﬁy X sptF,[2] SPf R'[2] which is determined by the section
B7H(1) € Homsys pp(Spf R'[2], Resg, /r, (Go)r)
= Homg(a, 5, ) (SPH(A,®r,R'), Spf B)

= Homfu‘%mq w(B, A®r, R

m

— HOH]AV@IFQ R’ (B 5 AI/@F(I—R/)
- HomSpec(Ay@FqR’)(SpeC(AV@)]FqR/) s Spec B)

The latter induces a trivialization 5: G x g Spec(A,,@)]FqR’) =5 Py XSpec A, Spec(A,,@FqR’). Similarly
the automorphism v := d(pﬁ_l of (Lﬁy) g is determined by the image

#(1) € LP,(R) = P,(SpecQ,&r,R')

and thus induces an automorphism v of P, Xgpec, Spec(Q,,@)FqR’ ). By [BL95] we may glue Gr with
P, Xspec A, Spec(A,,@)F ,R') via the isomorphism 3 to obtain a uniquely determined &-torsor G’ on Crr.

We descend G’ to Cg as follows. Let S” = S’ xg S" and let p;: S” — S’ be the projection onto the
i-th factor. Consider the element h := (pja o pja~1)(1) € LTP,(S") = P,(A,®r,(S",Ogr)). The
isomorphism

(id(_js,,v h) P;(gS', P, XSpec A, SpeC(AV®IFqR/)7 ¢ﬁ) - PI(QS’a P, XSpec A, SpeC(AV&x\)]FqR,), 7/)5)

induces a descent datum on G’ which is effective by §6.1, Theorem 7| because G’ is affine over
Cgr. Thus G’ descends to a &-torsor G € #1(C, ®)(S). This defines the inverse morphism and finishes
the proof. O

5.2 The Global-Local Functor

Analogously to the functor which assigns to an abelian variety A over a Z,-scheme its p-divisible group
A[p™] we introduce a global-local functor from global ®-shtukas to local P, -shtukas. But whereas
abelian varieties only have one characteristic place, our global &-shtukas have n characteristic places
v = (v1,...,v,). So the global-local functor will assign to each global &-shtuka of characteristic v an
n-tuple of local P, -shtukas. We begin with a

Remark 5.2. Let v be a place on C and let D, := Spec 4, and D,, = Spf A,. Let degv := [F, : F,| and
fix an inclusion [F,, C A,. Assume that we have a section s: S — C which factors through Spf A,, that
is, the image in Og of a uniformizer of A, is locally nilpotent. In this case we have

D, %, 5= ] Viwe= J] Dus, (5.1)

€7/ (degv) CeZ/(degv)

where we write ]13),,73 =D, X, S and where we denote by V(a, ) the component identified by the ideal

ar=@®l-1® S*((I)ql :a € F,). Note that o cyclically permutes these components and thus the F,-
Frobenius 04°8” =: & leaves each of the components V(a, ) stable. Also note that there are canonical

isomorphisms V(ay, ) = ]f))us for all 4.
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Although we will not need it in the sequel, we note the following interpretation of the component
V(Cly70).

Lemma 5.3. The section s: S — C induces an isomorphism of the component V(a, ) with the formal

—TI's . —~TI's . . . . A
completion Cs — of Cs along the graph I's of s. In particular Cs = is canonically isomorphic to D, g.

Proof. We first consider the formal completion (EF § of Cy, along the graph I'; of the morphism
§: SpecA, — C. Let SpecA C C be a neighborhood of v such that a uniformizing parameter z
of C at vliesin A. Then I = (a®1—-1®a:a € A) C A ®F, A, is the ideal defining I'; and
C/'A\VFS~ = Spf l<£1(A ®F, Ay)/I". The module I/I? is free of rank one over A, = (A®g, A,)/I since C'is a

smooth curve over F,. We claim that /12 is generated by 2 ®1—1® 2. Let a € A, let m € F,(2)[X] be
the minimal polynomial of a over Fy(z), and multiply it with the least common denominator to obtain
the polynomial F'(X,z) € Fy[X,z]. Note that the least common denominator lies in O, because a is
integral over F,[z] near v. In A ®p, A,[X] we use the abbreviations ( :=1® z and a := 1 ® a and we
consider the two-variable Taylor expansion of F' at («, ()

F(X,Z@l) = F(a,()—l—g—i(a,()(X—oz)—l—%—f(oz,()(z@l—() mod I2.

Plugging in a ® 1 for X yields F(a® 1,z ® 1) = 0 in addition to F(«, () = 0. Since A is unramified over
F,[2] at v we have g—f;(a, ¢) € AZ. This shows that 2 ® 1 — 1 ® 2 generates the A,-module I/I°.

By Nakayama’s Lemma [Eis95, Corollary 4.7] there is an element f € 1+ I that annihilates the
A ®p, Ay-module I/(z ® 1 —1® z). We may replace Spec(A ®p, A,) by the principal open subset
Spec(A ®F, Ay)[%] which contains the graph I'; and on which I is generated by the non-zero divisor
z®1—1® z. This implies that I"/I"! is a free A,-module with generator (2 ® 1 — 1 ® z)". Therefore
the morphism A,[t] — l(ﬁl(A ®r, Ay)/1",t = 2 ® 1 — 1 ® z induces an isomorphism on the associated

graded rings, and hence is itself an isomorphism by [AM69, Lemma 10.23].
Now observe that V(a,,) is the formal scheme on the topological space S with structure sheaf Og[z],
and that s identifies the topological spaces S and I's. Under base change to S this implies that the formal

T, . . .
completion Cs =~ has structure sheaf Og[t] = Og[z — (], where we write ¢t = z — (. Since ( is locally
nilpotent in Og, the latter is isomorphic to Og[z] proving the lemma. O

Definition 5.4. Fix a tuple v := (v)i=1.., of places on C' with v; # v; for i # j. Let A, be the
completion of the local ring Ocn , of C™ at the closed point v, and let IF, be the residue field of the
point v. Then F, is the compositum of the fields F,, inside leg, and A, = F,[¢,..., (] where (; is a
uniformizing parameter of C' at v;. Let the stack

Vo (C,8) = V, 1 (C, &) Xcn Spf A,

be the formal completion of the stack V,.7#'(C,®) along v € C™. Although we will not need it in
this article, the reader should note that V, #1(C,®) is an ind-algebraic stack over Spf A, which is
ind-separated and locally of ind-finite type by [AHI3, Theorem 3.15]. Set P,, := & x¢ Spec 4,, and
P,, := & xc Spf A,,.

Let (G,s1,...,8n,T) € V' (C,8)4(S), that is, s;: S — C factors through Spf A,,. By Remark (2]
we may decompose

g ;ZCS (Spf Aui SZIFq S) = H g S<\Cs V(aui,ﬁ)
LeZ/(deg v;)

into a finite product with components G X¢g V(a,, ¢) € ,%”I(Dui,]f”,,i). Using Proposition Z4] we view
(g Xcog V(ay,0), rdeg ”i) as a local IP,,-shtuka over S, where rdesvi. (gdegviy L, ~4 [ is the F,,-Frobenius
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on the loop group torsor £; associated with G X¢g V(a,, 0). We define the global-local functor i by

Spec Ay,

fzxi : vnf%l(Cv ®)Z(S) — Sht (S) ) (gv 7_) — (g ;ZCS V(al/i,(])a Tdeg Vi) and

= [IEu.: Vst (C.8)4(S) — [ Shtar (). (5.2)

Note that f,,i and f also transform quasi-isogenies into quasi-isogenies, as can be seen by tracing through
the proof of Lemma [5.1]

Remark 5.5. Consider the preimages in V(a,, ) of the graphs I's; C Cg of s;. Since v; # v; for i # j the
preimage of Iy, is empty for j # i. Also the preimage of I's; equals V(a,,0) and does not meet V(a,, /)
for £ # 0. Thus for £ # 0 the restriction of 7 to V(a,, ¢) is an isomorphism

T x id: o* (g X V(a,,hg_l)) = (0"G) X V(ay, 0) == G Xcg V(ay, 0) . (5.3)
This allows to recover (G, 7) X ¢ (Spf Ay, Xg, S) from (G Xy V(ay, ), rdeg ¥i) via the isomorphism

0 7_deg Vi
I (H o™ (G Ry V(an0)), 1 ) =5 (G,7) Rcs(Spf Ay, R, S). (5.4)
¢ 10
Recall from Section [5.1] that the Weil restriction ReS]FDi JF, é,,i of the torsor él,i =G Xy (Spf Ay, X, S)
corresponds by Proposition 4] to an L*P,, -torsor L (G). Then (L (G),7 X id) is a local P,,-shtuka
over S. We call it the local P, -shtuka associated with G at the place v;. By equation (B.4]) there is an
equivalence between the category of local IP,,-shtukas over schemes S € Nilp 4, and the category of local

Iﬁyi-shtukas over S for which the Frobenius 7 is an isomorphism outside V(ay, o). (Compare also [BHII
Proposition 8.8].)

Remark 5.6. Note that in a similar way one can associate a local P, -shtuka L} (G) with a global
®-shtuka G = (G,7) at a place v outside the characteristic places v;. Namely L (G) is the local P,-
shtuka associated with Resy, /p, (G Xy (Spf A, Xi, S)) by Proposition 241 It is étale because 7 is an
isomorphism at v. We call L} (G) the étale local P, -shtuka associated with G at the place v ¢ v. In [AHI3]
Chapter 6] it will become useful for considerations of Tate-modules (Definition [3.0]).

For this purpose we write A, = F, [[z]] For every representation p: P, — GL, Ay in Repy, P, we con-
sider the representation p € Repy,_[] P, which is the composition of Resg, /r,(p): Py — Resy, /p, GLy 4,
followed by the natural inclusion Resy,/r, GLr 4, C GL (5,7, F,[:]- We set L= L} (G) and define
7’5(p) = E(p) = T~ .- Then there is a canonical isomorphism T~ z(p) = {iﬂlp* (G xc Spec A, /(™))" of

n

A,-modules. This will be used in [AHT3], Chapter 6].

If F, C Og there also exists the decomposition (B.I]) and we can associate a local P,-shtuka £ with
L} (G). The main difference to Definition [£.4] and Remark [5.5]is that there is no distinguished component
of G X4 (Spf A, Xr, S), like the one given by the characteristic section at v;. But 7 induces isomorphisms
between all components as in (5.3]). Therefore we may take any component and the associated local P,-
shtuka £. Equation (5.4]) shows that over F,-schemes S we obtain an equivalence between the category
of étale local P,-shtukas and the category of étale local Py -shtukas. If P, = & X¢ D, is smooth with
connected special fiber, the same is true for P, by [CGP10, Prop. A.5.9], and then Corollary 2.9 applies
also to étale local IP’ -shtukas. There is also a canonical isomorphism of Tate functors Tg = TLj(g)

compare [BH11l Proposition 8.5] for more details.

Like abelian varieties also global &-shtukas can be pulled back along quasi-isogenies of their associated
local P-shtukas as follows.
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Proposition 5.7. Let G € V.71 (C,8)4(S) be a global -shtuka over S and let v € C be a place. Let
L} (G) be the local P, -shtuka associated with G at v in the sense of Remark [20 (if v € v), respectively
Remark 54 (if v ¢ v). Let f: £, — L (G) be a quasi-isogeny of local Py, -shtukas over S. If v € v
we assume that the Frobenius of EL is an isomorphism outside V(a,0). If v ¢ v we assume that E’V
is étale. Then there exists a unique global &-shtuka G' € V, 1 (C,&)4(S) and a unique quasi-isogeny
g: G — G which is an isomorphism outside v, such that the local P, -shtuka associated with G is L, and
the quasi-isogeny of local P, -shtukas induced by g is f. We denote G by f*g

Remark 5.8. Note that if v € v then by Remark there is an equivalence between the category of
local P,-shtukas over S for which the Frobenius 7 is an isomorphism outside V(a,,0) and the category of

local P, -shtukas over S. In particular, if r »(G) is the local P,-shtuka associated with G in Definition [5.4]
then every isogeny f: L, — lA“,,(Q) corresponds under this equivalence to an isogeny f: £/, — L (G) as in
the proposition. We obtain a global &-shtuka f *G which we also denote by f*G. It satisfies f,,( *g) =L,
and T,(g: G — @) = f.

Proof of Proposition[5.7 Let us set G := (G, 7). Let (G, L} (G9), ) be the triple for the place v associated
with the G-torsor G by Lemma Bl Thus L} (G) = (L} (G),7). We also set £/, = (£,,7'). Now the
triple (G £/, f~'¢) defines a &-bundle G’ over Cs which coincides with G over C% and inherits the
Frobenius automorphism 7 from G over C4 \ |J; I's,. If v ¢ v then this 7 extends to an isomorphism

over {v} Xp, S because E’V is étale. If v € v then 7 extends to an isomorphism over Cg \ | J; I's, because
7' is an isomorphism outside V(a,0). This defines the global -shtuka G' € V¢ L(C,8)4(S). The
quasi-isogeny g is obtained from the identification G’ = G. It has the desired properties. O

Finally we want to prove rigidity for quasi-isogenies of global &-shtukas. This is the global counterpart
of Proposition [Z.1]] and fits into the analogy between abelian varieties and global &-shtukas. It only
holds over schemes S € Nilp 4 , similarly to rigidity for abelian varieties which only holds over schemes
S S NleZp
Proposition 5.9. (Rigidity of quasi-isogenies for global &-shtukas) Let S be a scheme in Nilp A, ond let

j: S — S be a closed immersion defined by a sheaf of ideals T which is locally nilpotent. Let G = (G,T)
and G' = (G', 1) be two global &-shtukas over S. Then

Qlsogs(G,G") — Qlsogg(5°G,5°G), f—i"f
is a bijection of sets. f is an isomorphism at a place v ¢ v if and only if j*f is an isomorphism at v.

Note that the last assertion need not be true for places v € v. This is similar to lifts of quasi-isogenies
between abelian varieties over schemes S € /\/’z’lpzp which can acquire additional “poles” at p.

Proof of Proposition [5.9. Tt suffices to treat the case where Z¢ = (0). In this case the morphism og
factors through j: S — S

Jg:joa':S—g—hg‘—i—)S.
Since Cs N\ U;I's; D Cs \ v xp, S, the morphism 7 defines a quasi-isogeny 7: 0*j*G = 05G — G which is

an isomorphism outside v xp, S and similarly for G'. We fix a finite closed subset D C C which contains
all v; and consider quasi-isogenies which are isomorphisms outside D. Then the following diagram

f
g|Cs\DS T> g/|CS\DS

o= 4

*g O—/*(j*f) *g/
05Glcs~Ds ~ > 056 |csDs
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allows to recover f from j*f and this proves the bijectivity.
If v ¢ v we take a subset D C C which does not contain v. Chasing through the diagram again shows
that f is an isomorphism at v if and only if j* f is an isomorphism at v. O

5.3 The Analog of the Serre—-Tate Theorem

The Serre-Tate Theorem relates the deformation theory of an abelian variety in characteristic p with
the deformation theory of the associated p-divisible group. In this section we introduce the analogous
situation over function fields and prove the analogous theorem relating the deformation theory of a global
®-shtuka to the deformation theory of the associated n-tuple of local P, -shtukas via the global-local
functor.

Let S be in Nilp 4, and let j: S — S be a closed subscheme defined by a locally nilpotent sheaf of
ideals Z. Let G be a global ®-shtuka in V,1(C,®)(S). The category Defog(G) of lifts of G to S
consists of all pairs (G,a: j*G =+ G) where G belongs to V1 (C, &)%(S), where « is an isomorphism
of global B-shtukas over S, and where morphisms are isomorphisms between the G’s that are compatible
with the a’s.

Similarly for a local P-shtuka £ in ShtD(S) we define the category of lifts Defog(L) of L to S.
Notice that according to the rigidity of quasi-isogenies (Propositions and [Z17]) all Hom-sets in these
categories contain at most one element.

Theorem 5.10. Let G := (G, 7) be a global &-shtuka in V, 4 (C,&)X(S). Let (L;); = i(g) Then the
functor

Defos(G) — HDefos(é]), (G, @) — (L(9),L())

induced by the global-local functor, is an equivalence of categories.
Proof. We proceed by constructing the inverse of the above functor. It suffices to treat the case where
79 = (0). In this case the morphism og factors through j: S — S
Jg:joa':S—g/%g—i—)S.
Let (L;, &i: j*L; = L;); be an object of [, Defos(L;). Consider the global ®-shtuka G := (G, 7) := 0’*G

over S. Since Cg \ U;I's; D Cs \ v xp, S, the morphism 7 defines a quasi-isogeny 7: j*g — Q which is
an isomorphism outside the graphs of the characteristic sections as one sees from the following diagram

055G == (08)'¢ —— 030
j*%lN ag%l _ ?l
6 —— o —— G

We write f(g) = (L) and £, = (£;,7). We compose 77! with & to obtain the quasi-isogenies
T 77 0d&;: j*L; — j*; By rigidity of quasi-isogenies (Proposition 2LIT) they lift to quasi-isogenies
Yit L; — L; with 7*%; = ;. We put G := 4% o... 0 4G (see Remark [5.8)) and recall that there is a
quasi-isogeny v: G — Q of global ®&-shtukas with i(v) = (9); which is an isomorphism outside v, see
Proposition 5.7 We may now define the functor

HDefos(éi) — Defo(G)

by sending (£;, &;: 7*L; — L;); to (G, 7 o j*v). The quasi-isogeny « := 7o j*v is an isomorphism outside
the graphs of the s; by construction, and also at these graphs because I'(«) = (&;);. It can easily be seen
by the above construction that these functors are actually inverse to each other. O
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