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Abstract

In 1997 Richard Pink has clarified the concept of Hodge structures over function fields in positive
characteristic, which today are called Hodge-Pink structures. They form a neutral Tannakian
category over the underlying function field. He has defined Hodge realization functors from the
uniformizable abelian t-modules and t-motives of Greg Anderson to Hodge-Pink structures. This
allows one to associate with each uniformizable t-motive a Hodge-Pink group, analogous to the
Mumford-Tate group of a smooth projective variety over the complex numbers. It further enabled
Pink to prove the analog of the Mumford-Tate Conjecture for Drinfeld modules. Moreover, based on
unpublished work of Pink and the first author, the second author proved in her Diploma thesis that
the Hodge-Pink group equals the motivic Galois group of the t-motive as defined by Papanikolas
and Taelman. This yields a precise analog of the famous Hodge Conjecture, which is an outstanding
open problem for varieties over the complex numbers.

In this report we explain Pink’s results on Hodge structures and the proof of the function
field analog of the Hodge conjecture. The theory of t-motives has a variant in the theory of dual t-
motives. We clarify the relation between t-motives, dual t-motives and t-modules. We also construct
cohomology realizations of abelian t-modules and (dual) t-motives and comparison isomorphisms
between them generalizing Gekeler’s de Rham isomorphism for Drinfeld modules.
Mathematics Subject Classification (2010): 11G09, (13A35, 14G22)
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1 Introduction

According to Deligne [Del71, 2.3.8], a rational mixed Hodge structure H consists of a finite dimensional
Q-vector space H, an increasing filtration W•H of H by Q-subspaces, called the weight filtration, and
a decreasing filtration F •HC of HC := H ⊗Q C by C-subspaces, called the Hodge filtration, such that
GrpF Grq

F
GrWn HC = (0) for p + q 6= n where F qHC is the complex conjugate subspace F qHC ⊂ HC.

The rational mixed Hodge structures form a neutral Tannakian category [DM82, Definition II.2.19]
over Q, whose fiber functor sends a rational mixed Hodge structure H to its underlying Q-vector space
[Del94]. By Tannakian duality [DM82, Theorem II.2.11] there is a linear algebraic group ΓH over Q,
called the Hodge group of H, such that the Tannakian subcategory 〈〈H〉〉 generated by H is tensor
equivalent to the category of Q-rational representations of ΓH . We give more details and explanations
on Tannakian theory in Section 1.2.

If X is a smooth projective variety over the complex numbers C, its Betti cohomology group
HnBetti(X,Q) is a Q-vector space. Via the de Rham isomorphism HnBetti(X,Q) ⊗Q C ∼= HndR(X/C)
and the Hodge filtration on the latter, it becomes a rational (pure) Hodge structure. This provides a
functor from smooth projective varieties over C to rational mixed Hodge structures. Deligne [Del74,
§ 8.2] extended this functor to separated schemes of finite type over C. If X is smooth projective and
Z ⊂ X is a closed subscheme of codimension p then Z defines a cohomology class in H2p

Betti(X,Q)∩F p.
The Hodge conjecture [Hod52, Gro69b, Del06] states that every cohomology class in H2p

Betti(X,Q)∩F p
arises from a Q-rational linear combination of closed subschemes of codimension p in X.

Besides the Betti and de Rham cohomology, there are various other cohomology theories for X.
They are linked to each other via comparison isomorphisms. This inspired Grothendieck to propose
a universal cohomology theory he called “motives” [Gro69a]. More precisely Grothendieck conjec-
tured the existence of a Tannakian category of motives such that the cohomology functors like X 7→
HnBetti(X,Q) and X 7→ HndR(X/C) factor through this category of motives; see [Dem69, Kle72, Man68].
The motive associated with X is denoted h(X) and the various cohomology groups attached to
X are called the realizations of the motive h(X). In particular the Betti realization of h(X) is
H(X) :=

⊕2 dimX
n=0 HnBetti(X,Q) equipped with its rational mixed Hodge structure. In terms of the

conjectural category of motives, the Hodge conjecture is equivalent to the statement, that the Betti
realization functor 〈〈h(X)〉〉 → 〈〈H(X)〉〉 is a tensor equivalence, where 〈〈h(X)〉〉 is the Tannakian sub-
category generated by h(X). By Tannakian duality 〈〈h(X)〉〉 is tensor equivalent to the category of
Q-rational representations of a linear algebraic group Γh(X) over Q which is called the motivic Ga-
lois group of X. The Betti realization functor corresponds to a homomorphism of algebraic groups
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ΓH(X) → Γh(X) over Q. By [DM82, Proposition 2.21] it is a closed immersion and the Hodge conjecture
is equivalent to the statement that this homomorphism is an isomorphism.

In this article we want to describe the function field analog of the above. There, a category of
motives actually exists in the t-motives of Anderson [And86]. We slightly generalize them to A-motives
in Section 3. An A-motive has various cohomology realizations. In this article we explain the Betti, de
Rham and ℓ-adic realization. The p-adic and crystalline realization is discussed in the survey [HK16]
in this volume. In [Pin97b] Richard Pink invented mixed Hodge structures over function fields (which
we call mixed Hodge-Pink structures) as an analog of classical rational mixed Hodge structures. He
discovered the crucial fact that instead of a Hodge filtration one needs finer information to obtain a
Tannakian category. This information is given in terms of a Hodge-Pink lattice. The definition is as
follows.

Let Fp = Z/(p) for a prime p and let A = Fp[t] and Q = Fp(t) be the polynomial ring and its
fraction field. They are the analogs in the arithmetic of function fields of the integers Z and the
rational numbers Q. (The theory is actually developed for slightly more general rings A and Q.)
Let Q∞ = Fp((

1
t )) be the completion of Q for the valuation ∞ of Q which does not correspond to a

maximal ideal of A. Let C ⊃ Q∞ be an algebraically closed, complete, rank one valued extension,
for example the completion of an algebraic closure of Q∞. The fields Q∞ and C are the analogs of
the usual fields R and C of real, respectively complex numbers. We denote the image of t in C by
θ and consider the ring C[[t − θ]] of formal power series in the “variable” t − θ and the embedding
Q→ C[[t− θ]], t 7→ t = θ + (t− θ).

Definitions 2.3 and 2.7. A mixed Q-Hodge-Pink structure is a triple H = (H,W•H, q) with

• H a finite dimensional Q-vector space,

• WµH ⊂ H for µ ∈ Q an exhaustive and separated increasing filtration by Q-subspaces, called
the weight filtration,

• a C[[t− θ]]-lattice q ⊂ H ⊗Q C((t− θ)) of full rank, called the Hodge-Pink lattice,

which satisfies a certain semi-stability condition; see Definition 2.7. The Hodge-Pink lattice induces
an exhaustive and separated decreasing Hodge-Pink filtration F iHC ⊂ HC := H ⊗Q, t7→θ C for i ∈ Z
by setting F iHC :=

(
p ∩ (t− θ)iq

)/(
(t− θ)p ∩ (t− θ)iq

)
, where p := H ⊗Q C[[t− θ]].

The mixed Hodge-Pink structures with the fiber functor (H,W•H, q) 7→ H form a neutral Tan-
nakian category over Q; see Theorem 2.10. It was Pink’s insight that for this result the Hodge-Pink
filtration does not suffice, but one needs the finer information present in the Hodge-Pink lattice. Any
Hodge-Pink structure H generates a neutral Tannakian subcategory, and the algebraic group ΓH
obtained from Tannakian duality is called the Hodge-Pink group of H; see Section 1.2.

Hodge-Pink structures may arise from Drinfeld-modules or more generally from uniformizable
abelian Anderson A-modules E = (E,ϕ) over C, where E ∼= Gd

a,C and ϕ : A → EndC(E) such that

(ϕt − θ)d annihilates the tangent space LieE to E at 0 for some integer d; see Definitions 5.2 and 5.5.
Namely, E possesses an exponential function expE : LieE → E(C) and if this function is surjective,
E is uniformizable. In this case the finite (locally) free A-module Λ(E) := ker(expE ) sits in an exact
sequence

0 // q // Λ(E)⊗A C[[t− θ]] γ
// LieE // 0

λ⊗∑i bi(t− θ)i
✤ //

∑
i bi · (Lieϕt − θ)i(λ) ;

see (5.34). If E is mixed (Definition 5.27) the Q-vector space H := H1,Betti(E) := Λ(E) ⊗A Q
inherits an increasing weight filtration W•H and we define the mixed Hodge-Pink structures of E as
H1(E) := (H,W•H, q) and H1(E) := H1(E)∨; see Corollary 5.40.
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Similarly to the classical situation, one can also associate with E a pure (or mixed) A-motive
M := HomC(E,Ga,C); see Definition 5.5. By an A-motive of rank r we mean a pair M = (M, τM )
where M is a (locally) free C[t]-module of rank r and τM : σ∗M [ 1

t−θ ]
∼−→M [ 1

t−θ ] is an isomorphism of

C[t][ 1
t−θ ]-modules; see Definition 3.1. Here σ∗M := Frob∗p,CM =M ⊗C[t],σ∗ C[t] for the endomorphism

σ∗ of C[t] sending t to t and b ∈ C to bp. For an A-motive we define its τ -invariants over C〈t〉 :=
{ ∞∑
i=0

bit
i : bi ∈ C, lim

i→∞
|bi| = 0

}
as

(1.1) Λ(M ) :=
(
M ⊗C[t] C〈t〉

)τ
:=

{
m ∈M ⊗C[t] C〈t〉 : τM (Frob∗p,Cm) = m

}
.

An A-motive of rank r is uniformizable if its τ -invariants form a (locally) free A-module of rank r; see
Definition 3.17 and Lemma 3.21. We explain the results of Papanikolas [Pap08] and Taelman [Tae09a]
that the category A-UMotI of uniformizable A-motives up to isogeny together with the fiber functor
M 7→ Λ(M )⊗A Q is a neutral Tannakian category over Q; see Theorems 3.27 and 4.23. Considering
the Tannakian subcategory 〈〈M 〉〉 generated by M , the algebraic group ΓM associated by Tannakian
duality, is called the motivic Galois group of M .

In unpublished work, the following function field analog of the classical Hodge conjecture was
formulated by Pink and proved by him for pure uniformizable A-motives and by Pink and the first
author for uniformizable mixed A-motives. Pink’s proof was worked out for dual A-motives (see
below) by the second author in her Diploma thesis [Jus10]. There is a realization functor H1 from
uniformizable mixed A-motives M to mixed Hodge-Pink structures as follows. The Q-vector space
H := H1

Betti(M,Q) := Λ(M )⊗AQ inherits an increasing weight filtration W•H and admits a canonical
isomorphism h : H ⊗Q C[[t − θ]] ∼−→ (σ∗M) ⊗C[t] C[[t − θ]]; see Proposition 3.30. We set q := h−1 ◦
τ−1M (M⊗C[t]C[[t−θ]]) ⊂ H⊗QC((t−θ)) and define the mixed Hodge-Pink structures of M as H1(M) :=

(H,W•H, q) and H1(M) := H1(M )∨; see Definition 3.32. The functor H1 restricts to an exact tensor
functor from the Tannakian subcategory 〈〈M 〉〉 of uniformizable mixed A-motives generated by M to
the Tannakian subcategory 〈〈H1(M)〉〉 of mixed Hodge-Pink structures generated by H1(M). This
induces a morphism from the Hodge-Pink group ΓH1(M) of H

1(M) to the motivic Galois group ΓM of
M .

Theorems 3.34 and 6.1 (The Hodge Conjecture over Function Fields). The morphism
ΓH1(M) −→ ΓM is an isomorphism of algebraic groups. Equivalently, H1 : 〈〈M〉〉 −→ 〈〈H1(M)〉〉 is
an exact tensor equivalence.

The crucial part in the proof of this theorem is to show that each Hodge-Pink sub-structure
H ′ ⊂ H1(M ) is isomorphic to H1(M ′) for an A-sub-motive M ′ ⊂ M . This is achieved by associating
with H ′ a σ-bundle over the punctured open unit disk. The theory of σ-bundles was developed in
[HP04] and is explained in detail in Section 7, where we also show how to associate a pair of σ-bundles
with a mixed Hodge-Pink structure, respectively with a uniformizable A-motive (or dual A-motive;
see below). Using the classification [HP04, Theorem 11.1] of σ-bundles and the rigid analytic GAGA-
principle, one defines an A-motive M ′ such that H1(M ′) = H ′.

Large parts of this article are not original but a survey of the existing literature, which tries
to be largely self-contained. In Section 2 we review Pink’s theory of mixed Hodge-Pink structures.
In Section 3 we define pure and mixed A-motives and slightly generalize Anderson’s [And86, § 2]
theory of uniformization of t-motives to A-motives. Also we define and study the mixed Hodge-Pink
structure H1(M) of a uniformizable mixed A-motive M and its Betti, de Rham and ℓ-adic cohomology
realization, as well as the comparison isomorphisms between them. Actually the ℓ-adic realization is
called “v-adic” by us where v ⊂ A is a place taking on the role of the prime ℓ ∈ Z and H1

v is our analog
of H1

ét( . ,Zℓ).
For applications to transcendence questions like in [ABP04, Pap08, CY07, CPY10, CPTY10, CP11,

CPY11, CP12], it turns out that dual A-motives are even more useful than A-motives; see the article
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of Chang [Cha20] in this volume for an introduction. A dual A-motive of rank r is a pair M̌ = (M̌, τ̌M̌ )
where M̌ is a (locally) free C[t]-module of rank r and τ̌M̌ : (σ̌∗M̌)[ 1

t−θ ]
∼−→ M̌ [ 1

t−θ ] is an isomorphism

of C[t][ 1
t−θ ]-modules for σ̌∗ = (σ∗)−1. (Beware that a dual A-motive is something different then

the dual M∨ of an A-motive M). A dual A-motive of rank r is uniformizable if its τ̌ -invariants

Λ(M̌ ) :=
(
M̌ ⊗C[t] C〈t〉

)τ̌
, which are defined analogously to (1.1), form a (locally) free A-module of

rank r; see Definition 4.14 and Lemma 4.16. Also the category of uniformizable dual A-motives with
the fiber functor M̌ 7→ Λ(M̌ ) ⊗A Q is a neutral Tannakian category; see Theorem 4.23. Actually
this is the category studied by Papanikolas [Pap08]. If M̌ is uniformizable and mixed, the Q-vector
space H := H1,Betti(M̌,Q) := Λ(M̌ ) ⊗A Q inherits an increasing weight filtration W•H and admits
a canonical isomorphism hM̌ : H ⊗Q C[[t − θ]] ∼−→ M̌ ⊗C[t] C[[t − θ]]; see Proposition 4.27. We set

q := hM̌
−1 ◦ τ̌M̌ (σ̌∗M̌ ⊗C[t] C[[t − θ]]) ⊂ H ⊗Q C((t − θ)) and define the mixed Hodge-Pink structures

of M̌ as H1(M̌) := (H,W•H, q) and H1(M̌) := H1(M̌ )∨; see Definition 4.30. This theory of pure and
mixed dual A-motives, their theory of uniformization, their associated mixed Hodge-Pink structures,
and their Betti, de Rham and v-adic cohomology realizations, as well as the comparison isomorphisms
between them are explained in Section 4.

In the longest Section 5 we recall the theory of abelian Anderson A-modules, which generalize An-
derson’s [And86] abelian t-modules, and their associated A-motives including uniformizability, scat-
tering matrices (Remark 5.34) and Anderson generating functions (Corollary 5.22, Example 5.35).
Moreover, in Sections 5.2, 5.3 and 5.5 we reproduce from unpublished work of Anderson [ABP02]
the theory of A-finite Anderson A-modules E including uniformization and the description of torsion
points. These are the ones for which the C[t]-module M̌(E) := HomC(Ga,C, E) is finitely generated,
and hence a dual A-motive. As described above, we associate a mixed Hodge-Pink structure with a
uniformizable mixed abelian, respectively A-finite, Anderson A-module and v-adic, Betti and de Rham
cohomology realizations. The latter go back to Deligne, Anderson, Gekeler, Yu, Goss, Brownawell and
Papanikolas. We generalize the approach of these authors in Section 5.7 and prove comparison iso-
morphisms between these cohomology realizations. We also explain in Theorem 5.47 how to recover
Gekeler’s comparison isomorphism [Gek89, § 2] between Betti and de Rham cohomology from ours.

Finally, in Section 6 we briefly report on applications to Galois representations and transcendence
questions due to Anderson, Brownawell, Chang, Papanikolas, Pink, Thakur, Yu and others.

Although this article is mainly a review of (un)published work, we nevertheless establish the
following new results: the theory of mixed Anderson A-modules (Section 5.4) and the construction that
associates with a uniformizable mixed (dual) A-motive a mixed Hodge-Pink structure (Sections 3.4,
4.4). Also we clarify the relation between a uniformizable mixed A-motive M = (M, τM ) and the
associated dual A-motive M̌ (M) :=

(
HomC[t](σ

∗M,Ω1
C[t]/C) , τ

∨

M

)
in Propositions 4.3, 4.9, 4.17, 4.25

and Theorem 4.32 and most importantly in the following

Theorem 5.13. Let E be an Anderson A-module over C which is both abelian and A-finite, and
let M = (M, τM ) = M(E) and M̌ = (M̌ , τ̌M̌ ) = M̌(E) be its associated (dual) A-motive. Let
M̌(M ) =

(
HomC[t](σ

∗M,Ω1
C[t]/C) , τ

∨

M

)
be the dual A-motive associated with M . Then there is a

canonical isomorphism of dual A-motives Ξ: M̌(M) ∼−→ M̌(E).

We illustrate the general theory with various examples, most notably Examples 5.16 and 5.35
which for Drinfeld-modules explain Theorem 5.13 in concrete terms and relate it to scattering matrices.
Moreover, we prove the compatibility of the cohomology realizations and comparison isomorphisms of
A-motives, dual A-motives and abelian, respectively A-finite Anderson A-modules in Theorems 3.37,
4.36, 5.47, 5.51 and Propositions 4.38, 5.45, 5.48, and we prove the compatibility with a change of the
ring A in Remark 5.52, and with Gekeler’s comparison isomorphism [Gek89, § 2] in Theorem 5.47. In
particular, we prove the following theorems.

Theorem 5.38. Let E be a uniformizable mixed A-finite Anderson A-module over C and let M̌ =
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M̌(E) be its associated mixed dual A-motive. Then the mixed Hodge-Pink structures H1(E) and H1(M̌ )
are canonically isomorphic.

Theorem 5.39. Let E be a uniformizable mixed abelian Anderson A-module over C and let M =
M(E) be its associated mixed A-motive. Consider the Hodge-Pink structure Ω = (H,W•H, q) which
is pure of weight 0 and given by H = Ω1

Q/Fq
= Qdt and q = C[[t− θ]]dt. Then the mixed Hodge-Pink

structures H1(E) and H1(M )⊗ Ω are canonically isomorphic.

Theorem 5.41. Let E be a uniformizable mixed Anderson A-module over C which is both abelian and
A-finite, and let M = M(E) and M̌(E) be the associated (dual) A-motive. Then the isomorphisms
above are also compatible with the isomorphisms from Theorems 4.32, 5.38 and 5.39 and the isomor-
phism Ξ: M̌(M ) ∼−→ M̌(E) from Theorem 5.13, in the sense that the following diagram commutes

H1

(
M̌(M)

)
∼=

H1(Ξ)
// H1

(
M̌ (E)

)

∼= Theorem 5.38
��

H1(M )⊗ Ω ∼=
Theorem 5.39

//

∼=Theorem 4.32

OO

H1(E)

Finally, we give a criterion in Theorem 7.13 which characterizes those mixed Hodge-Pink structures
that arise from uniformizable mixed A-motives.

Various categories of motives over C play a part in this article. To give the reader an overview
we list them in the following table. Note that the set of morphisms HomA-Mot(M,N ) between two
A-motives M and N is a finitely generated A-module; see Remark 3.7(c). The same is true for dual
A-motives; see Remark 4.4(d).

Category Description Def. Properties

A-Mot A-motives over C 3.1
A-MMot mixed A-motives 3.8

}
exact (Rem.
3.5(b) and 3.12)

A-MotI A-motives up to isogeny, that is with
HomA-MotI(M,N) := HomA-Mot(M,N)⊗A Q

3.1

A-MMotI mixed A-motives up to isogeny 3.8





non-neutral
Tannakian
(Prop. 3.4 and 3.11)

A-UMotI uniformizable A-motives up to isogeny 3.18
A-MUMotI uniformizable mixed A-motives up to isogeny 3.18

}
neutral Tannakian
(Thm. 3.27)

A-dMot dual A-motives 4.1
A-dMMot mixed dual A-motives 4.6

}
exact (Rem.
4.4(b) and 4.11)

A-dMotI dual A-motives up to isogeny, that is with
HomA-dMotI(M̌ , Ň) := HomA-dMot(M̌ , Ň)⊗AQ

4.1

A-dMMotI mixed dual A-motives up to isogeny 4.6





non-neutral
Tannakian
(Prop. 4.3 and 4.10)

A-dUMotI uniformizable dual A-motives up to isogeny 4.14
A-dMUMotI uniformizable mixed dual A-motives up to

isogeny
4.14

}
neutral Tannakian
(Thm. 4.23)
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1.1 Preliminaries

Throughout this article we will denote by

Fq a finite field with q elements and characteristic p,

C a smooth projective geometrically irreducible curve over Fq,

∞ ∈ C(Fq) a fixed closed point, (To simplify the exposition in this article ∞ is supposed to
be Fq-rational. The main results we present here hold, and are in fact proved in
[Pin97b, HP18], without this assumption.)

.
C = C r {∞} the associated affine curve,

A = Γ(
.
C,O .

C) the ring of regular functions on
.
C (the function field analog of Z),

Q = Fq(C) the function field of C, viz. the field of fractions of A (the analog of Q),

z ∈ Q a uniformizing parameter at ∞,

Q∞ = Fq((z)) the completion of Q at ∞ (the analog of R),

A∞ = Fq[[z]] the ring of integers in Q∞,

C ⊃ Q∞ an algebraically closed, complete, rank one valued extension, for example the
completion of an algebraic closure of Q∞ (the analog of the usual field of complex
numbers),

c∗ : Q→ C the natural inclusion,

ζ = c∗(z) the image of z in C, which satisfies 0 < |ζ| < 1,

AC = A⊗Fq C the base extension of A,

QC = Q⊗Fq C the base extension of Q, distinguishing between z and ζ allows us to abbreviate
the element z ⊗ 1 of QC by z and the element 1⊗ c∗(z) by ζ,

CC = C ×Spec Fq SpecC the resulting irreducible curve over C,

J ⊂ AC the (maximal) ideal generated by a⊗ 1− 1⊗ c∗(a) for all a ∈ A,
AC[J

−1] the ring of global sections on the open affine subscheme SpecAC rV(J) of CC,

C[[z − ζ]] the formal power series ring in the “variable” z − ζ. It is canonically isomorphic
to the completion of the local ring of CC at V(J), see Lemma 1.3, and replaces
the ring C[[t− θ]] from the introduction,

C((z − ζ)) the fraction field of C[[z − ζ]],
Q∞ →֒ C[[z − ζ]] the natural Fq-algebra homomorphism satisfying z 7→ z = ζ + (z − ζ) and given

by
∑
i
aiz

i 7→
∞∑
j=0

(∞∑
i=j

(
i
j

)
aiζ

i−j
)
(z − ζ)j,

σ : CC → CC the product of the identity on C with the q-th power Frobenius on SpecC, which
acts on points and on the coordinates of C as the identity, and on the elements
b ∈ C as b 7→ bq,

σ∗ : AC → AC the corresponding endomorphism a⊗ b 7→ a⊗ bq for a ∈ A and b ∈ C,

σi∗ := (σ∗)i for a non-negative integer i ∈ N0,

σi∗M the pullback σi∗M := M ⊗AC,σi∗ AC of an AC-module M under σ,
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σ∗(m) := m⊗ 1 the canonical image of m ∈M in σ∗M := M ⊗AC,σ∗ AC,

σ̌∗ := (σ∗)−1 the endomorphism of AC inverse to σ∗ sending a ⊗ b to a ⊗ q
√
b for a ∈ A and

b ∈ C which exists because C is perfect,

σ̌i∗ := (σ̌∗)i for a non-negative integer i ∈ N0,

σ̌i∗M the tensor product σ̌i∗M := M ⊗AC,σ̌i∗ AC for an AC-module M ,

σ̌∗(m) := m⊗ 1 the canonical image of m ∈M in σ̌∗M := M ⊗AC,σ̌∗ AC,

C{τ} :=
{ n∑
i=0

biτ
i : n ∈ N0, bi ∈ C

}
the skew polynomial ring in the variable τ with the

commutation rule τb = bqτ for b ∈ C,

C{τ̌} :=
{ n∑
i=0

biτ̌
i : n ∈ N0, bi ∈ C

}
the skew polynomial ring in the variable τ̌ with the

commutation rule τ̌ b = b1/q τ̌ for b ∈ C.

For any module M over an integral domain R and any non-zero element x ∈ R we let R[ 1x ] and
M [ 1x ] := M ⊗R R[ 1x ] denote the localizations obtained by inverting x. Any homomorphism of R-
modules M → N induces a homomorphism of R[ 1x ]-modules M [ 1x ]→ N [ 1x ] denoted again by the same
letter.

Remark 1.1. The ring homomorphisms σ∗ : AC → AC and σ̌∗ : AC → AC are flat because they arise
by base change from the flat homomorphisms C→ C, b 7→ bq, respectively C→ C, b 7→ q

√
b.

For later reference we record the following two lemmas.

Lemma 1.2. (a) If t ∈ Q is a uniformizing parameter at a closed point P of C then Q is a finite
separable field extension of Fq(t).

(b) There exists an element t ∈ A such that Q is a finite separable field extension of Fq(t). For every
maximal ideal v ⊂ A one may even find such a t ∈ A such that the radical ideal

√
A · t of A · t

is v.

Proof. (a) The point P ∈ C is unramified under the map C → P1
Fq

corresponding to the inclusion

Fq(t) ⊂ Q. Since all ramification indices are divisible by the inseparability degree, the latter has to
be one.

(b) Choose some a ∈ ArFq. Then Fq[a] →֒ A is a finite flat ring extension and so Q/Fq(a) is a finite
field extension. If it is not separable, let pe be its inseparability degree. Then Fq(a) is contained in
Qp

e
:= {xpe : x ∈ Q} by [Sil86, Proof of Corollary II.2.12]. So there is a t ∈ Q with a = tp

e
. We even

have t ∈ A because A is integrally closed in Q. By considering the inseparability degree in the tower
Fq(a) ⊂ Fq(t) ⊂ Q we see that Q/Fq(t) is separable.

If a maximal ideal v ⊂ A is given, there is a positive integer n such that vn = A · a is a principal
ideal. Continuing as above we obtain an element t ∈ A with

√
A · t =

√
A · a = v.

Lemma 1.3. Let K be a field and let c∗ : A →֒ K be an injective ring homomorphism. Let z ∈ QrFq
be an element such that Q is a finite separable extension of Fq(z), and let ζ = c∗(z). Then the power
series ring K[[z− ζ]] over K in the “variable” z− ζ is canonically isomorphic to the completion of the
local ring of CK at the closed point V(J) defined by the ideal J := (a⊗ 1− 1⊗ c∗(a) : a ∈ A) ⊂ AK .

Proof. The completion of the local ring of CK at V(J) is lim
←−

AK/J
n. Since this is a complete discrete

valuation ring with residue field K we only need to show that z − ζ is a uniformizing parameter.
Clearly, z − ζ is contained in the maximal ideal. To prove the converse, let a ∈ Q. Let f ∈ Fq(z)[X]
be the minimal polynomial of a over Fq(z) and multiply it with the common denominator to obtain
the polynomial F (X, z) ∈ Fq[X, z]. The two-variable Taylor expansion of F at (c∗(a), ζ) ∈ K2 is

F (X, z) ≡ F (c∗(a), ζ) + ∂F

∂X
(c∗(a), ζ) · (X − c∗(a)) + ∂F

∂z
(c∗(a), ζ) · (z − ζ) mod J2
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Plugging in a for X yields F (a, z) = 0 and ∂F
∂X (a, z) 6= 0 by the separability of Q/Fq(z). Under the

injective homomorphism c∗ : Q →֒ K we get F (c∗(a), ζ) = 0 and ∂F
∂X (c∗(a), ζ) 6= 0. This shows that

the element a − c∗(a) ∈ J/J2 is a multiple of z − ζ, and so z − ζ generates the AK-module J/J2.
By Nakayama’s Lemma [Eis95, Corollary 4.7] there is an element f ∈ 1 + J that annihilates the
AK -module J/(z − ζ). Since f is invertible in lim

←−
AK/J

n we have proved that z − ζ generates the

maximal ideal of lim
←−

AK/J
n.

1.2 Tannakian theory

As already alluded to in the introduction, a good framework to discuss Hodge structures is the theory of
Tannakian categories. Also Pink’s results which we explain in this article use this language. Therefore,
we briefly recall the definition and some facts about Tannakian categories from the articles of Deligne
and Milne [DM82, Del90, Mil92].

Definition 1.4 ([Mil92, (A.7.1) and (A.7.2), page 222]). Let K be a field. A K-linear abelian tensor
category C with unit object 1l is a Tannakian category over K if

(a) for every object X of C there exists an object X∨ of C , called the dual of X, and morphisms
ev : X ⊗X∨ → 1l and δ : 1l → X∨ ⊗X such that

(ev ⊗ idX) ◦ ( idX ⊗δ) = idX : X
idX ⊗δ−−−−−→ X ⊗X∨ ⊗X ev⊗ idX−−−−−→ X and

( idX∨ ⊗ev) ◦ (δ ⊗ idX∨) = idX∨ : X∨
δ⊗ idX∨−−−−−−→ X∨ ⊗X ⊗X∨

idX∨ ⊗ev−−−−−−−→ X∨,

(b) and for some non-zero K-algebra L there is an exact faithful K-linear tensor functor ω from C

to the category of finitely generated L-modules. Any such functor ω is called an L-rational fiber
functor for C .

A K-rational fiber functor for C is called neutral. If C has a neutral fiber functor it is called a neutral
Tannakian category over K.

Remark 1.5. (a) According to [DM82, § 1] being a tensor category means that there is a “tensor
product” functor C × C → C , (X,Y ) 7→ X ⊗ Y which is associative and commutative, such that C

has a unit object. The latter is an object 1l ∈ C together with an isomorphism 1l ∼−→ 1l ⊗ 1l such that
C → C , X 7→ 1l⊗X is an equivalence of categories. A unit object is unique up to unique isomorphism;
see [DM82, Proposition 1.3]. One sets X⊗0 := 1l and X⊗n := X ⊗X⊗n−1 for n ∈ N>0.

(b) Being K-linear means that HomC (X,Y ) is a K-vector space for all X,Y ∈ C .

(c) Being abelian means that C is an abelian category. Then automatically ⊗ is a bi-additive functor
and is exact in each factor; see [DM82, Proposition 1.16].

(d) By [Del90, §§ 2.1–2.5] the conditions of Definition 1.4 imply that EndC (1l) = K and that the tensor
product is K-bilinear and exact in each variable. It further implies that Hom(X,Y ) := X∨ ⊗ Y is an
internal hom in C, that is an object which represents the functor C ◦ → VecK , T 7→ HomC (T ⊗X,Y ).
This means that HomC (T ⊗X,Y ) = HomC (T,Hom(X,Y )). Then C is a rigid abelian K-linear tensor
category in the sense of [DM82, Definition 2.19]. This further means that the natural morphisms
X → (X∨)∨ are isomorphisms and that

⊗n
i=1Hom(Xi, Yi) = Hom(

⊗
iXi,

⊗
i Yi) for all Xi, Yi ∈ C .

The definition of a neutral Tannakian category over K in [DM82, Definition 2.19] as a rigid abelian
K-linear tensor category possessing a neutral fiber functor is equivalent to Definition 1.4.

(e) A functor F : C → C ′ between rigid abelian K-linear tensor categories is a tensor functor if F (1l)
is a unit object in C ′ and there are fixed isomorphisms F (X⊗Y ) ∼= F (X)⊗F (Y ) compatible with the
associativity and commutativity laws. A tensor functor automatically satisfies F (X∨) = F (X)∨ and
F
(
Hom(X,Y )

)
= Hom

(
F (X), F (Y )

)
; see [DM82, Proposition 1.9]. In particular, for an L-rational

fiber functor ω this means ω(1l) ∼= L.
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If G is an affine group scheme over K, let RepK(G) be the category of finite-dimensional K-rational
representations of G, that is K-homomorphisms of K-group schemes ρ : G→ GLK(V ) ∼= GLdimKV,K

for varying finite dimensional K-vector spaces V . Together with the forgetful functor ωG : (V, ρ) 7→ V
it is a neutral Tannakian category over K; see [DM82, Example 1.24]. Tannakian duality says that
every neutral Tannakian category over K is of this form:

Theorem 1.6 (Tannakian duality [DM82, Theorem 2.11]). Let C be a neutral Tannakian category
over K with neutral fiber functor ω, and let Aut⊗(ω) be the set of automorphisms of tensor functors
of ω; see [DM82, p. 116].

(a) There is an affine group scheme G over K that represents the functor Aut⊗(ω) on K-algebras
given by

Aut⊗(ω)(R) := Aut⊗(ψR ◦ ω) for all K-algebras R,

where ψR : VecK → ModR, V 7→ V ⊗K R, is the canonical tensor functor.

(b) The fiber functor ω defines an equivalence of tensor categories C ∼−→ RepK(G).

Definition 1.7. A subcategory C ′ of a category C is strictly full if it is full and contains with every
X ∈ C ′ also all objects of C isomorphic to X.

A strictly full subcategory C ′ of a rigid tensor category C is a rigid tensor subcategory if 1l ∈ C ′

and X ⊗ Y,X∨ ∈ C ′ for all X,Y ∈ C ′.
If C is a neutral Tannakian category over K and X ∈ C , the rigid tensor subcategory of C

containing as objects all subquotients of all
⊕r

i=1X
⊗ni ⊗ (X∨)⊗mi for all r, ni,mi ∈ N0 is called the

Tannakian subcategory generated by X and is denoted 〈〈X〉〉. It is a neutral Tannakian category over
K.

Lemma 1.8 ([DM82, Proposition 2.20]). An affine K-group scheme G is (linear) algebraic, that is a
closed subscheme of some GLn,K , if and only if there exists an object X in RepK(G) with RepK(G) =
〈〈X〉〉. In this case G = Aut⊗(ωG) →֒ GLK

(
ωG(X)

)
is a closed immersion, which factors through the

centralizer of End(X) inside GL
(
ωG(X)

)
.

Proof. This was proved in [DM82, Proposition 2.20] except for the statement about the centralizer,
which follows from the fact that G is the automorphism group of the forgetful fiber functor ωG.

A homomorphism f : G → G′ of affine K-group schemes induces a functor ωf : RepK(G′) →
RepK(G), ρ 7→ ρ ◦ f , such that ωG ◦ ωf = ωG

′

. The same holds in the other direction:

Lemma 1.9 ([DM82, Corollary 2.9]). Let G and G′ be affine group schemes over K and consider a
tensor functor F : RepK(G

′)→ RepK(G) such that ωG ◦ F = ωG
′

. Then there is a unique homomor-
phism f : G→ G′ of affine K-group schemes such that F ∼= ωf .

Under this correspondence various properties of group homomorphisms are reflected on the asso-
ciated tensor functor.

Proposition 1.10 ([DM82, Proposition 2.21]). Let f : G→ G′ be a homomorphism of affine K-group
schemes and let ωf : RepK(G′)→ RepK(G) be defined as above.

(a) f is faithfully flat if and only if ωf is fully faithful and for every object X ′ in RepK(G
′) each

subobject of ωf (X ′) is isomorphic to the image of a subobject of X ′.

(b) f is a closed immersion if and only if for every object X of RepK(G) there exists an object X ′

in RepK(G
′) such that X is isomorphic to a subquotient of ωf (X ′).
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2 Hodge-Pink structures

In this section we present Pink’s definition [Pin97b] of the Tannakian category of mixed Q-Hodge
structures. Pink first defines pre-Hodge structures which form an additive tensor category. This
category is not abelian, so he introduces a semistability condition for pre-Hodge structures. The
semistable ones form a neutral Tannakian category and will be called Hodge structures. Compared to
the classical theories of the rational mixed Hodge-structures of Deligne [Del71] and the p-adic Hodge
theory of Fontaine [Fon82] there is one important difference in Pink’s theory. In the classical theories,
Hodge structures consist of a vector space over one field (with additional structures like weight filtration
or Frobenius endomorphism) and a decreasing Hodge filtration defined over a separable extension of
this field. In the function field setting C/Q is not separable and hence a semistability condition
solely based on the Hodge filtration cannot be preserved under tensor products. This is Pink’s crucial
observation and the reason why he replaces Hodge filtrations by finer structures and why we call all
these structures Hodge-Pink structures.

Definition 2.1. An exhaustive and separated increasing Q-filtration W•H on a finite dimensional
Q-vector space H is a collection of Q-subspaces WµH ⊂ H for µ ∈ Q with Wµ′H ⊂ WµH whenever
µ′ < µ, such that the associated Q-graded vector space

GrW H :=
⊕

µ∈Q

GrWµ H :=
⊕

µ∈Q

(
WµH/

⋃
µ′<µWµ′H

)

has the same dimension as H.

Remark 2.2. The jumps of such a filtration are those real numbers µ for which

⋃
µ′<µWµ′H (

⋂
µ̃>µWµ̃H .

The condition dimQGrW H = dimQH is equivalent to the conditions that all jumps lie in Q, that
WµH =

⋂
µ̃>µWµ̃H for all µ ∈ Q, that WµH = (0) for µ≪ 0, and that WµH = H for µ≫ 0.

Definition 2.3 (Pink [Pin97b, Definition 9.1]). A (mixed) Q-pre Hodge-Pink structure (at ∞) is a
triple H = (H,W•H, q) with

• H a finite dimensional Q-vector space,

• W•H an exhaustive and separated increasing Q-filtration,

• a C[[z − ζ]]-lattice q ⊂ H ⊗Q C((z − ζ)) of full rank.

The filtrationW•H is called the weight filtration, q is called the Hodge-Pink lattice, and rkH := dimQH
is called the rank of H. The jumps of the weight filtration are called the weights of H. If GrWµ H = H,
then H is called pure of weight µ.

A morphism f : (H,W•H, q) → (H ′,W•H
′, q′) of Q-pre Hodge-Pink structures consists of a mor-

phism f : H → H ′ of Q-vector spaces satisfying f(WµH) ⊂WµH
′ for all µ and (f ⊗ id)(q) ⊂ q′. The

morphism f is called strict if f(WµH) = f(H) ∩WµH
′ for all µ and (f ⊗ id)(q) = q′ ∩

(
f(H) ⊗Q

C((z − ζ))
)
.

Remark 2.4. The Hodge-Pink lattice of a mixed Q-pre Hodge-Pink structure H = (H,W•H, q)
induces an exhaustive and separated decreasing Z-filtration as follows. Define the tautological lattice
p := H ⊗Q C[[z − ζ]] inside H ⊗Q C((z − ζ)) and consider the natural projection

p ։ p/(z − ζ)p = H ⊗Q,c∗ C =: HC .

The Hodge-Pink filtration F •HC = (F iHC)i∈Z of HC is defined by letting F iHC be the image of
p ∩ (z − ζ)iq in HC for all i ∈ Z; that is, F iHC =

(
p ∩ (z − ζ)iq

)/(
(z − ζ)p ∩ (z − ζ)iq

)
. One finds
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that any morphism is also compatible with the Hodge-Pink filtrations, but a strict morphism is not
necessarily strictly compatible with the Hodge-Pink filtrations.

The Hodge-Pink weights (ω1, . . . , ωrkH) of H are the jumps of the Hodge-Pink filtration. They
are integers. Equivalently they are the elementary divisors of q relative to p; that is, they satisfy
q/(z − ζ)ep ∼=

⊕rkH
i=1 C[[z− ζ]]/(z − ζ)e+ωi and p/(z − ζ)eq ∼=

⊕rkH
i=1 C[[z− ζ]]/(z − ζ)e−ωi for all e≫ 0.

We usually assume that they are ordered ω1 ≤ . . . ≤ ωrkH .

A main source for Hodge-Pink structures are Drinfeld A-modules or more generally uniformizable
mixed abelian Anderson A-modules (see Section 5).

Example 2.5. (a) Let ϕ : A→ EndC(Ga,C) be a Drinfeld A-module [Dri76] of rank r over C where
Ga,C is the additive group scheme. We set E = Ga,C and E = (E,ϕ), and we write LieE for the
tangent space to E at 0. Consider the exponential exact sequence of A-modules

(2.1) 0 −→ Λ(E) −→ LieE
expE−−−−→ E(C) −→ 0 ,

where Λ := Λ(E) := Λ(ϕ) := ker(expE ); see Section 5.1 or the survey of Brownawell and Papanikolas
[BP20, § 2.4] in this volume. Λ(E) ⊂ LieE = C is a discrete A-submodule of rank r. Clearly, Λ(E)
generates the one dimensional C-vector space LieE. Through the identification C[[z − ζ]]/(z − ζ) = C
we make LieE into a C[[z−ζ]]-module. We obtain a C[[z−ζ]]-epimorphism on the right in the sequence

(2.2) 0 // q // Λ⊗A C[[z − ζ]] // LieE // 0

λ⊗∑i bi(z − ζ)i
✤ // b0 · λ

and we let q be its kernel. By sequence (2.2) the pair (Λ, q) determines the C-vector space LieE
with the A-action on it, and the A-lattice Λ inside LieE as the image of the A-homomorphism
Λ →֒ Λ⊗A C[[z − ζ]] ։ LieE. Therefore, the pair (Λ, q) also determines the Drinfeld A-module ϕ by
sequence (2.1). We further set

H := H1(E) := Λ(E)⊗A Q and WµH =

{
(0) if µ < −1

r ,

H if µ ≥ −1
r .

Then H1(E) := (H,W•H, q) is a pure Q-pre Hodge-Pink structure of weight −1
r . It satisfies (z−ζ)p ⊂

q ⊂ p and hence F−1HC = HC ⊃ F 0HC ⊃ F 1HC = (0). Since dimQH = r and dimC(p/q) =
dimC LieE = 1 we have dimC F

0HC = r − 1. As we will explain in Section 5.7 below, F 0HC ⊂
HC = H1,Betti(E,C) is the Hodge filtration studied by Gekeler [Gek89, (2.13)] using the de Rham
isomorphism H1

Betti(E,C)
∼= H1

dR(E,C). See Example 2.9 for a continuation of this example. Also in
Section 5.6 we will generalize the present construction to Anderson’s abelian t-modules [And86]. Note
that this parallels the case of complex abelian varieties X, whose Hodge structure H1,Betti(X,Q) is
pure of weight −1

2 .

(b) More specifically, if C = P1
Fq
, A = Fq[t], θ := c∗(t) ∈ C and E is the Carlitz-module [BP20, § 2.2]

with ϕt = θ + Frobq,Ga, where Frobq,Ga : x 7→ xq is the relative q-Frobenius of Ga,C = SpecC[x] over
C, then r = 1 and

H := H1(E) = Q , GrW−1H = H , q = (z − ζ) · p , F 0HC = (0) .

(c) In (a) and (b) the subspace F 0HC determines q uniquely as its preimage under the surjection
H ⊗Q C[[z − ζ]] ։ HC because (z − ζ) · p ⊂ q.

However, note that in general q is not determined by F •HC. For example let H = Q⊕2 and
q = (z − ζ)2p+C[[z − ζ]] ·

(
v0 + (z − ζ)v1

)
for vi ∈ HC with v0 6= 0. Then

F−2HC = HC ⊃ F−1HC = C · v0 = F 0HC ⊃ F 1HC = (0) .

So the information about v1 is not preserved by the Hodge-Pink filtration.



2 HODGE-PINK STRUCTURES 13

To continue with the general theory let H = (H,W•H, q) be a Q-pre Hodge-Pink structure. A
subobject in the category of Q-pre Hodge-Pink structures is a morphism H ′ → H whose underlying
homomorphism of Q-vector spaces is the inclusion H ′ →֒ H of a subspace. It is called a strict
subobject if H ′ → H is strict. Likewise a quotient object is a morphism H → H ′′ whose underlying
homomorphism of Q-vector spaces is the projection H ։ H ′′ onto a quotient space. It is called a
strict quotient object if H → H ′′ is strict.

For any Q-subspace H ′ ⊂ H one can endow H ′ with a unique structure of strict subobject H ′ and
H ′′ := H/H ′ with a unique structure of strict quotient object H ′′. The sequence 0 → H ′ → H →
H ′′ → 0 and any sequence isomorphic to it is called a strict exact sequence.

With these definitions the category of Q-pre Hodge-Pink structures is a Q-linear additive category.
Pink makes a suitable subcategory of it into a Tannakian category. In order to do this, he defines
tensor products, internal hom and duals.

Definition 2.6. Let H1 = (H1,W•H1, q1) and H2 = (H2,W•H2, q2) be two Q-pre Hodge-Pink
structures.

(a) The tensor product H1⊗H2 is the Q-pre Hodge-Pink structure consisting of the tensor product
H1⊗QH2 ofQ-vector spaces, the induced weight filtrationWµ(H1⊗QH2) :=

∑
µ1+µ2=µ

Wµ1H1⊗Q
Wµ2H2 and the lattice q1 ⊗C[[z−ζ]] q2. One defines for n ≥ 1 the symmetric power SymnH and
the alternating power ∧nH as the induced strict quotient objects of H⊗n.

(b) The internal hom H̃ = Hom(H1,H2) consists of the Q-vector space H̃ := HomQ(H1,H2), the

induced weight filtration WµH̃ := {h ∈ H̃ : h(Wµ1H1) ⊂ Wµ+µ1H2 ∀µ1 }, and the lattice

q̃ := HomC[[z−ζ]](q1, q2). The latter is a C[[z − ζ]]-lattice in H̃ ⊗Q C((z − ζ)) via the inclusion

q̃ −֒→ q̃⊗C[[z−ζ]] C((z − ζ))
∼−→ HomC((z−ζ))

(
q1 ⊗C[[z−ζ]] C((z − ζ)), q2 ⊗C[[z−ζ]] C((z − ζ))

)

∼−→ HomC((z−ζ))

(
H1 ⊗Q C((z − ζ)),H2 ⊗Q C((z − ζ))

)

∼−→ H̃ ⊗Q C((z − ζ))
obtained by applying [Eis95, Proposition 2.10].

(c) The unit object 1l consists of the vector space Q itself together with the lattice q := p and is
pure of weight 0. The dual H∨ of a Q-pre Hodge-Pink structure H is then Hom(H, 1l).

The category of Q-pre Hodge-Pink structures is an additive tensor category but it is not abelian
because not all subobjects and quotient objects are strict. Indeed, the category theoretical image
(respectively coimage) of a subobject H ′ →֒ H (respectively quotient object H ։ H ′) is the strict
subobject (respectively strict quotient object) with same underlyingQ-vector space as H ′ (respectively
H ′′). In order to remedy this, Pink defines semistability as follows.

Definition 2.7. Let H = (H,W•H, q) be a Q-pre Hodge-Pink structure.

(a) for any Q∞-subspace H ′∞ ⊂ H∞ := H ⊗Q Q∞ consider the induced strict Q∞-subobject

H ′∞ :=
(
H ′∞ , WµH

′
∞ := H ′∞ ∩ (WµH ⊗Q Q∞) , q′ := q ∩

(
H ′∞ ⊗Q∞

C((z − ζ))
))

and (using the induced Hodge-Pink filtration F •HC from Remark 2.4) set

degqH
′
∞ := degF H

′
C :=

∑

i∈Z

i · dimCGriF H
′
C = dimC

q′

p′ ∩ q′
− dimC

p′

p′ ∩ q′

degW H ′∞ :=
∑

µ∈Q

µ · dimQ∞
GrWµ H ′∞
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(b) H is called locally semistable or a (mixed) Q-Hodge-Pink structure (at∞) if for any Q∞-subspace
H ′∞ ⊂ H∞ one has degqH

′
∞ ≤ degW H ′∞ with equality for H ′∞ = (WµH)∞ for all µ.

(c) We denote by Q-HP the full subcategory of all mixed Q-Hodge-Pink structures.

Remark 2.8. (a) Alternatively degqH
′
∞ can be computed as dimC q′/r− dimC p′/r for any C[[z− ζ]]-

lattice r which is contained in both q′ and p′. In particular, if (z − ζ)dp′ ⊂ q′ for some d ∈ Z with
d ≥ 0, then degqH

′
∞ = dimC q′/(z− ζ)dp′−ddimQ∞

H ′∞, because dimC p′/(z− ζ)dp′ = d ·dimQ∞
H ′∞.

(b) The piecewise linear function on [0, rkH] whose slope on [i− 1, i] is the i-th smallest Hodge-Pink
weight is called the Hodge polygon of H and is denoted HP (H). Analogously one defines the weight
polygon WP (H) of H using the weights of H. A Q-pre Hodge-Pink structure is locally semistable if
and only if for every strict Q∞-subobject H ′∞ the weight polygon lies above the Hodge polygon, and
both have the same endpoint whenever H ′∞ = (WµH)∞; see [Pin97b, Proposition 6.7].

Example 2.9. We continue with Example 2.5.

(a) If E is the Carlitz-module over A = Fq[t] then H1(E) is a pure Q-Hodge-Pink structure of
weight −1, because degW H1(E) = −1 = degqH1(E) and there are no non-trivial Q∞-subspaces of
H1(E)⊗Q Q∞ = Q∞.

(b) The same is true for a Drinfeld A-module ϕ. Indeed, assume that H1(E) is not locally semistable.
Then there is a non-trivial Q∞-subspace H

′
∞ ⊂ H∞ with degqH

′
∞ > degW H ′∞. Since H1(E) is pure

of weight −1
r we find degW H ′∞ = −1

r · dimQ∞
H ′∞ > −1 and degqH

′
∞ ≥ 0. Since (z − ζ)p ⊂ q ⊂ p

the same is true for q′ = q ∩
(
H ′∞ ⊗Q∞

C((z − ζ))
)
and p′ = H ′∞ ⊗Q∞

C[[z − ζ]]. So degqH
′
∞ can only

be non-negative if p′ = p′ ∩ q′; that is, p′ = q′. This implies

H ′∞ ⊂ H ′C = p′/(z − ζ)p′ = q′/(z − ζ)p′ ⊂ q/(z − ζ)p = ker(HC → LieE) .

But Λ(ϕ) ⊂ LieE is discrete, which by definition means that the natural morphism H∞ = Λ(ϕ) ⊗A
Q∞ → LieE is injective. Therefore, also H ′∞ → LieE must be injective and we obtain a contradiction.

One of the main results of Pink [Pin97b] is the following

Theorem 2.10 ([Pin97b, Theorem 9.3]). The category Q-HP together with the Q-rational fiber functor
ω0 : Q-HP→ VecQ, (H,W•H, q) 7→ H, is a neutral Tannakian category over Q.

See Section 1.2 for some explanations.

Remark 2.11. (a) The assertion that Q-HP is abelian rests on the relatively easy fact that in Q-HP
any subobject and quotient object is strict.

(b) The difficult part of the proof is to show that the condition of local semistability is closed under
tensor products. For this it is essential to work with Hodge-Pink lattices instead of Hodge-Pink
filtrations. Indeed, if one works with triples (H,W•H,F

•HC) consisting of Q-vector spaces H with
weight filtration W•H and decreasing Hodge-Pink filtrations F •HC and defines local semistability
analogous to Definition 2.7, then this local semistability would not be closed under tensor products
due to the inseparability of the field extension C/Q; see [Pin97b, Example 5.16]. This is Pink’s
ingenious insight.

This theorem allows to associate with each Q-Hodge-Pink structure H = (H,W•H, q) an algebraic
group ΓH over Q as follows. Consider the Tannakian subcategory 〈〈H〉〉 of Q-HP generated by H. By
[DM82, Theorem 2.11 and Proposition 2.20] the category 〈〈H〉〉 is tensor equivalent to the category of
Q-rational representations of a linear algebraic group scheme ΓH over Q which is a closed subgroup
of GLQ(H).
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Definition 2.12. The linear algebraic Q-group scheme ΓH associated with H is called the Hodge-Pink
group of H.

Pink proves that ΓH is connected and reduced and that any connected semisimple group over Q
can occur as ΓH for a Q-Hodge-Pink structure [Pin97b, Propositions 9.4 and 9.12]. Note however,
that in general ΓH does not even need to be reductive.

If the Hodge-Pink structure H comes from a pure (or mixed) uniformizable abelian t-module E,
Pink (respectively Pink and the first author) also proved in unpublished work, that ΓH equals the mo-
tivic Galois group of E as considered by Papanikolas [Pap08] and Taelman [Tae09a]; see Remark 4.26.
If H comes from a pure dual A-motive, Pink’s proof was worked out by the second author in her
Diploma thesis [Jus10]. We will explain these proofs in Theorems 3.34 and 4.33 below. In the spe-
cial case when E is a Drinfeld module, there are further results of Pink on the structure of ΓH ; see
Section 6.

3 Mixed A-motives

The functor E 7→ H1(E) from Drinfeld A-modules to Q-Hodge-Pink structures from Examples 2.5
and 2.9 extends to the uniformizable abelian t-modules of Anderson [And86], the higher dimensional
generalizations of Drinfeld-modules. We will define the functor in Section 5.6 below. In order to prove
that H1(E) is a pure Q-Hodge-Pink structure when E is a pure uniformizable abelian t-module, we
need to review Anderson’s theory of t-motives [And86] or more generally A-motives. We do this first
because it also allows to define mixed abelian t-modules and their associated mixed Q-Hodge-Pink
structures.

3.1 A-motives

Recall that we denote the natural inclusion Q →֒ C by c∗ and consider the maximal ideal J :=
(a⊗ 1− 1⊗ c∗(a) : a ∈ A) ⊂ AC := A⊗Fq C. The open subscheme SpecACrV(J) of CC is affine. We
denote its ring of global sections by AC[J

−1]. For example if C = P1
Fq

and A = Fq[t] then J = (t− θ)
for θ := c∗(t). In this case AC[J

−1] = C[t][ 1
t−θ ].

Definition 3.1. (a) An A-motive over C of characteristic c∗ is a pair M = (M, τM ) consisting of a
finite projective AC-module M and an isomorphism of AC[J

−1]-modules

τM : σ∗M [J−1] ∼−→M [J−1] .

where we set σ∗M [J−1] := (σ∗M) ⊗AC
AC[J

−1] and M [J−1] := M ⊗AC
AC[J

−1]. A morphism
of A-motives f : M → N is a homomorphism of the underlying AC-modules f : M → N that
satisfies f ◦ τM = τN ◦ σ∗f . The category of A-motives over C is denoted A-Mot.

(b) The rank of the AC-module M is called the rank of M and is denoted by rkM . The virtual
dimension dimM of M is defined as

dimM := dimC M
/
(M ∩ τM (σ∗M)) − dimC τM (σ∗M)

/
(M ∩ τM (σ∗M)) .

(c) An A-motive (M, τM ) is called effective if τM comes from an AC-homomorphism σ∗M → M .
An effective A-motive has virtual dimension ≥ 0.

(d) For two A-motives M and N over C we call QHom(M,N) := HomA-Mot(M,N)⊗A Q the set of
quasi-morphisms from M to N .

(e) The category with all A-motives as objects and the QHom(M,N ) as Hom-sets is called the
category of A-motives over C up to isogeny. It is denoted A-MotI.
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Remark 3.2. (a) If C = P1
Fq
, A = Fq[t] and AC = C[t], we set θ := c∗(t) and then J = (t − θ). In

this case, our effective A-motives are a slight generalization of Anderson’s t-motives [And86], which
are called abelian t-motives in [BP20, §4.1]. Namely, Anderson required in addition, that M is finitely
generated over the skew-polynomial ring C{τ}, where τ acts on M through m 7→ τM(σ∗m).

(b) We will explain in Remark 3.7(c) below, that the set of morphisms HomA-Mot(M,N) between
A-motives M and N is a finite projective A-module of rank at most (rkM) · (rkN).

(c) By definition, for every quasi-morphism f ∈ QHom(M,N ) there is an element a ∈ A r {0} such
that a · f ∈ HomA-Mot(M,N ) is a morphism of A-Motives. Moreover,

QHom(M,N) =
{
f : M ⊗AC

Quot(AC)→ N ⊗AC
Quot(AC) such that f ◦ τM = τN ◦ σ∗f

}
,

where Quot(AC) denotes the fraction field of AC and f is a homomorphism of Quot(AC)-vector spaces.
Indeed, the inclusion ⊂ is obvious and the equality was proved in [BH11, Corollary 5.4] and also follows
from [Pap08, Proposition 3.4.5] and [Tae09a, Proposition 3.1.2]. Note that this is not equivalent to
the inclusion f(Jn ·M) ⊂ N for n≫ 0, as can be seen from f = idM ⊗ 1

a ∈ QEnd(M) for a ∈ ArFq.

(d) The name for the category A-MotI stems from the fact that a morphism f : M → N in A-Mot is
an isogeny, that is injective with torsion cokernel, if and only if it becomes an isomorphism in A-MotI;
see for example [Har17, Theorem 5.12] or [Tae09a, Proposition 3.1.2].

The tensor product of two A-motivesM and N is the A-motiveM⊗N consisting of the AC-module
M ⊗AC

N and the isomorphism τM ⊗ τN . The A-motive 1l(0) with underlying AC-module AC and
τ = idAC

is a unit object for the tensor product in A-Mot and A-MotI. Both categories possess finite
direct sums in the obvious way. We also define the tensor powers of an A-motive M as M⊗0 = 1l(0)
and as M⊗n :=M⊗n−1⊗M for n > 0. The dual of an A-motive M is the A-motive M∨ = (M∨, τM∨)
consisting of the AC-module M∨ := HomAC

(M,AC) and the isomorphism

τ∨

M : σ∗M∨[J−1] = HomAC
(σ∗M,AC)[J

−1] ∼−→ M∨[J−1], h 7→ h ◦ τ−1M .

If M = (M, τM ) and N = (N, τN ) are A-motives the internal hom Hom(M,N ) is the A-motive
with underlying AC-module H := HomAC

(M,N) and τH : σ∗H[J−1] ∼−→ H[J−1], h 7→ τN ◦h ◦ τ−1M . In
particular, M∨ = Hom(M, 1l(0)). Moreover, there is a canonical isomorphism of A-motives M∨⊗N ∼=
Hom(M,N) sending

∑
im

∨

i ⊗ni ∈M∨⊗AC
N to [m 7→∑

im
∨

i (m) ·ni] ∈ HomAC
(M,N). Indeed, this

is an isomorphism on the underlying finite locally free AC-modules, and it is obviously compatible
with the isomorphisms τ . This implies that there are morphisms in A-Mot

ev : M ⊗M∨ −→ 1l(0) ,
∑
i
mi ⊗m∨

i 7−→
∑
i
m∨

i (mi) and(3.1)

δ : 1l(0) −→ M∨ ⊗M = Hom(M,M ) , a 7−→ a · idM ,(3.2)

which satisfy the conditions of Definition 1.4(a). We also note the following formulas for the rank and
the virtual dimension

rk 1l(0) = 1 , dim1l(0) = 0 ,

rkHom(M,N) = (rkM) · (rkN) , dimHom(M,N ) = (rkM) · (dimN)− (rkN) · (dimM) ,

rkM∨ = rkM , dimM∨ = − dimM ,(3.3)

rkM ⊗N = (rkM) · (rkN) , dimM ⊗N = (rkN) · (dimM) + (rkM) · (dimN) ,

rkM ⊕N = (rkM) + (rkN) , dimM ⊕N = (dimM) + (dimN) ,

which follow easily from the elementary divisor theorem.
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Proposition 3.3. Let f : M →M ′ be a morphism of A-motives.

(a) Then

ker f :=
(
ker f, τM |(σ∗ ker f)[J−1]

)
and im f :=

(
im f, τM ′ |(σ∗ im f)[J−1]

)

are A-motives, which are called the kernel, respectively image A-motive of f .

(b) Let N = M ′/f(M) and let Ntors ⊂ N be the AC-torsion submodule. Then τM ′ induces an
isomorphism τN/Ntors

: σ∗(N/Ntors)[J
−1] ∼−→ N/Ntors[J

−1] and

coker f := (N/Ntors, τN/Ntors
) and coim f := ker(M ′ → coker f)

are A-motives, which are called the cokernel, respectively coimage A-motive of f . The A-motive
coim f equals the saturation {m′ ∈ M ′ : ∃h ∈ AC, h 6= 0 with h · m′ ∈ f(M)} of im f and
the natural inclusion im f →֒ coim f is an isogeny, and hence an isomorphism in A-MotI. In
particular, rk(im f) = rk(coim f).

Proof. Since AC is a Dedekind domain, the kernel and image of f and N/Ntors are again finite, locally
free AC-modules and therefore A-motives with the inherited isomorphism τ . That coim f is the satu-
ration of im f follows from the definition of Ntors. Therefore, the inclusion im f →֒ coim f is injective
with torsion cokernel, hence an isogeny and an isomorphism in A-MotI by [Har17, Theorem 5.12] or
[Tae09a, Proposition 3.1.2].

Proposition 3.4. The category A-MotI is a Q-linear (non-neutral) Tannakian category, and in par-
ticular, a rigid abelian tensor category.

Proof. Since the σ-invariants in AC equal A, we have EndA-Mot
(
1l(0)

)
= A and EndA-MotI

(
1l(0)

)
= Q.

In particular, A-MotI is a Q-linear tensor category. If f : M → N is a morphism in A-MotI we may
multiply f with an element of Q and assume that f is a morphism in A-Mot. Therefore, it follows
from Proposition 3.3 that A-MotI is abelian.

To show that A-MotI is Tannakian we use the morphisms (3.1) and (3.2). In addition, we have to
exhibit an exact faithful Q-linear fiber functor over some non-zero Q-algebra. For example, we can
take the quotient field Quot(AC) of AC and the functor M = (M, τM ) 7−→ M ⊗AC

Quot(AC). This
functor is faithful, because M ⊂ M ⊗AC

Quot(AC). Moreover, it is exact, because a sequence 0 −→
M ′

f−−→M
g−−→M ′′ −→ 0 in A-MotI is exact if and only if f is injective, im f ∼= ker g, and im g ∼=M ′′

in A-MotI. By the definition of morphisms in A-MotI as quasi-morphisms, these isomorphisms are
in general not isomorphisms of the underlying AC-modules, but they provide isomorphisms of the
associated Quot(AC)-vector spaces.

Remark 3.5. (a) Fiber functors over C, respectively Qv, are also provided by the de Rham cohomology
realization H1

dR(M,C), respectively the v-adic cohomology realization H1
v(M,Qv); see Section 3.5. A

neutral fiber functor only exists on the full subcategory of uniformizable A-motives; see Theorem 3.27

(b) The category A-Mot is an exact category in the sense of Quillen [Qui73, §2] if one defines the

class E of short exact sequences to be those sequences 0 −→ M ′
f−−→ M

g−−→ M ′′ −→ 0 of A-motives
whose underlying sequence of AC-modules is exact. Then f (respectively g) is called an admissible
monomorphism (respectively admissible epimorphism).

Indeed, this means that f is the kernel of g and g is the cokernel of f in A-Mot, that every canonical
split sequence 0 → M ′ → M ′ ⊕M ′′ → M ′′ → 0 lies in E, that E is closed under isomorphisms,
pullbacks via morphisms N ′′ →M ′′ and pushout via morphisms M ′ → N ′, and that the composition
of admissible monomorphisms is an admissible monomorphism and the composition of admissible
epimorphisms is an admissible epimorphism. All this is straight forward to prove.

Moreover, with the analogous definition of E, also the subcategories of A-Mot consisting of A-
motives which are effective, respectively effective and finitely generated over C{τ}, are exact.



3 MIXED A-MOTIVES 18

Example 3.6. An effective A-motive of rank 1 with τM(σ∗M) = J · M is called a Carlitz-Hayes
A-motive. It has virtual dimension 1. Carlitz-Hayes A-motives can be constructed as follows. Let
P ∈ CC be a (C-valued) point whose projection onto C is the point ∞ ∈ C. (Under our assumption
∞ ∈ C(Fq) there is a unique such point P .) The divisor (V(J)) − (P ) on CC has degree zero
and induces a line bundle O

(
(V(J)) − (P )

)
. Since the endomorphism id−Frobq of the abelian

variety Pic0C/Fq
is surjective, there is a line bundle L of degree zero on CC with O

(
(V(J)) − (P )

)
=

( id−Frobq)(L) = L ⊗ σ∗L∨ in Pic0C/Fq
(C). The AC-module M := Γ(SpecAC,L) is locally free of

rank one and the isomorphism σ∗L ∼= L ⊗ O
(
(P ) − (V(J))

)
of line bundles yields an isomorphism

τM : σ∗M [J−1] ∼−→M [J−1] with τM(σ∗M) = J ·M . So M = (M, τM ) is a Carlitz-Hayes A-motive.
If M is a Carlitz-Hayes A-motive and M ′ is any A-motive of rank 1, then τM ′(σ∗M ′) = Jd ·M ′

for a uniquely determined integer d by the elementary divisor theorem. Under our assumption that
∞ is Fq-rational, we claim that M ′ is isogenous to M⊗d. So in particular all Carlitz-Hayes A-motives
are isomorphic in the category A-MotI. Namely, consider the A-motive N := M ′ ⊗ (M⊗d)∨ of rank
one. It satisfies τN : σ∗N ∼−→ N and its τ -invariants N0 := {f ∈ N : τN (σ

∗f) = f} form a locally free
A-module of rank one with N ∼= N0 ⊗A 1l(0). Indeed, one can extend N to a locally free sheaf N on
CC of degree zero and, by reasons of degree, τN will extend to an isomorphism τN : σ∗N ∼−→ N at the
one missing point ∞C = CC r SpecAC. This means that the element N ∈ Pic0C/Fq

(C) arises from an

Fq-rational point N0 of Pic0C/Fq
. It follows that N ∼= N0 ⊗A 1l(0) for N0 := Γ(SpecA,N0) as claimed.

Now the A-module N0 is isomorphic to an ideal of A which we again denote by N0. Tensoring the
inclusion N0 →֒ A with M⊗d yields the desired isogeny M ′ ∼= N0 ⊗AM⊗d →֒M⊗d.

We may therefore denote any Carlitz-Hayes A-motive by 1l(1). We also define 1l(n) := 1l(1)⊗n for
n ≥ 0 and 1l(n) = 1l(−n)∨ for n ≤ 0. Then dim1l(n) = n. In the special case where C = P1

Fq
, A = Fq[t]

and θ := c∗(t) ∈ C, all Carlitz-Hayes A-motives are already in A-Mot isomorphic to the Carlitz t-
motive M = (M, τM ) with M = C[t] and τM = t − θ, because in this case the A-module N0 is free
and isomorphic to A.

Remark 3.7. (a) Every A-motive is isomorphic to the tensor product of an effective A-motive and
a power of a Carlitz-Hayes A-motive. In fact, if M is an A-motive with τM (σ∗M) ⊂ J−d ·M Then
M ′ := M ⊗ 1l(1)⊗d satisfies τM ′(σ∗M ′) ⊂ M ′; hence, M ′ is effective and M ∼= M ′ ⊗ 1l(1)⊗−d. Note
that rkM ′ = rkM and dimM ′ = dimM + d · rkM .

(b) This implies that for A = Fq[t] the category A-Mot is equivalent to Taelman’s category tMC of
t-motives [Tae09a, Def. 2.3.2] and A-MotI is equivalent to Taelman’s category tMo

C of t-motives up
to isogeny [Tae09a, §3]. Indeed, Taelman defines tMC as the category of effective A-motives with the
formally adjoined inverse of a Carlitz-Hayes A-motive.

(c) Let us explain why the set of morphisms HomA-Mot(M,N ) between A-motives M and N is a finite
projective A-module of rank at most (rkM ) · (rkN). By (a) we may write M ∼= M ′ ⊗ 1l(1)⊗−d and
N ∼= N ′ ⊗ 1l(1)⊗−d for effective A-motives M ′ and N ′. Then HomA-Mot(M,N) ∼= HomA-Mot(M

′, N ′)
and for the latter the statement was proved by Anderson [And86, Corollary 1.7.2].

3.2 Purity and mixedness

We fix a uniformizing parameter z ∈ Q = Fq(C) of C at∞. For simplicity of the exposition we assume
that ∞ ∈ C(Fq). The main results we present here hold, and are in fact proved in [Pin97b, HP18],
without this assumption. The assumption implies that there is a unique point on CC above ∞ ∈ C,
which we call ∞C. The completion of the local ring of CC at ∞C is canonically isomorphic to C[[z]].

Definition 3.8. (a) An A-motiveM = (M, τM ) is called pure ifM⊗AC
C((z)) contains a C[[z]]-lattice

M∞ such that for some integers d, r with r > 0 the map

τ rM := τM ◦ σ∗(τM ) ◦ . . . ◦ σr−1∗(τM ) : σr∗M ⊗AC
Quot(AC)

∼−→ M ⊗AC
Quot(AC)
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induces an isomorphism zdτ rM : σr∗M∞
∼−→M∞. Then the weight of M is defined as wtM = d

r .

(b) An A-motive M is called mixed if it possesses an increasing weight filtration by saturated A-sub-
motives WµM for µ ∈ Q (i.e. WµM ⊂ M is a saturated AC-submodule) such that all graded
pieces GrWµ M := WµM/

⋃
µ′<µWµ′M are pure A-motives of weight µ and

∑
µ∈Q rkGrWµ M =

rkM .

(c) The full subcategory of A-Mot consisting of mixed A-motives is denoted A-MMot. The full sub-
category of A-MotI consisting of mixed A-motives is denoted A-MMotI.

Example 3.9. For A = Fq[t] the Carlitz t-motive M = (C[t], τM = t − θ) is pure of weight 1 with
M∞ = C[[z]] on which zτM = 1−θz is an isomorphism, where z = 1

t . For general A, any Carlitz-Hayes
motive (Example 3.6) is pure of weight 1 by Proposition 3.14(c) below, because zτM : σ∗M∞ → M∞
is an isomorphism for the lattice M∞ := L ⊗OCC

C[[z]].

Remark 3.10. (a) The weights of M are the jumps of the weight filtration; that is, those real numbers
µ for which ⋃

µ′<µWµ′M (
⋂
µ̃>µWµ̃M .

The condition
∑

µ∈Q rkGrWµ M = rkM is equivalent to the conditions that all weights lie in Q, that
WµM =

⋂
µ̃>µWµ̃M for all µ ∈ Q, that WµM = (0) for µ ≪ 0, and that WµM = M for µ ≫ 0;

compare Remark 2.2.

(b) Every pure A-motive of weight µ is also mixed with Wµ′M = (0) for µ′ < µ, and Wµ′M = M for
µ′ ≥ µ, and GrWµ M =M .

To explain this definition we use the notion of z-isocrystals over C; see [HK16, Definition 5.1].

These are defined to be pairs M̂ = (M̂, τ
M̂
) consisting of a finite dimensional C((z))-vector space M̂

together with a C((z))-isomorphism τ
M̂
: σ∗M̂ ∼−→ M̂ . They are also called Dieudonné-Fq((z))-modules

in [Lau96, § 2.4] and local isoshtukas in [BH11, § 8]. Some of the following results were proved by
Taelman [Tae09a, Tae09b].

Proposition 3.11. Let M = (M, τM ) be an A-motive and consider the z-isocrystal M̂ := M ⊗AC

C((z)) =
(
M ⊗AC

C((z)), τM ⊗ id
)
. Then M̂ is isomorphic to

⊕
i M̂di,ri where for d, r ∈ Z, r >

0, (d, r) = 1 and m := ⌈dr ⌉ we set

(3.4) M̂d,r :=
(
C((z))⊕r, τ = τd,r :=




0 z−m

z−m

z1−m

z1−m 0




)

and where in the matrix the term z1−m occurs exactly mr − d times. In particular,

(a) M is pure of weight µ if and only if di
ri

= µ for all i.

(b) M is mixed if and only if the filtration Wµ M̂ :=
⊕

di
ri
≤µ

M̂di,ri comes from a filtration of M by

saturated A-sub-motives W̃µM ⊂M with Wµ M̂ = (W̃µM)⊗AC
C((z)). In this case the filtration

W̃µM equals the weight filtration WµM of M and the di
ri

are the weights of M . In particular,
the weight filtration of a mixed A-motive M is uniquely determined by M .
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(c) Any A-sub-motive M ′ →֒ M and A-quotient motive f : M ։ M ′′ of a pure (mixed) A-motive
M is itself pure (mixed) of the same weight(s), (by letting WµM

′ := M ′ ∩WµM , and letting
WµM

′′ be the saturation of f(WµM) inside M ′′, if M is mixed).

(d) Any A-motive which is isomorphic in A-MotI to a pure (mixed) A-motive is itself pure (mixed).

(e) The weight of a pure A-motive M is wtM = (dimM)/(rkM). The tensor product of two pure
A-motives M and N is again pure of weight (wtM) + (wtN).

(f) The category A-MMotI is a full Q-linear (non-neutral) Tannakian subcategory of A-MotI, and in
particular, a rigid abelian tensor category.

(g) Any morphism f : M ′ → M between mixed A-motives satisfies f(WµM
′) ⊂ WµM . More pre-

cisely, the saturation of f(WµM
′) inside f(M ′) equals f(M ′) ∩WµM .

Remark. We do not know whether in (g) the submodule f(WµM
′) ⊂ f(M ′) is always saturated, that

is, whether the equality f(WµM
′) = f(M ′) ∩WµM always holds.

Proof. The fact that over the algebraically closed field C any z-isocrystal is isomorphic to a direct
sum of standard ones is proved in [Lau96, Theorem 2.4.5]. It is analogous to the Dieudonné-Manin
classification of F -isocrystals over an algebraically closed field of positive characteristic [Man63]. That

the standard z-isocrystals in [Lau96] are isomorphic to our standard ones M̂d,r follows by an elementary
computation.

(a) If M̂ ∼= M̂
⊕(rkM)/r
d,r with µ = d

r and (d, r) = 1, we can take for M∞ the tautological C[[z]]-lattice

C[[z]]⊕ rkM inside M̂
⊕(rkM)/r
d,r to see that M is pure. Conversely, if there is an i with µ = d

r 6=
di
ri
, then

zridτ rirM = zridz−dir cannot be an isomorphism for any C[[z]]-lattice M∞ in M̂ . So M is not pure of
weight µ. (Compare [Tae09a, Proposition 5.1.4].)

(b) If M has a weight filtration WµM ⊂ M with respect to which it is mixed, then (a) implies that

(GrWµ M)⊗AC
C((z)) ∼= M̂

⊕(rkGrWµ M)/r

d,r for µ = d
r with (d, r) = 1. Since the category of z-isocrystals is

semi-simple by [Lau96, Theorem 2.4.5] the sequences

0 // (
⋃
µ′<µWµ′M)⊗AC

C((z)) // (WµM)⊗AC
C((z)) // (GrWµ M )⊗AC

C((z)) // 0

split canonically for all µ. This inductively yields M̂ =
⊕

µ(GrWµ M) ⊗AC
C((z)) and (WµM) ⊗AC

C((z)) =
⊕

µ′≤µ(GrWµ′ M)⊗AC
C((z)) =Wµ M̂ . So the filtration Wµ M̂ comes from WµM .

Conversely, if there is a filtration W̃µM ⊂ M satisfying Wµ M̂ = (W̃µM) ⊗AC
C((z)) then

(GrW̃µ M) ⊗AC
C((z)) ∼=

⊕
di
ri
=µ
M̂di,ri . So GrW̃µ M is pure of weight µ by (a) and M is mixed with

W̃µM as a weight filtration. In this case W̃µM ⊂M ∩Wµ M̂ =: N are two saturated A-sub-motives
of M . Since

W̃µM ⊗AC
C((z)) ⊂ N ⊗AC

C((z)) ⊂ Wµ M̂ ⊂ W̃µM ⊗AC
C((z))

they have the same rank. This implies W̃µM = M ∩Wµ M̂ . Thus, the weight filtration WµM is
uniquely determined by M if M is mixed.

(c) If M is pure of weight µ = d
r with (d, r) = 1, we see that M̂ ∼= M̂

⊕(rkM)/r
d,r and M̂ ′ ⊂ M̂ and

M̂ ։ M̂ ′′. By [Har11, Proposition 1.2.11] also M̂ ′ ∼= M̂
⊕(rkM ′)/r
d,r and M̂ ′′ ∼= M̂

⊕(rkM ′′)/r
d,r . So M ′

and M ′′ are likewise pure of weight µ by (a). If M is mixed, we set WµM
′ := M ′ ∩WµM and we

let WµM
′′ be the saturation of f(WµM) inside M ′′. Then WµM

′ ⊂M ′ is a saturated A-sub-motive
with GrWµ M ′ ⊂ GrWµ M . Thus the graded piece GrWµ M ′ is pure by the above and M ′ is mixed. Also
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GrWµ M → GrWµ M ′′ has torsion cokernel because WµM → WµM
′′ has, and hence, the z-isocrystal

̂GrWµ M ′′ is a quotient of ĜrWµ M and pure by [Har11, Proposition 1.2.11]. Therefore, GrWµ M ′′ is pure
by (a) and M ′′ is mixed.

(d) If f : M ′ →M is an isomorphism in A-MotI and M is pure (mixed), we can multiply f by a non-
zero element of A and assume that f is a morphism in A-Mot. Then f realizes M ′ as an A-sub-motive
of M and M ′ is pure (mixed) by (c).

(e) If M∞ ⊂ M̂ and N∞ ⊂ N̂ are C[[z]]-lattices on which the maps zdτ rM : σr∗M∞
∼−→ M∞ and

zd
′

τ r
′

N : σr
′∗N∞

∼−→ N∞ are isomorphisms, then M∞ ⊗C[[z]] N∞ ⊂ M̂ ⊗C((z)) N̂ is a C[[z]]-lattice with

zdr
′+rd′ τ rr

′

M⊗N

(
σrr

′∗(M∞ ⊗C[[z]] N∞)
)

= zdr
′

τ rr
′

M (σrr
′∗M∞)⊗C[[z]] z

rd′τ rr
′

N (σrr
′∗N∞)

= M∞ ⊗C[[z]] N∞ .

SoM⊗N is pure of weight dr′+rd′

rr′ = d
r +

d′

r′ = (wtM)+(wtN). The formula wtM = (dimM )/(rkM )
follows from [And86, Lemma 1.10.1] if M is effective and from Remark 3.7 in the general case.

(f) Clearly a direct sum M ⊕ N of mixed A-motives is mixed with the direct sum weight filtration
Wµ(M ⊕N) = (WµM)⊕ (WµN). If f is a morphism in A-MMotI, we may multiply it with a non-zero
element a ∈ A to obtain a morphism in A-MMot. Then its kernel, cokernel, image and coimage in
A-Mot from Proposition 3.3 again belong to A-MMot by (c). This shows that A-MMotI is an abelian
subcategory of A-MotI. Moreover, A-MMotI is strictly full by (d) and contains 1l(0), which is pure
of weight 0. Also the tensor product of two mixed A-motives M and N , equipped with the weight
filtration Wλ(M ⊗N) :=

∑
µ+ν=λWµM ⊗WνN is again mixed, because GrWλ (M ⊗N) is a quotient

of the pure A-motive
⊕

µ+ν=λGrWµ M ⊗ GrWν N of weight λ and therefore is itself pure of weight
λ by (c). Furthermore, the dual M∨ of a mixed A-motive M , equipped with the weight filtration
WµM

∨ := {m∨ ∈ M∨ : m∨(WλM) = 0 ∀λ < −µ } is mixed. Indeed, one easily computes that

GrWλ (M∨) = (GrW−λM)∨ and the latter is pure of weight λ by (a) and the fact that (M̂d,r)
∨ ∼= M̂−d,r

in the category of z-isocrystals. So also the internal hom Hom(M,N ) ∼= N ⊗M∨ of two mixed (pure)
A-motives M and N is mixed (pure).

(g) By (c) the image A-motive f(M ′) ⊂ M is mixed both as a sub-motive of M with Wµf(M
′) =

f(M ′) ∩WµM and as a quotient motive of M with Wµf(M
′) being the saturation of f(WµM

′). By
(b) both filtrations coincide, so f(WµM

′) ⊂WµM .

Remark 3.12. The category A-MMot is an exact subcategory of A-Mot in the sense of Quillen [Qui73,

§2] if one takes as class E of exact sequences 0 −→M ′
f−−→M

g−−→M ′′ −→ 0 of mixed A-motives those
which are exact in A-Mot, that is whose underlying sequence of AC-modules is exact; see Remark 3.5(b).
Indeed, the only statement that does not directly follow from Remark 3.5(b) is that E is closed under
pullbacks via morphisms h′′ : N ′′ → M ′′ and pushout via morphisms h′ : M ′ → N ′. For this one
has to show that the pullback (h′′)∗M = ker

(
(g,−h′′) : M ⊕ N ′′ → M ′′

)
and pushout h′∗(M) =

coker
(
(f, h′) : M ′ →M ⊕N ′

)
in the category A-Mot are mixed. This follows from Proposition 3.11(c)

and (f), because (h′′)∗M is a submotive of M ⊕N ′′, and h′∗(M) is a quotient of M ⊕N ′.

Example 3.13. Not every A-motive is mixed. For example, let A = Fq[t], z = 1
t , θ = c∗(t) ∈ C,

and M = A⊕2C with τM = Φ :=

(
(t− θ)2 1

0 t− θ

)
. Then there is an exact sequence of A-motives

0 → M ′ → M → M ′′ → 0 with M ′ = (AC, τM ′ = (t − θ)2) and M ′′ = (AC, τM ′′ = (t − θ)). Since

M̂ ′ ∼= M̂2,1 and M̂ ′′ ∼= M̂1,1 and any sequence of z-isocrystals splits, we see that M̂ ∼= M̂1,1 ⊕ M̂2,1.
Hence, if M were mixed, its weights must be 1 and 2. But M contains no pure A-sub-motive of
weight one. Indeed such a sub-motive would be isomorphic to M ′′ and generated by a non-zero vector
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( uv ) ∈ A2
C with Φ ·

(
σ∗(u)
σ∗(v)

)
= (t − θ) · ( uv ). This amounts to (t − θ)2σ∗(u) + σ∗(v) = (t − θ)u and

σ∗(v) = v, whence v ∈ A. Since A → C, t 7→ θ, is injective (t − θ) ∤ v = σ∗(v) in AC if v 6= 0. We
conclude that v = 0 and (t − θ)σ∗(u) = u, which is impossible by reasons of degree. Hence, M is
not mixed. The reason is of course that M is an extension of two pure A-motives but “in the wrong
direction”.

Proposition 3.14. Let M = (M, τM ) be an A-motive whose z-isocrystal M̂ := M ⊗AC
C((z)) is

isomorphic to
⊕

i M̂di,ri for di, ri ∈ Z with ri > 0 and (di, ri) = 1 for all i; see Proposition 3.11.

(a) If M is effective and M is a finitely generated module over the skew-polynomial ring C{τ}, where
τ acts on M through m 7→ τM(σ∗m), then di > 0 for all i.

(b) If di/ri ≤ n for all i and τM (σ∗M) ⊂ J−dM for d ∈ Z, then M extends to a locally free sheaf M
on CC with τ : σ∗M →M

(
n ·∞C + d ·V(J)

)
, where the notation

(
n · ∞C + d ·V(J)

)
means that

we allow poles at ∞C of order less than or equal to n and at V(J) of order less than or equal to
d.

(c) If M is not necessarily effective, then M is pure of weight µ = d
r with (d, r) = 1 if and only if

M extends to a locally free sheaf M on CC such that zdτ rM is an isomorphism σr∗M∞
∼−→M∞

on the stalks at ∞C.

Proof. (a) (compare [Tae09b, Proposition 8]) We may assume that di
ri
≥ di+1

ri+1
for all i. By the explicit

description of M̂di,ri in (3.4) there is a C((z))-basis B of M̂ and an integer s > 0 such that (τM⊗ id)s is a
diagonal matrix with entries z−sdi/ri with respect to B. Assume that d1 ≤ 0. SinceM is finitely gener-
ated as a C{τ}-module there are finitely many elements mi ∈M such thatM =

∑
i,j≥0C·τ

sj
M (σsj∗mi).

By definition of M̂ = M ⊗AC
C((z)) the set M [z] = M ⊗AC

AC[z] =
∑

i,j,k≥0C · zkτ
sj
M (σsj∗mi) is z-

adically dense in M̂ . We write mi with respect to the basis B as a vector (mi,1, . . . ,mi,r)
T ∈ C((z))⊕r.

Then the first coordinates of the elements of M [z] have the form
∑

i,j,k≥0 bi,j,kz
kτ sjM (σsj∗mi,1) =∑

i,j,k≥0 bi,j,kz
k−sjd1/r1σsj∗mi,1 for bi,j,k ∈ C. Since k − sjd1/r1 ≥ 0 for all j and k, all these terms lie

in zNC[[z]] for a suitable N ∈ Z. In particular, elements of M̂ with first coordinate outside zNC[[z]]
can not belong to the z-adic closure of M [z]. This contradiction shows that our assumption was false
and d1 > 0.

(c) If the described extension M of M exists, then M ⊗OCC
C[[z]] is a C[[z]]-lattice inside M̂ on which

zdτ rM is an isomorphism and M is pure of weight d
r by Definition 3.8(a).

We prove (b) and the remaining implication of (c). Since mi := ⌈diri ⌉ ≤ n for all i, we can define M by

requiring that M ⊗OCC
C[[z]] is equal to the sum of the tautological C[[z]]-lattices C[[z]]⊕ri inside M̂di,ri

in (3.4). Then M has the desired properties.

Proposition 3.15. If di > 0 for all i, then the set
⋃
n∈N>0

σ̌n∗τ−nM (M) is z-adically dense in M̂ :=
M ⊗AC

C((z)).

Proof. We choose a finite flat inclusion Fq[t] →֒ A and set z̃ := 1
t . Then M is a finite (locally) free

C[t]-module, say of rank r and M̂ =M⊗C[t]C((z̃)). We choose a C[t]-basis B ofM . By Proposition 3.11

there is a C((z))-isomorphism M̂ ∼=
⊕

i M̂di,ri . We let B̂ be the C((z̃))-basis of M̂ obtained from the

standard basis of the M̂di,ri given by (3.4) and from the choice of a C[[z̃]]-basis of C[[z]]. The base

change between B̂ and B is given by a matrix U ∈ GLr
(
C((z̃))

)
. There is an integer N ≥ 0 such that

U,U−1 ∈ z̃−NC[[z̃]]r×r. By our assumption di > 0 and the explicit form of the M̂di,ri from (3.4) there

is a positive integer s such that the matrix T representing τ−sM with respect to the basis B̂ lies in
z̃2N+1C[[z̃]]r×r. Therefore, the matrix σs∗(U)TU−1 representing τ−sM with respect to the basis B lies
in z̃ C[[z̃]]r×r. Now the proposition is a consequence of the following
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Lemma 3.16. If τ−sM ∈ z̃C[[z̃]]r×r. Then for all x ∈ C((z̃))r and for all n ∈ N0 there exists a y ∈ C[t]r

such that x− σ̌sn∗τ−snM (y) ∈ z̃n+1C[[z̃]]r.

Proof. Write τ snM (σsn∗(x)) =
∑

i biz̃
i with bi ∈ Cr and set y :=

∑
i≤0 bit

−i ∈ C[t]r. Then x −
σ̌sn∗τ−snM (y) = σ̌sn∗τ−snM

(∑
i>0 biz̃

i
)
∈ z̃n+1C[[z̃]]r because

∑
i>0 biz̃

i ∈ z̃C[[z̃]]r.

3.3 Uniformizability

In order to define the notion of uniformizability (also called rigid analytic triviality) for A-motives we
have to introduce some notation of rigid analytic geometry as in [HP04, HP18]. See [Bos14] or [BGR84]
for a general introduction to rigid analytic geometry. With the curve CC and its open affine part

.
CC one

can associate by [BGR84, §9.3.4] rigid analytic spaces CC := (CC)
rig and

.
CC := (

.
CC)

rig = CC r {∞C}
where, using our convention that the point ∞ ∈ C is Fq-rational, ∞C ∈ CC is the unique point above
∞ ∈ C. By construction, the underlying sets of CC and

.
CC are the sets of C-valued points of CC

and
.
CC, respectively. For any open rigid analytic subspace U ⊂ CC we let O(U) := Γ(U,OU) denote

the ring of regular functions on U. The endomorphism σ of CC induces endomorphisms of CC and
.
CC

which we denote by the same symbol σ.
Let OC be the valuation ring of C and let κC be its residue field. By the valuative criterion of

properness every point of CC = CC(C) = C(C) extends uniquely to an OC-valued point of C and in
the reduction gives rise to a κC-valued point of C. This yields a reduction map red : CC → C(κC). The
curve CκC is non-singular and, due to our convention∞ ∈ C(Fq), the subscheme {∞}×Spec FqSpecκC ⊂
CκC consists of a single point which we call∞κC . So [BL85, Proposition 2.2] implies that the preimage
DC of ∞κC under red is an open rigid analytic unit disc in CC around ∞C. Without the convention
∞ ∈ C(Fq) the subscheme {∞} ×SpecFq SpecκC ⊂ CκC decomposes into finitely many points and

there is a corresponding disc for each one of them; see [HP18, § 11]. Let further
.
DC = DCr{∞C}

be the punctured open unit disc around ∞C in CC. By [BL85, Proposition 2.2] both discs have z
as a coordinate. By Lemma 1.3 the power series ring C[[z − ζ]] is also canonically isomorphic to the
completion of the local ring of CC at the closed point V(J), respectively of DC and

.
DC at the point

{z = ζ} ∈ DC. The complement CC rDC of DC in CC equals the preimage of the open affine curve.
CκC under the reduction map red and is hence affinoid.

For example, if C = P1
Fq

and A = Fq[t] we can give the following explicit description

(3.5) O(CC rDC) = C〈t〉 :=
{ ∞∑

i=0

bit
i : bi ∈ C, lim

i→∞
|bi| = 0

}

and CC r DC = SpC〈t〉 is the closed unit disc inside C(C) r {∞C} = C on which the coordinate t
has absolute value less or equal to 1. Also we can take z = 1

t as the coordinate on the disc DC. For
general C we may choose an element a ∈ ArFq and consider the finite flat morphisms Fq[t]→ A and
C[t]→ AC which send t to a. Then O(CC rDC) = AC ⊗C[t] C〈t〉 and CC rDC = Sp(AC ⊗C[t] C〈t〉).

The spaces
.
CC, DC and

.
DC are quasi-Stein spaces in the sense of Kiehl [Kie67, §2]. In particular,

the global section functors are equivalences between the categories of locally free coherent sheaves
on these spaces and the categories of finitely generated projective modules over their rings of global
sections; see Gruson [Gru68, Chapter V, Theorem 1 and Remark on p. 85].

Definition 3.17. For an A-motive M , we define the τ -invariants

Λ(M ) :=
(
M ⊗AC

O(CC rDC)
)τ

:=
{
m ∈M ⊗AC

O(CC rDC) : τM (σ∗m) = m
}
.

We also set H1(M ) := Λ(M )⊗A Q.
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Since the ring of σ∗-invariants in O(CC r DC) is equal to A, the set Λ(M) is an A-module. By
[BH07, Lemma 4.2(b)], it is finite projective of rank at most equal to rkM . Therefore, also H1(M) is
a finite dimensional Q-vector space.

Definition 3.18. An A-motive M is called uniformizable (or rigid analytically trivial) if the natural
homomorphism

hM : Λ(M )⊗A O(CC rDC) −→M ⊗AC
O(CC rDC) , λ⊗ f 7→ f · λ,

is an isomorphism. The full subcategory of A-MotI consisting of all uniformizable A-motives is denoted
A-UMotI. The full subcategory of A-MMotI consisting of all uniformizable mixed A-motives is denoted
A-MUMotI.

Remark 3.19. If A = Fq[t], then the category A-UMotI is canonically equivalent to the category
tM◦a.t. of Taelman [Tae09a, Def. 3.2.8] in view of Remark 3.7.

Example 3.20. (a) 1l(0) = (AC, τ = idAC
) is uniformizable, because Λ

(
1l(0)

)
= A and A⊗A O(CC r

DC) = AC ⊗AC
O(CC rDC).

(b) Let C = P1
Fq
, A = Fq[t], z = 1

t , θ := c∗(t) = 1
ζ ∈ C. The Carlitz t-motive M = (AC, τM = t − θ)

is uniformizable. Namely, we set ℓ−ζ :=
∏∞
i=0(1 − ζq

i
t) ∈ O( .CC) and choose an element η ∈ C with

ηq−1 = −ζ. Then ηℓ−ζ ∈ Λ(M)r{0}. Since ηℓ−ζ has no zeroes outside DC it generates the O(CCrDC)-
module M ⊗AC

O(CC rDC) = O(CC rDC) and so hM is an isomorphism and M is uniformizable.

The following criterion for uniformizability is well known.

Lemma 3.21. Let M be an A-motive of rank r.

(a) The homomorphism hM is injective and satisfies hM ◦ ( idΛ(M)⊗ id) = (τM ⊗ id) ◦ σ∗hM .

(b) M is uniformizable if and only if rkA Λ(M) = r.

Proof. Assertion (a) follows for example from [BH07, Lemma 4.2(b)], and assertion (b) from [BH07,
Lemma 4.2(c)].

Lemma 3.22. Let C = P1
Fq
, A = Fq[t], AC = C[t] and θ = c∗(t). Then O(CC r DC

)
= C〈t〉; see

(3.5). Let Φ = (Φij)ij ∈ GLr
(
C[t][ 1

t−θ ]
)
represent τM with respect to a C[t]-basis B = (m1, . . . ,mr)

of M , that is τM(σ∗mj) =
∑r

i=1Φijmi. Then M is uniformizable if and only if there is a matrix
Ψ ∈ GLr(C〈t〉) such that

σ∗ΨT = ΨT · Φ ,
In that case, Ψ is called a rigid analytic trivialization of Φ. It is uniquely determined up to multiplica-
tion on the right with a matrix in GLr(Fq[t]). The columns of (ΨT )−1 are the coordinate vectors with
respect to B of an Fq[t]-basis C of Λ(M). Moreover, with respect to the bases C and B the isomorphism
hM is represented by (ΨT )−1.

Remark 3.23. Here (. . .)T denotes the transpose matrix. The matrix Ψ will turn out to be Anderson’s
scattering matrix and this is the reason why we work with ΨT here; see Remark 5.34 below.

Proof of Lemma 3.22. Assume thatM is rigid analytically trivial and choose an Fq[t]-basis C of Λ(M).
Let (ΨT )−1 be the matrix representing the isomorphism hM : Λ(M )⊗Fq[t] C〈t〉 ∼−→M ⊗C[t] C〈t〉 with
respect to the bases C and B. Then Φ · σ∗(ΨT )−1 = (ΨT )−1 and Ψ ∈ GLr(C〈t〉) is a rigid analytic
trivialization. Conversely, if there is a rigid analytic trivialization Ψ, then the columns of (ΨT )−1

provide a C〈t〉-basis of M ⊗C[t] C〈t〉, with respect to which τM is represented by the identity matrix

ΨT Φσ∗(ΨT )−1 = Idr. Therefore, the columns of (ΨT )−1 form an Fq[t]-basis C of Λ(M) and hM is
represented with respect to the bases C and B by (ΨT )−1. Therefore, hM is an isomorphism and M
is uniformizable.
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Before we can conclude that A-UMotI and A-MUMotI are neutral Tannakian categories over Q with
fiber functor M 7→ H1(M), we need to state the following

Proposition 3.24. (a) Every A-motive which is isomorphic to a uniformizable A-motive in A-MotI
is itself uniformizable.

(b) Every A-motive of rank 1 is uniformizable.

(c) If M and N are uniformizable A-motives, then also M ⊗ N and Hom(M,N) and M∨ are
uniformizable with

Λ(M ⊗N) ∼= Λ(M)⊗A Λ(N) and

Λ
(
Hom(M,N)

) ∼= HomA

(
Λ(M),Λ(N )

)
and

Λ(M∨) ∼= HomA(Λ(M ), A) .

(d) If M and N are uniformizable, the natural map QHom(M,N )→ HomQ(H
1(M ),H1(N )),

f ⊗ a 7−→ H1(f ⊗ a) := a ·
(
hN
−1 ◦ (f ⊗ id) ◦ hM |H1(M )

)

for f ∈ HomA-Mot(M,N ) and a ∈ Q, is injective.

Proof. (a) Let M be uniformizable and let f : M ∼−→ N be an isomorphism of A-motives in A-MotI.
By multiplying f with an element of A we can assume that f : M →֒ N is an A-sub-motive in A-Mot.
Then f : Λ(M ) →֒ Λ(N ) and rkM = rkA Λ(M ) ≤ rkA Λ(N) ≤ rkN = rkM . So N is uniformizable
by Lemma 3.21(b).

(b) is proved in [HP18, Propositions 12.3(b) and 12.5]. In the special case where C = P1
Fq
, A = Fq[t]

and θ = c∗(t) ∈ C, assertion (b) follows from (c) and from Examples 3.6 and 3.20, because all t-motives
of rank 1 are tensor powers of the Carlitz t-motive (C[t], t− θ).
(c) If M and N are uniformizable, then hM and hN induce an isomorphism

Λ(M)⊗A Λ(N)⊗A O(CC rDC)
hM⊗hN−−−−−−→M ⊗AC

N ⊗AC
O(CC rDC)

satisfying (hM ⊗ hN ) ◦ ( idΛ(M)⊗ idΛ(N)⊗ id) = (τM ⊗ τN ⊗ id) ◦ σ∗(hM ⊗ hN ). Therefore, the
τ -invariants are

Λ(M ⊗N) =
(
M ⊗AC

N ⊗AC
O(CC rDC)

)τ ∼= Λ(M)⊗A Λ(N) .

Likewise, by applying [Eis95, Proposition 2.10], the uniformizability of M yields an isomorphism

HomA(Λ(M ), A) ⊗A O(CC rDC)
(hM

∨)−1

−−−−−−−→M∨ ⊗AC
O(CC rDC)

satisfying (hM
∨)−1 ◦ ( idHomA(Λ(M),A)⊗ id) = (τM∨ ⊗ id) ◦σ∗(hM∨)−1. Therefore, the τ -invariants are

Λ(M∨) =
(
M∨ ⊗AC

O(CC rDC)
)τ ∼= HomA(Λ(M ), A) .

From this also the statement about Hom(M,N ) ∼= N ⊗M∨ follows.

(d) Since hM and hN are isomorphisms, f ⊗ a can be recovered from H1(f ⊗ a).

Lemma 3.25. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of A-motives. Then M is
uniformizable if and only if both M ′ and M ′′ are. In this case the induced sequence of A-modules
0→ Λ(M ′)→ Λ(M)→ Λ(M ′′)→ 0 is exact.
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Proof. The first assertion follows from Anderson [And86, Lemma 2.7.2 and 2.10.4]. For the second
assertion observe that Λ(M ′) = ker

(
id−τ : M ′ ⊗AC

O(CC r DC) → M ′ ⊗AC
O(CC r DC)

)
. Since

the map id−τ is surjective by [BH07, Proposition 6.1] the snake lemma proves the exactness of the
sequence 0→ Λ(M ′)→ Λ(M )→ Λ(M ′′)→ 0.

Remark 3.26. If a mixed A-motive M is uniformizable, then all filtration steps WµM and factors
GrWµ M of the weight filtration of M are uniformizable by Lemma 3.25. Therefore, M could equiva-
lently be called a uniformizable mixed A-motive or a mixed uniformizable A-motive.

Theorem 3.27. The category A-UMotI of uniformizable A-motives up to isogeny and its rigid tensor
subcategory A-MUMotI of uniformizable mixed A-motives up to isogeny are neutral Tannakian categories
over Q with fiber functor M 7→ H1(M).

Proof. By Propositions 3.24 and 3.11(f), A-UMotI and A-MUMotI are closed under taking tensor prod-
ucts, internal homs and duals, contain the unit object 1l(0) for the tensor product, and M 7→ H1(M )
is a faithful Q-linear tensor functor, which is exact by Lemma 3.25. Moreover, H1(M ) is finite-
dimensional for any uniformizable A-motive M by Lemma 3.21(b). As strictly full subcategories of
the Q-linear abelian category A-MotI also A-UMotI and A-MUMotI are Q-linear. Let f : M → N be a
morphism in A-UMotI. Then the kernel, cokernel, image and coimage of f in A-MotI are uniformizable
by Lemma 3.25 and belong to A-UMotI. Therefore, A-UMotI and A-MUMotI are abelian.

This theorem allows to associate with each (mixed) uniformizable A-motive M an algebraic group
ΓM over Q as follows. Consider the Tannakian subcategory 〈〈M〉〉 of A-UMotI, respectively A-MUMotI
generated by M . By Tannakian duality [DM82, Theorem 2.11 and Proposition 2.20], the category
〈〈M 〉〉 is tensor equivalent to the category of Q-rational representations of a linear algebraic group
scheme ΓM over Q which is a closed subgroup of GLQ(H1(M )).

Definition 3.28. The linear algebraic Q-group scheme ΓM associated with M is called the (motivic)
Galois group of M .

Example 3.29. The trivial A-motive 1l(0) has trivial motivic Galois group Γ1l(0) = (1).
For any A-motive 1l(n) of rank 1 with n 6= 0 (see Example 3.6) the motivic Galois group equals

Γ1l(n) = Gm,Q. Indeed, since H1
(
1l(n)

) ∼= Q, the group Γ1l(n) is a subgroup of GLQ
(
H1(1l(n))

)
= Gm,Q.

If it were a finite group, it would be annihilated by some positive integer d. This implies that it
operates trivially on 1l(n)⊗d ∼= 1l(dn) ∈ 〈〈1l(n)〉〉. Therefore, 1l(dn) must be a direct sum of the trivial
object 1l(0), that is 1l(dn) ∼= 1l(0), which is a contradiction.

3.4 The associated Hodge-Pink structure

We associate a mixed Q-Hodge-Pink structure with every uniformizable mixed A-motive. Note that
(a variant of) this is used by Taelman [Tae20] in this volume to study 1-t-motives.

For i ∈ N0 we consider the pullbacks σi∗J = (a ⊗ 1 − 1 ⊗ c∗(a)qi : a ∈ A) ⊂ AC and the points
V(σi∗J) of

.
CC and

.
CC. They correspond to the points V(z− ζqi) ∈ .

DC and have ∞C as accumulation
point. Therefore,

.
CC r

⋃
i∈N0

V(σi∗J) is an admissible open rigid analytic subspace of
.
CC.

Proposition 3.30. Let M be a uniformizable A-motive over C.

(a) Then Λ(M ) equals
{
m ∈ M ⊗AC

O
( .
CC r

⋃
i∈N0

V(σi∗J)
)
: τM(σ∗m) = m

}
and the isomor-

phisms hM and σ∗hM extend to isomorphisms of locally free sheaves

hM : Λ(M)⊗A O .
CCr

⋃
i∈N0

V(σi∗J)
∼−→ M ⊗AC

O .
CCr

⋃
i∈N0

V(σi∗J) ,

λ⊗ f 7−→ f · λ ,

σ∗hM : Λ(M)⊗A O .
CCr

⋃
i∈N>0

V(σi∗J)
∼−→ σ∗M ⊗AC

O .
CCr

⋃
i∈N>0

V(σi∗J) ,

λ⊗ f 7−→ f · σ∗λ ,
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satisfying hM ◦ ( idΛ(M)⊗ id) = (τM ⊗ id) ◦ σ∗hM .

(b) If moreover M is effective, then Λ(M) equals
{
m ∈ M ⊗AC

O( .CC) : τM(σ∗m) = m
}
and the

isomorphism hM extends to an injective homomorphism

hM : Λ(M )⊗A O .
CC
−→ M ⊗AC

O .
CC
, λ⊗ f 7→ f · λ,

with hM ◦ ( idΛ(M )⊗ id) = (τM ⊗ id) ◦σ∗hM . At the point V(J) its cokernel satisfies coker hM ⊗
C[[z − ζ]] =M/τM (σ∗M).

Proof. (b) If M is effective, the claimed equality for Λ(M ) was proved in [BH07, Proposition 3.4].
This allows to extend hM to a homomorphism

hM : Λ(M )⊗A O(
.
CC) −→ M ⊗AC

O( .CC) , λ⊗ f 7→ f · λ .
which satisfies hM ◦ ( idΛ(M)⊗ id) = (τM ⊗ id) ◦ σ∗hM and is injective because O( .CC) ⊂ O(CC rDC).
Let D := coker hM and consider the following diagram, in which the first row is exact because of the
flatness of σ∗; see Remark 1.1.

0 // Λ(M )⊗A σ∗O(
.
CC)

σ∗hM
//

idΛ(M)⊗ id ∼=

��

σ∗M ⊗AC
O( .CC) //

� _

τM ⊗ id

��

σ∗D //

τD

��

0

0 // Λ(M)⊗A O(
.
CC)

hM
//M ⊗AC

O( .CC) // D // 0

By the snake lemma, τD is injective and coker τM ∼= coker τD. The support of D is contained in
DC. So we now look at the points in DC and use z as a coordinate on DC. Let α 6= ζ and consider
the point {z = α} in DC. Since {z = α} 6= V(J) and coker τM is supported at V(J), we find
σ∗
(
D ⊗ C[[z − αq−1

]]
)
= (σ∗D) ⊗ C[[z − α]] ∼= D ⊗ C[[z − α]]. Since the support of D is discrete on

.
CC it cannot have a limit point on the affinoid space CC r {P ∈ DC : |z(P )| < |ζ|}. This implies
D⊗C[[z−α]] = (0) for all α /∈ ⋃i∈N0

{ζqi} and proves that hM is an isomorphism outside
⋃
i∈N0

V(σi∗J).
Moreover, (σ∗D)⊗C[[z − ζ]] = (0) and coker τM = coker τM ⊗C[[z − ζ]] ∼= D⊗C[[z − ζ]], and so σ∗hM
is an isomorphism outside

⋃
i∈N>0

V(σi∗J).

(a) If M is not effective, then M is isomorphic to N ⊗ 1l(−n) by Remark 3.7 for an effective A-motive
N and some positive integer n. By Proposition 3.24 the A-motives 1l(n) and N ∼= M ⊗ 1l(n) are
uniformizable. Since N and 1l(n) are effective, our proof of (b) yields isomorphisms

hN : Λ(N )⊗A O .
CCr

⋃
i∈N0

V(σi∗J)
∼−→ N ⊗AC

O .
CCr

⋃
i∈N0

V(σi∗J) and

h1l(n) : Λ(1l(n))⊗A O .
CCr

⋃
i∈N0

V(σi∗J)
∼−→ 1l(n)⊗AC

O .
CCr

⋃
i∈N0

V(σi∗J) .

Dualizing and inverting the second isomorphism and tensoring with the first yields the isomorphism

hN ⊗ (h∨

1l(n))
−1 : Λ(N)⊗A Λ(1l(n))∨ ⊗A O .

CCr
⋃

i∈N0
V(σi∗J)

∼−→

N ⊗AC
1l(n)∨ ⊗AC

O .
CCr

⋃
i∈N0

V(σi∗J)

which satisfies

hN ⊗ (h∨

1l(n))
−1 ◦ ( idΛ(N)⊗ idΛ(1l(n))⊗ id) = (τN ⊗ (τ∨

1l(n))
−1 ⊗ id) ◦ σ∗(hN ⊗ (h∨

1l(n))
−1) .

Combined with the isomorphisms N ⊗AC
1l(n)∨ ∼=M and Λ(M) ∼= Λ(N)⊗A Λ(1l(n))∨, this yields the

desired extension of hM

Λ(M)⊗A O .
CCr

⋃
i∈N0

V(σi∗J)
∼−→ M ⊗AC

O .
CCr

⋃
i∈N0

V(σi∗J)

and proves Λ(M ) =
{
m ∈M ⊗AC

O
( .
CC r

⋃
i∈N0

V(σi∗J)
)
: τM(σ∗m) = m

}
.
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Corollary 3.31. In the situation of Lemma 3.22 let Ψ ∈ GLr(C〈t〉) be a rigid analytic trivialization
of Φ. Then the entries of Ψ and Ψ−1 converge for all t ∈ C with |t| < |θ|. If M is effective, then the
entries of Ψ−1 even converge for all t ∈ C.

Proof. In view of J = (t−θ) this follows from the fact that hM is represented by the matrix (ΨT )−1.

Proposition 3.30 implies that σ∗hM is an isomorphism locally at V (J) = {z = ζ} ⊂ .
DC. This

allows us to associate a Q-pre Hodge-Pink structure with any uniformizable mixed A-motive as follows.
Namely, hM induces isomorphisms

(3.6) Λ(M)⊗A C((z − ζ))
σ∗hM⊗ idC((z−ζ))

∼=
//

idΛ(M)⊗ idC((z−ζ)) ∼=

��

σ∗M ⊗AC
C((z − ζ))

∼= τM⊗ idC((z−ζ))

��

Λ(M)⊗A C((z − ζ))
hM⊗ idC((z−ζ))

∼=
//M ⊗AC

C((z − ζ)) .

Here hM ⊗ idC((z−ζ)) is an isomorphism because the three others are. Therefore, the preimage q :=
(hM ⊗ idC((z−ζ)))

−1
(
M ⊗AC

C[[z − ζ]]
)
is a C[[z − ζ]]-lattice in Λ(M) ⊗A C((z − ζ)). The tautological

lattice is p := Λ(M )⊗A C[[z − ζ]] = (σ∗hM ⊗ idC[[z−ζ]])
−1
(
σ∗M ⊗AC

C[[z − ζ]]
)
.

Definition 3.32. Let M be a uniformizable mixed A-motive with weight filtration WµM . We set
H1(M ) := (H,W•H, q) with

• H := H1(M ) := Λ(M )⊗A Q,

• WµH := H1(WµM) = Λ(WµM)⊗A Q ⊂ H for each µ ∈ Q,

• q := (hM ⊗ idC((z−ζ)))
−1
(
M ⊗AC

C[[z − ζ]]
)
.

We call H1(M) theQ-Hodge-Pink structure associated withM . (This name is justified by Theorem 3.34
below.) We also set H1(M ) := H1(M)∨ in Q-HP. The functor H1 is covariant and H1 is contravariant
in M .

Remark 3.33. (a) If M = M(E) is the A-motive associated with a Drinfeld A-module E, then
H1(M ) ∼= H1(E)∨ =: H1(E). We will prove this more generally for a uniformizable pure (or mixed)
abelian Anderson A-module E in Theorem 5.39 below.

(b) We draw some conclusions from the description of q and p := Λ(M )⊗A C[[z − ζ]] given before the
definition: If Jm · τM (σ∗M) ⊂ M ⊂ Jn · τM (σ∗M) for some integers n ≤ m, then (z − ζ)mp ⊂ q ⊂
(z − ζ)np. For example, if M is effective, that is τM(σ∗M) ⊂ M , then p ⊂ q and there is an exact
sequence of C[[z − ζ]]-modules

0 −→ p −→ q
hM⊗ idC((z−ζ))−−−−−−−−−−→M/τM (σ∗M) −→ 0 .

Note that M/τM (σ∗M) is a C[[z − ζ]]-module because it is annihilated by some power of z − ζ.
(c) In terms of Definition 2.7 the virtual dimension of M is dimM = degqH

1(M ).

The following theorem is the main theorem of [HP18].

Theorem 3.34. Consider a uniformizable mixed A-motive M .

(a) H1(M) is locally semistable and hence indeed a Q-Hodge-Pink structure.

(b) The functor H1 : M → H1(M) is a Q-linear exact fully faithful tensor functor from the category
A-MUMotI to the category Q-HP.
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(c) The essential image of H1 is closed under the formation of subquotients; that is, if H ′ ⊂ H1(M )
is a Q-Hodge-Pink sub-structure, then there exists a uniformizable mixed A-sub-motive M ′ ⊂M
in A-MUMotI with H1(M ′) = H ′.

(d) The functor H1 defines an exact tensor equivalence between the Tannakian subcategory 〈〈M〉〉 ⊂
A-MUMotI generated by M and the Tannakian subcategory 〈〈H1(M)〉〉 ⊂ Q-HP generated by its
Q-Hodge-Pink structure H1(M ).

Assertions (c) and (d) are the function field analog of the Hodge Conjecture [Hod52, Gro69b,
Del06]. We will prove Theorem 3.34 in Section 7 and discuss its consequences for the Hodge-Pink
group ΓH1(M) in Section 6.

Example 3.35. Let C = P1
Fq
, A = Fq[t], z = 1

t , θ = c∗(t) = 1
ζ ∈ C. Let M = A⊕2C with τM = Φ :=(

t− θ b
0 (t− θ)3

)
. Then M = (M, τM ) is mixed with GrW1 M = W1M ∼= (AC, τ = (t − θ)) and

GrW3 M ∼= (AC, τ = (t−θ)3). SoM has weights 1 and 3. Moreover, M is uniformizable by Lemma 3.25
and Proposition 3.24(b).

We set ℓ−ζ :=
∏∞
i=0(1− ζq

i
t) ∈ O( .CC) and choose an element η ∈ C with ηq−1 = −ζ. Then

Λ(W1M) = {λ ∈ O( .CC) : (t− θ)σ∗(λ) = λ} = ηℓ−ζ · Fq[t],

Λ(GrW3 M) = (ηℓ−ζ )
3 · Fq[t], and

Λ(M) =
(
ηℓ−ζ
0

)
· Fq[t]⊕

(
f

(ηℓ−ζ )3

)
· Fq[t]

for an f ∈ O( .CC) with (t− θ)σ∗(f)+ b · η3qσ∗(ℓ−ζ )3 = f . Putting λ1 :=
(
ηℓ−ζ
0

)
and λ2 :=

(
f

(ηℓ−ζ )3

)
, we

get H(M) = λ1 ·Q⊕ λ2 ·Q and W1H(M) = λ1 ·Q.
With respect to the bases (( 10 ) , (

0
1 )) of M and (λ1, λ2) of Λ(M) the isomorphism hM is given by

the matrix (ΨT )−1 :=

(
ηℓ−ζ f

0 (ηℓ−ζ )
3

)
. Therefore, the Hodge-Pink lattice is described by

q =

(
ηℓ−ζ f

0 (ηℓ−ζ )
3

)−1
· p =

(
t− θ b
0 (t− θ)3

)−1
· p.

Since ℓ−ζ has a simple zero at z = ζ, one sees that q/p (which is also isomorphic to coker τM ) is

isomorphic to C[[z− ζ]]/(z− ζ)⊕C[[z− ζ]]/(z− ζ)3 if (t−θ)|f (equivalently, if (t−θ)|b) and isomorphic
to C[[z − ζ]]/(z − ζ)4 if (t − θ) ∤ f (equivalently, if (t − θ) ∤ b). So the Hodge-Pink weights of H1(M )
are (1, 3) or (0, 4), and the weight polygon lies above the Hodge polygon with the same endpoint
WP (M) ≥ HP (M) in accordance with Theorem 3.34(a) and Remark 2.8.

In particular, if b = (t− θ) · b′ then the equation defining f shows that f vanishes at t = θq
i
for all

i ∈ N0, whence f = ηℓ−ζ f̃ for an f̃ ∈ O( .CC) satisfying σ
∗(f̃) + b′ · η2qσ∗(ℓ−ζ )2 = f̃ .

3.5 Cohomology Realizations

LetM = (M, τM ) be an A-motive of rank r over C. Anderson defined the Betti cohomology realization
of M by setting

H1
Betti(M,B) := Λ(M)⊗A B and H1,Betti(M,B) := HomA(Λ(M ), B)

for any A-algebra B; see [Gos94, § 2.5]. This is most useful when M is uniformizable, in which case
both are locally free B-modules of rank equal to rkM and H1(M ) = H1

Betti(M,Q); see Lemma 3.21. By
Theorem 3.27 this realization provides for B = Q an exact faithful neutral fiber functor on A-UMotI.
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Moreover, the de Rham cohomology realization of M is defined to be

H1
dR(M,C) := σ∗M/J · σ∗M and H1,dR(M,C) := HomC(σ

∗M/J · σ∗M, C).

We define a decreasing filtration of H1
dR(M,C) by C-subspaces

F iH1
dR(M,C) := image of

(
σ∗M ∩ J i · τ−1M (M)

)
in H1

dR(M,C) for all i ∈ Z,

which we call the Hodge-Pink filtration of M ; see [Gos94, § 2.6].
If M satisfies J ·M ⊂ τM(σ∗M) ⊂M then

F 0 = H1
dR(M,C) ⊃ F 1 = τ−1M (J ·M)/J · σ∗M ⊃ F 2 = (0).

For example, this is the case ifM is the A-motive associated with a Drinfeld A-module. In this case the
Hodge-Pink filtration coincides with the Hodge filtration studied by Gekeler, see Proposition 5.45(b)
and Lemma 5.44.

As noted in Remark 2.11 and Example 2.5(c), more useful than the Hodge-Pink filtration is actually
the Hodge-Pink lattice q, and the latter cannot be recovered from the Hodge-Pink filtration in general.
We therefore propose to lift the de Rham cohomology to C((z−ζ)) and define the generalized de Rham
cohomology realization of M by

H1
dR(M,C[[z − ζ]]) := σ∗M ⊗AC

C[[z − ζ]] and

H1
dR

(
M,C((z − ζ))

)
:= σ∗M ⊗AC

C((z − ζ)) and

H1,dR(M,C[[z − ζ]]) := HomAC
(σ∗M, C[[z − ζ]]) and

H1,dR

(
M,C((z − ζ))

)
:= HomAC

(
σ∗M, C((z − ζ))

)
.

In particular by tensoring with the morphism C[[z − ζ]] ։ C, z − ζ 7→ 0 we get back H1
dR(M,C) =

H1
dR

(
M,C[[z− ζ]]

)
⊗C[[z−ζ]]C and H1,dR(M,C) = H1,dR

(
M,C[[z− ζ]]

)
⊗C[[z−ζ]]C. We define the Hodge-

Pink lattices of M as the C[[z − ζ]]-submodules

qM := τ−1M (M)⊗AC
C[[z − ζ]] ⊂ H1

dR

(
M,C((z − ζ))

)
and

qM := (τ∨

M ⊗ idC((z−ζ)))
(
HomAC

(M, C[[z − ζ]])
)
⊂ H1,dR

(
M,C((z − ζ))

)
.

Then the Hodge-Pink filtrations F iH1
dR(M,C) and F iH1,dR(M,C) of M are recovered as the images

of H1
dR

(
M,C[[z − ζ]]

)
∩ (z − ζ)iqM in H1

dR(M,C), respectively of H1,dR

(
M,C[[z − ζ]]

)
∩ (z − ζ)iqM in

H1,dR(M,C) like in Remark 2.4. All these structures are compatible with the natural duality between
H1

dR and H1,dR. The de Rham realization provides (covariant) exact faithful tensor functors

H1
dR( . ,C) : A-MotI −→ VectC , M 7−→ H1

dR(M,C) and(3.7)

H1
dR( . ,C[[z − ζ]]) : A-MotI −→ ModC[[z−ζ]] , M 7−→ H1

dR(M,C[[z − ζ]]) .

This is clear for H1
dR( . ,C[[z − ζ]]) and for H1

dR( . ,C) exactness follows from the snake lemma applied
to multiplication with z − ζ on H1

dR( . ,C[[z − ζ]]). To prove faithfulness for H1
dR( . ,C) note that

every morphism f : M ′ → M can in A-MotI be factored into M ′ ։ im(f) ∼−→ coim(f) →֒ M .
If H1

dR(f,C) is the zero map the exactness of H1
dR( . ,C) shows that H1

dR(im(f),C) = (0). Since
dimCH1

dR(M,C) = rkM it follows that the A-motive im(f) has rank zero and therefore im(f) = (0)
and f = 0.

Finally, let v ∈
.
C be a closed point. We say that v is a finite place of C. Let Av be the

v-adic completion of A, and let Qv be the fraction field of Av. Consider the v-adic completions
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AC,v := lim
←−

AC/v
nAC of AC and Mv := lim←−M/vnM of M . Note that τ : m 7→ τM (σ∗m) for m ∈ M

induces a σ∗⊗̂ idAv -linear map τ : Mv →Mv. We let the τ -invariants of Mv be the Av-module

M τ
v := {m ∈Mv | τ(m) = m}.

It is isomorphic to A
⊕ rkM
v and the inclusion M τ

v ⊂Mv induces a canonical τ -equivariant isomorphism
M τ
v ⊗Av AC,v

∼−→Mv by [TW96, Proposition 6.1]. The v-adic cohomology realizations of M are given
by

H1
v(M,Av) := M τ

v and H1
v(M,Qv) := M τ

v ⊗Av Qv and

H1,v(M,Av) := HomAv(M
τ
v , Av) and H1,v(M,Qv) := HomAv(M

τ
v , Qv) ;

see [Gos94, § 2.3]. If M is defined over a subfield L of C (with L = C allowed) then they carry a
continuous action of Gal(Lsep/L) and the v-adic realization provides (covariant) exact faithful tensor
functors

H1
v( . , Av) : A-Mot −→ ModAv[Gal(Lsep/L)] , M 7−→ H1

v(M,Av) and(3.8)

H1
v( . , Qv) : A-MotI −→ ModQv[Gal(Lsep/L)] , M 7−→ H1

v(M,Qv) .

This follows from the isomorphism H1
v(M,Av) ⊗Av AC,v

∼−→ Mv because Av ⊂ AC,v is faithfully flat.
Moreover, if L is a finitely generated field then Taguchi [Tag95b] and Tamagawa [Tam94, § 2] proved
that

(3.9) H1
v( . , Av) : Hom(M,M ′)⊗A Av ∼−→ HomAv[Gal(Lsep/L)]

(
H1
v(M,Av),H

1
v(M

′, Av)
)

is an isomorphism for A-motives M and M ′. This is the analog of the Tate conjecture for A-motives.

Proposition 3.36. Let M be a pure or mixed A-motive, which is defined over a finite field extension
L of Q. Let P be a finite place of L, not lying above ∞ or v, where M has good reduction, and let FP
be its residue field. Then the geometric Frobenius FrobP of P has a well defined action on H1

v(M,Av)
and each of its eigenvalues lies in the algebraic closure of Q in C and has absolute value (#FP)µ for
a weight µ of M . These eigenvalues are independent of v.

Remark. The geometric Frobenius FrobP of P is the inverse of the arithmetic Frobenius Frob−1P , which
satisfies Frob−1P (x) ≡ x#FP mod P for x ∈ OL.

Proof. Let ρv,M : Gal(Lsep/L) → AutAv H
1
v(M,Av) be the associated Galois representation. By

Gardeyn’s criterion [Gar02, Theorem 1.1] for good reduction, the inertia group of Gal(Lsep/L) at
P acts trivially on H1

v(M,Av) for every v 6=∞ not lying below P, and therefore the Frobenius FrobP
of P has a well defined action ρv,M (FrobP) on H1

v(M,Av). Let MP be the reduction of M at P.
Then there is a canonical isomorphism H1

v(M,Av)
∼−→ H1

v(MP , Av) under which the action of FrobP
corresponds to the action of the Frobenius endomorphism

τ
[FP :Fq]
MP

:= τMP
◦ σ∗τMP

◦ . . . ◦ σ([FP :Fq]−1)∗τMP
: MP [J

−1] = σ[FP :Fq]∗MP [J
−1] ∼−→MP [J

−1] .

Indeed, the action of Frob−1P = σ[FP :Fq]∗ on H1
v(MP , Av) is computed as ρv,M (Frob−1P ) := h−1 ◦

(Frob−1P )∗h via the vertical isomorphisms h in the following commutative diagram

(MP)v ⊗AFP ,v
A

Falg
P
,v

σ[FP :Fq]∗(MP)v ⊗AFP ,v
A

Falg
P
,v

τ
[FP :Fq ]

MP

∼=
// (MP)v ⊗AFP ,v

A
Falg
P
,v

(MP)
τ
v ⊗Av AFalg

P
,v

h ∼=

OO

(MP)
τ
v ⊗Av AFalg

P
,v

(Frob−1
P

)∗h ∼=

OO

ρv,M (Frob−1
P

)⊗ id

∼=
oo (MP)

τ
v ⊗Av AFalg

P
,v
.

h ∼=

OO
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In particular h ◦ ρv,M (FrobP) = τ
[FP :Fq]
MP

◦ h on H1
v(MP , Av). Since Q ⊗A EndFP

(MP) is a finite

dimensional Q-algebra, τ
[FP :Fq]
MP

satisfies a polynomial equation with coefficients in Q and its eigenvalues

on H1
v(MP , Av) satisfy the same equation. In particular, these eigenvalues are independent of the place

v 6= ∞ not lying below P. Now our formula for the absolute values of the eigenvalues was proved
for pure M by Goss [Gos96, Theorem 5.6.10] and follows for mixed M , because the eigenvalues of
FrobP coincide with the eigenvalues on the graded pieces GrWµ M of M by considerations of triangular
matrices. This motivates our convention that the weights of an effective A-motive are non-negative;
see Proposition 3.11(e).

The morphism hM from Proposition 3.30 induces comparison isomorphisms between the Betti and
the v-adic, respectively the de Rham realizations as follow.

Theorem 3.37. If M is a uniformizable A-motive there are canonical comparison isomorphisms,
sometimes also called period isomorphisms

hBetti, v : H1
Betti(M,Av) = Λ(M )⊗A Av ∼−→ H1

v(M,Av) , λ⊗ f 7−→ (f · λ mod vn)n∈N

and

hBetti, dR := σ∗hM ⊗ idC[[z−ζ]] : H1
Betti

(
M,C[[z − ζ]]

)
∼−→ H1

dR

(
M,C[[z − ζ]]

)
,

hBetti, dR := σ∗hM mod J : H1
Betti(M,C) ∼−→ H1

dR(M,C) .

The latter are compatible with the Hodge-Pink lattices, respectively the Hodge-Pink filtration provided
on the Betti realization H1

Betti(M,Q) = H1(M) via the associated Hodge-Pink structure H1(M ).

Proof. Since v 6=∞ the points in the closed subscheme {v}×Fq C ⊂ CC do not specialize to∞κC ∈ CκC
and so this closed subscheme lies in the rigid analytic space CC r DC. This yields isomorphisms
O(CC r DC)/v

nO(CC r DC)
∼−→ AC/v

nAC for all n. The isomorphism hM induces a τ -equivariant
isomorphism

Λ(M)⊗A lim
←−
O(CC rDC)/v

nO(CC rDC)
∼−→ M ⊗AC

lim
←−

AC/v
nAC = Mv .

Taking τ -invariants on both sides and observing

(
lim
←−
O(CC rDC)/v

nO(CC rDC)
)σ= id

=
(
lim
←−

AC/v
nAC

)σ= id
= Av

provides hBetti, v.
The compatibility of the Betti–de Rham comparison isomorphism with the Hodge-Pink lattice and

the Hodge-Pink filtration follows from diagram (3.6).

Remark 3.38. (a) If M = M(E) is the A-motive associated with a Drinfeld A-module E, the iso-
morphism hBetti,dR coincides with the period isomorphism studied by Gekeler [Gek89, Theorem 5.14];
see Section 5.7, in particular Theorem 5.47 and Proposition 5.45.

(b) Note that there are no A-homomorphisms between Av and C and therefore no comparison isomor-
phism between H1

v(M,Av) and H1
dR(M,C) or H1

dR

(
M,C[[z− ζ]]

)
. However, if one considers A-motives

M over an algebraically closed, complete extension K of the v-adic completion Qv instead of over
C, there is a comparison isomorphism between H1

v(M,Av) and H1
dR

(
M,K((z − ζ))

)
; see [HK16, Re-

mark 4.16].
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Example 3.39. Let C = P1
Fq
, A = Fq[t], z = 1

t , θ = c∗(t) = 1
ζ ∈ C, and let M = (C[t], τM = t− θ) be

the Carlitz t-motive from Example 3.6. As in Example 3.20(b) we obtain

Λ(M ) = {λ ∈ O( .CC) : (t− θ)σ∗(λ) = λ} = ηℓ−ζ · Fq[t]

for ℓ−ζ :=
∏∞
i=0(1−ζq

i
t) ∈ O( .CC) and η ∈ C with ηq−1 = −ζ. The comparison isomorphism hBetti, dR =

σ∗hM⊗ idC[[z−ζ]] sends the basis ηℓ
−

ζ of H1
Betti(M,Fq[t]) = Λ(M) to the element σ∗(ηℓ−ζ ) = −ζησ∗(ℓ−ζ ) ∈

H1
dR(M,C[[z − ζ]]) = C[[z − ζ]], respectively to the element −ζησ∗(ℓ−ζ )|t=θ = −ζη∏∞i=1(1 − ζq

i−1) ∈
H1

dR(M,C) = C. The latter is the function field analog of the complex number (2iπ)−1, the in-
verse of the period of the multiplicative group Gm,Q. It is transcendental over Fq(θ) by a result of
Wade [Wad41]. See Example 5.49 for more explanations.

4 Mixed dual A-motives

For applications to transcendence questions like in [ABP04, Pap08, CY07, CPY10, CPTY10, CP11,
CPY11, CP12], it turns out that dual A-motives are even more useful than A-motives; see the article
of Chang [Cha20] in this volume for an introduction. Beware that a dual A-motive is something
different then the dual M∨ of an A-motive M . We clarify the relation between dual A-motives and
A-motives, also in view of purity, mixedness and uniformizability in this section.

4.1 Dual A-motives

We continue with the conventions made in Section 3.1. In particular, we denote the natural inclusion
Q →֒ C by c∗ and consider the maximal ideal J := (a⊗ 1− 1⊗ c∗(a) : a ∈ A) ⊂ AC := A⊗Fq C. The
open subscheme SpecAC rV(J) of CC is affine. We denote its ring of global sections by AC[J

−1].

Definition 4.1. (a) A dual A-motive over C of characteristic c∗ is a pair M̌ = (M̌, τ̌M̌ ) consisting
of a finite projective AC-module M̌ and an isomorphism of AC[J

−1]-modules

τ̌M̌ : σ̌∗M̌ [J−1] ∼−→ M̌ [J−1]

where we set σ̌∗M̌ [J−1] := (σ̌∗M̌)⊗AC
AC[J

−1] and M̌ [J−1] := M̌ ⊗AC
AC[J

−1]. A morphism of
dual A-motives f̌ : M̌ → Ň is a homomorphism of the underlying AC-modules f̌ : M̌ → Ň that
satisfies f̌ ◦ τ̌M̌ = τ̌Ň ◦ σ̌∗f̌ . The category of dual A-motives over C is denoted A-dMot.

(b) The rank of the AC-module M̌ is called the rank of M̌ and is denoted by rk M̌ . The virtual
dimension dim M̌ of M̌ is defined as

dim M̌ := dimC M̌
/
(M̌ ∩ τ̌M̌ (σ̌∗M̌)) − dimC τ̌M̌ (σ̌∗M̌)

/
(M̌ ∩ τ̌M̌ (σ̌∗M̌)) .

(c) A dual A-motive (M̌, τ̌M̌ ) is called effective if τ̌M̌ comes from an AC-homomorphism σ̌∗M̌ → M̌ .
An effective A-motive has virtual dimension ≥ 0.

(d) For two dual A-motives M̌ and Ň over C we call QHom(M̌, Ň) := HomA-dMot(M̌, Ň)⊗A Q the
set of quasi-morphisms from M̌ to Ň .

(e) The category with all dual A-motives as objects and the QHom(M,N) as Hom-sets is called the
category of dual A-motives over C up to isogeny. It is denoted A-dMotI.

Again, if C = P1
Fq

and A = Fq[t], our effective dual A-motives are a slight generalization of the

abelian dual t-motives in [BP20, §4.4], who in addition require that M̌ is finitely generated over C{τ̌}
where τ̌ acts on M̌ through m̌ 7→ τ̌M̌ (σ̌∗m̌).
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The tensor product of two dual A-motives M̌ and Ň is the dual A-motive M̌ ⊗ Ň consisting of
the AC-module M̌ ⊗AC

Ň and the isomorphism τ̌M̌ ⊗ τ̌Ň . The dual A-motive 1̌l(0) with underlying
AC-module AC and τ̌ = idAC

is a unit object for the tensor product in A-dMot and A-dMotI. Both
categories possess finite direct sums in the obvious way. We also define the tensor powers of a dual
A-motive M̌ as M̌⊗0 = 1̌l(0) and as M̌⊗n := M̌⊗n−1⊗M̌ for n > 0. If M̌ = (M̌, τ̌M̌ ) and Ň = (Ň , τ̌Ň )
are dual A-motives the internal hom Hom(M̌, Ň ) is the dual A-motive with underlying AC-module
Ȟ := HomAC

(M̌ , Ň) and τ̌Ȟ : σ̌∗Ȟ[J−1] ∼−→ Ȟ[J−1], ȟ 7→ τ̌Ň ◦ ȟ ◦ τ̌−1M̌ . The dual of a dual A-motive

M̌ is the dual A-motive M̌∨ := Hom(M̌, 1̌l(0)) consisting of the AC-module M̌∨ := HomAC
(M̌ ,AC)

and the isomorphism (τ̌∨

M̌
)−1.

Remark 4.2. The reader should be careful not to confuse dual A-motives M̌ with the duals M∨ of
A-motives M , which are again A-motives. In fact, the relation between A-motives and dual A-motives
is the following. Let Ω1

A/Fq
be the A-module of Kähler differentials. Then Ω1

AC/C
= Ω1

A/Fq
⊗Fq C =

σ∗Ω1
AC/C

= σ̌∗Ω1
AC/C

under the Fq-isomorphism Frobq,C : C ∼−→ C.

Proposition 4.3. Every A-motive M = (M, τM ) induces a dual A-motive M̌ (M) := (M̌, τ̌M̌ ) where

M̌ := HomAC
(σ∗M, Ω1

AC/C
), hence, σ̌∗M̌ = HomAC

(M, Ω1
AC/C

), and

τ̌M̌ := (τM )∨ := HomAC
(τM , Ω

1
AC/C

) : (σ̌∗M̌)⊗AC
AC[J

−1] ∼−→ M̌ ⊗AC
AC[J

−1] ,

σ̌∗m̌ 7−→ σ̌∗m̌ ◦ τM .

Every morphism f : M → N of A-motives induces a morphism f̌ := HomAC
(σ∗f, Ω1

AC/C
) : M̌(N) →

M̌(M ) of the associated dual A-motives.
Conversely, every dual A-motive M̌ = (M̌, τ̌M̌ ) induces an A-motive M(M̌) := (M, τM ) where

M := HomAC
(σ̌∗M̌ , Ω1

AC/C
), hence, σ∗M = HomAC

(M̌ , Ω1
AC/C

), and

τM := (τ̌M̌ )∨ := HomAC
(τ̌M̌ , Ω

1
AC/C

) : (σ∗M)⊗AC
AC[J

−1] ∼−→M ⊗AC
AC[J

−1]
)
,

σ∗m 7−→ σ∗m ◦ τ̌M̌ .

Every morphism f̌ : M̌ → Ň of dual A-motives induces a morphism f := HomAC
(σ̌∗f̌ , Ω1

AC/C
) :

M(Ň )→M(M̌ ) of the associated A-motives.
These mutually inverse functors induce exact tensor-anti-equivalences of categories A-Mot ←→

A-dMot and A-MotI←→ A-dMotI. They map effective A-motives to effective dual A-motives and vice
versa. In particular, the category A-dMotI is a Q-linear (non-neutral) Tannakian category, and hence
a rigid abelian tensor category.

The motivation to throw in the Kähler differentials is given by Theorem 5.13 below.

Proof of Proposition 4.3. Since σ∗ and σ̌∗ are flat by Remark 1.1 and M and M̌ are locally free,
it follows from [Eis95, Proposition 2.10] that σ̌∗HomAC

(σ∗M, Ω1
AC/C

) = HomAC
(M, Ω1

AC/C
) and

σ∗HomAC
(σ̌∗M̌ , Ω1

AC/C
) = HomAC

(M̌, Ω1
AC/C

). With this observation the proposition is straight for-
ward to prove, and the final statements about the category A-dMotI follow from Proposition 3.4.

Remark 4.4. (a) A neutral fiber functor only exists on the full subcategory of uniformizable dual
A-motives; see Theorem 4.23

(b) The category A-dMot is an exact category in the sense of Quillen [Qui73, §2] if one calls a sequence
of dual A-motives exact when its underlying sequence of AC-modules is exact; compare Remark 3.5(b).
The same is true for the subcategories of dual A-motives which are effective, respectively effective and
finitely generated over C{τ̌}.
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(c) For the rank and (virtual) dimension of dual A-motives the formulas (3.3) hold correspondingly
and rk M̌(M) = rkM and dim M̌(M ) = dimM .

(d) It can be proved directly, but also follows from Proposition 4.3 and Remark 3.7(c) that the set of
morphisms HomA-dMot(M̌, Ň ) between two dual A-motives M̌ and Ň is a finite projective A-module
of rank at most (rk M̌ ) · (rk Ň).

Example 4.5. An effective dual A-motive of rank 1 with τ̌M̌ (σ̌∗M̌) = J · M̌ is called a dual Carlitz-
Hayes A-motive. Clearly, M̌(1l(1)) is a dual Carlitz-Hayes A-motive for any (non-dual) Carlitz-Hayes
A-motive 1l(1). Therefore, Example 3.6 proves the existence of dual Carlitz-Hayes A-motives and that
they are all isomorphic in A-dMotI. So we may denote any one of them by 1̌l(1). We also define
1̌l(n) := 1̌l(1)⊗n for n > 0 and 1̌l(n) := 1̌l(−n)∨ for n < 0.

If C = P1
Fq
, A = Fq[t] and θ = c∗(t) ∈ C, again all dual Carlitz-Hayes A-motives are already in

A-dMot isomorphic to the dual Carlitz t-motive with M̌ = C[t] and τ̌M̌ = t− θ. The latter is obtained
via the functor M̌( . ) from the Carlitz t-motive M = (C[t], τM = t− θ) from Example 3.6.

Every dual A-motive is isomorphic to the tensor product of an effective dual A-motive and a power
of a dual Carlitz-Hayes A-motive. In fact, if M̌ is a dual A-motive with τ̌M̌(σ̌∗M̌) ⊂ J−d · M̌ , then
Ň := M̌ ⊗ 1̌l(1)⊗d satisfies τ̌Ň (σ̌

∗Ň) ⊂ Ň ; hence, Ň is effective and M̌ ∼= Ň ⊗ 1̌l(1)⊗−d. Note that
rk Ň = rk M̌ and dim Ň = dim M̌ + d · rk M̌ .

4.2 Purity and mixedness

As in Section 3.2 we fix a uniformizing parameter z ∈ Q = Fq(C) of C at ∞ and assume that
∞ ∈ C(Fq). We denote the unique point on CC above ∞ ∈ C by ∞C. The completion of the local
ring of CC at ∞C is canonically isomorphic to C[[z]].

Definition 4.6. (a) A dual A-motive M̌ = (M̌ , τ̌M̌ ) is called pure if M̌ ⊗AC
C((z)) contains a C[[z]]-

lattice M̌∞ such that for some integers d, r with r > 0 the map

τ̌ r
M̌

:= τ̌M̌ ◦ σ̌∗(τ̌M̌ ) ◦ . . . ◦ σ̌r−1∗(τ̌M̌ ) : σ̌r∗M̌ ⊗AC
Quot(AC)

∼−→ M̌ ⊗AC
Quot(AC)

induces an isomorphism zdτ̌ r
M̌
: σ̌r∗M̌∞

∼−→ M̌∞. Then the weight of M̌ is defined as wt M̌ = −d
r .

(b) A dual A-motive M̌ is called mixed if it possesses an increasing weight filtration by saturated
dual A-sub-motives Wµ M̌ for µ ∈ Q (i.e. WµM̌ ⊂ M̌ is a saturated AC-submodule) such
that all graded pieces GrWµ M̌ :=Wµ M̌/

⋃
µ′<µWµ′M̌ are pure dual A-motives of weight µ and∑

µ∈Q rkGrWµ M̌ = rk M̌ .

(c) The full subcategory of A-dMot consisting of mixed dual A-motives is denoted A-dMMot. The
full subcategory of A-dMotI consisting of mixed dual A-motives is denoted A-dMMotI.

Example 4.7. For example the dual Carlitz t-motive M̌ = (C[t], τ̌M̌ = t − θ) is pure of weight −1
with M̌∞ = C[[z]] on which zτ̌M̌ = 1− θz is an isomorphism, where z = 1

t .

Remark 4.8. (a) The weights of M̌ are the jumps of the weight filtration; that is, those real numbers
µ for which ⋃

µ′<µWµ′M̌ (
⋂
µ̃>µWµ̃ M̌ .

The condition
∑

µ∈Q rkGrWµ M̌ = rk M̌ is equivalent to the conditions that all weights lie in Q, that

Wµ M̌ =
⋂
µ̃>µWµ̃ M̌ for all µ ∈ Q, that Wµ M̌ = (0) for µ ≪ 0, and that Wµ M̌ = M̌ for µ ≫ 0;

compare Remark 2.2.

(b) Every pure dual A-motive of weight µ is also mixed with Wµ′M̌ = (0) for µ′ < µ, and Wµ′M̌ = M̌
for µ′ ≥ µ, and GrWµ M̌ = M̌ .
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Proposition 4.3 extends to mixed (dual) A-motives as follows.

Proposition 4.9. A dual A-motive M̌ is mixed (pure) if and only if the corresponding A-motive
M(M̌ ) from Proposition 4.3 is mixed (pure). In that case the weights of M(M̌ ) are the negatives of
the weights of M̌ . More precisely, if M̌ is mixed with weights µ1 < . . . < µn then the weight filtration
on M = (M, τM ) =M(M̌) :=

(
HomAC

(σ̌∗M̌, Ω1
AC/C

), τ̌∨

M̌

)
is given by

(4.1) W−µM :=
{
m ∈M = HomAC

(σ̌∗M̌, Ω1
AC/C

) : m(σ̌∗Wµ′M̌) = 0 for all µ′ < µ
}
,

that is, by W−µM = (0) for all −µ < −µn, by W−µM = ker
(
M ։ M(WµiM̌)

)
for all −µi+1 ≤

−µ < −µi, and by W−µ1M = M . In particular the functors M̌ 7→ M(M̌) and M 7→ M̌(M )
from Proposition 4.3 induce exact tensor-anti-equivalences of categories A-dMMot ←→ A-MMot and
A-dMMotI←→ A-MMotI.

Proof. First assume that M̌ is pure of weight µ = −d
r . This means that there is a C[[z]]-lattice M̌∞ ⊂

M̌⊗AC
C((z)) such that zdτ̌ r

M̌
is an isomorphism σ̌r∗M̌∞

∼−→ M̌∞. ThenM∞ := HomC[[z]](σ̌
∗M̌∞,C[[z]]dz)

is a C[[z]]-lattice in

M(M̌ )⊗AC
C((z)) = HomAC

(σ̌∗M̌, Ω1
AC/C

)⊗AC
C((z)) = HomC((z))(σ̌

∗M̌ ⊗AC
C((z)), C((z))dz)

such that σr−1∗(zdτ̌ r
M̌
)∨ = zdτ r

M(M̌)
defines an isomorphism σr∗M∞

∼−→ M∞. Therefore, M(M̌) is

pure of weight −µ = d
r .

Conversely, a C[[z]]-lattice M∞ ⊂ M(M̌ ) ⊗AC
C((z)) with zdτ r

M(M̌)
: σr∗M∞

∼−→ M∞ induces the

lattice M̌∞ := HomC[[z]](σ
∗M∞,C[[z]]dz) ⊂ M̌ ⊗AC

C((z)) with σ̌r−1∗(zdτ r
M(M̌)

)∨ = zdτ̌ r
M̌
: σ̌r∗M̌∞

∼−→
M̌∞. This proves that M̌ is pure of weight µ if and only if M(M̌) is pure of weight −µ.

Now we consider a mixed dual A-motive M̌ . Applying the exact contravariant functor M̌ 7→M(M̌ )
gives for all µ exact sequences

0 −→M(GrWµ M̌) −→M(Wµ M̌ ) −→M
( ⋃
µ′<µ

Wµ′M̌
)
−→ 0

Thus we can define an increasing filtration W•M of M by saturated A-sub-motives by letting

W−µM := ker
(
M ։M

( ⋃
µ′<µ

Wµ′M̌
))

=
{
m ∈M = HomAC

(σ̌∗M̌, Ω1
AC/C

) : m(σ̌∗Wµ′M̌) = 0 for all µ′ < µ
}
.

More explicitly, if µ1 < . . . < µn are the jumps of the weight filtration W•M̌ , we set in addition
µ0 := −∞, µn+1 := +∞, and Wµ0 M̌ = (0). Then Wµi M̌ = Wµ′M̌ ( Wµi+1 M̌ for all µi ≤ µ′ < µi+1

and hence, for any µ with µi < µ ≤ µi+1 we have the equalities
⋃
µ′<µ

Wµ′M̌ = Wµi M̌ and W−µM =

ker
(
M ։M(Wµi M̌)

)
. In particular, if µi ≤ µ < µ̃ ≤ µi+1, then

(4.2) W−µ̃M = ker
(
M ։M (Wµi M̌ )

)
= ker

(
M ։M(Wµ M̌)

)
.

This yields the following diagram with exact rows

0 //
⋃

−µ̃<−µ
W−µ̃M //

� _

��

M //M (Wµ M̌) //

����

0

0 //W−µM //M // M
( ⋃
µ′<µ

Wµ′M̌
)

// 0 .
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By the snake lemma GrW−µM
∼= ker

(
M(Wµ M̌) ։ M(

⋃
µ′<µ

Wµ′M̌)
)
∼= M(GrWµ M̌) is pure of weight

−µ and M(M̌) is mixed with weight filtration W•M which jumps at −µn < . . . < −µ1. A similar
argument for the inverse functor M 7→ M̌(M ) shows that conversely M̌ is mixed provided M(M̌ ) is
mixed. This proves the proposition.

The following proposition follows from Propositions 4.9, 3.11 and 3.14, but can also be proved
directly along the lines of Propositions 3.11 and 3.14 without using (non-dual) A-motives.

Proposition 4.10. Let M̌ be a dual A-motive and consider the z-isocrystal

̂̌M := (M̂, τ̂ ) :=
(
M̌ ⊗AC

C((z)) , σ∗τ̌−1
M̌
⊗ id : σ∗M̂ ∼−→ M̂

)
.

Then ̂̌M is isomorphic to
⊕

i M̂di,ri where for d, r ∈ Z, r > 0, (d, r) = 1,m := ⌈dr ⌉ we set

M̂d,r :=
(
C((z))⊕r, τ̂ =




0 z−m

z−m

z1−m

z1−m 0




)

and where in the matrix the term z1−m occurs exactly mr − d times. In particular,

(a) M̌ is pure of weight µ if and only if µ = di
ri

for all i.

(b) M̌ is mixed if and only if the filtration Wµ M̂ :=
⊕

di
ri
≤µ

M̂di,ri comes from a filtration of M̌ by

saturated dual A-sub-motives W̃µ M̌ ⊂ M̌ with Wµ M̂ =
̂̃
Wµ M̌ . In this case the filtration W̃µ M̌

equals the weight filtration Wµ M̌ of M̌ and the di
ri

are the weights of M̌ . In particular, the weight

filtration of a mixed dual A-motive M̌ is uniquely determined by M̌ .

(c) Any dual A-sub-motive M̌ ′ →֒ M̌ and dual A-quotient motive f̌ : M̌ ։ M̌ ′′ of a pure (mixed)
dual A-motive M̌ is itself pure (mixed) of the same weight(s), (by letting Wµ M̌

′ := M̌ ′ ∩Wµ M̌ ,
and Wµ M̌

′′ be the saturation of f̌(Wµ M̌ ) inside M̌ ′′, if M̌ is mixed).

(d) Any dual A-motive which is isomorphic in A-dMotI to a pure (mixed) dual A-motive is itself
pure (mixed).

(e) The weight of a pure dual A-motive M̌ is wt M̌ = −(dim M̌)/(rk M̌). The tensor product of two
pure dual A-motives M̌ and Ň is again pure of weight (wt M̌) + (wt Ň).

(f) The category A-dMMotI is a full Q-linear (non-neutral) Tannakian subcategory of A-dMotI, and
in particular, a rigid abelian tensor category.

(g) Any morphism f̌ : M̌ ′ → M̌ between mixed dual A-motives satisfies f̌(Wµ M̌
′) ⊂ Wµ M̌ . More

precisely, the saturation of f̌(Wµ M̌
′) inside f̌(M̌ ′) equals f̌(M̌ ′) ∩Wµ M̌ .

(h) If M̌ is effective and M̌ is a finitely generated module over the skew-polynomial ring C{τ̌}, where
τ̌ acts on M̌ through m̌ 7→ τ̌M(σ̌∗m̌), then di < 0 for all i.

(i) If M̌ is effective and di/ri ≥ −n for all i, then M̌ extends to a locally free sheaf M̌ on CC with

τ̌ : σ̌∗M̌ → M̌(n · ∞C), where the notation (n · ∞C) means that we allow poles at ∞C of order
less than or equal to n. Moreover M̌ is pure of weight µ = −d

r with (d, r) = 1 if and only if there

is an M̌ such that in addition, zdτ̌ r
M̌

is an isomorphism σ̌r∗M̌∞
∼−→ M̌∞ on the stalks at ∞C.
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Remark 4.11. The category A-dMMot is an exact category in the sense of Quillen [Qui73, §2] if one
calls a sequence of mixed dual A-motives exact when its underlying sequence of AC-modules is exact;
compare Remarks 4.4(b) and 3.12.

We have seen in Example 3.13 that not every A-motive is mixed; thus the same is true for dual
A-motives.

Example 4.12. Let C = P1
Fq
, A = Fq[t], z = 1

t , θ = c∗(t) = 1
ζ ∈ C, and recall the mixed A-motive

M from Example 3.35 with GrW1 M = W1M = (AC, t − θ) and GrW3 M = (AC, (t − θ)3). Via an
identification Ω1

AC/C
= C[t]dt ∼= C[t] its corresponding dual A-motive is isomorphic to

M̌ =
(
A⊕2C , Φ̌ :=

(
t− θ 0
b (t− θ)3

))
.

As in the previous proposition, we set

W−1 M̌ := ker
(
M̌ ։ M̌

(⋃
µ′<1Wµ′M

))
= M̌

and

W−3 M̌ := ker

(
M̌

(1,0)
։ M̌(W1M)

)
=

(
0
1

)
·
(
AC, (t− θ)3

)
,

such that GrW−1 M̌
∼= (AC, (t− θ)) and GrW−3 M̌

∼=
(
AC, (t− θ)3

)
. Thus M̌ has weights -3 and -1.

4.3 Uniformizability

Recall the notation introduced at the beginning of Section 3.3.

Definition 4.13. For a dual A-motive M̌ , we define the τ̌ -invariants

Λ(M̌ ) :=
(
M̌ ⊗AC

O(CC rDC)
)τ̌

:=
{
m̌ ∈ M̌ ⊗AC

O(CC rDC) : τ̌M̌ (σ̌∗m̌) = m̌
}
,

and let H1(M̌ ) := Λ(M̌)⊗A Q.

Since the ring of σ̌-invariants in O(CC rDC) equals A, the set Λ(M̌ ) is an A-module. It is finite
projective of rank at most equal to rk M̌ by the analog for dual A-motives of [BH07, Lemma 4.2(b)].
Therefore, also H(M̌) is a finite dimensional Q-vector space.

Definition 4.14. A dual A-motive M̌ is called uniformizable (or rigid analytically trivial) if the
natural homomorphism

hM̌ : Λ(M̌ )⊗A O(CC rDC) −→ M̌ ⊗AC
O(CC rDC) , λ⊗ f 7→ f · λ,

is an isomorphism. The full subcategory of A-dMotI consisting of all uniformizable dual A-motives
is denoted A-dUMotI. The full subcategory of A-dMotI consisting of all uniformizable mixed dual
A-motives is denoted A-dMUMotI.

Remark 4.15. In [Pap08, 3.4.10] Papanikolas defines a neutral Tannakian category T over Fq(t)
which is equivalent to A-dUMotI if A = Fq[t]. This can be seen as follows. Let M̌ be an object of
A-dUMotI. Then M̌ ⊗AC

Quot(AC) is a rigid analytically trivial (dual) pre-t-motive in the language of
[Pap08, §3.3.1]. The latter form a neutral Tannakian category R over Q by [Pap08, Theorem 3.3.15]
and M̌ 7→ M̌⊗AC

Quot(AC) is a fully faithful functor A-dUMotI→R. Papanikolas defines the category
T as the Tannakian subcategory of R generated by the effective dual A-motives in A-dUMotI. It thus
follows from Example 4.5 and Proposition 4.20 below that T coincides with the image of A-dUMotI in
R. By Proposition 4.17 below, the category A-dUMotI is also anti-equivalent to A-UMotI and hence
also to Taelman’s category tM◦a.t. by Remark 3.19.
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Lemma 4.16. Let M̌ be a dual A-motive of rank r.

(a) The homomorphism hM̌ is injective.

(b) M̌ is uniformizable if and only if rkA Λ(M̌) = r.

(c) If M̌ is uniformizable then the following sequence of A-modules is exact

0 // Λ(M̌ )
hM̌

// M̌ ⊗AC
O(CC rDC) // M̌ ⊗AC

O(CC rDC) // 0 .

m̌ ✤ // τ̌M̌ (σ̌∗m̌)− m̌

Proof. Assertions (a) and (b) can be proved for general A as in [Pap08, Lemma 3.3.7 and Proposi-
tion 3.3.8]; see also the proof of Lemma 3.21.

To establish (c) we must prove exactness on the right. We choose a finite flat ring homomorphism
Fq[t] →֒ A of degree d. Then O(CC r DC) = A ⊗Fq[t] C〈t〉; see (3.5). We view M̌ as a (locally)

free C[t]-module of rank dr and Λ(M̌) as a (locally) free Fq[t]-module of rank dr. With respect to
a basis of the latter we identify M̌ ⊗AC

O(CC r DC) ∼= Λ(M̌) ⊗A O(CC r DC) ∼= C〈t〉⊕dr. In this
basis τ̌M̌ is given by the identity matrix. Now let m̌ ∈ M̌ ⊗AC

O(CC rDC) be given as
∑

i bit
i with

bi = (bi,1, . . . , bi,dr)
T ∈ Cdr. Since C is algebraically closed there is for every i and j a ci,j ∈ C with

cqi,j − ci,j = bi,j. If |bi,j | < 1 we may even take ci,j = −∑∞n=0 b
qn

i,j , whence |ci,j| = |bi,j |. With this

choice m̌′ :=
∑∞

i=0(ci,1, . . . , ci,dr)
T ti ∈ C〈t〉⊕dr satisfies τ̌M̌ (σ̌∗m̌′)− m̌′ = m̌. This proves (c).

Proposition 4.17. A dual A-motive M̌ is uniformizable if and only if the corresponding A-motive
M := M(M̌) from Proposition 4.3 is uniformizable. Moreover,

hM̌ = (σ∗hM
∨)−1 := HomO(CCrDC)

(
σ∗hM , Ω

1
AC/C

⊗AC
O(CC rDC)

)−1

and Λ(M̌) ∼= HomA(Λ(M ),Ω1
A/Fq

) under the perfect pairing

Λ(M̌ )× Λ(M ) −→ Ω1
A/Fq

, (λ̌, λ) 7−→ hM̌ (λ̌)
(
σ∗hM (λ)

)

obtained from M̌ = HomAC
(σ∗M, Ω1

AC/C
). In particular, the functors M̌ 7→ M(M̌) and M 7→

M̌(M ) from Proposition 4.3 restrict to exact tensor-anti-equivalences A-dUMotI ←→ A-UMotI and
A-dMUMotI←→ A-MUMotI.

Proof. We assume M is uniformizable, that is

hM : Λ(M )⊗A O(CC rDC)
∼−→M ⊗AC

O(CC rDC) , λ⊗ f 7→ f · λ,

is an isomorphism. Applying σ∗ and HomO(CCrDC)

(
. , Ω1

AC/C
⊗AC
O(CCrDC)

)
yields an isomorphism

σ∗hM
∨ : M̌ ⊗AC

O(CC rDC)
∼−→ HomA(Λ(M ),Ω1

A/Fq
)⊗A O(CC rDC) .

Since the τ̌ -invariants of M̌ = M̌(M) are

Λ
(
M̌(M)

)
=
(
M̌ ⊗AC

O(CC rDC)
)τ̌ ∼= HomA(Λ(M ),Ω1

A/Fq
),

hM̌ := (σ∗hM
∨)−1 provides a rigid analytic trivialization for M̌ .

The converse assertion follows similarly and the statement about the exact tensor-anti-equivalence
follows from Propositions 4.3 and 4.9.
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Lemma 4.18. Let C = P1
Fq
, A = Fq[t], AC = C[t] and θ = c∗(t). Then O(CC r DC

)
= C〈t〉; see

(3.5). Let Φ̌ = (Φ̌ij)ij ∈ GLr
(
C[t][ 1

t−θ ]
)
represent τ̌M̌ with respect to a C[t]-basis B̌ = (m̌1, . . . , m̌r)

of M̌ , that is τ̌M̌(σ̌∗m̌j) =
∑r

i=1 Φ̌ij m̌i. Then M̌ is uniformizable if and only if there is a matrix
Ψ̌ ∈ GLr(C〈t〉) such that

σ̌∗Ψ̌ = Ψ̌ · Φ̌ .
In that case, Ψ̌ is called a rigid analytic trivialization of Φ̌. It is uniquely determined up to multipli-
cation on the left with a matrix in GLr(Fq[t]). The columns of Ψ̌−1 are the coordinate vectors with
respect to B̌ of an Fq[t]-basis Č of Λ(M̌). Moreover, with respect to the bases Č and B̌ the isomorphism
hM̌ is represented by Ψ̌−1.

If M(M̌ ) = (M, τM ) and Φ ∈ GLr
(
C[t][ 1

t−θ ]
)
is the matrix representing τM with respect to the

basis B of M which is dual to B̌, then Φ = Φ̌T and Ψ := (σ̌∗Ψ̌)−1 is a rigid analytic trivialization of
Φ.

Proof. This was proved by Papanikolas [Pap08, Proposition 3.3.9] (in terms of row vectors, whereas
we use column vectors); see also the proof of Lemma 3.22. The formula Ψ = (σ̌∗Ψ̌)−1 follows from an
elementary calculation.

Example 4.19. Let C = P1
Fq
, A = Fq[t], z = 1

t , θ = c∗(t) = 1
ζ ∈ C. Via the identification

Ω1
AC/C

= C[t]dt ∼= C[t], dt 7→ 1, the Carlitz t-motive M = (C[t], τM = t − θ) and the dual Carlitz

t-motive M̌ = (C[t], τ̌M̌ = t − θ) from Examples 3.9 and 4.7 satisfy M̌ ∼= M̌ (M) and M ∼= M(M̌).
Furthermore, M is pure of weight 1 and M̌ is pure of weight −1. In Example 3.39 we saw that M is
uniformizable with Λ(M ) = ηℓ−ζ · Fq[t] for ℓ−ζ :=

∏∞
i=0(1 − ζq

i
t) ∈ O( .CC) and an element η ∈ C with

ηq−1 = −ζ. It follows that

Λ(M̌ ) = {λ̌ ∈ O(CC rDC) : (t− θ)σ̌∗(λ̌) = λ̌} = σ∗(ηℓ−ζ )
−1 · Fq[t]

The pairing Λ(M̌) × Λ(M ) → Ω1
A/Fq

= Fq[t]dt, (λ̌, λ) 7→ hM̌ (λ̌)
(
σ∗hM (λ)

)
sends

(
σ∗(ηℓ−ζ )

−1, ηℓ−ζ
)
to

dt, because hM̌
(
σ∗(ηℓ−ζ )

−1
)
= σ∗(ηℓ−ζ )

−1 and σ∗hM (ηℓ−ζ ) = σ∗(ηℓ−ζ ).

Before we conclude that A-dUMotI and A-dMUMotI are Tannakian categories over Q with fiber
functors M̌ 7→ H1(M̌), we note that Proposition 4.17 together with Proposition 3.24 and Lemma 3.25
implies the following

Proposition 4.20. (a) Every dual A-motive which in A-dMotI is isomorphic to a uniformizable
dual A-motive is itself uniformizable.

(b) Every dual A-motive of rank 1 is uniformizable.

(c) If M̌ and Ň are uniformizable dual A-motives, then also M̌ ⊗ Ň and Hom(M̌, Ň) and M̌∨ are
uniformizable with

Λ(M̌ ⊗ Ň) ∼= Λ(M̌)⊗A Λ(Ň) and

Λ
(
Hom(M̌, Ň)

) ∼= HomA

(
Λ(M̌),Λ(Ň )

)
and

Λ(M̌∨) ∼= HomA(Λ(M̌ ), A) .

(d) If M̌ and Ň are uniformizable, the natural map QHom(M̌, Ň )→ HomQ(H1(M̌ ),H1(Ň )),

f̌ ⊗ a 7−→ H1(f̌ ⊗ a) := a ·
(
hŇ
−1 ◦ (f̌ ⊗ id) ◦ hM̌ |H1(M̌ )

)

for f̌ ∈ HomA-dMot(M̌ , Ň) and a ∈ Q, is injective.
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Lemma 4.21. Let 0 → M̌ ′ → M̌ → M̌ ′′ → 0 be a short exact sequence of dual A-motives. Then M̌
is uniformizable if and only if both M̌ ′ and M̌ ′′ are. In this case the induced sequence of A-modules
0→ Λ(M̌ ′)→ Λ(M̌)→ Λ(M̌ ′′)→ 0 is exact.

Remark 4.22. If a mixed dual A-motive M̌ is uniformizable, then all filtration steps WµM̌ and
factors GrWµ M̌ of the weight filtration of M̌ are uniformizable by Lemma 4.21. Therefore, M̌ could
equivalently be called a uniformizable mixed dual A-motive or a mixed uniformizable dual A-motive.

Summarizing these properties of A-dUMotI, we obtain the analog of Theorem 3.27.

Theorem 4.23. The categories A-dUMotI and A-dMUMotI of (mixed) uniformizable dual A-motives
up to isogeny are neutral Tannakian categories over Q with fiber functor M̌ 7→ H1(M̌ ).

This theorem allows to associate with each (mixed) uniformizable dual A-motive M̌ an algebraic
group ΓM̌ over Q as follows. Consider the Tannakian subcategory 〈〈M̌〉〉 of A-dUMotI, respectively
A-dMUMotI generated by M̌ . By Tannakian duality [DM82, Theorem 2.11 and Proposition 2.20], the
category 〈〈M̌ 〉〉 is tensor equivalent to the category of Q-rational representations of a linear algebraic
group scheme ΓM̌ over Q which is a closed subgroup of GLQ(H1(M̌ )).

Definition 4.24. The linear algebraic Q-group scheme ΓM̌ associated with M̌ is called the (motivic)

Galois group of M̌ .

Proposition 4.25. If M̌ is a uniformizable mixed dual A-motive and M := M (M̌) is the associated
uniformizable mixed A-motive, then the motivic Galois groups ΓM̌ and ΓM are canonically isomorphic.

Proof. This follows from the anti-equivalence of the categories A-dMUMotI ←→ A-MUMotI and the
compatibility of the fiber functors H1(M̌) = H1

(
M(M̌ )

)
⊗A Ω1

A/Fq
from Proposition 4.17.

Remark 4.26. Let M̌ be a uniformizable dual A-motive. By Remark 4.15 the Tannakian subcate-
gories 〈〈M̌ 〉〉 of A-dUMotI, respectively of Papanikolas’s category T , generated by M̌ are canonically
equivalent. Therefore, our motivic Galois group ΓM̌ is canonically isomorphic to the one defined by
Papanikolas [Pap08, § 3.5.2].

4.4 The associated Hodge-Pink structure

We keep the notation introduced at the beginning of Section 3.4, where we associated a mixed Hodge-
Pink structure H1(M ) with a uniformizable mixed effective A-motive M .

Proposition 4.27. Let M̌ be a uniformizable dual A-motive over C.

(a) Then Λ(M̌) equals
{
m̌ ∈ M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
: τ̌M̌(σ̌∗m̌) = m̌

}
and the isomor-

phisms hM̌ and σ̌∗hM̌ extend to isomorphisms of locally free sheaves

hM̌ : Λ(M̌ )⊗A O .
CCr

⋃
i∈N>0

V(σi∗J)
∼−→ M̌ ⊗AC

O .
CCr

⋃
i∈N>0

V(σi∗J) ,

σ̌∗hM̌ : Λ(M̌ )⊗A O .
CCr

⋃
i∈N0

V(σi∗J)
∼−→ σ̌∗M̌ ⊗AC

O .
CCr

⋃
i∈N0

V(σi∗J) ,

satisfying (τ̌M̌ ⊗ id) ◦ σ̌∗hM̌ = hM̌ ◦ ( idΛ(M̌)⊗ id).

(b) If moreover M̌ is effective, then the isomorphism (hM̌ )−1 extends to an injective homomorphism

hM̌
−1 : M̌ ⊗AC

O .
CC
−→ Λ(M̌ )⊗A O .

CC
,

with hM̌
−1 ◦ (τ̌M̌ ⊗ id) = ( idΛ(M̌)⊗ id) ◦ σ̌∗hM̌−1 and coker σ̌∗hM̌

−1⊗C[[z− ζ]] = M̌/τ̌M̌ (σ̌∗M̌).
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Proof. It would be possible to adapt the proof of Proposition 3.30 to the dual setting.
Instead we use the associated A-motive M = M(M̌ ) and recall from Proposition 4.17 that hM̌ =

(σ∗hM
∨)−1. We deduce from Proposition 3.30 that hM̌ is an isomorphism outside the discrete set⋃

i∈N>0
V(σi∗J) and that σ̌∗hM̌ = (hM

∨)−1 is an isomorphism outside
⋃
i∈N0

V(σi∗J). By dualizing
the equation hM ◦ ( idΛ(M)⊗ id) = (τM ⊗ id) ◦ σ∗hM and observing τ̌M̌ = (τM )∨ we obtain hM̌ ◦
( idΛ(M̌ )⊗ id) = (τ̌M̌ ⊗ id) ◦ σ̌∗hM̌ . The given description of Λ(M̌) follows from that.

Moreover, if M̌ is effective, then also M is effective. So (b) follows from Proposition 3.30(b).

Remark 4.28. Note that if M̌ is effective then it is in general not true that Λ(M̌) is equal to the
A-module

{
m̌ ∈ M̌ ⊗AC

O( .CC) : τ̌M̌ (σ̌∗m̌) = m̌
}
. Namely, this is true if and only if τ̌M̌ (σ̌∗M̌) ⊃ M̌ ,

and hence equivalent to τ̌M̌ (σ̌∗M̌) = M̌ by the effectivity of M̌ .

Corollary 4.29. In the situation of Lemma 4.18 let Ψ̌ ∈ GLr(C〈t〉) be a rigid analytic trivialization
of Φ̌. Then the entries of Ψ̌ and Ψ̌−1 converge for all t ∈ C with |t| < |θ|1/q. If M̌ is effective, then
the entries of Ψ̌ even converge for all t ∈ C.

Proof. In view of J = (t−θ) this follows from the fact that (hM̌ )−1 is represented by the matrix Ψ̌.

In order to encode the relative position of σ̌∗M̌ and M̌ under τ̌M̌ at the point V(J), we make the
following

Definition 4.30. Let M̌ be a uniformizable mixed dual A-motive with weight filtration Wµ M̌ . We
set H1(M̌ ) := (H,W•H, q) with

• H := H1(M̌ ) := Λ(M̌ )⊗A Q,

• WµH := H1(Wµ M̌) = Λ(Wµ M̌)⊗A Q ⊂ H for each µ ∈ Q,

• q := (σ̌∗hM̌ ⊗ idC((z−ζ)))
−1
(
σ̌∗M̌ ⊗AC

C[[z − ζ]]
)
.

We call H1(M̌) theQ-Hodge-Pink structure associated with M̌ . (This name is justified by Theorem 4.33
below.) We also set H1(M̌ ) := H1(M̌)∨ in Q-HP. The functor H1 is covariant and H1 is contravariant
in M̌ .

Remark 4.31. (a) If M̌ = M̌(E) is the dual A-motive associated with a Drinfeld A-module E then
H1(M̌ ) ∼= H1(E). We will prove this more generally for a uniformizable pure (or mixed) A-finite
Anderson A-module E in Theorem 5.38 below.

(b) If M̌ is effective, that is τ̌M̌ (σ̌∗M̌) ⊂ M̌ , then q ⊂ p := Λ(M̌) ⊗A C[[z − ζ]]. More generally, if
Jm · τ̌M̌ (σ̌∗M̌) ⊂ M̌ ⊂ Jn · τ̌M̌ (σ̌∗M̌) for integers n ≤ m, then (z − ζ)−np ⊂ q ⊂ (z − ζ)−mp. Indeed,
from Proposition 4.27 we obtain a commutative diagram of isomorphisms

(4.3) Λ(M̌)⊗A C((z − ζ))
σ̌∗hM̌⊗ idC((z−ζ))

∼=
//

idΛ(M̌)⊗ idC((z−ζ)) ∼=

��

σ̌∗M̌ ⊗AC
C((z − ζ))

∼= τ̌M̌⊗ idC((z−ζ))

��

Λ(M̌)⊗A C((z − ζ))
hM̌⊗ idC((z−ζ))

∼=
// M̌ ⊗AC

C((z − ζ)) .

Here σ̌∗hM̌ ⊗ idC((z−ζ)) is an isomorphism because the three others are. This implies

q = (hM̌ ⊗ idC((z−ζ)))
−1 ◦ (τ̌M̌ ⊗ idC((z−ζ)))(σ̌

∗M̌ ⊗AC
C[[z − ζ]]) and

p = (hM̌ ⊗ idC((z−ζ)))
−1(M̌ ⊗AC

C[[z − ζ]]) .

(c) In terms of Definition 2.7 the virtual dimension of M̌ is dim M̌ = − degqH1(M̌ ) = degqH
1(M̌).
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Theorem 4.32. Let M̌ be a uniformizable mixed dual A-motive and let M = M(M̌ ) be its as-
sociated uniformizable mixed A-motive from Proposition 4.3. Consider the Q-Hodge-Pink structure
Ω = (H,W•H, q) which is pure of weight 0 and given by H = Ω1

Q/Fq
= Qdz and q = C[[z− ζ]]dz. Then

there are canonical isomorphisms in Q-HP

H1(M) = Hom(H1(M̌ ),Ω) = H1(M̌)⊗ Ω and

H1(M̌) = Hom(H1(M ),Ω) = H1(M)⊗ Ω .

Proof. By Proposition 4.17 there is a canonical identification Λ(M ) = HomA(Λ(M̌ ),Ω1
A/Fq

) which

gives rise to H1(M) = HomQ(H1(M̌),Ω1
Q/Fq

) = H1(M̌ ) ⊗Q Ω1
Q/Fq

. By Definition 2.6(b) the weight

filtration of H̃ := HomQ(H1(M̌),Ω1
Q/Fq

) is given by

W−µH̃ =
{
λ ∈ H̃ : λ

(
Wµ′H1(M̌)

)
= 0 for all µ′ < µ

}
.

On the other hand the weight filtration on H1(M ) is given by W−µH1(M ) = Λ(W−µM )⊗A Q. From
(4.1) in Proposition 4.9 we know that

W−µM :=
{
m ∈M = HomAC

(σ̌∗M̌, Ω1
AC/C

) : m(σ̌∗Wµ′M̌ ) = 0 for all µ′ < µ
}
.

Tensoring this with O(CC rDC) over AC it follows from the commutative diagram

Λ(Wµ′M̌)⊗A O(CC rDC)
∼=

//

� _

��

σ̌∗Wµ′M̌ ⊗AC
O(CC rDC)
� _

��

Λ(M̌ )⊗A O(CC rDC)
σ̌∗hM̌

∼=
// σ̌∗M̌ ⊗AC

O(CC rDC)

that W−µH1(M) = Λ(W−µM )⊗A Q =W−µHomQ(H1(M̌ ),Ω1
Q/Fq

) for all −µ ∈ Q.

Finally, since q̌ = (σ̌∗hM̌ ⊗ idC((z−ζ)))
−1
(
σ̌∗M̌ ⊗AC

C[[z − ζ]]
)
is the Hodge-Pink lattice of H1(M̌),

the Hodge-Pink lattice HomC[[z−ζ]](q̌,C[[z − ζ]]dz) of Hom(H1(M̌ ),Ω) equals by Definition 2.6(b) the

image in HomQ(H1(M̌ ),Ω1
Q/Fq

)⊗Q C((z − ζ)) = H1(M )⊗Q C((z − ζ))dz of the map

σ̌∗hM̌
∨ ⊗ idC((z−ζ))dz : HomC[[z−ζ]](σ̌

∗M̌ ⊗AC
C[[z − ζ]],C[[z − ζ]]dz)

→֒ HomC((z−ζ))

(
H1(M̌ )⊗Q C((z − ζ)),C((z − ζ))dz

)

= H1(M )⊗Q C((z − ζ))dz .

Since σ̌∗hM̌
∨ = hM

−1 and M = HomAC
(σ̌∗M̌, Ω1

AC/C
) by Proposition 4.17, we conclude that

HomC[[z−ζ]](q̌,C[[z − ζ]]dz) = (hM ⊗ idC((z−ζ)))
−1(M ⊗AC

C[[z − ζ]])

equals the Hodge-Pink lattice of H1(M) as desired.

The main theorem of [HP18] also holds for uniformizable mixed dual A-motives:

Theorem 4.33. Consider a uniformizable mixed dual A-motive M̌ .

(a) H1(M̌) is locally semistable and hence indeed a Q-Hodge-Pink structure.

(b) The functor H1 : M̌ → H1(M̌) is a Q-linear exact fully faithful tensor functor from the category
A-dMUMotI to the category Q-HP.
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(c) The essential image of H1 is closed under the formation of subquotients; that is, if H ′ ⊂ H1(M̌ )
is a Q-Hodge-Pink sub-structure, then there exists a uniformizable mixed dual A-sub-motive
M̌ ′ ⊂ M̌ in A-dMUMotI with H1(M̌

′) = H ′.

(d) The functor H1 defines an exact tensor equivalence between the Tannakian subcategory 〈〈M̌〉〉 ⊂
A-dMUMotI generated by M̌ and the Tannakian subcategory 〈〈H1(M̌ )〉〉 ⊂ Q-HP generated by its
Q-Hodge-Pink structure H1(M̌ ).

Proof. By Theorem 4.32 the functor H1 : M̌ 7→ H1(M̌ ) is naturally isomorphic to the composition of
functors M̌ 7→ M(M̌ ) 7→ Hom

(
H1
(
M(M̌ )

)
,Ω
)
, the first of which is an exact tensor-anti-equivalence

by Proposition 4.17. Thus the theorem follows from Theorems 2.10 and 3.34.

Assertions (c) and (d) are the function field analog of the Hodge Conjecture [Hod52, Gro69b,
Del06]. We will discuss its consequences for the Hodge-Pink group ΓH1(M̌) in Section 6.

Example 4.34. To continue with Example 4.12, we let A = Fq[t], z = 1
t , θ := c∗(t) = 1

ζ ∈ C,

and M̌ = A⊕2C with τ̌M̌ = Φ̌ :=

(
t− θ 0
b (t− θ)3

)
. Thus GrW−1 M̌

∼= (AC, (t− θ)) and GrW−3 M̌
∼=

(
AC, (t− θ)3

)
, and M̌ has weights -3 and -1.

Similarly as in Example 3.35, we set ℓ̌−ζ :=
∏∞
i=1(1− ζq

i
t) = σ∗(ℓ−ζ ) ∈ O(

.
CC) and choose an η ∈ C

with ηq−1 = −ζ. Then

Λ(GrW−1 M̌ ) = {λ ∈ O( .CC) : (t− θ)σ̌∗(λ) = λ} = (ηq ℓ̌−ζ )
−1 · Fq[t],

Λ(GrW−3 M̌ ) = (ηq ℓ̌−ζ )
−3 · Fq[t], and

Λ(M̌ ) =

(
(ηq ℓ̌−ζ )−1

(ηq ℓ̌−ζ )−4g

)
· Fq[t]⊕

(
0

(ηq ℓ̌−ζ )−3

)
· Fq[t]

for g ∈ O( .CC) with b · (ηq ℓ̌−ζ )3+ σ̌∗(g) = (t−θ) ·g. Note that g = −σ∗(f) for the f from Example 3.35.

Putting λ1 :=

(
(ηq ℓ̌−ζ )−1

(ηq ℓ̌−ζ )−4g

)
and λ2 :=

(
0

(ηq ℓ̌−ζ )−3

)
, we getH(M̌) = λ1·Q⊕λ2·Q andW−3H(M̌ ) = λ2·Q.

Thus Ψ̌ =

(
(ηq ℓ̌−ζ )

−1 0

(ηq ℓ̌−ζ )
−4g (ηq ℓ̌−ζ )

−3

)−1
=

(
ηq ℓ̌−ζ 0

−g (ηq ℓ̌−ζ )
3

)
∈ O( .CC)

2×2 gives the rigid analytic

trivialization of Φ̌, which represents hM̌
−1. According to Lemma 4.18 we have Ψ̌ = (σ∗Ψ)−1 for the

matrix Ψ from Example 3.35. Now the Hodge-Pink lattice of H1(M̌ ) is described by

q = σ̌∗Ψ̌ · p =

(
ηℓ−ζ 0

−σ̌∗g (ηℓ−ζ )
3

)
· p.

Since ℓ−ζ has a simple zero at z = ζ, one sees that p/q (which is also isomorphic to coker τ̌M̌ ) is

isomorphic to C[[z − ζ]]/(z − ζ) ⊕ C[[z − ζ]]/(z − ζ)3 if (t − θ)|σ̌∗g (equivalently, if (t − θ)|b) and
isomorphic to C[[z− ζ]]/(z− ζ)4 if (t− θ) ∤ σ̌∗g (equivalently, if (t− θ) ∤ b). So the Hodge-Pink weights
of H1(M̌) are (−1,−3) or (−4, 0), and the weight polygon lies above the Hodge polygon with the same
endpoint WP (M̌) ≥ HP (M̌ ) in accordance with Theorem 4.33(a) and Remark 2.8.

4.5 Cohomology Realizations

Let M̌ = (M̌, τ̌M̌ ) be a dual A-motive over C. Similarly as in Section 3.5, the Betti cohomology
realization of M̌ is given by

H1,Betti(M̌ ,B) := Λ(M̌ )⊗A B and H1
Betti(M̌,B) := HomA(Λ(M̌ ), B)
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for any A-algebra B. This is most useful when M̌ is uniformizable, in which case both are locally
free B-modules of rank equal to rk M̌ and H1(M̌ ) = H1,Betti(M̌,Q). By Theorem 4.23 this realization
provides for B = Q an exact faithful neutral fiber functor on A-dUMotI.

Moreover, the de Rham cohomology realization of M̌ is defined to be

H1,dR(M̌,C) := M̌/J · M̌ and H1
dR(M̌ ,C) := HomC(M̌/J · M̌, C).

We define a decreasing filtration of H1,dR(M̌ ,C) by C-subspaces

F iH1,dR(M̌,C) := image of M̌ ∩ J i · τ̌M̌(σ̌∗M̌) in H1,dR(M̌ ,C) for all i ∈ Z ,

which we call the Hodge-Pink filtration of M̌ .
If M̌ satisfies J · M̌ ⊂ τ̌M̌ (σ̌∗M̌) ⊂ M̌ , for example if M̌ is the dual A-motive associated with a

Drinfeld A-module, then

F−1 = H1,dR(M̌ ,C) ⊃ F 0 = τ̌M̌ (σ̌∗M̌)/J · M̌ ⊃ F 1 = (0).

As noted in Remark 2.11 and Example 2.5(c), more useful than the Hodge-Pink filtration is actually
the Hodge-Pink lattice q, and the latter cannot be recovered from the Hodge-Pink filtration in general.
We therefore propose to lift the de Rham cohomology to C[[z− ζ]] and define the generalized de Rham
cohomology realization of M by

H1,dR(M̌ ,C[[z − ζ]]) := M̌ ⊗AC
C[[z − ζ]] and

H1,dR

(
M̌,C((z − ζ))

)
:= M̌ ⊗AC

C((z − ζ)) and

H1
dR(M̌,C[[z − ζ]]) := HomAC

(M̌ , C[[z − ζ]]) and

H1
dR

(
M̌,C((z − ζ))

)
:= HomAC

(
M̌, C((z − ζ))

)
.

In particular by tensoring with the morphism C[[z − ζ]] ։ C, z − ζ 7→ 0 we get back H1,dR(M̌,C) =
H1,dR

(
M̌,C[[z−ζ]]

)
⊗C[[z−ζ]]C and H1

dR(M̌ ,C) = H1
dR

(
M̌,C[[z−ζ]]

)
⊗C[[z−ζ]]C. We define the Hodge-Pink

lattices of M̌ as the C[[z − ζ]]-submodules

qM̌ := (τ̌∨

M̌
)−1
(
HomAC

(σ̌∗M̌, C[[z − ζ]])
)
⊂ H1

dR

(
M̌,C((z − ζ))

)
and

qM̌ := τ̌M̌ (σ̌∗M̌)⊗AC
C[[z − ζ]] ⊂ H1,dR

(
M̌,C((z − ζ))

)
.

Then the Hodge-Pink filtrations F iH1
dR(M̌,C) and F iH1,dR(M̌,C) of M̌ are recovered as the images

of H1
dR

(
M̌ ,C[[z−ζ]]

)
∩(z−ζ)iqM̌ in H1

dR(M̌,C) and of H1,dR

(
M̌,C[[z−ζ]]

)
∩(z−ζ)iqM̌ in H1,dR(M̌,C)

like in Remark 2.4. All these structures are compatible with the natural duality between H1
dR and

H1,dR. The de Rham realization provides (covariant) exact faithful tensor functors

H1,dR( . ,C) : A-dMotI −→ VectC , M̌ 7−→ H1,dR(M̌,C) and(4.4)

H1,dR( . ,C[[z − ζ]]) : A-dMotI −→ ModC[[z−ζ]] , M̌ 7−→ H1,dR(M̌,C[[z − ζ]]) .

This is clear for H1,dR( . ,C[[z−ζ]]) and for H1,dR( . ,C) exactness follows from the snake lemma applied
to multiplication with z − ζ on H1,dR( . ,C[[z − ζ]]). To prove faithfulness for H1,dR( . ,C) note that

every morphism f : M̌ ′ → M̌ can in A-dMotI be factored into M̌ ′ ։ im(f) ∼−→ coim(f) →֒ M̌ .
If H1,dR(f,C) is the zero map the exactness of H1,dR( . ,C) shows that H1,dR(im(f),C) = (0). Since
dimCH1,dR(M̌ ,C) = rk M̌ it follows that the dual A-motive im(f) has rank zero and therefore im(f) =
(0) and f = 0.

Finally, let v ∈
.
C be a closed point. We say that v is a finite place of C. Let Av be the

v-adic completion of A, and let Qv be the fraction field of Av. Consider the v-adic completions
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AC,v := lim
←−

AC/v
nAC of AC and M̌v := lim←− M̌/vnM̌ = M̌⊗AC

AC,v of M̌ . Note that τ̌ : m̌ 7→ τ̌M̌ (σ̌∗m̌)

for m̌ ∈ M̌ induces a σ̌∗⊗̂ idAv -linear map τ̌ : M̌v → M̌v. We let the τ̌ -invariants of M̌v be the Av-
module

M̌ τ̌
v := {m̌ ∈ M̌v | τ̌(m̌) = m̌}.

It is isomorphic to A
⊕ rk M̌
v and the inclusion M̌ τ̌

v ⊂ M̌v induces a canonical τ̌ -equivariant isomorphism
M̌ τ̌
v ⊗AvAC,v

∼−→ M̌v by an argument similar to [TW96, Proposition 6.1]. Then the v-adic cohomology
realization of M̌ is given by

H1,v(M̌ ,Av) := M̌ τ̌
v and H1,v(M̌,Qv) := M̌ τ̌

v ⊗Av Qv and

H1
v(M̌,Av) := HomAv(M̌

τ̌
v , Av) and H1

v(M̌ ,Qv) := HomAv(M̌
τ̌
v , Qv).

If M̌ is defined over a subfield L of C then they carry a continuous action of Gal(Lsep/L) and the
v-adic realization provides (covariant) exact faithful tensor functors

H1,v( . , Av) : A-dMot −→ ModAv[Gal(Lsep/L)] , M̌ 7−→ H1,v(M̌,Av) and(4.5)

H1,v( . , Qv) : A-dMotI −→ ModQv[Gal(Lsep/L)] , M̌ 7−→ H1,v(M̌ ,Qv) .

This follows from the isomorphism H1,v(M̌ ,Av)⊗Av AC,v
∼−→ M̌v because Av ⊂ AC,v is faithfully flat.

Moreover, if L is a finitely generated field then

(4.6) H1,v( . , Av) : Hom(M̌ , M̌ ′)⊗A Av ∼−→ HomAv[Gal(Lsep/L)]

(
H1,v(M̌ ,Av),H1,v(M̌

′, Av)
)

is an isomorphism for dual A-motives M̌ and M̌ ′. This is the analog of the Tate conjecture for dual
A-motives and follows by Proposition 4.3 from the analogous result (3.9) of Taguchi [Tag95b] and
Tamagawa [Tam94, § 2] for A-motives.

Proposition 4.35. Let M̌ be a pure or mixed dual A-motive, which is defined over a finite field
extension L of Q. Let P be a finite place of L, not lying above ∞ or v, where M̌ has good reduction,
and let FP be its residue field. Then the geometric Frobenius FrobP of P has a well defined action
on H1,v(M̌ ,Av) and each of its eigenvalues lies in the algebraic closure of Q in C and has absolute
value (#FP)µ for a weight µ of M̌ . Dually every eigenvalue of FrobP on H1

v(M̌,Av) has absolute value
(#FP)

−µ for a weight µ of M̌ . These eigenvalues are independent of v.

Remark. The geometric Frobenius FrobP of P is the inverse of the arithmetic Frobenius Frob−1P , which
satisfies Frob−1P (x) ≡ x#FP mod P for x ∈ OL.

Proof. This follows by Proposition 4.9 from the corresponding fact for M(M̌) proved in Proposi-
tion 3.36.

The morphism hM̌ from Proposition 4.27 induces comparison isomorphisms between the Betti and
the v-adic, respectively the de Rham realizations similarly to Theorem 3.37.

Theorem 4.36. If M̌ is a uniformizable dual A-motive there are canonical comparison isomorphisms,
sometimes also called period isomorphisms

hBetti, v : H1,Betti(M̌ ,Av) = Λ(M̌ )⊗A Av ∼−→ H1,v(M̌,Av) , λ̌⊗ f 7−→ (f · λ̌ mod vn)n∈N

and

hBetti,dR := hM̌ ⊗ idC[[z−ζ]] : H1,Betti

(
M̌,C[[z − ζ]]

)
∼−→ H1,dR

(
M̌ ,C[[z − ζ]]

)
,

hBetti,dR := hM̌ mod J : H1,Betti(M̌ ,C) ∼−→ H1,dR(M̌,C) .

By diagram (4.3) the latter are compatible with the Hodge-Pink lattices, respectively the Hodge-Pink
filtration provided on the Betti realization H1,Betti(M̌ ,Q) = H1(M̌ ) via the associated Hodge-Pink
structure H1(M̌).
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Example 4.37. Let C = P1
Fq
, A = Fq[t], z = 1

t , θ = c∗(t) = 1
ζ ∈ C, and let M̌ = (C[t], τ̌M̌ = t− θ) be

the dual Carlitz t-motive from Example 4.5. As in Example 4.19 we obtain Λ(M̌) = (ηq ℓ̌−ζ )
−1 · Fq[t]

for ℓ̌−ζ :=
∏∞
i=1(1 − ζq

i
t) = σ∗(ℓ−ζ ) ∈ O(

.
CC) and an η ∈ C with ηq−1 = −ζ. The comparison

isomorphism hBetti, dR = hM̌ ⊗ idC[[z−ζ]] sends the basis (ηq ℓ̌−ζ )
−1 of H1,Betti(M̌ ,Fq[t]) = Λ(M̌ ) to the

element (ηq ℓ̌−ζ )
−1 = σ∗(ηℓ−ζ )

−1 ∈ H1,dR(M̌,C[[z − ζ]]) = C[[z − ζ]], respectively to the Carlitz period

(ηq ℓ̌−ζ )
−1|t=θ =

(
−ζη∏∞i=1(1− ζq

i−1)
)−1 ∈ H1,dR(M,C) = C. The latter is the function field analog of

the complex number 2iπ, the period of the multiplicative group Gm,Q, and is likewise transcendental
over Fq(θ) by a result of Wade [Wad41]. See Example 5.49 for more explanations.

To formulate the next result let Ω̂1
Av/Fv

and Ω̂1
AC,v/C

and Ω̂1
C[[z−ζ]]/C = C[[z − ζ]]dz denote the

modules of continuous differentials. They equal ΩA/Fq
⊗AAv, respectively ΩA/Fq

⊗AAC,v, respectively
ΩA/Fq

⊗A C[[z − ζ]]. See also Remark 5.46 below.

Proposition 4.38. Let M̌ be a dual A-motive and let M = M(M̌) be the corresponding A-motive
from Proposition 4.3. Then there are canonical isomorphisms

H1
v(M,Av) ∼= H1

v(M̌,Av)⊗Av Ω̂
1
Av/Fv

and

H1
dR(M,C[[z − ζ]]) ∼= H1

dR(M̌,C[[z − ζ]])⊗C[[z−ζ]] C[[z − ζ]]dz .

The latter is compatible with the Hodge-Pink lattices. If M̌ and M are uniformizable then in addition,

H1
Betti(M,A) ∼= H1

Betti(M̌,A)⊗A Ω1
A/Fq

and these isomorphisms are compatible with the period isomorphisms from Theorems 3.37 and 4.36.

Proof. If M̌ and M are uniformizable, then the isomorphism between Λ(M ) = H1
Betti(M,A) and

H1
Betti(M̌ ,A)⊗A Ω1

A/Fq
= HomA(Λ(M̌ ),Ω1

A/Fq
) was established in Proposition 4.17.

To establish the isomorphism for the v-adic realizations, note that M = HomAC
(σ̌∗M̌, Ω1

AC/C
). By

applying [Eis95, Proposition 2.10] this yields a chain of canonical isomorphisms

Mv = HomAC
(σ̌∗M̌, Ω1

AC/C
)⊗AC

AC,v = HomAC,v
(σ̌∗M̌v, Ω̂

1
AC,v/C

) ∼−→(4.7)

∼−→ HomAC,v
(M̌ τ̌

v ⊗Av AC,v, Ω̂
1
AC,v/C

) = HomAv(M̌
τ̌
v , Ω̂

1
Av/Fv

)⊗Av AC,v

under which the σ∗-linear endomorphism m 7→ τM (σ∗m) of Mv corresponds to the σ∗-linear en-
domorphism λ̌ ⊗ f 7→ λ̌ ⊗ σ∗(f) of HomAv(M̌

τ̌
v , Ω̂

1
Av/Fv

) ⊗Av AC,v. By taking the invariants un-

der these endomorphisms and observing that (AC,v)
τ = Av we obtain the canonical isomorphism

H1
v(M,Av) := M τ

v
∼−→ HomAv(M̌

τ̌
v , Ω̂

1
Av/Fv

) =: H1
v(M̌,Av) ⊗Av Ω̂1

Av/Fv
. If moreover M̌ and M are

uniformizable this isomorphism is compatible with the period isomorphisms hBetti, v because (4.7) is
compatible with hM̌ and hM = (σ̌∗hM̌

∨)−1; see Proposition 4.17.

Finally, the equalities M = HomAC
(σ̌∗M̌, Ω1

AC/C
) and τM = (τ̌M̌ )∨ yield the isomorphism for the

de Rham realization

H1
dR(M,C[[z − ζ]]) := σ∗M ⊗AC

C[[z − ζ]] =

= HomAC
(M̌,C[[z − ζ]]dz) =: H1

dR(M̌ ,C[[z − ζ]])⊗C[[z−ζ]] C[[z − ζ]]dz

and its compatibility with the Hodge-Pink lattices. If moreover M̌ and M are uniformizable, its
compatibility with the period isomorphisms hBetti,dR follows from the equation hM̌ = (σ∗hM

∨)−1 that
was established in Proposition 4.17.
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5 Anderson A-modules

A main source from which effective A-motives arise are Drinfeld A-modules [Dri76] and abelian An-
derson A-modules. For C = P1

Fq
and A = Fq[t] the latter were introduced by Anderson [And86] under

the name abelian t-module; see also [BP20, §3.1]. In this section we review the notion of abelian An-
derson A-modules and their associated A-motives. Likewise we review the notion and analytic theory
of A-finite Anderson A-modules and their associated dual A-motives which was developed by Greg
Anderson in unpublished work [ABP02]. Also for Anderson A-modules which are both abelian and
A-finite we prove the compatibility between the associated A-motive and dual A-motive.

5.1 Definition of Anderson A-modules

To recall the definition for general A we need the following notation. For a smooth commutative
group scheme E over C we let LieE := HomC(e

∗Ω1
E/C,C) be its tangent space at the neutral element

e : SpecC→ E. It is a vector space over C. The differential d : HomC(E,E
′)→ HomC(LieE,LieE

′)
associates with each homomorphism f : E → E′ of smooth group schemes the induced homomorphism
Lie f : LieE → LieE′ of tangent spaces. We consider the additive group scheme Ga,C = SpecC[X] as
a C-module scheme via the action of b ∈ C by ψ∗b : C[X] → C[X],X 7→ bX. Its relative q-Frobenius
endomorphism Frobq,Ga is given by Frob∗q,Ga

: C[X] → C[X],X 7→ Xq. Let C{τ} :=
{∑n

i=0 biτ
i : n ∈

N0, bi ∈ C
}
be the non-commutative polynomial ring in the variable τ with the commutation rule

τb = bqτ for b ∈ C.

Lemma 5.1. There is a natural isomorphism of C-modules between the d′× d-matrix space C{τ}d′×d
and the C-module HomFq,C(G

d
a,C,G

d′
a,C) of Fq-linear homomorphisms of group schemes over C, which

sends the matrix F = (fij)i,j ∈ C{τ}d′×d to the Fq-homomorphism f : Gd
a,C → Gd′

a,C with f∗(yi) =∑
j fij(xj) where Gd

a,C = SpecC[x1, . . . , xd] and Gd′

a,C = SpecC[y1, . . . , yd′ ]. Under this isomorphism

the map f 7→ Lie f is given by the map C{τ}d′×d → Cd
′×d, F =

∑
n Fnτ

n 7→ F0.

Proof. This is straight forward to prove using Lucas’s theorem [Luc78], see also [Fin47, p. 589], on
congruences of binomial coefficients which states that

( pn+t
pm+s

)
≡ ( nm ) ( ts ) mod p for all n,m, t, s ∈ N0,

and implies that ( ni ) ≡ 0 mod p for all 0 < i < n if and only if n = pe for an e ∈ N0.

Definition 5.2. Let d be a positive integer.

(a) An Anderson A-module E = (E,ϕ) of dimension d over C consists of a group scheme E isomor-
phic to the d-th power Gd

a,C of Ga,C together with a ring homomorphism ϕ : A→ EndC(E), a 7→
ϕa such that

(5.1)
(
Lieϕa − c∗(a)

)d
= 0 on LieE .

Under a 7→ Lieϕa the tangent space LieE becomes an AC-module. Note that the commutativity
of A implies that ϕa lies in the ring EndFq,C(E) of Fq-linear endomorphisms for the structure of
Fq-module scheme on E provided via ϕ. Note further that there always exists an isomorphism
E ∼−→ Gd

a,C of Fq-module schemes.

(b) An Anderson A-module of dimension 1 is called a Drinfeld A-module of rank r ∈ N>0 if under
such an isomorphism E ∼−→ Ga,C and the induced identification EndFq,C(E) ∼= C{τ} from
Lemma 5.1, the τ -degree of ϕa equals r times the order of pole of a at ∞ for all a.

(c) A morphism of Anderson A-modules f : (E′, ϕ′)→ (E,ϕ) is a homomorphism of group schemes
f : E′ → E satisfying ϕa ◦ f = f ◦ ϕ′a for all a ∈ A. We say that f : (E′, ϕ′)→ (E,ϕ) or simply
(E′, ϕ′) is an Anderson A-submodule if f is a closed immersion.
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(d) For a ∈ A, we define the closed subgroup scheme E[a] := ker(ϕa : E → E).

Every Anderson A-module over C possesses a unique exponential function expE : LieE → E(C)
satisfying ϕa(expE (x)) = expE (Lieϕa(x)) for all x ∈ LieE and a ∈ A. Under an isomorphism

ρ : E ∼−→ Gd
a,C of Fq-module schemes and the induced isomorphism Lie ρ : LieE ∼−→ Cd the exponential

function expE is given by matrices Ei ∈ Cd×d with E0 = Idd such that the series (ρ ◦ expE ◦
(Lie ρ)−1)(ξ) =

∑∞
i=0Ei σ

i∗(ξ) converges for all ξ ∈ Cd; see [And86, Theorem 3] for A = Fq[t] and
[BH07, § 8.6] for the passage to general A. In loc. cit. these facts are formulated and proved under the
additional condition that E is abelian (see Definition 5.5 below), which is actually unnecessary. We
also define

Λ(E) := ker(expE ) .

It is an A-module via the action of a ∈ A as Lieϕa on Λ(E) ⊂ LieE. Moreover, the exponential
map expE and Λ(E) are covariant functorial in E, in the sense that f ◦ expE′ = expE ◦ Lie f and
Lie f : Λ(E ′)→ Λ(E) when f : E′ → E is a morphism of Anderson A-modules. The following lemmas
are well known.

Lemma 5.3. For every ξ ∈ LieE and a ∈ A the sequence Lieϕ−na (ξ) converges to 0 as n→∞.

Proof. Identify LieE ∼= Cd and write Lieϕa = c∗(a)(Idd+N) with strictly upper triangular (nilpotent)
N having only entries 0 and 1. Then ‖Lieϕ−1a (ξ)‖ ≤ |c∗(a)|−1 · ‖ξ‖ with respect to the maximum
norm ‖ . ‖ on Cd. Now the lemma follows from |c∗(a)| > 1.

Lemma 5.4. For every isomorphism ρ : E ∼−→ Gd
a,C of Fq-module schemes and every norm ‖ . ‖ on

Cd there exists a constant C > 0 such that expE maps {ξ ∈ LieE : ‖Lie ρ(ξ)‖ < C} isometrically onto
{x ∈ E(C) : ‖ρ(x)‖ < C}. The inverse of this isometry is a rigid analytic function

logE : {x ∈ E(C) : ‖ρ(x)‖ < C} ∼−→ {ξ ∈ LieE : ‖Lie ρ(ξ)‖ ≤ C}

satisfying logE (ϕa(x)) = (Lieϕa)(logE (x)) for all a ∈ A and all x ∈ E(C) subject to the condition
‖ρ(x)‖, ‖ρ(ϕa(x))‖ < C. It is called the logarithm of E.

In particular Λ(E) = ker(expE ) ⊂ LieE is a discrete A-submodule.

Proof. Since all norms on Cd are equivalent by [Sch84, Theorem 13.3], we may assume that ‖ . ‖ is
the maximum norm on Cd and on Cd×d. If ρ ◦ expE ◦ (Lie ρ)−1 =

∑∞
i=0Ei τ

i then the constant

C := sup{ qi−1
√
‖Ei‖ : i ≥ 1 }−1 suffices and logE equals (

∑∞
i=0Ei τ

i)−1 =
∑∞

n=0

(
−∑∞i=1Ei τ

i
)n ∈

C{{τ}}d×d where C{{τ}} :=
{∑∞

i=0 biτ
i : bi ∈ C

}
is the non-commutative power series ring with

τb = bqτ for b ∈ C.

With every Anderson A-module E = (E,ϕ) is associated an AC-module as follows. This construc-
tion is due to Anderson [And86]; see also [BP20, § 4.1]. Let M := M(E) := HomFq,C(E,Ga,C) be the
AC-module of Fq-linear homomorphisms of group schemes, where a ∈ A and b ∈ C act on m ∈M via

a : m 7→ m ◦ ϕa and b : m 7→ ψb ◦m.

The σ∗-semi-linear endomorphism ofM given bym 7→ Frobq,Ga ◦m yields an AC-linear homomorphism
τM : σ∗M → M . Note that after choosing an isomorphism E ∼= Gd

a,C of Fq-module schemes we

obtain M(E) ∼= C{τ}1×d from Lemma 5.1, where
∑

i biτ
i ∈ C{τ}1×d with bi = (bi,1, . . . , bi,d) ∈ C1×d

corresponds to the morphism Gd
a,C → Ga,C given by (x1, . . . , xd)

T 7→ ∑
i,j bi,jx

qi

j . In particular the

endomorphism m 7→ τM (σ∗m) = Frobq,Ga ◦m of M corresponds to the endomorphism
∑

i biτ
i 7→

τ · (∑i biτ
i) of C{τ}1×d which is injective. Since C is perfect, σ∗ is an automorphism of AC. So

σ∗ : M → σ∗M is an isomorphism and hence, τM is injective.
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There is a natural isomorphism of AC-modules

(5.2) M/τM (σ∗M) ∼−→ HomC(LieE,C), m mod τM (σ∗M) 7−→ Liem.

see [And86, Lemma 1.3.4], where a ∈ A acts on LieE via Lieϕa. Condition (5.1) in Definition 5.2(a)
implies that Jd = 0 on M/τM (σ∗M), where J := (a ⊗ 1 − 1 ⊗ c∗(a) : a ∈ A) ⊂ AC. Therefore, τM
induces an isomorphism τM : σ∗M ⊗AC

AC[J
−1] ∼−→M ⊗AC

AC[J
−1].

Definition 5.5. Let E be an Anderson A-module over C and define M(E) :=
(
M(E), τM

)
as above.

IfM(E) is a finite locally free AC-module then E is called abelian andM (E) is the (effective) A-motive
associated with E. The rank of M(E) is called the rank of E and is denoted rkE.

For example, if C = P1
Fq
, A = Fq[t], θ = c∗(t) ∈ C, and E = (Ga,C, ϕt = θ+τ) is the Carlitz-module,

then E is abelian of rank 1 and M(E) = (C[t], τM = t− θ) is the Carlitz t-motive from Example 3.6.

Remark 5.6. (a) By [And86, Proposition 1.8.3] the rank of E is characterized by the isomorphism

E[a](C) ∼=
(
A/(a)

)⊕ rkE
for every a ∈ A.

(b) If E is a Drinfeld A-module the rank of E from Definition 5.2(b) equals the rank from Definition 5.5
by [Gos96, § 4.5].

Anderson [And86, Theorem 1] proved the following

Theorem 5.7. The contravariant functor E 7→ M(E) is an anti-equivalence from the category of
abelian Anderson A-modules onto the full subcategory of A-Mot consisting of those effective A-motives
(M, τM ) that are finitely generated over C{τ}, where τ acts on M through m 7→ τM (σ∗m).

5.2 The Relation with dual A-motives

In unpublished work [ABP02] Greg Anderson has clarified the relation between Anderson A-modules
and dual A-motives. For convenience of the reader we reproduce some of his results here (in our own
words); see also [BP20, § 4.4].

Let E be a group scheme over C isomorphic to Gd
a,C, and let ϕ : A → EndC(E) be a ring homo-

morphism. The set M̌ := M̌(E) := HomFq,C(Ga,C, E) of Fq-linear homomorphisms of group schemes
is an AC-module, where a ∈ A and b ∈ C act on m̌ ∈ M̌ via

a : m̌ 7→ ϕa ◦ m̌ and b : m̌ 7→ m̌ ◦ ψb .

There is a σ̌∗-semi-linear endomorphism of M̌ = M̌(E) given by m̌ 7→ m̌ ◦ Frobq,Ga, which induces
an AC-linear homomorphism τ̌M̌ : σ̌∗M̌ → M̌ . Note that after choosing an isomorphism E ∼= Gd

a,C of

Fq-module schemes we obtain M̌(E) ∼= C{τ}d from Lemma 5.1, where
∑

i biτ
i ∈ C{τ}d with bi ∈ Cd

corresponds to the morphism Ga,C → Gd
a,C given by x 7→ ∑

i bix
qi . In particular the endomorphism

m̌ 7→ τ̌M̌ (σ̌∗m̌) = m̌ ◦ Frobq,Ga of M̌ corresponds to the endomorphism
∑

i biτ
i 7→ (

∑
i biτ

i) · τ of
C{τ}d which is injective. Since C is perfect, σ̌ is an automorphism of AC. So σ̌∗ : M̌ → σ̌∗M̌ is an
isomorphism and hence, τ̌M̌ is injective.

There is the following alternative description of M̌(E). Let C{τ̌} be the non-commutative poly-
nomial ring over C in the variable τ̌ with τ̌ b = q

√
b τ̌ for b ∈ C. Consider the †-operation (called

∗-operation in [BP20, § 4.4]) which sends a matrix B =
∑

iBiτ
i ∈ C{τ}r×r′ with Bi ∈ Cr×r

′

to the
matrix B† := (

∑
i σ̌

i∗(Bi)τ̌
i)T ∈ C{τ̌}r′×r. Here (. . .)T denotes the transpose. The †-operation sat-

isfies (BC)† = C†B† for matrices B ∈ C{τ}r×r′ and C ∈ C{τ}r′×r′′ . It induces an isomorphism of
AC-modules

(5.3) † : M̌(E) ∼= C{τ}d ∼−→ C{τ̌}1×d, m̌ 7→ m̌†,
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where a ∈ A and b ∈ C act on m̌† ∈ C{τ̌}1×d via

a : m̌† 7→ m̌† ·∆ †a and b : m̌† 7→ b · m̌† .

Here ∆a ∈ C{τ}d×d = EndFq,C(G
d
a,C)
∼= EndFq,C(E) is the matrix corresponding to ϕa. Under this

isomorphism † : M̌(E) ∼−→ C{τ̌}1×d the σ̌∗-semi-linear endomorphism m̌ 7→ m̌ ◦ Frobq,Ga of M̌(E)
corresponds to the σ̌∗-semi-linear endomorphism m̌† 7→ τ̌ · m̌† of C{τ̌}1×d. This gives M̌(E) the
structure of a finite free left C{τ̌}-module which is independent of the isomorphism E ∼= Gd

a,C.

Proposition 5.8. Let E be a group scheme over C isomorphic to Gd
a,C, and let ϕ : A→ EndC(E) be

a ring homomorphism. Set E = (E,ϕ) and let M̌ = M̌(E) and τ̌M̌ : σ̌∗M̌ → M̌ be as above. Then
there is a canonical exact sequence of A-modules

(5.4) 0 // M̌ // M̌
δ1

// E(C) // 0 ,

m̌ ✤ // τ̌M̌ (σ̌∗m̌)− m̌ , m̌ ✤ // m̌(1)

and a canonical exact sequence of AC-modules

(5.5) 0 // σ̌∗M̌
τ̌M̌

// M̌
δ0

// LieE // 0 .

m̌ ✤ // (Lie m̌)(1)

In particular, E = (E,ϕ) is an Anderson A-module if and only if τ̌M̌ induces an isomorphism
τ̌M̌ : σ̌∗M̌ ⊗AC

AC[J
−1] ∼−→ M̌ ⊗AC

AC[J
−1]. In this case, δ0 factors through M̌/JdM̌ and extends to

an AC-homomorphism δ0 : M̌ ⊗AC
O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
։ LieE.

Under the above identifications E(C) ∼= Cd and LieE ∼= Cd and † : M̌ (E) ∼−→ C{τ̌}1×d these
sequences take the form

0 // C{τ̌}1×d τ̌−1
// C{τ̌}1×d δ1

// Cd // 0 ,

m̌† ✤ // τ̌ m̌† − m̌† , ∑
i
ciτ̌

i ✤ //
∑
i
σi∗(ci)

T

and

0 // C{τ̌}1×d τ̌
// C{τ̌}1×d δ0

// Cd // 0 .

m̌† ✤ // τ̌ m̌† ,
∑
i
ciτ̌

i ✤ // cT0

Proof. The map δ1 is A-linear because a · m̌ = ϕa ◦ m̌ 7→ (ϕa ◦ m̌)(1) = ϕa(m̌(1)). The map δ0 is a
homomorphism of AC-modules because a · m̌ = ϕa ◦ m̌ 7→ Lie(ϕa ◦ m̌)(1) = Lieϕa(Lie m̌(1)) and

b · m̌ = m̌ ◦ ψb 7−→ Lie(m̌ ◦ ψb)(1) = (Lie m̌ ◦ Lieψb)(1) = b · (Lie m̌)(1) .

To prove that the composition of the two morphisms in (5.4) is zero, we compute (τ̌M̌ (σ̌∗m̌)−m̌)(1) :=
m̌ ◦ Frobq,Ga(1) − m̌(1) = m̌(1) − m̌(1) = 0 for all m̌ ∈ M̌ . To prove that δ0 ◦ τ̌M̌ = 0 in (5.5), note
that since C is perfect, σ̌∗ : M̌ → σ̌∗M̌ is an isomorphism. Therefore, every element of τ̌M̌ (σ̌∗M̌) is of
the form τ̌M̌(σ̌∗m̌) = m̌ ◦ Frobq,Ga and satisfies Lie(m̌ ◦ Frobq,Ga) = (Lie m̌) ◦ (Lie Frobq,Ga) = 0.

Furthermore, δ1 is surjective because through every point x ∈ E(C) there is a morphism m̌ : Ga,C →
E with m̌(1) = x. For example if we identify the Fq-module schemes ρ : E ∼−→ Gd

a,C = SpecC[X1, . . . ,Xd]

and Ga,C = SpecC[Y ] we can take m̌ : Xi 7→ xiY where ρ(x) = (x1, . . . , xd)
T . This m̌ also satisfies

(Lie m̌)(1) = x and this shows that δ0 is surjective.
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To show that (5.4) and (5.5) are exact, we keep this identification and the induced isomorphism
M̌(E) ∼= C{τ}d. If m̌ =

∑
i biτ

i ∈ C{τ}d satisfies 0 = m̌(1) =
∑

i bi, then

m̌ = τ̌M̌(σ̌∗m̌′)− m̌′ = m̌′τ − m̌′

for m̌′ =
∑

i bi(1 + τ + . . . + τ i−1). This proves that (5.4) is exact in the middle. Exactness on
the left holds because multiplication with τ − 1 is injective on C{τ}d. Clearly, (5.5) is exact on the
left because τ̌M̌ is injective. If m̌ =

∑
i biτ

i satisfies 0 = (Lie m̌)(1) = b0 then m̌ = (
∑

i biτ
i−1) · τ =

τ̌M̌ (σ̌∗
∑

i biτ
i−1) ∈ τ̌M̌ (σ̌∗M̌), and this proves the exactness of (5.5). Moreover, under the †-operation

m̌ =
∑

i biτ
i is sent to m̌† =

∑
i ciτ̌

i for ci = σ̌i∗(bi)
T and so δ1(m̌) =

∑
i bi =

∑
i σ

i∗(ci)
T and

δ0(m̌) = b0 = cT0 .
Finally, τ̌M̌ induces an isomorphism τ̌M̌ : σ̌∗M̌ ⊗AC

AC[J
−1] ∼−→ M̌ ⊗AC

AC[J
−1] if and only if

the elements of J are nilpotent on LieE. Since LieE is a d-dimensional C-vector space, the latter
is equivalent to condition (5.1) in Definition 5.2(a). If this holds, the morphism δ0 factors through
M̌/JdM̌ , and extends to a homomorphism δ0 : M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
։ LieE because

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
/(Jd) = AC/J

d.

Definition 5.9. Let E be an Anderson A-module over C and define M̌(E) :=
(
M̌(E), τ̌M̌

)
as above.

If M̌(E) is a finite locally free AC-module then E is called A-finite and M̌(E) is the (effective) dual
A-motive associated with E. The rank of M̌(E) is called the rank of E and is denoted rkE.

Remark 5.10. By the analog of [And86, Proposition 1.8.3] (see Proposition 5.12 below) the rank

of E is characterized by E[a](C) ∼=
(
A/(a)

)⊕ rkE
for every a ∈ A, where E[a] := ker(ϕa : E → E).

Together with Remark 5.6 this shows that for an Anderson A-module E which is both abelian and
A-finite the Definitions 5.5 and 5.9 of the rank of E coincide.

The assignment E 7→ M̌(E) =
(
HomFq,C(Ga,C, E), σ̌∗m̌ 7→ m̌ ◦ Frobq,Ga

)
is a covariant functor

because a morphism f : E = (E,ϕ) → E′ = (E′, ϕ′) between abelian Anderson A-modules (which
satisfies f ◦ ϕa = ϕ′a ◦ f) is sent to

M̌(f) : M̌(E) −→ M̌(E′), m̌ 7→ f ◦ m̌ ,

which satisfies a ·M̌(f)(m̌) = ϕ′a◦(f ◦m̌) = f ◦(ϕa◦m̌) = M̌(f)(a ·m̌) and b ·M̌(f)(m̌) = (f ◦m̌)◦ψb =
M̌(f)(b ·m̌) and (τ̌M̌(E′) ◦ σ̌∗M̌ (f))(σ̌∗m̌) = (f ◦m̌)◦Frobq,Ga = (M̌ (f)◦ τ̌M̌(E))(σ̌

∗m̌) for a ∈ A, b ∈ C

and m̌ ∈ M̌(E). The following result is due to Anderson; see [BP20, Theorem 4.4.1].

Theorem 5.11. (a) The functor M̌( . ) : E 7→ M̌(E) from the category of Anderson A-modules to
the category of pairs (M̌, τ̌M̌ ) consisting of an AC-module M̌ and an isomorphism of AC[J

−1]-
modules τ̌M̌ : σ̌∗M̌ [J−1] ∼−→ M̌ [J−1] is fully faithful.

(b) The functor M̌( . ) restricts to an equivalence from the category of A-finite Anderson A-modules
onto the full subcategory of A-dMot consisting of those effective dual A-motives (M̌, τ̌M̌ ) which
are finitely generated as left C{τ̌}-modules, where τ̌ acts on M̌ through m̌ 7→ τ̌M̌ (σ̌∗m̌).

Proof. (a) Let E and E ′ be Anderson A-modules and fix isomorphisms E ∼= Gd
a,C and E′ ∼= Gd′

a,C of Fq-

module schemes. Then under the identification HomFq,C(E,E
′) ∼= C{τ}d′×d from Lemma 5.1, a mor-

phism f : E → E′ corresponds to a matrix F ∈ C{τ}d′×d and the induced morphism M̌(f) : C{τ}d ∼=
M̌(E)→ M̌(E ′) ∼= C{τ}d′ corresponds to multiplication on the left with the matrix F .

Conversely, let g : C{τ}d ∼= M̌ (E) → M̌(E ′) ∼= C{τ}d′ be a morphism, that is τ̌M̌(E′) ◦ σ̌∗g =

g ◦ τ̌M̌(E). Since τ̌M̌(E)(σ̌
∗m̌) := m̌ ◦ Frobq,Ga = m̌ · τ in M̌(E) ∼= C{τ}d, this means that the map

g : C{τ}d → C{τ}d′ is compatible with multiplication by C{τ} on the right. Therefore, g corresponds
to multiplication on the left by a matrix G ∈ C{τ}d′×d. This means that g induces a morphism
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of Fq-module schemes f : E → E′ with M̌ (f) = g. Since g commutes with the A-action on M̌(E)
and M̌(E ′), also f commutes with the A-action on E and E′, that is f is a morphism of Anderson
A-modules. This proves the full faithfulness of M̌( . ).

(b) Let M̌ be a dual A-motive which is finitely generated over C{τ̌}. Then M̌ is a finite free C{τ̌}-
module by the C{τ̌}-analog of [And86, Lemma 1.4.5], because it is a torsion free AC-module. Any
C{τ̌}-basis of M̌ provides an isomorphism M̌ ∼= HomFq,C(Ga,C, E) =: M̌(E) compatible with τ̌M̌ and
τ̌M̌(E), where E := Gd

a,C with d := rkC{τ̌} M̌ . The action of a ∈ A on M̌ commutes with τ̌M̌ . Therefore,

it is given by multiplication on M̌ ∼= C{τ̌}1×d on the right by a matrix ∆†a =
∑

iBiτ̌
i ∈ C{τ̌}d×d.

The map ϕ : A → C{τ}d×d = EndFq,C(E), a 7→ ∆a := (
∑

i σ
i∗(Bi)τ

i)T makes E into an A-module
scheme. Sequence (5.5) shows that E = (E,ϕ) is an Anderson A-module which is A-finite, because
M̌ ∼= M̌ (E).

Let E = (E,ϕ) be a (not necessarily A-finite) Anderson A-module and let M̌ = (M̌, τ̌M̌ ) = M̌(E)
be as in Definition 5.9. The following crucial description of the torsion points of E is Anderson’s
“switcheroo”; see [ABP02] or [Jus10, Lemma 4.1.23].

Proposition 5.12. Let m̌ ∈ M̌ and let x = δ1(m̌) = m̌(1) ∈ E(C). Let a ∈ A r Fq. Then there is a
canonical bijection

{
m̌′ ∈ M̌/aM̌ : τ̌M̌ (σ̌∗m̌′)− m̌′ = m̌ in M̌/aM̌

}
∼−→

{
x′ ∈ E(C) : ϕa(x

′) = x
}

m̌′ 7−→ δ1
(
a−1(m̌+ m̌′ − τ̌M̌ (σ̌∗m̌′))

)
,(5.6)

where x′ := δ1
(
a−1(m̌ + m̌′ − τ̌M̌ (σ̌∗m̌′))

)
is defined by choosing any representative m̌′ ∈ M̌ of m̌′ ∈

M̌/aM̌ , taking m̌′′ ∈ M̌ as the unique element with m̌ + m̌′ − τ̌M̌(σ̌∗m̌′) = am̌′′, and setting x′ :=
δ1(m̌

′′).
If m̌ = 0 both sides are A/(a)-modules and the bijection is an isomorphism of A/(a)-modules

(M̌/aM̌ )τ̌ ∼−→ E[a](C) , m̌′ 7−→ δ1
(
a−1(m̌′ − τ̌M̌ (σ̌∗m̌′))

)
.

Proof. First note that the map is well defined. Namely, any two representatives of m̌′ ∈ M̌/aM̌
differ by aň for an element ň ∈ M̌ . Then the corresponding elements m̌′′ differ by ň − τ̌M̌ (σ̌∗ň)
which lies in the kernel of δ1. Therefore, x′ is independent of the representative m̌′ ∈ M̌ . Moreover,
x′ := δ1(m̌

′′) satisfies ϕa(x
′) = ϕa(δ1(m̌

′′)) = δ1(am̌
′′) = δ1(m̌) = x. If m̌ = 0, then the map clearly is

an A/(a)-homomorphism.
If x′ ∈ E(C) with ϕa(x

′) = x is given, there is an m̌′′ ∈ M̌ with δ1(m̌
′′) = x′ by (5.4) in

Proposition 5.8 and then δ1(am̌
′′) = ϕa(δ1(m̌

′′)) = ϕa(x
′) = x = δ1(m̌) implies that m̌ − am̌′′ =

τ̌M̌ (σ̌∗m̌′)− m̌′ for an element m̌′ ∈ M̌ . This proves the surjectivity.
To prove injectivity let m̌′1, m̌

′
2 ∈ M̌ be mapped to the same element x′ ∈ E(C) and let m̌′′i =

a−1
(
m̌+ m̌′i− τ̌M̌ (σ̌∗m̌′i)

)
for i = 1, 2. Then δ1(m̌

′′
1) = x′ = δ1(m̌

′′
2) implies by (5.4) in Proposition 5.8

that m̌′′2 = m̌′′1 + τ̌M̌ (σ̌∗ň) − ň for an element ň ∈ M̌ . From this it follows that τ̌M
(
σ̌∗(m̌′2 + aň −

m̌′1)
)
− (m̌′2 + aň− m̌′1) = 0 and the exactness of (5.4) on the left implies m̌′1 = m̌′2 + aň.

The relation between M (E) and M̌(E) of an abelian and A-finite Anderson A-module E is de-
scribed by the following

Theorem 5.13. Let E be an abelian Anderson A-module over C, let M = (M, τM ) = M(E) and
M̌ = (M̌ , τ̌M̌ ) = M̌(E) be as in Definitions 5.5 and 5.9. Let M̌ (M) =

(
HomAC

(σ∗M,Ω1
AC/C

) , τ∨

M

)
be

the dual A-motive from Proposition 4.3. Then there is a canonical injective AC-homomorphism

Ξ: HomAC
(σ∗M,Ω1

AC/C
) −֒→ M̌ , η 7−→ m̌η
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such that for every m ∈M

(5.7) m ◦ m̌η =

∞∑

i=0

(
Res∞ η

(
σ̌i∗(τ−i−1M m)

))qi
· τ i ∈ EndFq,C(Ga,C) = C{τ} .

It is compatible with τM and τ̌M̌ , that is, the following diagram commutes:

(5.8) HomAC
(σ∗M,Ω1

AC/C
)

Ξ
// M̌

σ̌∗HomAC
(σ∗M,Ω1

AC/C
) = HomAC

(M,Ω1
AC/C

)
σ̌∗Ξ

//

. ◦ τM
OO

σ̌∗M̌

τ̌M̌

OO

Moreover, Ξ is an isomorphism if and only if E is A-finite. In this case Ξ is an isomorphism of dual
A-motives Ξ: M̌(M ) ∼−→ M̌(E).

Proof. 1. To show that the sum in (5.7) belongs to C{τ} we have to show that

Res∞ η
(
σ̌i∗(τ−i−1M m)

)
= 0 for all i ≫ 0 .

By Proposition 3.11 the z-isocrystal M̂ := M ⊗AC
C((z)) is isomorphic to

⊕
i M̂di,ri with all di > 0 by

Proposition 3.14(a). The explicit description of M̂di,ri in (3.4) shows that there is a C[[z]]-lattice V of

full rank in M̂ := M ⊗AC
C((z)) such that V ⊂ τ jM (σj∗V ) for all j ≥ 0, and a positive integer s with

z−1V ⊂ τ sM (σs∗V ). This implies

σ̌(ns+j−1)∗(τ−ns−jM V ) ⊂ znσ∗V for all integers n ≥ 0 and 0 ≤ j < s .

We extend η ∈ HomAC
(σ∗M,Ω1

AC/C
) to η ∈ HomC((z))(σ

∗M̂,C((z))dz). In particular, η(σ∗V ) ⊂
z−NC[[z]]dz for an integer N . For every m ∈ M , there is an integer e with m ∈ z−eV so that
η
(
σ̌(ns+j−1)∗(τ−ns−jM m)

)
∈ zn−e−NC[[z]]dz. It follows that Res∞ η

(
σ̌ns+j−1∗(τ−ns−jM m)

)
= 0 for all

n ≥ N + e and all 0 ≤ j < s.

2. Fix an η ∈ HomAC
(σ∗M,Ω1

AC/C
). To define m̌η ∈ M̌ we choose an isomorphism ρ : E ∼−→ Gd

a,C

of Fq-module schemes, let prj : Gd
a,C → Ga,C be the projection onto the j-th factor, and set mj :=

prj ◦ ρ ∈M(E) = HomFq,C(E,Ga,C) for j = 1, . . . , d. We define m̌η ∈ M̌ = HomFq,C(Ga,C, E) via

ρ ◦ m̌η :=

(
∞∑

i=0

(
Res∞ η

(
σ̌i∗(τ−i−1M mj)

))qi
· τ i
)d

j=1

∈ C{τ}⊕d .

In particular, (5.7) holds when m = mj for j = 1, . . . , d. To prove that (5.7) holds for all m ∈ M we
use that m1, . . . ,md form a C{τ}-basis of M . Thus it suffices to show that (5.7) is compatible with

(a) addition in M ,

(b) scalar multiplication by elements of C, and

(c) multiplication with τ .

Since both sides of (5.7) are additive in m, (a) is clear.

(b) Let m ∈M and b ∈ C and assume that (5.7) holds for m. The left hand side equals (bm) ◦ m̌η =

b · (m ◦ m̌η). On the right hand side we have Res∞ η
(
σ̌i∗(τ−i−1M (bm))

)
= bq

−i · Res∞ η
(
σ̌i∗(τ−i−1M m)

)
.

Therefore, (5.7) also holds for bm.
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(c) We assume that (5.7) holds for some m ∈M . The left hand side equals (τm) ◦ m̌η = τ · (m ◦ m̌η).
The right hand side for τm = τM(σ∗m) equals

∞∑

i=0

(
Res∞ η

(
σ̌i∗(τ−i−1M ◦ τM(σ∗m))

))qi
· τ i =

∞∑

i=1

(
Res∞ η

(
σ̌(i−1)∗(τ−iM m)

))q(i−1)q
· τ i

= τ ·
( ∞∑

i=1

(
Res∞ η

(
σ̌(i−1)∗(τ−iM m)

))qi−1

· τ i−1
)
,

because τ−i−1M = σi∗τ−1M ◦ . . .◦σ∗τ−1M ◦τ−1M and in the first line the term Res∞ η(σ
∗m) for i = 0 vanishes

by [Vil06, Theorem 9.3.22] as η(σ∗m) ∈ Ω1
AC/C

. Therefore, (5.7) also holds for τm.

This establishes (5.7) for all m ∈M .

3. To prove that the assignment Ξ: η 7→ m̌η defined in step 2 is C-linear, note that additivity is clear.
Let b ∈ C. Then bη is sent to b · m̌η because

ρ ◦ m̌(bη) :=

(
∞∑

i=0

(
Res∞(bη)

(
σ̌i∗(τ−i−1M mj)

))qi
· τ i
)d

j=1

=

(
∞∑

i=0

(
Res∞ η

(
σ̌i∗(τ−i−1M mj)

))qi
· bqi · τ i

)d

j=1

= ρ ◦ m̌η ◦ ψb
=: ρ ◦ (bm̌η) .

4. The map Ξ is also A-linear. Indeed, let a ∈ A. Then aη is sent to a · m̌η because

prj ◦ ρ ◦ m̌(aη) :=

∞∑

i=0

(
Res∞(aη)

(
σ̌i∗(τ−i−1M mj)

))qi
· τ i

:=
∞∑

i=0

(
Res∞ η

(
a · σ̌i∗(τ−i−1M mj)

))qi
· τ i

=

∞∑

i=0

(
Res∞ η

(
σ̌i∗(τ−i−1M (mj ◦ ϕa))

))qi
· τ i

= mj ◦ ϕa ◦ m̌η

=: prj ◦ ρ ◦ (am̌η) .

5. To prove that Ξ is compatible with τM and τ̌M̌ we must show that Ξ(σ̌∗η ◦ τM ) = τ̌M̌(σ̌∗m̌η). This
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is true because τ−i−1M = σi∗τ−1M ◦ . . . ◦ σ∗τ−1M ◦ τ−1M implies τM ◦ σ̌i∗τ−i−1M = σ̌i∗τ−iM , and hence,

ρ ◦ m̌(σ̌∗η ◦ τM ) :=

(
∞∑

i=0

(
Res∞(σ̌

∗η ◦ τM )
(
σ̌i∗(τ−i−1M mj)

))qi
· τ i
)d

j=1

=

(
∞∑

i=0

(
Res∞(σ̌

∗η)
(
σ̌i∗(τ−iM mj)

))qi
· τ i
)d

j=1

=

(
∞∑

i=0

(
Res∞ σ̌

∗
(
η(σ̌(i−1)∗(τ−iM mj))

))qi
· τ i
)d

j=1

=

(
∞∑

i=1

(
Res∞ η

(
σ̌(i−1)∗(τ−iM mj)

))qi−1

· τ i−1
)d

j=1

· τ

= ρ ◦ m̌η ◦ Frobq,Ga

=: ρ ◦ τ̌M̌(σ̌∗m̌η) ,

where in the fourth line the term Res∞ η(σ
∗mj) for i = 0 vanishes again by [Vil06, Theorem 9.3.22]

as η(σ∗mj) ∈ Ω1
AC/C

.

6. We prove that the AC-homomorphism Ξ is injective. If m̌η = 0, then formula (5.7) implies
that Res∞ η

(
σ̌i∗(τ−i−1M m)

)
= 0 for all i ≥ 0 and all m ∈ M . We must show that η = 0. Since

η ∈ HomAC
(σ∗M,Ω1

AC/C
) ⊂ HomC((z))(σ

∗M̂,C((z))dz) is z-adically continuous with σ∗M̂ :=

σ∗M ⊗AC
C((z)), the preimage U := η−1(C[[z]]dz) is a z-adically open neighborhood of 0 in σ∗M̂ .

By Proposition 3.15, σ∗M̂ = U +
⋃
i∈N0

σ̌i∗τ−i−1M (M). Since the C-linear map Res∞◦ η is zero on U

and also on the second summand, it is zero on all of σ∗M̂ . This implies that η = 0.

7. If Ξ is an isomorphism, then M̌ = M̌(E) is locally free over AC of rank equal to rkE, because M
and hence HomAC

(σ∗M,Ω1
AC/C

) are, as E is abelian. So E is A-finite.

8. Conversely, assume that E is A-finite, that is, M̌ is locally free over AC of rank equal to rkE.
Since also M and hence, HomAC

(σ∗M,Ω1
AC/C

) are locally free over AC of rank equal to rkE, as E is

abelian, an argument analogous to [Tae09a, Proposition 3.1.2] shows that coker Ξ is annihilated by
an element a ∈ A (and not just by an element of AC); see also [BH11, Corollary 5.4]. We use this to
prove the surjectivity of Ξ in the next step.

9. To prove that Ξ is surjective, when E is A-finite, take for the moment an arbitrary element
a ∈ A r Fq and let η ∈ HomAC

(σ∗M,Ω1
AC/C

) be such that η − (σ̌∗η ◦ τM ) = a η′ for some η′ ∈
HomAC

(σ∗M,Ω1
AC/C

), where σ̌∗η ∈ HomAC
(M,Ω1

AC/C
) and σ̌∗η ◦ τM ∈ HomAC

(σ∗M,Ω1
AC/C

), as M(E)

is effective. Then m̌η− τ̌M̌(σ̌∗m̌η) = a m̌η′ by parts 4 and 5 above. Moreover, let m ∈M be such that
m− τM (σ∗m) = am′ for some m′ ∈M . Then we have a telescoping sum

σ̌i∗(τ−i−1M m)− σ∗m = a
i∑

j=0

σ̌j∗(τ−j−1M m′) for all i ≥ 0 .

Since η′(σ∗m), σ̌∗
(
η(σ∗m′)

)
∈ Ω1

AC/C
we have Res∞ η

′(σ∗m) = Res∞ σ̌
∗
(
η(σ∗m′)

)
= 0 by [Vil06,

Theorem 9.3.22]. Finally, by part 1 above there is an integer N such that η
(
σ̌n∗(τ−n−1M m)

)
and

η′
(
σ̌n∗(τ−n−1M m)

)
lie in C[[z]]dz for all n ≥ N . Since a−1 ∈ zFq[[z]], also a−1η

(
σ̌N∗(τ−N−1M m)

)
∈
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C[[z]]dz. For all such n > N this implies

(m ◦ m̌η′)(1) =
n∑
i=0

(
Res∞ η

′
(
σ̌i∗(τ−i−1M m)

))qi

=
n∑
i=0

( i∑
j=0

Res∞ a η
′
(
σ̌j∗(τ−j−1M m′)

))qi

=
n∑
i=0

( i∑
j=0

Res∞
(
η − (σ̌∗η ◦ τM )

)(
σ̌j∗(τ−j−1M m′)

))qi

=
n∑
i=0

( i∑
j=0

Res∞ η
(
σ̌j∗(τ−j−1M m′)

)
−

i∑
j=0

Res∞ σ̌
∗
(
η(σ̌(j−1)∗(τ−jM m′))

))qi

=
n∑
i=0

( i∑
j=0

Res∞ η
(
σ̌j∗(τ−j−1M m′)

))qi
−

n∑
i=0

(i−1∑
j=0

Res∞ η
(
σ̌j∗(τ−j−1M m′)

))qi−1

(5.9)

=
( n∑
j=0

Res∞ η
(
σ̌j∗(τ−j−1M m′)

))qn

=
( N∑
j=0

Res∞ η
(
σ̌j∗(τ−j−1M m′)

))qn

=
N∑
j=0

Res∞ η
(
σ̌j∗(τ−j−1M m′)

)

= Res∞ a
−1η
(
σ̌N∗(τ−N−1M m)

)
− Res∞ a

−1η(σ∗m)

= −Res∞ a
−1η(σ∗m) ,

where the independence of n ≥ N of the expression in the seventh line implies that this expression
lies in Fq. Since (m ◦ m̌η′)(1) = m

(
δ1(a

−1(m̌η − τ̌M̌ (σ̌∗m̌η))
)
by definition of δ1, it follows that the

diagram (5.10) described in the next corollary is commutative. In this diagram the left horizontal

arrow is injective, because if η ∈
(
M̌(M )/aM̌ (M)

)τ̌
satisfies η(σ∗m) ∈ aΩ1

A/Fq
for all m ∈ (M/aM)τ ,

then (M/aM)τ ⊗Fq C
∼= M/aM implies that η(σ∗m) ∈ aΩ1

AC/C
for all m ∈ M , whence η ∈ aM̌(M).

This arrow is surjective because both HomA/(a)

(
(M/aM)τ , Ω1

A/Fq
/aΩ1

A/Fq

)
and

(
M̌(M)/aM̌ (M )

)τ̌

are locally free A/(a)-modules of rank rkE, and hence, are finite dimensional Fq-vector spaces of the
same dimension, because E is A-finite.

This implies that Ξ induces an isomorphism
(
M̌ (M)/aM̌ (M)

)τ̌ ∼−→
(
M̌(E)/aM̌ (E)

)τ̌
. Since

(M̌/aM̌)τ̌ ⊗Fq C ∼= M̌/aM̌ for every dual A-motive M̌ over C, we conclude that Ξ is an isomorphism

M̌(M )/aM̌ (M) ∼−→ M̌(E)/aM̌ (E). In particular if we take the element a ∈ A from part 8 which
annihilates the cokernel of Ξ this shows that coker(Ξ) = 0 and that Ξ is an isomorphism. Altogether
we have proved the theorem

Along with the proof of the theorem we also showed the following

Corollary 5.14. Let E be an abelian and A-finite Anderson A-module, and let M̌(E) and M =
M(E) be its associated (dual) A-motive. Let a ∈ A and consider the dual A-motive M̌(M ) :=(
HomAC

(σ∗M,Ω1
AC/C

) , τ∨

M

)
from Proposition 4.3. Then the following diagram consisting of isomor-
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phisms of A/(a)-modules is commutative
(5.10)

HomA/(a)

(
(M/aM )τ , Ω1

A/Fq
/aΩ1

A/Fq

)

∼=

��

(
M̌(M)/aM̌ (M )

)τ̌
∼=

oo
∼=

Ξ
//
(
M̌(E)/aM̌ (E)

)τ̌

∼=

��

E[a](C) E[a](C) ,

(
hη : m 7→ η(σ∗m)

)
❴

��

η✤oo ✤
Ξ

// m̌η
❴

��

P δ1
(
a−1(m̌η − τ̌M̌(σ̌∗m̌η)

)
,

where the left horizontal arrow sends η ∈
(
M̌(M)/aM̌ (M )

)τ̌
to hη := (η ◦ σ∗)|(M/aM )τ , where the

right horizontal arrow is the isomorphism Ξ from Theorem 5.13, where the left vertical map is (up to
a minus sign motivated by Theorem 5.47 below) Anderson’s isomorphism [And86, Proposition 1.8.3]
which sends h ∈ HomA/(a)

(
(M/aM )τ , Ω1

A/Fq
/aΩ1

A/Fq

)
to the point P ∈ E[a](C) satisfying m(P ) =

−Res∞ a
−1h(m) for all m ∈ (M/aM)τ , and where the right vertical map is the isomorphism m̌ 7→

δ1
(
a−1(m̌− τ̌M̌ (σ̌∗m̌)

)
from Proposition 5.12.

Proof. The proof of the corollary was given in step 9 of the proof of Theorem 5.13.

The theorem naturally leads to the following

Question 5.15. If E is an abelian and A-finite Anderson A-module, the inverse of the isomorphism
Ξ from Theorem 5.13 defines a perfect pairing of AC-modules

M̌ (E)⊗AC
σ∗M(E) −→ Ω1

AC/C
, m̌⊗ σ∗m 7−→ Ξ−1(m̌)(σ∗m) .

Is it possible to give a direct description of this pairing, that is an explicit formula of the differential
form Ξ−1(m̌)(σ∗m) in terms of m̌ and m ?

For Drinfeld Fq[t]-modules the question has an affirmative answer as follows.

Example 5.16. Let C = P1
Fq
, A = Fq[t], AC = C[t], θ := c∗(t), and J = (t− θ). Also we choose z = 1

t

as the uniformizing parameter at ∞. Then Ω1
AC/C

= C[t] · dt and dt = − 1
z2
dz. Let E = (E,ϕ) be a

Drinfeld Fq[t]-module given by E = Ga,C and

ϕt = ψθ + ψα1 ◦ τ + . . .+ ψαr ◦ τ r

with αi ∈ C and αr 6= 0. Then the powers m̌k := τk for k = 0, . . . , r − 1 form a C[t]-basis of
M̌ = HomFq,C(Ga, E) on which τ̌M̌ acts via τ̌M̌ (τ i) = τ i+1 for 0 ≤ i < r − 1 and

τ̌M̌(τ r−1) = τ r = ϕt ◦ ψ
1/αq−r

r
− ψ

θ/αq−r
r
− τ ◦ ψ

αq−1

1 /αq−r
r
− . . .− τ r−1 ◦ ψ

αq−(r−1)

r−1 /αq−r
r

= (t− θ)/αq−r

r − αq−1

1 /αq
−r

r · τ − . . .− αq−(r−1)

r−1 /αq
−r

r · τ r−1 .

Thus with respect to this basis of M̌ and the induced basis of σ̌∗M̌ the C[t]-linear map τ̌M̌ is given
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by the matrix

Φ̌ =




0 0 (t− θ)/αq−r

r

1 −αq−1

1 /αq
−r

r

0

0

0 0 1 −αq−(r−1)

r−1 /αq
−r

r




In particular E is A-finite.
On the other hand the powers mj := τ j for j = 0, . . . , r − 1 also form a C[t]-basis of M =

HomFq,C(E,Ga) on which τM acts via τM (τ i) = τ i+1 for 0 ≤ i < r − 1 and

τM(τ r−1) = τ r = ψ1/αr
◦ ϕt − ψθ/αr

− ψα1/αr
◦ τ − . . .− ψαr−1/αr

◦ τ r−1

= (t− θ)/αr − α1/αr · τ − . . .− αr−1/αr · τ r−1 .

Thus with respect to this basis of M and the induced basis of σ∗M the C[t]-linear map τM is given
by the matrix

Φ =




0 0 (t− θ)/αr
1 −α1/αr

0

0

0 0 1 −αr−1/αr




In particular E is also abelian.
Let ηℓ ∈ M̌(M ) = HomAC

(σ∗M,Ω1
AC/C

) for ℓ = 0, . . . , r − 1 be the basis dual to (σ∗mj)j which

is given by ηℓ(σ
∗mj) = δjℓ dt = − δjℓ

z2
dz, where δj,ℓ is the Kronecker delta. We want to compute

the matrix representing the isomorphism Ξ from Theorem 5.13 with respect to the bases (ηℓ)ℓ and
(m̌k)k. For this purpose we have to compute σ̌i∗(τ−i−1M mj) ∈ σ∗M ⊗AC

C((z)) modulo z2, because
ηℓ
(⊕

j z
2C[[z]] · σ∗mj

)
⊂ C[[z]]dz and the elements of the latter have residue 0 at ∞. We set αi := 0

for i > r and observe 1
t−θ = z

1−θz ∈ zC[[z]]. By induction on i one easily verifies that the matrix

Φ−1 · . . . · σ̌i∗Φ−1, which represents σ̌i∗τ−i−1M := τ−1M ◦ . . . ◦ σ̌i∗τ−1M with respect to the basis (mj)j, is
congruent to




σ̌i∗
(α1+i z

1− θz
)

σ̌(i−1)∗
( αi z

1− θz
) α1 z

1− θz 1 0 0

σ̌i∗
(α2+i z

1− θz
)

σ̌(i−1)∗
(α1+i z

1− θz
) α2 z

1− θz 0

0

σ̌i∗
(αr−1 z
1− θz

)
σ̌(i−1)∗

(αr−2 z
1− θz

) αr−i−1 z

1− θz 1

σ̌i∗
( αr z

1− θz
)

σ̌(i−1)∗
(αr−1 z
1− θz

) αr−i z

1− θz 0

σ̌i∗
(αr+i z
1− θz

)
σ̌(i−1)∗

(αr−1+i z
1− θz

) αr z

1− θz 0 0
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modulo z2 C[[z]]r×r for i = 0, . . . , r − 1, and to




0 0 σ̌(r−1)∗
( αr z

1− θz
)

σ̌(i−r+1)∗
(αi−r+2 z

1− θz
)

σ̌(i−r+1)∗
( αr z

1− θz
)

0

0 0




for i = r − 1, . . . , 2r − 2, and to the zero matrix for i ≥ 2r − 1. It follows that

Res∞ ηℓ
(
σ̌i∗(τ−i−1M mj)

)
=

{
−σ̌(i−j)∗(αℓ+1+i−j) for j ≤ i ,

0 for j > i ,

and hence, mj ◦ m̌ηℓ = −
∑2r−2

i=j αq
j

ℓ+1+i−jτ
i = −τ j ·∑r−1−ℓ

k=0 τkαq
−k

k+ℓ+1 for k = i− j. These equations

are equivalent to Ξ(ηℓ) = m̌ηℓ = −
∑r−1−ℓ

k=0 αq
−k

k+ℓ+1m̌k. Therefore, Ξ is represented with respect to the
bases (ηℓ)ℓ and (m̌k)k by the matrix

(5.11) X := −




α1 α2 αr

αq
−1

2 αq
−1

3 αq
−1

r 0

αq
2−r

r

αq
1−r

r 0 0




∈ GLr(C) ⊂ GLr(C[t]) .

Note that the compatibility of Ξ with τM and τ̌M̌ from equation (5.8) corresponds to the equation

(5.12) X · ΦT = −




t− θ 0 0

0 αq
−1

2 αq
−1

r

0

0 αq
1−r

r 0 0




= Φ̌ · σ̌∗(X) ,

which is easily verified. In particular, if

X−1 =




0 0 β0,r−1

0

βr−1,0 βr−1,r−1




denotes the inverse of the matrix X from (5.11) then the pairing from Question 5.15 is explicitly given
by

r−1∑

k=0

f̌k m̌k ⊗
r−1∑

j=0

fj σ
∗mj 7−→

r−1∑

j=0

r−1∑

k=r−1−j

fjβj,kf̌k dt

with f̌k, fj ∈ C[t] for 0 ≤ j, k ≤ r − 1.

(b) More generally let E = (E,ϕ) be an Anderson Fq[t]-module given by E = Gd
a,C and

ϕt = ∆0 +∆1 ◦ τ + . . . +∆s ◦ τ s
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with ∆i ∈ Cd×d, such that (∆0 − θ)d = 0. Assume that ∆s ∈ GLd(C). Then (with the Kronecker
delta) the elements

m̌k,ν :=




δ1,ντ
k

...
δd,ντ

k


 : x 7−→




δ1,νx
qk

...

δd,νx
qk




for ν = 1, . . . , d and k = 0, . . . , s− 1 form a C[t]-basis of M̌ = HomFq,C(Ga, E). And the elements

mj,ν := (δ1,ντ
j , . . . , δd,ντ

j) :




x1
...
xd


 7−→ xq

j

ν

for ν = 1, . . . , d and j = 0, . . . , s−1 form a C[t]-basis of M = HomFq,C(E,Ga). A similar computation
as in (a) shows that with respect to these bases of M̌ and M and the induced bases of σ̌∗M̌ and σ∗M
the C[t]-linear maps τ̌M̌ and τM are given by the matrices

Φ̌ =




0 0 (t−∆0) · σ̌s∗(∆−1s )

Idd −σ̌∗(∆1) · σ̌s∗(∆−1s )

0

0

0 0 Idd −σ̌(s−1)∗(∆s−1) · σ̌s∗(∆−1s )




and

Φ =




0 0 (t−∆T
0 ) · (∆−1s )T

Idd −∆T
1 · (∆−1s )T

0

0

0 0 Idd −∆T
s−1 · (∆−1s )T




In particular E is A-finite and abelian of dimension d and rank r := sd and pure of weight −s.
Let ηℓ,λ ∈ M̌(M ) = HomAC

(σ∗M,Ω1
AC/C

) for λ = 1, . . . , d and ℓ = 0, . . . , s− 1 be the basis dual to

(mj,ν)(j,ν) which is given by ηℓ,λ(σ
∗mj,ν) = δj,ℓδν,λ dt = − δj,ℓδν,λ

z2
dz. A similar computation as in (a)

then shows that Ξ is represented with respect to the bases (ηℓ,λ)(ℓ,λ) and (m̌k,ν)(k,ν) by the matrix

X := −




∆1 ∆2 ∆s

σ̌∗∆2 σ̌∗∆3 σ̌∗∆s 0

σ̌(s−2)∗∆s

σ̌(s−1)∗∆s 0 0



∈ GLr(C) ⊂ GLr(C[t])

which satisfies

X · ΦT = −




t−∆0 0 0

0 σ̌∗∆2 σ̌∗∆s

0

0 σ̌(s−1)∗∆s 0 0




= Φ̌ · σ̌∗(X) .
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Corollary 5.17. Let E = (E,ϕ) be a Drinfeld A-module. Then E is abelian and A-finite.

Proof. Fix an element t ∈ ArFq and consider the finite flat ring homomorphism Ã := Fq[t] →֒ A. By

restricting ϕ|Ã : Ã → EndFq,C(E) we view E as a Drinfeld Fq[t]-module. Then M(E) and M̌(E) are

finite free modules over ÃC = C[t] by Example 5.16. Therefore, they are finite and torsion free, hence
locally free modules over the Dedekind domain AC.

5.3 Analytic theory of A-finite Anderson A-modules

We equip the C-vector spaces of matrices Cd
′×d and vectors Cd = Cd×1 with the maximum norm ‖ . ‖

given by ‖(xij)‖ := max{ |xij | : all i, j }. Then ‖BC‖ ≤ ‖B‖ · ‖C‖ for all matrices B,C. All norms on
these spaces are equivalent by [Sch84, Theorem 13.3] and induce the same topology.

Lemma 5.18. Let f : Gd
a,C → Gd′

a,C be a homomorphism of Fq-module schemes over C. Then f induces

a continuous Fq-linear map f : Gd
a,C(C) = Cd −→ Gd′

a,C(C) = Cd
′

. More precisely, there is a constant

C ∈ R≥0 such that ‖f(y)‖ ≤ C · ‖y‖ for every y ∈ Cd with ‖y‖ ≤ 1.

Proof. Under the isomorphism HomFq,C(G
d
a,C,G

d′

a,C)
∼= C{τ}d′×d from Lemma 5.1 we write f =∑

i≥0Biτ
i with Bi ∈ Cd

′×d and Bi = 0 for i ≫ 0. Let C := max{ ‖Bi‖ : i ≥ 0 }. For y ∈ Cd

with ‖y‖ ≤ 1 we have ‖σi∗(y)‖ = ‖y‖qi ≤ ‖y‖, and therefore

‖f(y)‖ =
∥∥∥
∑

i≥0

Biσ
i∗(y)

∥∥∥

≤ max
{
‖Biσi∗(y)‖ : i ≥ 0

}

≤ max
{
‖Bi‖ · ‖σi∗(y)‖ : i ≥ 0

}

≤ C · ‖y‖ .

Since f : Cd → Cd
′

is Fq-linear, this shows that f is continuous.

Definition 5.19. Fix an a ∈ Ar Fq and an x ∈ E(C).

(a) A sequence x(0), x(1), x(2), . . . ∈ E(C) is an a-division tower above x if

ϕa(x(n)) = x(n−1) for all n > 0 and ϕa(x(0)) = x .

(b) An a-division tower (x(n))n≥0 is said to be convergent if for some (or, equivalently, any) isomor-

phism ρ : E ∼−→ Gd
a,C of Fq-module schemes, lim

n→∞
ρ(x(n)) = 0 in the C-vector space Gd

a,C(C) =

Cd.

Proof. We must explain, why the definition in (b) is independent of ρ. For this purpose let ρ̃ : E ∼−→
Gd
a,C be another isomorphism. Then ρ̃◦ρ−1 ∈ AutFq,C(G

d
a,C) induces a homeomorphism ρ̃◦ρ−1 : Cd →

Cd by Lemma 5.18. It follows that limn→∞ ‖ρ(x(n))‖ = 0 if and only if limn→∞ ‖ρ̃(x(n))‖ = 0 as
claimed.

If E is A-finite (or abelian) then a-division towers exist above every x. This follows from The-
orem 5.21 (or respectively Proposition 5.45(a) below). But there may or may not exist convergent
ones.
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Theorem 5.20 ([ABP02]). Let E be an Anderson A-module over C, let x ∈ E(C), and let a ∈ ArFq.
Then there is a canonical bijection

{ ξ ∈ LieE : expE (ξ) = x } ∼−→ { convergent a-division towers above x }

ξ 7−→
(
expE

(
Lieϕ−n−1a (ξ)

))
n∈N0

(5.13)

If ρ : E ∼−→ Gd
a,C is an isomorphism of Fq-module schemes and Lie ρ : LieE ∼−→ Cd is the induced

isomorphism of Lie algebras then

(5.14) lim
n→∞

Lie(ρ ◦ ϕn+1
a ◦ ρ−1)

(
ρ(x(n))

)
= (Lie ρ)(ξ)

holds in Cd for all ξ ∈ LieE with x(n) := expE
(
Lieϕ−n−1a (ξ)

)
for n ≥ 0.

Remark. Equation (5.14) is the analog of the fact, that for a real or complex Lie group G the
exponential function expG : LieG → G has derivative 1 near the identity element of G (with respect
to any coordinate system). For example lim

n→∞
an
(
exp(a−nξ) − 1

)
= ξ for G = Gm, where ξ is any

complex number and a ∈ Z r {−1, 0, 1}.

Proof. The element x(n) := expE
(
Lieϕ−n−1a (ξ)

)
∈ E(C) satisfies ϕa(x(n)) = expE

(
Lieϕ−na (ξ)

)
. This

equals x(n−1) when n > 0 and it equals x when n = 0, hence, (x(n))n is an a-division tower above x.
By Lemmas 5.3 and 5.4, it is convergent and so the map is well defined.

If ξ, ξ′ ∈ LieE satisfy expE
(
Lieϕ−na (ξ)

)
= expE

(
Lieϕ−na (ξ′)

)
for all n ≥ 0 then Lemma 5.3

implies that Lieϕ−na (ξ) and Lieϕ−na (ξ′) converge to 0 in LieE and therefore Lieϕ−na (ξ) = Lieϕ−na (ξ′)
for n≫ 0 by Lemma 5.4. This implies ξ = ξ′, and hence the map is injective.

To prove surjectivity, let (x(n))n be a convergent a-division tower above x. Since (x(n)) con-
verges to 0 there is an n0 ∈ N0 such that logE (x(n)) exists by Lemma 5.4 for all n ≥ n0. We

set ξ := Lieϕn0+1
a

(
logE (x(n0))

)
. Then Lieϕn+1

a

(
logE (x(n))

)
= Lieϕn0+1

a

(
logE (ϕn−n0

a (x(n)))
)

=

Lieϕn0+1
a

(
logE (x(n0))

)
= ξ for n ≥ n0 by Lemma 5.4. Therefore, x(n) = expE

(
Lieϕ−n−1a (ξ)

)
for

all n ≥ n0, and for n < n0 we compute x(n) = ϕn0−n
a (x(n0)) = ϕn0−n

a

(
expE (Lieϕ−n0−1

a (ξ))
)

=

expE
(
Lieϕ−n−1a (ξ)

)
.

It remains to prove (5.14). With respect to the coordinate system ρ and Lie ρ we write ϕa as
a matrix ∆a := ρ ◦ ϕa ◦ ρ−1 =

∑
i≥0 ∆a,i τ

i ∈ C{τ}d×d and expE as a matrix
∑∞

i=0Ei τ
i := ρ ◦

expE ◦ (Lie ρ)−1 with ∆a,i, Ei ∈ Cd×d and ∆a,0 = Lie(ρ ◦ ϕa ◦ ρ−1) and E0 = Idd. By replacing ρ by

ρ̃ := B ◦ ρ for a matrix B ∈ GLd(C) ⊂ C{τ}d×d = EndFq,C(G
d
a,C) we can write ∆a,0 = c∗(a)(Idd+N)

with strictly upper triangular (nilpotent) N having only entries 0 and 1. This replacement is allowed
because ρ̃◦ρ−1 = B is an automorphism of the C-vector space Cd. Then Lie(ρ◦ϕn+1

a ◦ρ−1)
(
ρ(x(n))

)
=

∆n+1
a,0

∑∞
i=0Eiσ

i∗
(
∆−n−1a,0 Lie ρ(ξ)

)
. We consider the maximum norm ‖ . ‖ on Cd and Cd×d. For i > 0

the term ∆n+1
a,0 Eiσ

i∗
(
∆−n−1a,0 Lie ρ(ξ)

)
equals

(5.15) c∗(a)n+1(Idd+N)n+1Ei c
∗(a)−q

i(n+1)(Idd+N)−n−1σi∗
(
Lie ρ(ξ)

)
,

and has norm less or equal to ‖Ei‖ ‖Lie ρ(ξ)‖q
i |c∗(a)|−(qi−1)(n+1), because ‖ . ‖ is compatible with

matrix multiplication and ‖ Idd+N‖ = 1. Since |c∗(a)| > 1 and expE converges on all of LieE, that

is limi→∞ ‖Ei‖ ‖Lie ρ(ξ)‖q
i
= 0, the terms (5.15) go to zero uniformly in i when n → ∞. Therefore,

limn→∞∆n+1
a,0

∑∞
i=0Eiσ

i∗
(
∆−n−1a,0 Lie ρ(ξ)

)
= ∆n+1

a,0 E0∆
−n−1
a,0 Lie ρ(ξ) = Lie ρ(ξ), proving (5.14).

From now on we assume that E is A-finite. The following theorem of Anderson [ABP02] is crucial
for the theory of uniformizability. Let a ∈ A r Fq and set M̌a := lim←− M̌/anM̌ . If v1, . . . , vs are the

maximal ideals of A which contain a then lim←−AC/(a
n) =

∏s
i=1AC,vi and M̌a =

∏s
i=1 M̌⊗AC

AC,vi . The

latter equals the completion of M̌ at the closed subscheme V(a) ⊂ SpecAC. Since V(a) ⊂ CC rDC

there are natural inclusions O(CC rDC) →֒
∏s
i=1AC,vi and M̌ ⊗AC

O(CC rDC) →֒ M̌a.
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Theorem 5.21 ([ABP02]). (a) Let E be an A-finite Anderson A-module and let (M̌, τ̌M̌ ) = M̌(E)
be its dual A-motive. Let m̌ ∈ M̌ and x := δ1(m̌) = m̌(1) ∈ E(C). Then Proposition 5.12
defines a canonical bijection

(5.16)
{
m̌′ ∈ M̌a : τ̌M̌ (σ̌∗m̌′)− m̌′ = m̌

}
∼−→

{
a-division towers (x(n))n above x

}

as follows. Let m̌′ ∈ M̌a satisfy τ̌M̌(σ̌∗m̌′)− m̌′ = m̌. For each n ∈ N0 choose an m̌′n ∈ M̌ with
m̌′ ≡ m̌′n mod an+1M̌a. There is a uniquely determined m̌′′n ∈ M̌ with an+1m̌′′n = m̌ + m̌′n −
τ̌M̌ (σ̌∗m̌′n). Then x(n) := δ1(m̌

′′
n).

(b) Let m̌′ correspond to the a-division tower (x(n))n under the bijection (5.16). Then the following
are equivalent:

(i) m̌′ ∈ M̌ ⊗AC
O(CC rDC) ⊂ M̌a,

(ii) m̌′ ∈ M̌ ⊗AC
O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
⊂ M̌a,

(iii) (x(n))n is convergent,

(iv) with respect to some (or, equivalently, any) isomorphism ρ : E ∼−→ Gd
a,C of Fq-module

schemes the sequence c∗(a)n · ρ(x(n)) is bounded in the C-vector space Gd
a,C(C) = Cd.

If these conditions hold and if ξ ∈ LieE is the element from Theorem 5.20 that corresponds
to the convergent a-division tower (x(n))n, that is x(n) = expE

(
Lieϕ−n−1a (ξ)

)
for all n, then

ξ = δ0(m̌
′ + m̌) for the map δ0 : M̌ → LieE from Proposition 5.8.

Proof. 1. By Proposition 5.12 the definition of x(n) is independent of the chosen m̌′n. In particular
we can take m̌′n−1 = m̌′n and m̌′′n−1 = am̌′′n to obtain ϕa(x(n)) = δ1(am̌

′′
n) = δ1(m̌

′′
n−1) = x(n−1) and

ϕa(x(0)) = δ1(am̌
′′
0) = δ1(m̌) = x. This defines the bijection (5.16). Note that we explicitly describe

its inverse in part 5 below.

2. To prove (b), note that trivially (b)(ii)=⇒(b)(i) and (b)(iv)=⇒(b)(iii), because |c∗(a)| > 1.

3. To prove (b)(iii)=⇒(b)(iv) for any isomorphism ρ : E ∼−→ Gd
a,C of Fq-module schemes, we write

ρ ◦ ϕa ◦ ρ−1 =: ∆a =
∑

j≥0∆a,j τ
j ∈ C{τ}d×d = EndFq,C(G

d
a,C) with ∆a,j ∈ Cd×d and ∆a,j = 0

for j ≫ 0. By replacing ρ by ρ̃ := B ◦ ρ for a matrix B ∈ GLd(C) ⊂ C{τ}d×d we can write
∆a,0 = c∗(a)(Idd+N) with strictly upper triangular (nilpotent) N having only entries 0 and 1. This
replacement is allowed because ρ̃ ◦ ρ−1 = B is an automorphism of the C-vector space Gd

a,C(C).

Consider the maximum norm ‖x‖ = max{|xi| : i = 0 . . . d} for x = (x1, . . . , xd)
T ∈ Cd and the

norm ‖y‖ := ‖ρ(y)‖ on y ∈ E(C) induced via ρ. As ∆−1a,0 = c∗(a)−1(Idd−N + N2 − . . .) we find

‖x‖ = ‖∆−1a,0∆a,0 x‖ ≤ |c∗(a)|−1‖∆a,0 x‖ ≤ |c∗(a)|−1|c∗(a)| · ‖x‖ = ‖x‖, whence ‖∆a,0 x‖ = |c∗(a)| · ‖x‖.
If n≫ 0 then ‖x(n)‖ ≪ 1 by assumption (b)(iii), whence ‖σj∗ρ(x(n))‖ = ‖x(n)‖q

j ≪ ‖x(n)‖ for j > 0.
So |c∗(a)| > 1 implies ‖∆a,j σ

j∗ρ(x(n))‖ < |c∗(a)| · ‖x(n)‖ = ‖∆a,0 ρ(x(n))‖ for n ≫ 0 and all j > 0.
Thus ‖x(n−1)‖ = ‖ϕa(x(n))‖ = ‖

∑
j≥0∆a,j σ

j∗ρ(x(n))‖ = |c∗(a)| · ‖x(n)‖ for n≫ 0, and this yields the
boundedness of |c∗(a)|n · ‖x(n)‖ and c∗(a)n · ρ(x(n)).

4. To prove (b)(iv)=⇒(b)(ii) and (b)(i)=⇒(b)(iii) we choose an isomorphism ρ : E ∼−→ Gd
a,C of Fq-

module schemes and consider the induced AC-isomorphism † : M̌ ∼−→ C{τ̌}1×d, m̌ 7→ m̌† from (5.3).
Moreover, under the finite flat ring homomorphism Fq[t] → A, t 7→ a we have AC/(a

n) = AC ⊗C[t]

C[t]/(tn) and
∏s
i=1AC,vi = AC ⊗C[t] C[[t]], as well as O(CC rDC) = AC ⊗C[t] C〈t〉; see (3.5). We also

abbreviate θ := c∗(a) and for a real number s we use the notation

(5.17) C〈 tθs 〉 :=
{ ∞∑
i=0
bit

i : bi ∈ C, lim
i→∞
|bi| · |θ|si = 0

}
and C〈t〉 := C〈 t

θ0
〉 .
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We consider M̌ as a finite (locally) free module over C[t] of rank r. We choose a C[t]-basis B of
M̌ and use it to identify M̌a

∼= C[[t]]⊕r and M̌ ⊗AC
O(CC r DC) ∼= C〈t〉⊕r. Let ‖ . ‖ denote the

maximum norms on Cr, Cd and C1×d, and consider the norm ‖y‖ := ‖ρ(y)‖ on y ∈ E(C) and the
norm ‖∑j cj τ̌

j‖τ̌ := sup{‖ci‖ : i ≥ 0} on C{τ̌}1×d and M̌ where cj ∈ C1×d. For all s ∈ R consider

also the norm ‖
∑

i bit
i‖s := sup{‖bi‖ |c∗(a)|si : i ≥ 0} on C[t]⊕r and M̌ where bi ∈ Cr. When s ≤ s′

these norms satisfy the inequalities ‖ . ‖s ≤ ‖ . ‖s′ . Note that C〈 tθs 〉⊕r is the completion of C[t]⊕r with
respect to the norm ‖ . ‖s , which therefore extends to C〈 tθs 〉⊕r.
5. We now assume that (b)(iv) holds for our fixed isomorphism ρ. For each n ∈ N0 we let

(m̌′′n)
† := ρ(x(n))

T · τ̌0 ∈ C1×d τ̌0 ⊂ C{τ̌}1×d ∼= M̌ .

We set m̌′′−1 := m̌ and x(−1) := x. Then δ1(m̌
′′
n) = x(n) for all n ≥ −1, and hence, δ1(tm̌

′′
n − m̌′′n−1) =

ϕa(x(n)) − x(n−1) = 0 implies that tm̌′′n − m̌′′n−1 = yn − τ̌M̌ (σ̌∗yn) for an element yn ∈ M̌ for n ≥ 0.

Moreover, the elements (tm̌′′n − m̌′′n−1)† = (m̌′′n)
† · (∆a)

† − (m̌′′n−1)
† = ρ(x(n))

T · (∆a)
† − ρ(x(n−1))T

lie in the finite dimensional C-vector space W :=
⊕ℓ

j=0C
1×d τ̌ j where ℓ is the maximal τ̌ -degree of

the entries of the matrix (∆a)
† ∈ C{τ̌}d×d corresponding to ϕa. If (yn)

† =:
∑

j cj τ̌
j ∈ C{τ̌}1×d then

(tm̌′′n − m̌′′n−1)† =
∑

j cj τ̌
j − τ̌ ·∑j cj τ̌

j =
∑

j

(
cj − σ̌∗(cj−1)

)
τ̌ j . Writing (tm̌′′n − m̌′′n−1)† =:

∑ℓ
j=0 c̃j τ̌

j

we compute σ̌∗(cj−1) = cj − c̃j . Together with cj = 0 for j ≫ 0 this implies cj = 0 for all j ≥ ℓ and

cj =
∑j

k=0 σ̌
(j−k)∗(c̃k) for j < ℓ. So (yn)

† ∈ W . In particular, the series
∑∞

n=0 ynt
n in M̌a

∼= C[[t]]⊕r

satisfies

(5.18) τ̌M̌
(
σ̌∗(

∞∑
n=0

ynt
n)
)
− (

∞∑
n=0

ynt
n) =

∞∑
n=0

(tnm̌′′n−1 − tn+1m̌′′n) = m̌′′−1 = m̌ ,

whence m̌′ =
∑∞

n=0 ynt
n by Proposition 5.12.

Moreover, our assumption (b)(iv) that |c∗(a)|n · ‖ρ(x(n))T ‖τ̌ is bounded together with |c∗(a)|n ·
‖tm̌′′n‖τ̌ = |c∗(a)|n · ‖ρ(x(n))T · (∆a)

†‖τ̌ ≤ |c∗(a)|n · ‖ρ(x(n))T ‖τ̌ · ‖(∆a)
†‖τ̌ implies that |c∗(a)|n · ‖(tm̌′′n−

m̌′′n−1)
†‖τ̌ = ‖∑ℓ

j=0 c
∗(a)n · c̃j τ̌ j‖τ̌ = max{‖c∗(a)n · c̃j‖ : 0 ≤ j ≤ ℓ} is bounded, say by a con-

stant C1 ≥ 1. Therefore, ‖σ̌(j−k)∗(c̃k)‖ ≤ |c∗(a)|−nq
k−j

Cq
k−j

1 ≤ |c∗(a)|−n/qℓC1 for 0 ≤ k ≤ j and

thus ‖cj‖ ≤ |c∗(a)|−n/q
ℓ
C1, whence ‖yn‖τ̌ ≤ |c∗(a)|−n/q

ℓ
C1. Fix an s with 0 < s < q−ℓ. Since

C is complete with respect to | . | the restrictions of the norms ‖ . ‖τ̌ and ‖ . ‖s to the finite dimen-
sional C-vector space W are equivalent by [Sch84, Theorem 13.3]. Thus there is a constant C2 with
‖ . ‖s ≤ C2 · ‖ . ‖τ̌ on W . Since m̌′′n ∈ W we obtain in particular ‖tn+1m̌′′n‖s = |c∗(a)|s(n+1)‖m̌′′n‖s ≤
|c∗(a)|s(n+1)‖m̌′′n‖τ̌C2 = |c∗(a)|s(n+1)‖ρ(x(n))‖C2 = |c∗(a)|−n(1−s)+s|c∗(a)|n‖ρ(x(n))‖C2 for all n, and

hence, limn→∞ ‖tn+1m̌′′n‖s = 0. Moreover, ‖yn‖s ≤ ‖yn‖τ̌C2 ≤ |c∗(a)|−n/q
ℓ
C1C2 for all n, whence

limn→∞ ‖yntn‖s = limn→∞ ‖yn‖s |c∗(a)|sn = 0. This shows that even m̌′ ∈ C〈 tθs 〉⊕r and equation
(5.18) holds in C〈 tθs 〉⊕r.

The matrix Φ̌ ∈ C[t]r×r representing τ̌M̌ with respect to the basis B has determinant c · (t− θ)d for

a c ∈ C
×

due to the elementary divisor theorem and the condition that coker Φ̌ ∼= M̌/τ̌M̌ (σ̌∗M̌) ∼= Cd

is annihilated by (t − θ)d ∈ Jd. Let Φ̌ad ∈ C[t]r×r be the adjoint matrix which satisfies Φ̌adΦ̌ =
c · (t− θ)d Idr. Recall the element ℓ−ζ :=

∏∞
i=0

(
1− t

θqi

)
∈ O( .CC) from Example 3.20(b) which satisfies

ℓ−ζ = −1
θ (t − θ) · σ∗ℓ

−

ζ . Multiplying (5.18) with
σ∗(ℓ−ζ )d

(−θ)dc
Φ̌ad, setting y′ := σ∗(ℓ−ζ )

d · m̌′ ∈ C〈 tθs 〉⊕r and

applying σ∗ we obtain

y′ = σ∗
( 1

(−θ)dcσ
∗(ℓ−ζ )

dΦ̌adm̌+
1

(−θ)dcΦ̌
ady′

)

Since σ∗(y′) ∈ C〈 t
θqs 〉⊕r this shows that y′ ∈ C〈 t

θqs 〉⊕r and iteratively y′ ∈ C〈 t
θs′
〉⊕r for all s′ = qks,

whence y′ ∈ M̌⊗AC
O( .CC) and m̌

′ = σ∗(ℓ−ζ )
−dy′ ∈ M̌⊗AC

σ∗(ℓ−ζ )
−dO( .CC). If P ∈

.
CCr

⋃
i∈N>0

V(σi∗J)

is a point, that is P = V(I) for a maximal ideal I ⊂ O( .CC) with I 6= σi∗J for all i ∈ N>0, such that
P lies in the zero locus of σ∗(ℓ−ζ ), then we make the
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Claim: m̌′ ∈ M̌ ⊗AC
O .

CC,P
for the local ring O .

CC,P
of

.
CC at P

When the claim holds for all those P , we derive m̌′ ∈ M̌⊗AC
O
( .
CCr

⋃
i∈N>0

V(σi∗J)
)
, that is assertion

(b)(ii).
To prove the claim let n ∈ N>0 be the integer with t−θq

n ∈ I, which exists because σ∗(ℓ−ζ ) vanishes

at P . Then t−θqn−j ∈ σ̌j∗I and σ̌j∗I 6= J for all 0 < j ≤ n. Thus τ̌M̌ : σ̌∗M̌⊗AC
O .

CC,V(σ̌j∗I)
∼−→ M̌⊗AC

O .
CC,V(σ̌j∗I) is an isomorphism. For j = n it follows from σ∗(ℓ−ζ )|t=θ 6= 0 that σ∗(ℓ−ζ ) ∈ (O .

CC,V(σ̌n∗I))
×

and m̌′ = σ∗(ℓ−ζ )
−dy′ ∈ M̌ ⊗AC

O .
CC,V(σ̌n∗I). Therefore,

m̌′ = σ∗
(
τ̌−1
M̌

(m̌+ m̌′)
)
∈ σ∗

(
τ̌−1
M̌

(M̌ ⊗AC
O .

CC,V(σ̌n∗I))
)

= M̌ ⊗AC
O .

CC,V(σ̌(n−1)∗I)

and iteratively this yields m̌′ ∈ M̌ ⊗AC
O .

CC,V(σ̌j∗I) for j = n, . . . , 0. So our claim and with it assertion

(b)(ii) is proved.

6. Conversely, to prove (b)(i)=⇒(b)(iii), we keep the notation from part 4 above and write m̌′ as∑∞
i=0 bit

i ∈ C[[t]]⊕r with bi ∈ Cr and assume (b)(i), that is limi→∞ bi = 0 in Cr. For each n ∈ N we

set m̌′n :=
n∑
i=0

bit
i ∈ M̌ and m̌′>n :=

∞∑
i=n+1

bit
i. Then

m̌′′n := t−n−1(m̌− τ̌M̌ (σ̌∗m̌′n) + m̌′n) = t−n−1(τ̌M̌ (σ̌∗m̌′>n)− m̌′>n) ∈ M̌ .

Note that the entries of m̌′′n are polynomials in C[t] whose degree is bounded by a bound which is
independent of n and only depends on the degrees of the entries of m̌ and of the matrix Φ̌ ∈ C[t]r×r

representing τ̌M̌ with respect to the basis B. It follows that all m̌′′n lie in a finite dimensional C-vector
space V . By [Sch84, Theorem 13.3] the restrictions of ‖ . ‖0 and ‖ . ‖τ̌ to V are equivalent. From
limi→∞ bi = 0 it follows that limn→∞ ‖m̌′>n‖0 = 0. Thus ‖τ̌M̌ (σ̌∗m̌′>n)‖0 ≤ ‖Φ̌‖0‖m̌′>n‖1/q0

implies
limn→∞ ‖m̌′′n‖0 = 0, and hence, limn→∞ ‖m̌′′n‖τ̌ = 0. If (m̌′′n)

† =
∑

j cj τ̌
j ∈ C{τ̌}1×d then n ≫ 0

implies ‖m̌′′n‖τ̌ = max{‖cj‖ : j ≥ 0} ≤ 1 and thus ρ(x(n)) = ρ
(
δ1(m̌

′′
n)
)
=
∑

j σ
j∗(cj)

T satisfies

‖x(n)‖ ≤ max{‖σj∗(cj)‖ : j ≥ 0} ≤ max{‖cj‖ : j ≥ 0} = ‖m̌′′n‖τ̌ .

Therefore, (x(n))n is convergent. Thus (b)(i) implies (b)(iii).

7. Finally, for the last statement of the theorem we keep the notation from parts 4 and 6 above
and assume moreover, that m̌′ =

∑∞
i=0 bit

i satisfies (b)(ii). Let 1 < s < q. Then SpC〈 tθs 〉 ⊂.
CCr

⋃
i∈N>0

V(σi∗J) and this implies
∑∞

i=0 bit
i ∈ C〈 tθs 〉⊕r, that is limi→∞ ‖bi‖ |c∗(a)|si = 0; see (5.17).

Fix a real number ε > 0 with ε ≤ ‖Φ̌‖q/(q−1)
s/q

. Then there is an n0 ∈ N such that ‖bi‖ |c∗(a)|is/q ≤
‖bi‖ |c∗(a)|is < ε for all i ≥ n0. So n ≥ n0 implies ‖m̌′>n‖s/q ≤ ‖m̌′>n‖s < ε ≤ ‖Φ̌‖

s/q
ε1/q and

‖τ̌M̌ (σ̌∗m̌′>n)‖s/q ≤ ‖Φ̌‖s/q · ‖σ̌∗m̌′>n‖s/q = ‖Φ̌‖
s/q
· ‖m̌′>n‖1/qs

< ‖Φ̌‖
s/q
ε1/q,

and hence, ‖m̌′′n‖s/q < |c∗(a)|−(n+1)s/q‖Φ̌‖
s/q
ε1/q. We write (m̌′′n)

† =
∑

i ciτ̌
i ∈ C{τ̌}1×d. This time we

use that by [Sch84, Theorem 13.3] the restrictions of ‖ . ‖
s/q

and ‖ . ‖τ̌ to V are equivalent. So there

is a constant C3 such that ‖m̌′′n‖τ̌ := sup{‖ci‖ : i ≥ 0} < |c∗(a)|−(n+1)s/q‖Φ̌‖
s/q
ε1/qC3 for all n ≥ n0.

By enlarging n0 we may assume that |c∗(a)|−(n+1)s/q‖Φ̌‖
s/q
ε1/qC3 ≤ 1. Therefore, ‖ci‖ ≤ 1, whence

‖σi∗ci‖ = ‖ci‖q
i ≤ ‖ci‖q for all i ≥ 1. So

‖ρ
(
δ1(m̌

′′
n)
)
− (Lie ρ)

(
δ0(m̌

′′
n)
)
‖ = ‖

∑

i≥1

σi∗(ci)
T ‖ < |c∗(a)|−(n+1)s‖Φ̌‖q

s/q
εCq3 .
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By choosing the isomorphism ρ : E ∼−→ Gd
a,C appropriately in the beginning we may assume that

Lie(ρ ◦ ϕa ◦ ρ−1) = c∗(a)(Idd+N) for a nilpotent matrix N with only 0 and 1 as entries. This yields

limn→∞

∥∥Lie(ρ ◦ ϕn+1
a ◦ ρ−1)

(
ρ(δ1(m̌

′′
n))− (Lie ρ)(δ0(m̌

′′
n))
)∥∥ ≤(5.19)

≤ limn→∞ |c∗(a)|(n+1)(1−s)‖Φ̌‖q
s/q
εCq3 = 0

By Theorem 5.20 we have limn→∞ Lie(ρ ◦ ϕn+1
a ◦ ρ−1)

(
ρ(δ1(m̌

′′
n))
)
= (Lie ρ)(ξ). So we must compute

Lie(ρ ◦ ϕn+1
a ◦ ρ−1) ◦ (Lie ρ)(δ0(m̌′′n)) = (Lie ρ)

(
δ0(t

n+1m̌′′n)
)

(5.20)

= (Lie ρ)
(
δ0(m̌+ m̌′n − τ̌M̌ (σ̌∗m̌′n))

)

= (Lie ρ)
(
δ0(m̌+ m̌′n)

)
.

Since the projection δ0 : C〈 tθs 〉⊕d ։ M̌/JdM̌ ∼−→ LieE from Proposition 5.8 is continuous with respect
to ‖ . ‖s and limn→∞ ‖m̌′−m̌′n‖s = limn→∞ ‖m̌′>n‖s = 0, we find limn→∞ δ0(m̌+m̌′n) = δ0(m̌+m̌′). In
combination with (5.19) and (5.20) this proves that ξ = δ0(m̌+ m̌′) and establishes the theorem.

Corollary 5.22 ([ABP02]). Let C = P1
Fq
, A = Fq[t], AC = C[t] and θ = c∗(t). Then O(CC rDC

)
=

C〈t〉. Fix an isomorphism ρ : E ∼−→ Gd
a,C of Fq-module schemes and write ρ ◦ ϕt ◦ ρ−1 =: ∆t =∑

j≥0∆t,j τ
j ∈ C{τ}d×d = EndFq,C(G

d
a,C) with ∆t,j ∈ Cd×d and ∆t,j = 0 for j ≫ 0. For ν ≥ 0

consider the columns of the matrix
∑

j≥0∆t,ν+jτ
j ∈ C{τ}d×d as elements of C{τ}d ∼= M̌ via ρ. Note

that this matrix is zero for ν ≫ 1. In the situation of Theorem 5.21 let (x(n))n be a t-division tower
above x and let

f :=
∞∑

n=0

ρ(x(n))t
n ∈ C[[t]]d

be the associated Anderson generating function. Then the bijection (5.16) from Theorem 5.21 sends
(x(n))n to the element

(5.21) m̌′ = −
∑

ν≥1

(∑

j≥0

∆t,ν+jτ
j
)
σν∗(f) ∈ M̌t = M̌ ⊗C[t] C[[t]] .

Moreover, the t-division tower (x(n))n is convergent if and only if f ∈ C〈t〉d.

Proof. In step 5 of the proof of Theorem 5.21 we obtain ρ(x(n−1)) =
∑

j≥0∆t,j · σj∗ρ(x(n)) and

(tm̌′′n − m̌′′n−1)† = ρ(x(n))
T · (∆t)

† − ρ(x(n−1))T

= ρ(x(n))
T ·
∑

j≥0

σ̌j∗(∆t,j)
T τ̌ j − σj∗ρ(x(n))T ·

∑

j≥0

∆T
t,j

=
∑

j≥1

(τ̌ j − 1) · σj∗ρ(x(n))T ·∆T
t,j

=
∑

j≥1

(τ̌ − 1) ·
(j−1∑

i=0

τ̌ i
)
· σj∗ρ(x(n))T ·∆T

t,j

j=ν+i
= (τ̌ − 1) ·

(∑

ν≥1

∑

i≥0

σν∗ρ(x(n))
T · τ̌ i ·∆T

t,ν+i

)

= (τ̌ − 1) ·
(∑

ν≥1

∑

i≥0

∆t,ν+i · τ i · σν∗ρ(x(n))
)†
.
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Since also (tm̌′′n − m̌′′n−1)
† = (yn − τ̌(σ̌∗yn))

† = (1 − τ̌) · (yn)† Proposition 5.8 implies that yn =
−
∑

ν≥1

∑
i≥0 ∆t,ν+i · τ i · σν∗ρ(x(n)). Multiplying with tn and summing over all n ≥ 0 yields

m̌′ =

∞∑

n=0

ynt
n = −

∑

ν≥1

(∑

i≥0

∆t,ν+i · τ i
)
·
∞∑

n=0

σν∗ρ(x(n))t
n

and establishes (5.21). Finally, if (x(n))n is convergent then by definition f ∈ C〈t〉d. Conversely, the

latter together with (5.21) implies that m̌′ ∈ M̌ ⊗C[t] C〈t〉. By Theorem 5.21 this is equivalent to
(x(n))n being convergent.

The following corollary is the analog in terms of dual A-motives of Sinha’s diagram [Sin97, 4.2.3].

Corollary 5.23. Let E be an A-finite Anderson A-module and let (M̌, τ̌M̌ ) = M̌(E) be its dual A-
motive. For every m̌′ ∈ M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
such that m̌ := τ̌M̌ (σ̌∗m̌′) − m̌′ ∈ M̌ we

have
expE

(
δ0(m̌

′ + m̌)
)

= δ1(m̌) .

Proof. This follows from the last statement of Theorem 5.21 and Theorem 5.20.

Corollary 5.24. The morphism δ0 : M̌ → LieE from Proposition 5.8 restricts to an A-isomorphism

δ0 :
(
M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
))τ̌ ∼−→ Λ(E) = ker(expE ) .

Proof. Let m̌′ ∈
(
M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
))τ̌

, that is m̌ := τ̌M̌ (σ̌∗m̌′) − m̌′ = 0. Then
x := δ1(m̌) = 0. By Theorems 5.21 and 5.20 both sides of the claimed isomorphism are in bijection
with the set of convergent a-division towers above 0. By the last statement of Theorem 5.21 the
combined bijection equals δ0, which is A-linear by Proposition 5.8.

5.4 Purity and mixedness

Before we define purity of Anderson A-modules which are abelian or A-finite in terms of the corre-
sponding (dual) A-motives, we show that the functors E 7→M (E) and E 7→ M̌ (E) are exact.

Proposition 5.25. Let E ′ ⊂ E be an Anderson A-submodule. Then the quotient E ′′ := E/E′ exists
as an Anderson A-module with dimE ′′ = dimE − dimE ′.

(a) E is abelian if and only if both E′ and E′′ are abelian. In this case rkE′′ = rkE− rkE ′ and the
induced sequence of A-motives

0 //M(E ′′) //M(E) //M(E ′) // 0

is exact in the sense of Remark 3.5(b) (that is, the sequence of the underlying AC-modules is
exact).

(b) E is A-finite if and only if both E′ and E′′ are A-finite. In this case rkE′′ = rkE − rkE ′ and
the induced sequence of dual A-motives

0 // M̌(E ′) // M̌ (E) // M̌(E ′′) // 0

is exact in the sense of Remark 4.4(b) (that is, the sequence of the underlying AC-modules is
exact).
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Proof. Let E = (E,ϕ) and E′ = (E′, ϕ′). Then the quotient E′′ := E/E′ is a smooth irreducible
group scheme with dimE ′′ = dimE − dimE′ by [Bor69, Theorem II.6.8] and isomorphic to a power
of Ga,C by [Ser88, Proposition VII.11]. It inherits an action ϕ′′ : A→ EndC(E

′′) of A satisfying (5.1)
in Definition 5.2(a), because LieE′′ = LieE/LieE′. Indeed, E → E′′ is smooth because E′ is smooth
over C and so LieE → LieE′′ is surjective by [BLR90, § 2.2, Proposition 8] with LieE′ contained in
its kernel. By reasons of dimension LieE′ equals the kernel of LieE ։ LieE′′. We obtain an exact
sequence of Anderson A-modules

(5.22) 0 // E ′
f ′

// E
f ′′

// E ′′ // 0 .

(a) We apply the contravariant functor M( . ) from Definition 5.5. This yields an exact sequence of
AC-modules

(5.23) 0 //M(E ′′) //M(E) //M(E ′) .

It is exact on the left because E ։ E′′ is surjective. It is also exact in the middle by the universal
mapping property of the quotient E′′; see [Bor69, II.6.1]. If E′ and E′′ are abelian, that is M(E ′) and
M(E ′′) are finite locally free over the Dedekind domain AC, then also M(E) is finite locally free and
E is abelian. Conversely, if M(E) is finite locally free, then also M(E ′′) is, and E′′ is abelian.

If E is abelian it remains to prove that M(E) → M(E ′) is surjective and E ′ is abelian. We
consider the quotient M̃ :=M(E)/M (E ′′) which injects into M(E′). SinceM(E) is finitely generated
both over AC and over C{τ}, so is M̃ . Since M(E′) has no C{τ}-torsion the same holds for M̃ ,
and so M̃ is locally free over AC by [And86, Lemma 1.4.5]. Therefore, M̃ is an effective A-motive.
If M̃ ∼= M(E ′) this will imply that E′ is abelian. By [And86, Theorem 1] there exists an abelian
Anderson A-module Ẽ with M̃ = M(Ẽ) and a morphism Ẽ → E induced from M(E) ։ M̃ . Any

C{τ}-basis (m̃1, . . . , m̃d̃) of M̃ provides an isomorphism m̃1 × . . . × m̃d̃ : Ẽ
∼−→ Gd̃

a,C of Fq-module

schemes, and if Ga,C = SpecC[x] then the x̃j := m̃∗j(x) for j = 1, . . . , δ̃ are free generators of the

polynomial algebra Γ(Ẽ,OẼ) = C[x̃1, . . . , x̃d̃] over C. Since M̃ is a quotient of M(E) the m̃∗j(x) lie

in the image of Γ(E,OE). Therefore, Ẽ → E is a closed immersion. Let m′j be the image of m̃j in

M(E ′). Sending x̃j to (m′j)
∗(x) defines a C-homomorphism Γ(Ẽ,OẼ)→ Γ(E′,OE′). In this way the

maps M(E) ։ M̃ →֒M(E ′) induce morphisms

E′ // Ẽ // E // E ′′ .

Since the composite mapM(E ′′)→M(E)→ M̃ is the zero map, the closed immersion Ẽ →֒ E factors
through the kernel of E → E′′, which equals E′. So E′ → Ẽ must be an isomorphism. This shows
that M(E ′) = M(Ẽ) = M̃ onto which M(E) surjects. Thus the sequence (5.23) is also exact on the
right. From this also the formula for rkE′′ follows.

(b) We apply the covariant functor M̌( . ) from Definition 5.9 to the sequence (5.22). This yields an
exact sequence of AC-modules

(5.24) 0 // M̌(E ′) // M̌(E) // M̌(E ′′) .

It is exact on the left because E′ →֒ E is a closed immersion. It is also exact in the middle because
E′ equals the fiber of E ։ E′′ above 0. If E′ and E′′ are A-finite, that is M̌(E′) and M̌ (E′′) are
finite locally free over the Dedekind domain AC, then also M̌(E) is finite locally free and E is A-finite.
Conversely, if M̌ (E) is finite locally free, then also M̌(E ′) is, and E′ is A-finite.

If E is A-finite it remains to prove that M̌(E) → M̌(E ′′) is surjective and E′′ is A-finite. We
consider the quotient Ň := M̌(E)/M̌ (E′) which injects into M̌(E ′′). Since M̌(E) is finitely generated
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both over AC and over C{τ̌}, so is Ň . Since M̌(E ′′) has no C{τ̌}-torsion the same holds for Ň , and
so Ň is locally free over AC by the τ̌ -analog of [And86, Lemma 1.4.5]. Therefore, Ň is an effective
dual A-motive. If Ň ∼= M̌ (E′′) this will imply that E′′ is A-finite. By Theorem 5.11 there exists an
A-finite Anderson A-module Ẽ with Ň = M̌(Ẽ) and morphisms f̃ : E → Ẽ and g : Ẽ → E′′ induced
from M̌(E) ։ Ň →֒ M̌(E ′′) and satisfying f ′′ = g ◦ f̃ .

Since the composite map M̌(E ′)→ M̌(E)→ Ň is the zero map, the morphism f̃◦f ′ : E′ →֒ E → Ẽ
is the zero morphism by Theorem 5.11. By the universal mapping property [Bor69, II.6.1] of the
quotient E/E′ = E′′ the morphism f̃ : E → Ẽ factors as f̃ = h◦f ′′ for a morphism h : E′′ → Ẽ. Again
by the universal mapping property, f ′′ = gh ◦ f ′′ implies that gh = idE′′ . Therefore, M̌(g) ◦ M̌(h) =
idM̌(E′′) and M̌(g) is surjective. As it is injective by construction we have Ň ∼= M̌ (E′′) and the
proposition is proved.

Corollary 5.26. The category of abelian, respectively A-finite, Anderson A-modules is an exact cat-
egory in the sense of Quillen [Qui73, §2] (see Remark 3.5(b) for explanations) if one calls the se-
quences E ′ → E → E′′ of Anderson A-modules exact where E′ ⊂ E is an Anderson A-submodule and
E′′ := E/E ′ is the quotient from Proposition 5.25. The functors E 7→ M(E) from Theorem 5.7, re-
spectively E 7→ M̌(E) from Theorem 5.11(b), are exact equivalences, that is, a sequence E ′ → E → E′′

is exact if and only if the induced sequence of A-motives, respectively dual A-motives, is exact.

Proof. We start by proving the second assertion. By Proposition 5.25 the functors map exact sequences
to exact sequences.

Let E′ → E → E′′ be a sequence of abelian Anderson A-modules whose associated sequence of
A-motives 0 → M (E′′) → M(E) → M(E ′) → 0 is exact in the sense of Remark 3.5(b). Consider an
isomorphism ρ′ = (ρ′1, . . . , ρ

′
d′) : E

′ ∼−→ Gd′
a,C where ρ′i : E

′ → Ga,C = SpecC[x] is the projection onto
the i-th coordinate. Then ρ′i ∈ M(E ′) and Γ(E′,OE′) is generated by ρ∗i (x). Since M(E) surjects
onto M(E ′), we see that ρ′i lies in the image of Γ(E,OE)→ Γ(E′,OE′), and hence E ′ → E is a closed

immersion. Let Ẽ := E/E ′ be the quotient from Proposition 5.25. Then the A-motives M(E′′) and
M(Ẽ) both equal the kernel of M(E) ։M(E ′) by Proposition 5.25. By Theorem 5.7 this shows that
E′′ ∼= Ẽ, and hence the sequence E′ → E → E ′′ is exact as desired.

On the other hand, let E′ → E → E ′′ be a sequence of A-finite Anderson A-modules whose
associated sequence of effective dual A-motives 0 → M̌ (E′) → M̌ (E) → M̌(E ′′) → 0 is exact in the
sense of Remark 4.4(b), that is on the underlying AC-modules. Applying the snake lemma to

0 // σ̌∗M̌(E ′) //

� _

τ̌M̌(E′)

��

σ̌∗M̌(E) //

� _

τ̌M̌(E)

��

σ̌∗M̌(E ′′) //

� _

τ̌M̌(E′′)

��

0

0 // M̌(E′) // M̌(E) // M̌(E ′′) // 0

yields by (5.5) that the sequence on tangent spaces at the origin 0→ LieE′ → LieE → LieE′′ → 0 is
exact. Analogously, (5.4) yields that the sequence 0 → E′(C) → E(C) → E′′(C) → 0 is exact. Both
sequences together show that E′ →֒ E is a closed immersion. Let Ẽ := E/E ′ be the quotient from
Proposition 5.25. Then the dual A-motives M̌ (E′′) and M̌(Ẽ) both equal the cokernel of M̌ (E′) →֒
M̌(E) by Proposition 5.25. By Theorem 5.11(b) this shows that E ′′ ∼= Ẽ, and hence the sequence
E′ → E → E′′ is exact as desired.

The first statement now follows from Remark 3.5(b), respectively Remark 4.4(b).

Definition 5.27. (a) An abelian Anderson A-module E of dimension d and rank r is pure if M(E)
is pure. In this case, we set wtE = −wtM(E) = −d

r ; see [And86, Lemma 1.10.1].

(b) An abelian AndersonA-module E ismixed if it possesses an increasing weight filtration by abelian
Anderson A-submodules WµE for µ ∈ Q such that GrWµ E := WµE/

(⋃
µ′<µWµ′E

)
is a pure

abelian Anderson A-module of weight µ for all µ ∈ Q, and such that dimE =
∑

µ∈Q dimGrWµ E.
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(c) An A-finite Anderson A-module E of dimension d and rank r is pure if M̌(E) is pure. In
this case, we set wtE = wt M̌(E) = −d

r . (This formula follows from the analog of [And86,
Lemma 1.10.1] using Proposition 5.8.)

(d) An A-finite Anderson A-module E is mixed if it possesses an increasing weight filtration by
A-finite Anderson A-submodules WµE for µ ∈ Q such that GrWµ E := WµE/

(⋃
µ′<µWµ′E

)

is a pure A-finite Anderson A-module of weight µ for all µ ∈ Q, and such that dimE =∑
µ∈Q dimGrWµ E.

Remark 5.28. (a) The set {WµE : µ ∈ Q} of closed irreducible and reduced subschemes of E is to-
tally ordered by inclusion, and hence finite by reasons of dimension. Therefore, also

⋃
µ′<µWµ′E

and
⋂
µ̃>µWµ̃E belong to this set and are Anderson A-submodules of E. By Proposition 5.25

they are abelian, respectively A-finite if E is, and the quotient GrWµ E := WµE/
(⋃

µ′<µWµ′E
)
is

again an abelian, respectively A-finite Anderson A-module of dimension dimGrWµ E = dimWµE −
dim

(⋃
µ′<µWµ′E

)
.

(b) The weights of E are the jumps of the weight filtration; that is, those real numbers µ for which
⋃
µ′<µWµ′E (

⋂
µ̃>µWµ̃E .

By (a) the condition
∑

µ∈Q dimGrWµ E = dimE in Definition 5.27(b) is equivalent to the conditions
that all jumps lie in Q, that WµE =

⋂
µ̃>µWµ̃E for all µ ∈ Q, that WµE = (0) for µ≪ 0, and that

WµE = E for µ≫ 0; compare Remarks 2.2 and 3.10.

(c) By Definition 5.27(a) and (c) all weights of a mixed abelian, respectively A-finite Anderson A-
module are negative. In particular, a Drinfeld A-module of rank r is pure of weight −1

r !

(d) Every pure abelian, respectively A-finite Anderson A-module of weight µ is also mixed with
Wµ′E = (0) for µ′ < µ, and Wµ′E = E for µ′ ≥ µ, and GrWµ E = E.

Theorem 5.29. (a) An abelian (respectively A-finite) Anderson A-module E is mixed if and only
if its associated A-motive M(E) (respectively dual A-motive M̌(E)) is mixed. In this case the
weights of E are the negatives of the weights ofM(E) (respectively equal to the weights of M̌(E)).

(b) If an Anderson A-module E is both abelian and A-finite, then it is mixed (respectively pure) as
an abelian Anderson A-module if and only if E is so as an A-finite Anderson A-module. In this
case its weight filtrations and weights as an abelian, respectively A-finite Anderson A-module
coincide.

Proof. First let E be abelian and let M =M (E). Assume that E is mixed. We set

W−µM := ker
(
M ։M(

⋃
µ′<µ

Wµ′E)
)
.

ThenW•M is an increasing filtration ofM by saturated A-sub-motives. Equivalently, if µ1 < . . . < µn
are the jumps of the weight filtration W•E, set in addition µ0 := −∞, µn+1 := +∞, and Wµ0 E = (0).
Then WµiE = Wµ′E ( Wµi+1 E for all µi ≤ µ′ < µi+1 and hence, for any µ with µi < µ ≤ µi+1 we
have

⋃
µ′<µWµ′E =Wµi E and W−µM = ker

(
M ։M(Wµi E)

)
. In particular, if µi ≤ µ < µ̃ ≤ µi+1,

then

(5.25) W−µ̃M = ker
(
M ։M(Wµi E)

)
= ker

(
M ։M(WµE)

)
.

This yields the following diagram with exact rows

0 //
⋃

−µ̃<−µ
W−µ̃M //

� _

��

M //M(WµE) //

����

0

0 // W−µM //M //M
( ⋃
µ′<µ

Wµ′E
)

// 0 .
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So Proposition 5.25 and the snake lemma yield GrW−µM
∼= ker

(
M(WµE) ։ M(

⋃
µ′<µWµ′E)

) ∼=
M(GrWµ E). The latter is pure of weight −µ and therefore M(E) is mixed with weight filtration W•M
which jumps at −µn < . . . < −µ1.

Conversely, let M be mixed with weight filtration WµM . If ν1 < . . . < νn are the weights
of M set in addition ν0 := −∞ and νn+1 := +∞ and set Wν0M = (0) and Wνn+1 := M . For
µ ∈ Q with −νi+1 ≤ µ < −νi for some i let WµE be the abelian Anderson A-submodule of E with
M(WµE) = M/WνiM . (Note that M(WµE) is effective and finite free over C{τ} because M is.)
Then the considerations above show that E is mixed with respect to this weight filtration.

Now let E be A-finite and let M̌ = M̌(E). If E is mixed then setting

(5.26) WµM̌ := M̌(WµE)

and applying Proposition 5.25 shows that GrWµ M̌ (E) = M̌(GrWµ E). Therefore, M̌ is mixed with the

same weights than E. Conversely, if M̌ = M̌(E) is mixed with weight filtration WµM̌ let WµE be the
A-finite Anderson A-submodule of E with M̌(WµE) =WµM̌ . (Note that WµM̌ is effective and finite
free over the noetherian ring C{τ̌} because M̌ is.) Then M̌(GrWµ E) = GrWµ M̌(E) by Proposition 5.25,

and E is mixed with the same weights than M̌ .
If E is both abelian and A-finite then M̌

(
M(E)

)
= M̌(E) by Theorem 5.13. The last statement

of the theorem therefore follows from Proposition 4.9.

5.5 Uniformizability

Definition 5.30. An Anderson A-module is called uniformizable if its exponential expE is surjective.

Remark 5.31. (a) If E is uniformizable and a ∈ A, the snake lemma applied to

0 // Λ(E) //

Lieϕa
��

LieE
expE

//

Lieϕa
��

E(C) //

ϕa
��

0

0 // Λ(E) // LieE
expE

// E(C) // 0

together with the fact that Lieϕa is an automorphism of LieE yields E[a](C) ∼= Λ(E)/aΛ(E).

(b) By [And86, Theorem 4] an abelian Anderson A-module E is uniformizable if and only if Λ(E) :=
ker(expE ) is a locally free A-module of rank equal to rkE, if and only if its associated A-motive M(E)
is uniformizable. The analog for dual A-motives is the following theorem of Anderson.

Theorem 5.32 ([ABP02]). Let E be an A-finite Anderson A-module and let M̌ = M̌(E) be its
associated dual A-motive. Then the following are equivalent

(a) E is uniformizable,

(b) ker(expE ) is a locally free A-module of rank equal to rkE,

(c) M̌ (E) is uniformizable.

If these conditions hold then the map δ0 from Corollary 5.24 provides an isomorphism of A-modules
δ0 : Λ(M̌) ∼−→ Λ(E).

Proof. If E is A-finite, that is M̌ = (M̌, τ̌M̌ ) is finite locally free over AC then for every a ∈ A r Fq

Proposition 5.12 implies E[a](C) ∼= (M̌/aM̌ )τ̌ ∼=
(
A/(a)

)⊕ rkE
.

If we assume (a), this observation together with Remark 5.31(a) implies that the discrete A-
submodule Λ(E) := ker(expE ) ⊂ LieE is locally free of rank rkE, whence (b); compare the proof of
[Gos96, Theorem 4.6.9].
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By Corollary 5.24, condition (b) implies that Λ(M̌) is a locally free A-module of rank rkE := rk M̌ .
So (c) follows from Lemma 4.16(b).

Finally, assume (c) and let x ∈ E(C). By (5.4) in Proposition 5.8 there is an m̌ ∈ M̌ with
δ1(m̌) = x. By Lemma 4.16(c) there is an m̌′ ∈ M̌ ⊗AC

O(CC rDC) with τ̌M̌ (σ̌∗m̌′) − m̌′ = m̌. By
Theorem 5.21 the element ξ := δ0(m̌

′+ m̌) satisfies expE (ξ) = x. This proves that expE is surjective,
that is (a).

The last assertion follows from Corollary 5.24 and Proposition 4.27.

The following corollary is the analog of [And86, Corollary 3.3.6] for uniformizable A-finite Anderson
A-modules.

Corollary 5.33. If E is a uniformizable A-finite Anderson A-module, then the set Λ(E) generates
the C-vector space LieE.

Proof. This question does not depend on the ring A, so we fix an element t ∈ A r Fq and the finite

flat inclusion Ã := Fq[t] ⊂ A. Let ξ ∈ LieE and consider x := expE (ξ) ∈ E(C) and the convergent

t-division tower x(n) := expE
(
Lieϕ−n−1t (ξ)

)
above x from Theorem 5.20. We set M̌(E) = (M̌, τ̌M̌ )

and choose an element m̌ ∈ M̌ with δ1(m̌) = x; see Proposition 5.8. By Theorem 5.21 there exists an
m̌′ ∈ M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
such that ξ = δ0(m̌

′ + m̌).

Now choose a basis B̌ of M̌ over ÃC = C[t] and write τ̌M̌ with respect to B̌ as a matrix Φ̌ ∈
GLr

(
C[t][ 1

t−c∗(t) ]
)
. By Theorem 5.32 and Lemma 4.18 there is a rigid analytic trivialization Ψ̌ ∈

GLr(C〈t〉) satisfying σ̌∗Ψ̌ = Ψ̌ · Φ̌. We set f := Ψ̌ · (m̌′ + m̌) ∈ C〈t〉r, where we denote the column
vectors representing m̌′ and m̌ with respect to B̌ again by m̌′, respectively m̌. We now consider
f mod (t− c∗(t))dimE as a C-linear combination of elements f1, . . . , fn ∈ Fq[t]

r. Then ξ = δ0(Ψ̌
−1 · f)

lies in the C-span of the δ0(Ψ̌
−1 · fi) by Proposition 5.8, because δ0 is C-linear. Since the Ψ̌−1 · fi lie

in Λ(M̌ ) by Lemma 4.18 the corollary follows from Theorem 5.32.

Remark 5.34. We review Anderson’s theory of scattering matrices [And86, Chapter 3]. Let E
be an abelian Anderson A-module over C and let M = M (E) be its associated effective A-motive.
Assume that E, and hence also M are uniformizable. In particular Λ(E) = ker(expE ) and Λ(M ) =(
M ⊗AC

O( .CC)
)τ

are locally free A-modules of rank equal to rkE. By [And86, Corollary 2.12.1] there
is an isomorphism

(5.27) βA : Λ(E) ∼−→ HomA(Λ(M ),Ω1
A/Fq

) , λ 7−→ m∨

A,λ , where m∨

A,λ : m 7→ ωA,λ,m

is determined by the residues Res∞(a · ωA,λ,m) = −m
(
expE (Lieϕa(λ))

)
∈ Fq for all a ∈ Q. Note

that indeed m
(
expE (Lieϕa(λ))

)
∈ Fq is well defined. Namely, we choose an a′ ∈ A with aa′ ∈ A

and we approximate m ∈ Λ(M ) by an element m′ ∈ M(E) such that m−m′ ∈ a′ · (M ⊗AC
O( .CC)).

Then we define m
(
expE (Lieϕa(λ))

)
:= m′

(
expE (Lieϕa(λ))

)
∈ C which is independent of a′ and

m′. Since m ∈ Λ(M ) we conclude that m
(
expE (Lieϕa(λ))

)
=
(
τM (σ∗m)

)(
expE (Lieϕa(λ))

)
:=

m
(
expE (Lieϕa(λ))

)q ∈ Fq as desired.
We next reduce to the situation of abelian t-modules in which Anderson defines scattering matrices.

By Lemma 1.2(b) there is a t ∈ A such that Q is a finite separable extension of Q̃ := Fq(t). Then

Ω1
Q/Fq

= Ω1
A/Fq

⊗A Q = Qdt by [Mat86, Theorems 25.1 and 25.3]. We set Ã := Fq[t] ⊂ A. This

inclusion corresponds to a morphism C → P1
Fq

under which the preimage of SpecFq[t] is SpecA and

the preimage of ∞̃ := V(1t ) is∞. We view all A-modules as Ã-modules and all AC-modules as modules

over ÃC = C[t]. Then the trace map

(5.28) TrQ/Q̃ : Ω1
Q/Fq

= Qdt −→ Ω1
Fq(t)/Fq

= Fq(t) dt , a dt 7→ TrQ/Q̃(a) dt
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satisfies Res∞(ω) = Res∞̃(TrQ/Q̃ ω) for all ω ∈ Ω1
Q/Fq

by [Vil06, Formula (9.16) on p. 299]. In

particular, consider the isomorphism of Fq[t]-modules which is analogous to (5.27)

βÃ : Λ(E) ∼−→ HomFq[t](Λ(M ),Fq[t]dt), λ 7−→ m∨

Ã,λ
,

where m∨

Ã,λ
: m 7→ ωÃ,λ,m is determined by Res∞̃(a · ωÃ,λ,m) = −m

(
expE (Lieϕa(λ))

)
∈ Fq for all

a ∈ Q̃. It satisfies ωÃ,λ,m = TrQ/Q̃(ωA,λ,m) because in Q̃∞̃ dt = Fq((
1
t ))dt both can be written in the

form ωÃ,λ,m =
∑

k b̃kt
kdt and TrQ/Q̃(ωA,λ,m) =

∑
k bkt

kdt with

bk = −Res∞̃(t−k−1TrQ/Q̃ ωA,λ,m)

= −Res∞(t−k−1ωA,λ,m)

= m
(
expE (Lieϕ−k−1t (λ))

)
(5.29)

= −Res∞̃(t−k−1ωÃ,λ,m)

= b̃k .

Note that in particular, bk = 0 for k < 0.
Now Anderson’s theory of scattering matrices [And86, §3] proceeds as follows. Fix an Fq[t]-basis

(λ1, . . . , λr) of Λ(E), where r = rkFq[t] Λ(E) = rkC[t]M , and a C[t]-basis B = (m1, . . . ,mr) of M , and
define the scattering matrix Ψ, where i is the row index and j is the column index

(5.30) Ψ :=
( ∞∑

k=0

mi

(
expE (Lieϕ−k−1t (λj))

)
tk
)
i,j=1,...,r

.

Its entries lie in C〈 tθs 〉 for all s < 1, see (5.17), because for any isomorphism ρ : E ∼−→ Gd
a,C of

Fq-module schemes, Lemma 5.4 implies for k →∞ the estimate

‖ρ
(
expE (Lieϕ−k−1t (λj))

)
‖ = ‖Lie ρ

(
Lieϕ−k−1t (λj)

)
‖ = O(|θ|−k−1 · ‖Lie ρ(λj)‖) ,

and then Lemma 5.18 applied to f = mi ◦ ρ−1 implies

‖mi

(
expE (Lieϕ−k−1t (λj))

)
‖ = O(|θ|−k−1) for k →∞ .

Note that our scattering matrix Ψ is the negative of Anderson’s [And86, § 3.2]. This is motivated by
Example 5.35 and Theorems 5.39 and 5.47 below.

If τM is represented with respect to the basis B by the matrix Φ ∈Mr

(
C[t]

)
∩GLr

(
C[t][ 1

t−θ ]
)
, then

Anderson [And86, Proof of Lemma 3.2.1] shows that σ∗ΨT = ΨTΦ and that the columns of (Ψ−1)T

form an Fq[t]-basis C = (n1, . . . , nr) of Λ(M). In particular Ψ ∈ GLr(C〈t〉). In terms of Lemma 3.22
this means that Ψ is a rigid analytic trivialization of Φ. More precisely, the ℓ-th column of (Ψ−1)T is
the coordinate vector of nℓ with respect to the basis B. Therefore, with respect to the bases C and B
the morphism hM : Λ(M )⊗A O(

.
CC)→ M ⊗AC

O( .CC) is represented by (Ψ−1)T ∈Mr

(
O( .CC)

)
. Since

coker Φ ∼= coker τM is a C[t]/(t − θ)d-module with dimension d = dimE as C-vector space, it follows
by the elementary divisor theorem that detΦ ∈ (t − θ)d · C×

. Together with σ∗ΨT ∈ Mr

(
C〈 tθ 〉

)
this

implies that ΨT ∈Mr

(
(t− θ)−dC〈 tθ 〉

)
.

In fact, we show that the Fq[t]-basis (λ1, . . . , λr) of Λ(E) is even mapped under βÃ to the basis of
HomFq[t](Λ(M ),Fq[t]dt) which is dual to C. Namely, if eℓ = (δ1ℓ, . . . , δrℓ)

T is the ℓ-th standard basis

vector and (Ψ−1)T eℓ = (g1, . . . , gr)
T is the ℓ-th column of (Ψ−1)T , then nℓ =

∑
i gimi and by (5.29)

we obtain

(5.31) ωÃ,λj ,nℓ
=

∞∑

k=0

nℓ
(
expE (Lieϕ−k−1t (λj))

)
tk dt = (g1, . . . , gr) ·Ψ · ej dt = eTℓ ej dt = δℓj dt .
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Example 5.35 (Cf. [Pel08, §4.2]). We continue with our Example 5.16(a) of Drinfeld Fq[t]-modules.
Let λ ∈ Λ(E) be a period. The corresponding convergent t-division tower from Theorem 5.20 is(
expE (θ−n−1λ)

)∞
n=0

and the corresponding Anderson generating function from Corollary 5.22 is

(5.32) fλ(t) :=
∞∑

n=0

expE (θ−n−1λ)tn ∈ C〈t〉 .

Multiplying the equation

expE (θ−nλ) = ϕt
(
expE (θ−n−1λ)

)

= θ · expE (θ−n−1λ) + α1 · expE (θ−n−1λ)q + . . .+ αr · expE (θ−n−1λ)q
r
,

by tn and summing up we get

θ fλ(t) + α1 σ
∗fλ(t) + . . .+ αr σ

r∗fλ(t) =
∞∑

n=0

expE (θ−nλ)tn

= expE (λ) + tfλ(t) = tfλ(t).(5.33)

We claim that the solution m̌′λ ∈ M̌ t corresponding to λ by Corollary 5.22 of the equation τ̌M̌(σ̌∗m̌′) =
m̌′ is given with respect to the basis (m̌k)k by the coordinate vector

X ·




σ∗(fλ)
...

σr∗(fλ)


 ,

where X is the matrix from (5.11), that is m̌′λ = −
∑r

ν=1

∑r−1
k=0 σ̌

k∗(αν+k) · σν∗(fλ) · m̌k. Indeed, the
1×1-matrix

∑
j≥0∆t,ν+jτ

j ∈ C{τ} from Corollary 5.22 is identified with the element
∑

k≥0 σ̌
k∗(αν+k)·

m̌k ∈ M̌ for all ν = 1, . . . , r. Note that the inverse assignment m̌′λ 7→ λ is given by the map δ0 from
Corollary 5.24; see also Theorem 5.32.

Let λ1, . . . , λr be an Fq[t]-basis of Λ(E). For i = 1, . . . , r we write fi := fλi and m̌
′
i := m̌′λi for the

corresponding solutions. From the linear independence of the sets {λ1, . . . , λr} and {m̌′1, . . . , m̌′r} :=
{δ−10 (λ1), . . . , δ

−1
0 (λr)} it follows that {f1, . . . , fr} is linearly independent over Fq[t]. From the descrip-

tion of fλ in (5.32) we see that the matrix

Ψ :=




f1 f2 · · · fr
σ∗f1 σ∗f2 · · · σ∗fr
...

...
...

σ(r−1)∗f1 σ(r−1)∗f2 · · · σ(r−1)∗fr




is the scattering matrix from (5.30), and equation (5.33) shows that indeed ΨT · Φ = σ∗ΨT . In
particular the columns of (ΨT )−1 are the coordinate vectors with respect to the basis (mi) of an
Fq[t]-basis C of Λ(M); see Lemma 3.22.

We set Ψ̌ := σ∗Ψ−1 · X−1 ∈ GLr(C〈t〉) so that the columns of Ψ̌−1 = X · σ∗Ψ are the coor-
dinate vectors of the Fq[t]-basis (m̌′1, . . . m̌

′
r) of Λ(M̌ ) with respect to the basis (m̌k)k. Moreover,

equation (5.12), that is X · ΦT = Φ̌ · σ̌∗X shows that

Φ̌ · σ̌∗Ψ̌−1 = Φ̌ · σ̌∗X ·Ψ = X · ΦT ·Ψ = X · σ∗Ψ = Ψ̌−1

and Ψ̌ is hence a rigid analytic trivialization of Φ̌ in the sense of Lemma 4.18. By Corollaries 3.31 and
4.29 the entries of the matrices Ψ−1 and Ψ̌ even converge for all t ∈ C. Note that the matrix equations
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obtained above correspond to the isomorphisms of C〈t〉-modules from Theorem 5.13, Propositions 4.17
and 4.27 in the following diagram

HomC[t]

(
σ∗M, Ω1

C[t]/C

)
⊗C[t] C〈t〉 Ξ

// M̌ ⊗C[t] C〈t〉

HomFq[t]

(
Λ(M ), Ω1

Fq[t]/Fq

)
⊗Fq[t] C〈t〉

(σ∗hM
∨)−1

OO

Λ(E)⊗Fq[t] C〈t〉βFq[t]

oo Λ(M̌ )⊗Fq[t] C〈t〉δ0 ⊗ id
oo

hM̌

OO

Namely (δ0 ⊗ id)−1, respectively βFq[t], send the basis (λi)i of Λ(E) to the basis (m̌′i) of Λ(M̌),
respectively to the dual of the basis of C of Λ(M ); see Remark 5.34. Moreover, hM is represented with
respect to the basis C and the basis (mj)j by the matrix (ΨT )−1, so (σ∗hM

∨)−1 is represented by the
matrix σ∗Ψ with respect to the basis (ηℓ)ℓ of HomC[t]

(
σ∗M, Ω1

C[t]/C

)
which is dual to (σ∗mj)j and the

basis dual to C. And finally Ξ is represented with respect to the bases (ηℓ)ℓ and (m̌i)i by the matrix
X.

This example also suggests that the columns of the matrices
∑

j≥0∆t,ν+jτ
j ∈ C{τ}d×d from

Corollary 5.22, when viewed as elements of C{τ}d ∼= M̌ via an isomorphism ρ : E ∼−→ Gd
a,C of Fq-

module schemes, are relevant for an explicit description of the isomorphism Ξ from Theorem 5.13 and
the pairing of Question 5.15.

5.6 The associated Hodge-Pink structure

Let E = (E,ϕ) be a uniformizable mixed abelian, respectively A-finite Anderson A-module of dimen-
sion d and rank r over C. Consider the exponential exact sequence

0 −→ Λ(E) −→ LieE
expE−−−−→ E(C) −→ 0 ,

where Λ := Λ(E) := ker(expE ). It is a discrete A-submodule which is projective of rank r by [And86,
Theorem 4], respectively Theorem 5.32. We extend the action of A on the C-vector space LieE to an
action of QC = Q⊗Fq C by letting ã/a ∈ Q with ã, a ∈ A act via Lieϕã/a := (Lieϕã)◦(Lieϕa)−1. Note
that Lieϕa is invertible for a 6= 0 because (Lieϕa − c∗(a))d = 0 on LieE and c∗(a) 6= 0. Since Jd = 0
on LieE and AC/J

d = C[[z − ζ]]/(z − ζ)d by Lemma 1.3, we may view LieE as a C[[z − ζ]]-module.
We obtain a well defined C[[z − ζ]]-homomorphism γ on the right in the sequence

(5.34) 0 // q // Λ(E)⊗A C[[z − ζ]] γ
// LieE // 0

λ⊗∑i bi(z − ζ)i
✤ //

∑
i bi · (Lieϕz − ζ)i(λ) ,

and we let q be its kernel. The sequence (5.34) is exact on the right by Anderson [And86, Corol-
lary 3.3.6] when E is abelian, respectively by Corollary 5.33 when E is A-finite. So the pair (Λ, q)
determines the A-module LieE and via expE also E. We further set

H := H1(E) := Λ(E)⊗A Q and WµH := H1(WµE) .

Then H1(E) := (H,W•H, q) is a Q-pre Hodge-Pink structure all of whose weights are negative. It
satisfies (z − ζ)dp ⊂ q ⊂ p and hence, F−dHC = HC and F 1HC = (0). Recall that if E is pure, then,
by our convention, its weight is −d

r and so H1(E) is a pure Q-pre Hodge-Pink structure of weight −d
r .

By Theorem 3.34 and Theorem 5.39 below, respectively by Theorem 4.33 and Theorem 5.38 below,
H1(E) is in fact a Q-Hodge-Pink structure.
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Definition 5.36. Let E be a uniformizable mixed abelian, respectively A-finite Anderson A-module
over C. The Q-Hodge-Pink structure H1(E) constructed above is called the Q-Hodge-Pink structure
associated with E. We also set H1(E) := H1(E)∨ in Q-HP. The functor H1 is covariant and H1 is
contravariant in E.

Remark 5.37. This construction parallels the classical situation in which abelian Anderson A-
modules are replaced by abelian varieties and rational mixed Hodge structures are associated with
them. Let E be an abelian variety of dimension d over the (classical) complex numbers (which we
denote C in the rest of this remark). Then E(C) = LieE/Λ(E) where Λ(E) is a Z-lattice of rank 2d
in LieE. This lattice is functorially in E described as the Betti-homology group Λ(E) = H1(E,Z).
There is a natural surjection on the right in the sequence

0 // LieE // H1(E,Z)⊗Z C // LieE // 0 ,

λ⊗ b ✤ // b · λ .

The subspace F 0H1(E,Z)⊗ZC := LieE constitutes the Hodge filtration on the Betti-homology of E.

Theorem 5.38. Let E be a uniformizable mixed A-finite Anderson A-module over C and let M̌ =
M̌(E) be its associated effective mixed dual A-motive. Then H1(E) and H1(M̌ ) are canonically iso-
morphic. In particular, H1(E) and H1(E) are mixed Q-Hodge-Pink structures.

Proof. Since Λ(M̌ ) =
(
M̌ ⊗AC

O
( .
CC r

⋃
i∈N>0

V(σi∗J)
))τ̌

by Proposition 4.27(a), Corollary 5.24

provides an A-isomorphism δ0 : Λ(M̌) ∼−→ Λ(E). By (5.26) in the proof of Theorem 5.29 it satisfies
WµΛ(M̌) = Λ(WµM̌) = Λ

(
M̌(WµE)

)
∼−→ Λ(WµE) = WµΛ(E), that is, it is compatible with the

weight filtrations. Moreover, δ0 fits into the commutative diagram

0 // q //

∼=
��

Λ(M̌ )⊗A C[[z − ζ]]
hM̌

//

∼=δ0 ⊗ id
��

M̌/τ̌M̌ (σ̌∗M̌ ) //

∼=δ0
��

0

0 // q // Λ(E)⊗A C[[z − ζ]] // LieE // 0 ,

that is, it is compatible with the Hodge-Pink lattices. The last statement follows from Theorem 4.33.

Theorem 5.39. Let E be a uniformizable mixed abelian Anderson A-module over C and let M =
M(E) be its associated mixed A-motive. Consider the Q-Hodge-Pink structure Ω = (H,W•H, q)
which is pure of weight 0 and given by H = Ω1

Q/Fq
= Qdz and q = C[[z − ζ]]dz. Then H1(E) and

H1(M )⊗ Ω = Hom(H1(M ),Ω) are canonically isomorphic.

Before we prove the theorem note that C[[z − ζ]]dz = Ω̂1
C[[z−ζ]]/C is the C[[z − ζ]]-module of con-

tinuous differentials. Further note that Ω ∼= 1l(0) and hence, H1(E) ∼= H1(M) and H1(E) ∼= H1(M).
Combining the theorem with Theorem 3.34 leads to the following

Corollary 5.40. If E is a uniformizable mixed abelian Anderson A-module, then H1(E) and H1(E)
are mixed Q-Hodge-Pink structures.

Proof of Theorem 5.39. Let M = M(E) = (M, τM ) and write H1(E) = (H1(E),W•H1(E), qE) and

H1(M ) = (H1(M),W•H1(M ), qM ) and Hom(H1(M),Ω) = (H̃M ,W•H̃M , q̃M ).

1. The isomorphism H1(E) = Λ(E) ⊗A Q ∼−→ H̃M = HomA(Λ(M ),Ω1
A/Fq

) ⊗A Q in question will be

induced from the isomorphism [And86, Corollary 2.12.1]

βA : Λ(E) ∼−→ HomA(Λ(M ),Ω1
A/Fq

) , λ 7−→ m∨

A,λ , where m∨

A,λ : m 7→ ωA,λ,m
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is determined by the residues Res∞(a ·ωA,λ,m) = −m
(
expE (Lieϕa(λ))

)
∈ Fq for all a ∈ Q; see (5.27).

We verify its compatibility with the weight filtrations

WµH1(E) = Λ(WµE)⊗A Q and

WµH̃M =
{
h ∈ HomQ(H

1(M),Ω1
Q/Fq

) : h(W−µ̃H
1(M )) = 0 for all µ < µ̃

}
.

Let µ1 < . . . < µn be the weights of E and set µ0 := −∞ and µn+1 := +∞. If µi ≤ µ < µ̃ ≤ µi+1, then
W−µ̃H

1(M) := H1(W−µ̃M) = ker
(
H1(M ) ։ H1(M(WµE))

)
by (5.25) and Lemma 3.25. This implies

WµH̃M = HomQ

(
H1(M(WµE)),Ω1

Q/Fq

)
. Therefore, βA ⊗ idQ maps WµH1(E) isomorphically onto

WµH̃M as desired.

2. We must show that βA ⊗ idQ satisfies the compatibility (βA ⊗ idC((z−ζ)))(qE) = q̃M with the

Hodge-Pink lattices. As M is effective, qM sits in the exact sequence

(5.35) 0 // pM // qM // coker τM // 0 ,

where pM = Λ(M)⊗A C[[z − ζ]] and coker τM :=M/τM (σ∗M). We also set

p̃M := HomC[[z−ζ]](p
M ,C[[z − ζ]]dz) = HomA(Λ(M ),Ω1

A/Fq
)⊗A C[[z − ζ]] .

Applying HomC[[z−ζ]]( •
,C[[z − ζ]]dz) to (5.35) and observing that JdimE ·M ⊂ τM (σ∗M) implies

HomC[[z−ζ]](coker τM ,C[[z − ζ]]dz) = 0, yields the upper row in the following diagram of C[[z − ζ]]-
modules with exact rows

(5.36) 0 // q̃M // p̃M // Ext1C[[z−ζ]](coker τM ,C[[z − ζ]]dz) //

∼=
��
✤

✤

✤

✤

0

0 // q̃M // p̃M
γ̃A

// HomC(coker τM ,C) // 0

0 // qE //

∼=

OO✤

✤

✤

✤

Λ(E)⊗A C[[z − ζ]] γ
//

∼= βA ⊗ idC[[z−ζ]]

OO

LieE //

∼= α

OO

0 .

In this diagram α is the isomorphism from (5.2)

α : LieE ∼−→ HomC(coker τM ,C) , λ 7−→
(
m∨

λ : m 7→ (Liem)(λ)
)

The map γ was defined in (5.34) and the isomorphism βA ⊗ idC[[z−ζ]] is induced from the above
isomorphism βA. Finally, the map γ̃A is given by

γ̃A : HomC[[z−ζ]](p
M ,C[[z − ζ]]dz) −→ HomC(coker τM ,C) ,

m∨ 7−→
(
m 7→ −Resz=ζ(m

∨(m))
)
.

Here m = m mod τM(σ∗M) and m∨(m) ∈ C((z − ζ))dz is defined as

m∨(m) := (m∨ ⊗ idC((z−ζ)))
(
(hM ⊗ idC((z−ζ)))

−1(m⊗ 1)
)

where (hM ⊗ idC((z−ζ)))
−1(m⊗ 1) is the preimage of m⊗ 1 ∈M ⊗AC

C((z− ζ)) under the isomorphism

hM ⊗ idC((z−ζ)) : Λ(M )⊗A C((z − ζ)) ∼−→M ⊗AC
C((z − ζ)) from (3.6). Note that Resz=ζ(m

∨(m)) = 0

for all m ∈ τM(σ∗M) because for them (hM ⊗ idC((z−ζ)))
−1(m ⊗ 1) ∈ pM and then m∨ ∈ p̃M implies
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m∨(m) ∈ C[[z − ζ]]dz. This proves that Resz=ζ(m
∨(m)) only depends on m and that the map γ̃A is

well defined.
We show that γ̃A is C[[z − ζ]]-linear. The C[[z − ζ]]-action on HomC(coker τM ,C) is induced from

the action of AC on coker τM which factors through C[[z− ζ]]/(z− ζ)d = AC/J
d for d = dimE by (5.2)

and the discussion thereafter. For m∨ ∈ p̃M , f ∈ C[[z − ζ]], and m ∈ coker τM this implies

(
f · γ̃A(m∨)

)
(m) = γ̃A(m

∨)(f ·m)

= −Resz=ζ
(
m∨(fm)

)

= −Resz=ζ
(
(f ·m∨)(m)

)

= γ̃A(f ·m∨)(m)

proving the C[[z − ζ]]-linearity of γ̃A.
To prove that q̃M := HomC[[z−ζ]](q

M ,C[[z − ζ]]dz) is the kernel of γ̃A first note that m∨ ∈ q̃M and

(hM ⊗ idC((z−ζ)))
−1(m ⊗ 1) ∈ qM imply m∨(m) ∈ C[[z − ζ]]dz and hence, Resz=ζ(m

∨(m)) = 0 and
q̃M ⊂ ker γ̃A. Conversely, let m

∨ ∈ ker γ̃A. It follows for any m ∈M and any n ∈ N0 that

Resz=ζ

(
(z − ζ)n · (m∨ ⊗ idC((z−ζ)))

(
(hM ⊗ idC((z−ζ)))

−1(m⊗ 1)
))

= γ̃A
(
(z − ζ)n ·m∨

)
(m) = 0 .

Therefore, m∨ ⊗ idC((z−ζ))
(
(hM ⊗ idC((z−ζ)))

−1(m ⊗ 1)
)
belongs to C[[z − ζ]]dz. Since the C[[z − ζ]]-

module qM is generated by the elements (hM ⊗ idC((z−ζ)))
−1(m ⊗ 1) for m ∈ M it follows that

m∨ ∈ HomC[[z−ζ]](q
M ,C[[z − ζ]]dz) = q̃M . We will show in step 3 below that the lower right square in

of diagram (5.36) commutes. Therefore γ̃A is surjective, because γ is. We conclude that also the middle
row (5.36) is exact and that Ext1C[[z−ζ]](coker τM ,C[[z − ζ]]dz) and HomC(coker τM ,C) are isomorphic

as quotients of p̃M .

3. To prove the theorem it remains to show that (βA ⊗ idC((z−ζ)))(qE) = q̃M . For this it suffices to
show that the lower right square in (5.36) commutes; that is, α ◦ γ = γ̃A ◦ (βA ⊗ idC((z−ζ))). By the
C[[z − ζ]]-linearity of the four maps this is equivalent to the following

Claim 1. The inverse isomorphism β−1A : HomA(Λ(M ),Ω1
A/Fq

) ∼−→ Λ(E) is determined by the compo-

sition α ◦ γ ◦ β−1A which is given by γ̃A; that is, by

HomA(Λ(M ),Ω1
A/Fq

)
β−1A

// Λ(E) �
�

// LieE
α

// HomC(coker τM ,C)

m∨ ✤ //
(
m 7→ −Resz=ζ(m

∨ ⊗ 1)(m)
)
,

where m∨ ⊗ 1 ∈ HomA(Λ(M ),Ω1
A/Fq

)⊗A C[[z − ζ]] = p̃M is induced from m∨.

This can be made more explicit by choosing a coordinate system; that is, an isomorphism κ =
(κ1, . . . , κd)

T : E ∼−→ Gd
a,C of Fq-module schemes. The κi ∈ HomFq,C(E,Ga,C) =M then form a C{τ}-

basis of M , where τ is the σ∗-linear map τ : M →M,m 7→ τM(σ∗m), and the κi := κi mod τM(σ∗M)
form a C-basis of coker τM and yield an isomorphism (κ1, . . . , κd)

T : LieE ∼−→ Cd. In these terms the
isomorphism α has the inverse

α−1 : HomC(coker τM ,C) ∼−→ LieE , m∨ 7−→
(
m∨(κ1), . . . ,m

∨(κd)
)T

and Claim 1 is equivalent to

Claim 2. The inverse isomorphism β−1A : HomA(Λ(M ),Ω1
A/Fq

) ∼−→ Λ(E) is given by

m∨ 7−→
(
−Resz=ζ(m

∨ ⊗ 1(κ1)), . . . ,−Resz=ζ(m
∨ ⊗ 1(κd))

)T
.
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To prove Claim 2 we apply Anderson’s theory of scattering matrices. We recall the notation
introduced in Remark 5.34. In particular Ã = Fq[t] ⊂ A is a finite flat ring extension for which
the corresponding morphism of curves C → P1

Fq
is separable, B = (m1, . . . ,mr) is a basis of M over

ÃC = C[t], and (λ1, . . . , λr) is an Fq[t]-basis of Λ(E), where r = rkFq[t] Λ(E) = rkC[t]M . Then

Ψ :=
( ∞∑

k=0

mi

(
expE (Lieϕ−k−1t (λj))

)
tk
)
i,j=1,...,r

∈ Mr

(
(t− θ)−dC〈 tθ 〉

)
.

is Anderson’s scattering matrix, where θ = c∗(t) ∈ C and d = dimE. The matrix (Ψ−1)T belongs to
Mr

(
O( .CC)

)
and its columns form an Fq[t]-basis C = (n1, . . . , nr) of Λ(M ). With respect to the bases

C and B the morphism hM : Λ(M)⊗A O(
.
CC)→M ⊗AC

O( .CC) is represented by (Ψ−1)T .
Under the induced morphism CC → P1

C the point V(J) ∈ CC maps to V(t − θ) ∈ P1
C. We extend

the trace map from (5.28) to TrQuot(AC)/C(t) : Ω
1
Quot(AC)/C

→ Ω1
C(t)/C. Then again by [Vil06, Formula

(9.16) on p. 299]

(5.37) Rest=θ(TrQuot(AC)/C(t) ω) =
∑

P |V(t−θ)

Res
P
ω

for all ω ∈ Ω1
Quot(AC)/C

where the sum runs over all points P ∈ CC mapping to V(t− θ). Consider the
rigid analytic closed disc SpC〈 tθ 〉 = {|t| ≤ |θ|} inside (P1

C)
rig and its preimage SpAC ⊗C[t] C〈 tθ 〉 inside

CC. By C-linearity and continuity (5.37) extends to all differential forms ω ∈ (t− θ)−dAC⊗C[t]C〈 tθ 〉 dt
with pole above V(t− θ) of order at most d and holomorphic on (SpAC ⊗C[t] C〈 tθ 〉)rV(t− θ).

If we denote by
B
[κℓ] ∈ C[t]r the coordinate vector of κℓ with respect to the basis B and by

C

[
(hM ⊗ idC((z−ζ)))

−1(κℓ ⊗ 1)
]
the coordinate vector with respect to the basis C, then

C

[
(hM ⊗ idC((z−ζ)))

−1(κℓ ⊗ 1)
]
= ΨT ·

B
[κℓ] =: (f1, . . . , fr)

T ∈ (t− θ)−dC〈 tθ 〉
⊕r .

The map βA(λj) = m∨

A,λj
sends ni to ωA,λj ,ni

and hence, (hM ⊗ idC((z−ζ)))
−1(κℓ ⊗ 1) =

∑
i ni ⊗ fi

to
∑

i fi ωA,λj ,ni
. The latter is a differential form in (t − θ)−dAC ⊗C[t] C〈 tθ 〉 dt which is holomorphic

outside V(J), because hM
−1 is an isomorphism on (SpAC ⊗C[t] C〈 tθ 〉) r V(J). This differential form

has trace

TrQuot(AC)/C(t)(
∑

i fi ωA,λj ,ni
) =

∑
i fi · TrQ/Q̃(ωA,λj ,ni

) =
∑

i fi ωÃ,λj ,ni
= fj dt ;

see (5.31). Applying (5.37) yields

−Resz=ζ(m
∨

A,λj ⊗ 1(κℓ)) := −Resz=ζ
(
(m∨

A,λj ⊗ idC((z−ζ)))(hM ⊗ idC((z−ζ)))
−1(κℓ ⊗ 1)

)

= −Res
V(J)

(
∑

i fi ωA,λj,ni
)

= −Rest=θ TrQuot(AC)/C(t)(
∑

i fi ωA,λj,ni
)

= −Rest=θ(fj dt)

= −Rest=θ(e
T
j Ψ

T
B
[κℓ] dt)

= κℓ(λj) .

Here the last equation is [And86, Formula (3.3.3)] taking into account that our scattering matrix Ψ
differs from Anderson’s by a minus sign. This shows that

λj =
(
−Resz=ζ(βA(λj)⊗ 1(κ1)), . . . ,−Resz=ζ(βA(λj)⊗ 1(κd))

)T

and indeed the inverse isomorphism β−1A has the form described in Claim 2. This finishes the proof of
Claim 2, Claim 1 and the theorem.
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We also record the following theorem, which we will prove after Lemma 5.50 below.

Theorem 5.41. Let E be a uniformizable mixed Anderson A-module over C which is both abelian
and A-finite, and let M = M(E) and M̌ = M̌(E) be the associated (dual) A-motive. Then the
isomorphisms above are also compatible with the isomorphisms from Theorems 4.32, 5.38 and 5.39
and the isomorphism Ξ: M̌(M) ∼−→ M̌(E) from Theorem 5.13, in the sense that the following diagram
commutes

(5.38) H1

(
M̌(M)

)
∼=

H1(Ξ)
// H1

(
M̌ (E)

)

∼= Theorem 5.38
��

H1(M )⊗ Ω ∼=
Theorem 5.39

//

∼=Theorem 4.32

OO

H1(E)

5.7 Cohomology realizations

Let E be an Anderson A-module over C with exponential function expE : LieE → E(C) and let
Λ(E) := ker(expE ). We assume that E is abelian or A-finite. Anderson defined the Betti cohomology
realization of E to be

H1,Betti(E,B) := Λ(E)⊗A B and H1
Betti(E,B) := HomA(Λ(E), B)

for any A-algebra B; see [Gos94, Definition 1.3.6]. This is most useful when E is uniformizable, in
which case both are locally free B-modules of rank equal to rkE and H1(E) = H1,Betti(E,Q); see Re-
mark 5.31(b), respectively Theorem 5.32. By [And86, Corollary 2.12.2] (respectively Theorem 5.32)
this realization provides for B = Q an exact faithful functor on abelian (respectively A-finite) uni-
formizable Anderson A-modules.

Moreover, let v be a finite place of C, that is a closed point v ∈
.
C and let Av be the v-adic

completion of A, and Qv the fraction field of Av. Let TvE := HomA

(
Qv/Av , E(C)

)
be the v-adic Tate

module of E. The v-adic cohomology realization of E is defined as

H1,v(E,Av) := TvE and H1,v(E,Qv) := TvE ⊗Av Qv and

H1
v(E,Av) := HomAv(TvE,Av) and H1

v(E,Qv) := HomAv(TvE,Qv) ;

see [Gos94, § 1.2]. These are free Av-modules, respectively Qv-vector spaces of rank equal to rkE by
Remarks 5.6 and 5.10. Indeed, after fixing an integer e such that ve ⊂ A is a principal ideal and
choosing a generator a of ve we can identify A[ 1a ]/A

∼−→ Qv/Av. Then there is an isomorphism

TvE
∼−→ lim

←−
n

(
E[an](C), ϕa

)
:=

{
(Pn)n ∈

∏
n∈N

E[an](C) : ϕa(Pn+1) = Pn
}

(5.39)

=
{
a-division towers (Pn)n above 0

}
.

This isomorphism sends f ∈ HomA

(
Qv/Av , E(C)

)
to the tuple Pn := f(a−n). It is indeed an iso-

morphism, because from (Pn)n we can reconstruct f : A[ 1a ]/A → E(C) as f(c a−n) = ϕc(Pn) for
c ∈ A,n ∈ N.

By Proposition 5.45(a) below, respectively Proposition 5.48(a) below, we obtain covariant functors
H1,v( . , Av) on abelian, respectively A-finite AndersonA-modules, which are exact and faithful, because
they can be compared with the corresponding functors on the associated (dual) A-motives. If E is
defined over a subfield L of C then H1,v(E,Av) carries a continuous action of Gal(Lsep/L) and the
v-adic realization factors through the category ModAv[Gal(Lsep/L)]. Moreover, if L is a finitely generated
field then

(5.40) H1,v( . , Av) : Hom(E,E ′)⊗A Av ∼−→ HomAv[Gal(Lsep/L)]

(
H1,v(E,Av),H1,v(E

′, Av)
)
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is an isomorphism for abelian, respectively A-finite, Anderson A-modules E and E′. This is the analog
of the Tate conjecture and follows by Proposition 5.45(a), respectively Proposition 5.48(a) from (3.9),
respectively (4.6).

Proposition 5.42. Let E be a pure or mixed Anderson A-module, which is defined over a finite field
extension L of Q and is abelian or A-finite. Let P be a place of L, not lying above ∞ or v, where E
has good reduction, and let FP be its residue field. Then the geometric Frobenius FrobP of P has a
well defined action on H1,v(E,Av) and each of its eigenvalues lies in the algebraic closure of Q in C
and has absolute value (#FP)

µ for a weight µ of E. Dually every eigenvalue of FrobP on H1
v(E,Av)

has absolute value (#FP)−µ for a weight µ of E. These eigenvalues are independent of v.

Remark. The geometric Frobenius FrobP of P is the inverse of the arithmetic Frobenius Frob−1P , which
satisfies Frob−1P (x) ≡ x#FP mod P for x ∈ OL.

Proof. This follows by Proposition 5.45(a), respectively Proposition 5.48(a) from the corresponding
facts for M (E), respectively M̌(E) proved in Propositions 3.36, respectively 4.35.

Finally, if E is abelian, let M = (M, τM ) =M(E) be the associated A-motive. Then the de Rham
cohomology realization of E is defined to be

H1
dR(E,C) := HomA(Ω

1
A/Fq

, σ∗M/J · σ∗M) ,

H1
dR(E,C[[z − ζ]]) := HomA

(
Ω1
A/Fq

, σ∗M ⊗AC
C[[z − ζ]]

)
and

H1,dR(E,C[[z − ζ]]) := HomAC
(σ∗M, Ω̂1

C[[z−ζ]]/C) ,

where Ω̂1
C[[z−ζ]]/C = C[[z − ζ]]dz is the C[[z − ζ]]-module of continuous differentials. We define the

Hodge-Pink lattices of E as the C[[z − ζ]]-submodules

qE := HomA

(
Ω1
A/Fq

, τ−1M (M)⊗AC
C[[z − ζ]]

)
⊂ H1

dR

(
E,C((z − ζ))

)
and

qE := (τ∨

M ⊗ idC((z−ζ)))
(
HomAC

(M, Ω̂1
C[[z−ζ]]/C)

)
⊂ H1,dR

(
E,C((z − ζ))

)
.

On the other hand, if E is A-finite, let M̌ = (M̌, τ̌M ) = M̌(E) be the associated dual A-motive.
Then the de Rham cohomology realization of E is defined to be

H1
dR(E,C) := HomC(M̌/JM̌ ,C) ,

H1
dR(E,C[[z − ζ]]) := HomAC

(M̌,C[[z − ζ]]) and

H1,dR(E,C[[z − ζ]]) := M̌ ⊗AC
C[[z − ζ]] .

We define the Hodge-Pink lattices of E as the C[[z − ζ]]-submodules

qE := (τ̌∨

M̌
)−1
(
HomAC

(σ̌∗M̌, C[[z − ζ]])
)
⊂ H1

dR

(
E,C((z − ζ))

)
and

qE := τ̌M̌(σ̌∗M̌)⊗AC
C[[z − ζ]] ⊂ H1,dR

(
E,C((z − ζ))

)
.

In both cases the Hodge-Pink filtrations F iH1
dR(E,C) and F iH1,dR(E,C) of E are recovered as the

images of H1
dR

(
E,C[[z − ζ]]

)
∩ (z − ζ)iqE in H1

dR(E,C) and of H1,dR

(
E,C[[z − ζ]]

)
∩ (z − ζ)iqE in

H1,dR(E,C) like in Remark 2.4. All these structures are compatible with the natural duality between
H1

dR and H1,dR.
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Remark 5.43. Let E be an abelian Anderson A-module and let M = (M, τM ) = M(E) be its
associated A-motive. Our definition of H1

dR(E,C) and its Hodge filtration coincides with the one of
Goss [Gos94, Definition 2.6.1]. If E is a Drinfeld A-module, the de Rham cohomology realization
H1

dR(E,C) of a E was earlier defined by Deligne, Anderson, Gekeler and Jing Yu as the C-vector space
of extension classes

0 −→ Ga,C −→ E∗ −→ E −→ 0

of group schemes with A-action together with an A-equivariant splitting of the induced exact sequence
of Lie algebras. Here a ∈ A acts on Ga,C via ψc∗(a); see for example [Gos94, § 1.5] or [BP20, § 3.4].

There is an equivalent formulation as follows, see [Gek89, § 2] and [Yu90], which was extended to
abelian Anderson A-modules by Brownawell and Papanikolas [BP02, § 3]. An Fq-linear biderivation
of A into τM (σ∗M) is an Fq-homomorphism

η : A→ τM(σ∗M) , a 7→ ηa such that ηab = c∗(a) · ηb + b · ηa

η is called inner if there is an element m ∈ M with ηa = c∗(a) ·m− a ·m ∈ τM (σ∗M) for all a ∈ A.
The condition c∗(a) ·m−a ·m ∈ τM (σ∗M) holds for example if m ∈ τM(σ∗M) in which case η is called
strictly inner. Let D(E,C) (respectively Di(E,C), respectively Dsi(E,C)) be the C-vector space of
Fq-linear biderivations of A into τM(σ∗M) (respectively inner, respectively strictly inner ones). Then
define

H1
dR(E,C) := D(E,C)/Dsi(E,C) .

For Drinfeld A-modules E the isomorphism between these two definitions of H1
dR(E,C) is given by

sending η ∈ D(E,C) to the extension E∗ = Ga,C ×C E with the action of a ∈ A by
(
ψc∗(a) ηa

0 ϕa

)

and observing ηa ∈ M(E) = HomFq,C(E,Ga,C); see [Gos94, Theorem 1.5.4]. Finally, Gekeler [Gek89,
(2.13)] defined the Hodge filtration of the Drinfeld A-module E by setting F 0 H1

dR(E,C) = H1
dR(E,C)

and F 2 H1
dR(E,C) = (0) and

F 1 H1
dR(E,C) := Di(E,C)/Dsi(E,C) ⊂ H1

dR(E,C) .

For general abelian Anderson A-modules the relation to extension classes of group schemes was de-
veloped by Brownawell and Papanikolas [BP02, § 3.3] but they did not define the Hodge filtration.

The following result, which justifies our definition of H1
dR(E,C) and qE above, can be found in

[Gek90, Lemmas 4.3 and 4.4].

Lemma 5.44. Let E be an abelian Anderson A-module over C. Then there is a canonical isomorphism

(5.41) D(E,C)/Dsi(E,C) ∼−→ HomA

(
Ω1
A/Fq

, σ∗M/J · σ∗M
)
.

If E is a Drinfeld A-module over C then (5.41) restricts to an isomorphism

(5.42) Di(E,C)/Dsi(E,C)
∼−→ HomA

(
Ω1
A/Fq

, τ−1M (J ·M)/J · σ∗M
)
.

In particular our definition of H1
dR(E,C) and of F iH1

dR(E,C) coincides with the definition of Deligne,
Anderson, Gekeler, Yu, Brownawell and Papanikolas which we recalled in Remark 5.43.

Proof. Let ∆ := ker(A⊗FqA→ A, a⊗b 7→ ab). Then ∆⊗A⊗AAC = J ⊂ AC. When we view τM(σ∗M)
as an A ⊗Fq A-module with (a ⊗ b) ·m := ac∗(b) ·m := ψb ◦m ◦ ϕa for m ∈ τM (σ∗M) ⊂ M(E) then
by [Bou70, § III.10.10, Proposition 17]

(5.43)
D(E,C) ∼−→ HomA⊗A

(
∆, τM (σ∗M)

)
∼−→ HomAC

(J, σ∗M)

η 7−→
(
(a⊗ 1− 1⊗ a) 7→ ηa

)
7−→

(
(a⊗ 1− 1⊗ c∗(a)) 7→ τ−1M (ηa)

)
.
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The last isomorphism is induced from τM : σ∗M ∼−→ τM (σ∗M) and from the fact that τM (σ∗M) is an
AC-module. If x ∈ J and

∑
i xigi ∈ J · HomAC

(J, σ∗M) with xi ∈ J and gi ∈ HomAC
(J, σ∗M), then

(
∑

i xigi)(x) :=
∑

i gi(xix) = x ·m for m =
∑

i gi(xi) ∈ σ∗M . Therefore,
∑

i xigi corresponds under
the isomorphism (5.43) to the strictly inner derivation

(
η : a 7→ (c∗(a) − a) · τM(−m)

)
∈ Dsi(E,C).

On the other hand, since J is an invertible AC-module, we may identify σ∗M ∼= J · HomAC
(J, σ∗M)

and write every m ∈ σ∗M in the form
∑

i xigi ∈ J · HomAC
(J, σ∗M). This shows that Dsi(E,C)

∼−→
J ·HomAC

(J, σ∗M) under the isomorphism (5.43). Finally, (5.41) follows from ∆/∆2 = Ω1
A/Fq

and the
induced identification

HomAC
(J, σ∗M)

/
J · HomAC

(J, σ∗M) = HomC(J/J
2, σ∗M/J · σ∗M)

= HomA(Ω
1
A/Fq

, σ∗M/J · σ∗M) .

Moreover, if E is a Drinfeld A-module then J · M ⊂ τM (σ∗M). Therefore, we can consider the
morphism induced from (5.43)

D(E,C) ←−⊃ HomAC

(
J, τ−1M (J ·M)

)
) ∼←− M

(
η : a 7→ (c∗(a)− a) · (−m)

)
←−p

(
x 7→ τ−1M (xm)

)
←−p m.

Its image equals Di(E,C) and M ∼−→ HomAC

(
J, τ−1M (J · M)

)
) is an isomorphism because J is an

invertible AC-module. Therefore, Di(E,C) ∼= HomAC

(
J, τ−1M (J ·M)

)
) and

Di(E,C)/Dsi(E,C) ∼−→ HomAC

(
J, τ−1M (J ·M)

)/
J ·HomAC

(J, σ∗M)

∼−→ HomC

(
J/J2, τ−1M (J ·M)/J · σ∗M

)

∼−→ HomA

(
Ω1
A/Fq

, τ−1M (J ·M)/J · σ∗M
)
.

This proves the lemma.

Proposition 5.45. Let E be an abelian Anderson A-module over C and let M = M (E) be the
associated A-motive.

(a) There is a perfect pairing of Av-modules

H1,v(E,Av)×H1
v(M,Av) −→ HomFq(Qv/Av,Fq) , (f,m) 7−→ m ◦ f ,

where m ◦ f : Qv/Av → Ga,C(C) = C factors through Fq by the τ -invariance of m. It induces
isomorphisms

H1
v(M,Av)

∼−→ H1
v(E,Av)⊗Av HomFq(Qv/Av ,Fq) and

H1,v(E,Av)
∼−→ H1,v(M,Av)⊗Av HomFq(Qv/Av ,Fq) .

(b) There is a canonical isomorphism of C[[z − ζ]]-modules

H1
dR(M,C[[z − ζ]]) ∼−→ H1

dR(E,C[[z − ζ]])⊗C[[z−ζ]] Ω̂1
C[[z−ζ]]/C ,

which is compatible with the Hodge-Pink lattices.

(c) If E is uniformizable, there is a perfect pairing of A-modules

H1,Betti(E,A)×H1
Betti(M,A) −→ Ω1

A/Fq
, (λ,m) 7−→ ωA,λ,m

where ωA,λ,m is determined by the residues Res∞(a · ωA,λ,m) = −m
(
expE (Lieϕa(λ))

)
∈ Fq for

all a ∈ Q.
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Proof. (a) The existence of the perfect pairing follows from Anderson [And86, Proposition 1.8.3]. The
rest follows from this.

(b) By the universal property of the tensor product Ω̂1
C[[z−ζ]]/C = C[[z−ζ]]⊗AΩ1

A/Fq
and our definitions

H1
dR(E,C[[z − ζ]]) := HomA

(
Ω1
A/Fq

, σ∗M ⊗AC
C[[z − ζ]]

)

= HomC[[z−ζ]]

(
Ω̂1
C[[z−ζ]]/C, H

1
dR(M,C[[z − ζ]])

)

and this is compatible with the Hodge-Pink lattices.

(c) The perfect pairing was established by Anderson [And86, Corollary 2.12.1] and already used by us
in (5.27) and in Theorem 5.39.

Remark 5.46. Let Fv be the residue field of Av. Then there is a canonical isomorphism of Av-modules

(5.44) HomFv(Qv/Av,Fv)
∼−→ HomFq(Qv/Av ,Fq) , f 7−→ TrFv/Fq

◦f

given by composition with the trace map TrFv/Fq
: Fv → Fq. Indeed, Qv/Av =

⋃
n v
−nAv/Av is a union

of finite dimensional Fv-vector spaces, and the Av-homomorphism

HomFv

(⋃
n
v−nAv/Av ,Fv

)
∼−→ HomFq

(⋃
n
v−nAv/Av ,Fq

)
, f 7→ TrFv/Fq

◦f

is injective, whence bijective by dimension reasons, because an element of these Hom sets is non-zero
if and only if it is surjective onto Fv, respectively Fq. So the injectivity follows from the surjectivity
of TrFv/Fq

.
Furthermore, the Av-module HomFv(Qv/Av,Fv) is canonically isomorphic to the module of con-

tinuous differential forms Ω̂1
Av/Fv

under the map

(5.45) Ω̂1
Av/Fv

∼−→ HomFv(Qv/Av,Fv) , ω 7−→
(
a 7→ ResFv

v (aω)
)
,

where ResFv
v : Ω̂1

Av/Fv
→ Fv is the residue map. After choosing a uniformizing parameter z of Av we

can identify Av = Fv[[z]] and Ω̂1
Av/Fv

∼= Fv[[z]]dz and the inverse map is given by HomFv(Qv/Av ,Fv)→
Fv[[z]]dz, f 7→

∑∞
i=0 f(z

−1−i)zidz.

Combining (5.44) and (5.45) and putting Resv := TrFv/Fq
◦ResFv

v : Ω̂1
Av/Fv

→ Fq yields the isomor-
phism

(5.46) Ω̂1
Av/Fv

∼−→ HomFq(Qv/Av ,Fq) , ω 7−→
(
a 7→ Resv(aω)

)
.

To obtain a comparison isomorphism between Betti cohomology and de Rham cohomology of
Drinfeld modules, Gekeler [Gek89, § 2] defined a kind of “cycle integration” as follows. He shows that
for each η ∈ D(E,C) there exists a uniquely determined power series Fη(X) =

∑∞
i=0 fiX

qi in one
variable X such that

(5.47) Fη(c
∗(a) ·X)− c∗(a) · Fη(X) = ηa(expE (X))

for all a ∈ A. (See [BP02, § 3.2] for the generalization to abelian Anderson A-modules.) This defines
a pairing

(5.48) H1,Betti(E,A)×H1
dR(E,C) −→ C , (λ, η) 7→

∫
λ η := Fη(λ) ∈ C .

We generalize this as follows.



5 ANDERSON A-MODULES 86

Theorem 5.47. If E is a uniformizable abelian Anderson A-module there are canonical comparison
isomorphisms, sometimes also called period isomorphisms for all v

hBetti,v : H1,Betti(E,Av) = Λ(E)⊗A Av ∼−→ H1,v(E,Av) = HomA

(
Qv/Av , E(C)

)
,

λ⊗ y 7−→
(
x 7→ expE (Lieϕxy(λ))

)

where xy is viewed as an element of A[ 1a ]/A for ve = (a) as above, and

hBetti, dR : H1
Betti(E,C[[z − ζ]]) ∼−→ H1

dR(E,C[[z − ζ]]) and

hBetti, dR : H1
Betti(E,C)

∼−→ H1
dR(E,C)

which are compatible with the Hodge-Pink lattices and Hodge-Pink filtration provided on the Betti real-
ization H1

Betti(E,Q) = H1(E) via the associated Hodge-Pink structure H1(E). All these isomorphisms
are compatible with the comparison isomorphisms from Theorem 3.37 and Proposition 5.45.

Moreover, if E is a Drinfeld A-module, our comparison isomorphism hBetti,dR coincides with
Gekeler’s which is given by “cycle integration”

h−1Betti,dR : H1
dR(E,C)

∼−→ H1
Betti(E,C) = HomA(Λ(E),C) , η 7−→ (λ 7→

∫
λ η) .

Proof. Clearly, the Av-homomorphism hBetti,v is well defined. In order to show that hBetti,v is an
isomorphism it suffices to prove that it is compatible with the comparison isomorphisms from Theo-
rem 3.37 and Proposition 5.45. For this purpose we show that the following diagram commutes

(5.49) H1,Betti(E,A)⊗A Av
∼=
��

hBetti,v
// H1,v(E,Av)

∼=
��

HomA

(
H1

Betti(M,A), HomFq (Qv/Av,Fq)
)

HomAv

(
H1
v(M,Av), HomFq(Qv/Av,Fq)

)∼=
oo

By Proposition 5.45(c) and the identification Ω̂1
Av/Fv

= HomFq(Qv/Av,Fq) from Remark 5.46, the

left vertical arrow is given for λ ∈ H1,Betti(E,A) and y ∈ Av and m ∈ H1
Betti(M,A) by the as-

signment λ⊗ y 7−→ (m 7→ ωA,λ,m ⊗ y) where ωA,λ,m ⊗ y ∈ Ω1
A/Fq

⊗A Av = Ω̂1
Av/Fv

is identified with

the map ωA,λ,m ⊗ y : Qv/Av → Fq, x 7→ Resv(ωA,λ,m ⊗ xy) := TrFv/Fq

(
ResFv

v (ωA,λ,m ⊗ xy)
)
; see

Remark 5.46. When we view xy as an element of A[ 1a ]/A for ve = (a) as above then the global dif-
ferential form xy · ωA,λ,m ∈ Ω1

Q/Fq
is holomorphic outside v and ∞, and therefore Resv(xy · ωA,λ,m) =

−Res∞(xy · ωA,λ,m) = m
(
expE (Lieϕxy(λ))

)
by [Vil06, Definition 9.3.10 and Theorem 9.3.22]. Ac-

cording to Proposition 5.45(a) and Theorem 3.37 this coincides with the composition of the other
three maps in diagram (5.49) as claimed.

We define hBetti,dR to be the composition of the isomorphisms

H1
Betti(E,C[[z − ζ]]) ∼−→ HomC[[z−ζ]]

(
Ω̂1
C[[z−ζ]]/C, H

1
Betti(M,C[[z − ζ]])

)

∼−→ HomC[[z−ζ]]

(
Ω̂1
C[[z−ζ]]/C, H

1
dR(M,C[[z − ζ]])

)

∼−→ H1
dR(E,C[[z − ζ]])

from Theorem 3.37 and Proposition 5.45(c) and (b). The compatibility with the Hodge-Pink lat-
tices was established in Theorem 5.39 for the first of these isomorphisms, and in Theorem 3.37 and
Proposition 5.45 for the other two.

To prove that for a Drinfeld A-module our period isomorphism hBetti, dR is equal to Gekeler’s, we
describe the pairing

(5.50) H1
dR(E,C[[z − ζ]])×H1,Betti(E,A) −→ C[[z − ζ]]
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induced by our hBetti,dR. Let f ∈ H1
dR(E,C[[z − ζ]]) := HomA

(
Ω1
A/Fq

, σ∗M ⊗AC
C[[z − ζ]]

)
=

HomC[[z−ζ]]

(
Ω̂1
C[[z−ζ]]/C, H

1
dR(M,C[[z − ζ]])

)
. Under the period isomorphism hBetti, dR = σ∗hM for M

from Theorem 3.37 this f is sent to σ∗hM
−1 ◦ f ∈ HomC[[z−ζ]]

(
Ω̂1
C[[z−ζ]]/C, H

1
Betti(M,C[[z − ζ]])

)
. For

λ ∈ H1,Betti(E,A) := Λ(E) consider the element βA(λ) = m∨

A,λ ∈ HomA(Λ(M ),Ω1
A/Fq

) from (5.27),

which sends m ∈ Λ(M ) to the differential form ωA,λ,m ∈ ΩA/Fq
. Then our pairing (5.50) sends (f, λ)

to

(5.51) (m∨

A,λ ⊗A idC[[z−ζ]]) ◦ σ∗hM−1 ◦ f ∈ EndC[[z−ζ]](Ω̂
1
C[[z−ζ]]/C) = C[[z − ζ]] .

To compute this element we apply Anderson’s theory of scattering matrices [And86, § 3] and recall
the notation from Remark 5.34. In particular Ã = Fq[t] ⊂ A is a finite flat ring extension for which
the corresponding morphism of curves C → P1

Fq
is separable, B = (m1, . . . ,mr) is a basis of M over

ÃC = C[t], and (λ1, . . . , λr) is an Fq[t]-basis of Λ(E), where r = rkFq[t] Λ(E) = rkC[t]M . Then

Ψ :=
( ∞∑

k=0

mi

(
expE (θ−k−1λj)

)
tk
)
i,j=1,...,r

∈ Mr

(
(t− θ)−dC〈 tθ 〉

)
.

is Anderson’s scattering matrix, where θ = c∗(t) ∈ C and d = dimE. The matrix (Ψ−1)T belongs
to Mr

(
O( .CC)

)
and its columns form an Fq[t]-basis C = (n1, . . . , nr) of Λ(M ). With respect to the

bases C and B the morphism hM : Λ(M) ⊗A O(
.
CC) → M ⊗AC

O( .CC) is represented by (Ψ−1)T . At
every point P ∈ CC lying above V(t − θ) ∈ P1

C the element t − θ is a uniformizing parameter by

Lemma 1.3. Therefore, P is unramified and A⊗Fq[t]C[[t−θ]] =
∏
P |V(t−θ) ÔCC,P =

∏
P |V(t−θ) C[[t−θ]].

Let pr : A⊗Fq[t] C[[t− θ]] ։ ÔCC,V(J) = C[[z − ζ]] be the projection onto the factor for P = V(J). The
trace map TrQ/Fq(t) : Q→ Fq(t) corresponds under this product decomposition to the map

TrQ/Fq(t)⊗Fq(t) idC[[t−θ]] :
∏

P |V(t−θ)

C[[t− θ]] −→ C[[t− θ]] , (fP )P 7→
∑

P

fP .

We now view βA(λ) = m∨

A,λ ∈ HomA(Λ(M ),Ω1
A/Fq

) as an element of HomFq[t](Λ(M),Ω1
A/Fq

) and

consider (m∨

A,λ⊗Fq[t] idC[[t−θ]]) ∈ HomC[[t−θ]]

(
Λ(M )⊗Fq[t]C[[t−θ]], Ω1

A/Fq
⊗Fq[t]C[[t−θ]]

)
. Let fi ∈ C[[t−θ]]

be such that
∑

i ni ⊗ fi ∈ Λ(M) ⊗Fq[t] C[[t − θ]] = Λ(M) ⊗A
∏
P |V(t−θ) ÔCC,P is the element whose

component at P = V(J) is (σ∗hM
−1 ◦ f)(dt) and whose components at P 6= V(J) are 0. Writing

λ =
∑

j cjλj with cj ∈ Fq[t] we obtain

(
(m∨

A,λ ⊗A idC[[z−ζ]]) ◦ σ∗hM−1 ◦ f
)
(dt) = pr ◦ (m∨

A,λ ⊗Fq[t] idC[[t−θ]])(
∑
i
ni ⊗ fi)

= (TrQ/Fq(t)⊗Fq(t) idC[[t−θ]])(
∑
i
fi · ωA,λ,ni

)

=
∑
i
fi · ωÃ,λ,ni

=
∑
i
fi · ci dt ,

where the third equality was proved in (5.29) and the last equality in (5.31). Thus by (5.51) our
pairing (5.50) sends (f, λ) to

∑
i fici ∈ C[[t− θ]] ∼= C[[z − ζ]].

We compare this to Gekeler’s pairing (5.48). For our f ∈ H1
dR(E,C[[z − ζ]]) consider the element

τM (f(dt)) ∈ τM (σ∗M) ⊗AC
C[[z − ζ]]. Its reduction modulo z − ζ in τM (σ∗M) ⊗AC

AC/J induces by
(5.41) and (5.43) an element η mod Dsi(E,C) in D(E,C)/Dsi(E,C) with ηt ≡ τM (f(dt)) mod (z− ζ),
because J/J2 = C·(t−θ). So modulo J we have

∑
i ni⊗fi ≡ (σ∗hM

−1◦f)(dt) ≡ (σ∗hM
−1◦τ−1M )(ηt) =
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hM
−1(ηt) mod J . Let B[ηt] ∈ C[t]r be the coordinate vector of ηt ∈ τM (σ∗M) ⊂M with respect to the

C[t]-basis B of M . Then ΨT ·B[ηt] is the coordinate vector of hM−1(ηt) with respect to the C〈 tθ 〉-basis
C of Λ(M )⊗Fq[t] C〈 tθ 〉. Therefore, using (5.47) we compute modulo J

(f1, . . . , fr)
T ≡ ΨT · B[ηt]

≡
(
∞∑

k=0

ηt
(
expE (θ−k−1λj)

)
tk

)T

j=1...r

≡
(
t ·
∞∑

k=0

Fη(θ
−kλj)t

k−1 −
∞∑

k=0

θ · Fη(θ−k−1λj)tk
)T

j=1...r

≡
(
Fη(λj) + (t− θ) ·

∞∑

k=1

Fη(θ
−kλj)t

k−1

)T

j=1...r

≡
(
Fη(λj)

)T
j=1...r

mod J .

Since (c1, . . . , cr)
T is the coordinate vector of λ with respect to the Fq[t]-basis (λ1, . . . , λr) of Λ(E) we

conclude
∑

j cjfj ≡
∑

j cjFη(λj) ≡ Fη(λ) mod J . So modulo J ·C[[z − ζ]] = (z − ζ) our pairing (5.50)
specializes to Gekeler’s pairing (5.48). This completes the proof of the theorem.

Proposition 5.48. Let E be an A-finite Anderson A-module over C and let M̌ = M̌(E) be the
associated dual A-motive.

(a) The isomorphism (5.16) from Theorem 5.21 induces canonical isomorphisms of Av-modules

H1,v(M̌,Av)
∼−→ H1,v(E,Av) and H1

v(M̌,Av)
∼−→ H1

v(E,Av) .

(b) There are canonical isomorphisms of C[[z − ζ]]-modules

H1
dR(M̌ ,C[[z − ζ]]) ∼−→ H1

dR(E,C[[z − ζ]]) and

H1,dR(M̌ ,C[[z − ζ]]) ∼−→ H1,dR(E,C[[z − ζ]]) ,

which are compatible with the Hodge-Pink lattices.

(c) If E is uniformizable, the map δ0 from Proposition 5.8 and Corollary 5.24 provides canonical
isomorphisms of A-modules

δ0 : H1,Betti(M̌ ,A) ∼−→ H1,Betti(E,A) and

(δ∨0 )
−1 : H1

Betti(M̌,A) ∼−→ H1
Betti(E,A)

If E is both abelian and A-finite and M = M(E) is the A-motive of E from Definition 5.5, the
isomorphisms above are also compatible with the isomorphisms from Propositions 4.38 and 5.45 and
the isomorphism Ξ: M̌(M) ∼−→ M̌ from Theorem 5.13, in the sense that the diagram

(5.52) H1,∗

(
M̌(M)

)
∼=

H1,∗(Ξ)
// H1,∗

(
M̌(E)

)

∼=
��

Hom
(
H1
∗(M),Ω

)
∼=

Proposition 5.45
//

∼=Proposition 4.38

OO

H1,∗(E)
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is commutative where ∗ ∈ {Betti,dR, v} and Ω = Ω1
A/Fq

for ∗ = Betti, respectively Ω = Ω̂1
C[[z−ζ]]/C =

C[[z − ζ]]dz for ∗ = dR, respectively Ω = Ω̂1
Av/Fv

= HomFq (Qv/Av,Fq) for ∗ = v.

Proof. (a) Let e be a positive integer such that ve = (a) ⊂ A is a principal ideal. Then H1,v(E,Av) =
{ a-division towers (Pn)n above 0 } by (5.39). Note that our definition of the map H1,v(M̌ ,Av) →
H1,v(E,Av) corresponds to Anderson’s “switcheroo”; see [ABP02] or [Jus10, Lemma 4.1.23 and The-
orem 4.1.24(i)].

(b) By definition H1
dR(M̌,C[[z − ζ]]) := HomAC

(M̌, C[[z − ζ]]) =: H1
dR(E,C[[z − ζ]]).

(c) was proved in Theorem 5.32.

Let now E be both abelian and A-finite. For H1,dR we enforce the compatibility by defining the
isomorphism on the bottom of diagram (5.52) between

HomC[[z−ζ]]

(
H1

dR(M,C[[z − ζ]]), C[[z − ζ]]dz
)

= HomAC
(σ∗M,Ω1

AC/C
)⊗AC

C[[z − ζ]]

=: H1,dR

(
M̌(M),C[[z − ζ]]

)

and H1,dR(E,C[[z − ζ]]) := H1,dR

(
M̌ (E),C[[z − ζ]]

)
to be H1,dR

(
Ξ,C[[z − ζ]]

)
.

The compatibility for H1,v follows from Corollary 5.14 and the isomorphism (5.46), taking into
account that Resv

(
a−1h(m)

)
= −Res∞

(
a−1h(m)

)
for (a) = ve ⊂ A by [Vil06, Definition 9.3.10 and

Theorem 9.3.22].
For H1,Betti we fix an element t ∈ A r Fq such that Q is separable over Fq(t) and consider the

finite flat ring homomorphism Ã := Fq[t] →֒ A. Let ∞̃ be the complement of Spec Ã in P1
Fq
. All

members of diagram (5.52) are finite projective A-modules and we consider them as finite projective
Ã-modules. We use the identification H1

Betti(M,A) = Λ(M) = H1
Betti(M, Ã) and the isomorphism

TrA/Ã : HomA(H
1
Betti(M,A),Ω1

A/Fq
) ∼−→ HomÃ(H

1
Betti(M, Ã),Ω1

Ã/Fq
) from Lemma 5.50 below. Let

(ni) be an Ã-basis of H1
Betti(M, Ã) and let (λj) be the Ã-basis of H1,Betti(E, Ã) which is dual to (ni)

under the pairing from Proposition 5.45(c), that is ωÃ,λj ,ni
= δij dt. Let (ηj) with ηj ∈ Λ(M̌ (M)) ⊂

M̌(M )⊗AC
O
( .
CCr

⋃
i∈N>0

V(σi∗J)
)
be the Ã-basis of HomÃ(H

1
Betti(M, Ã),Ω1

Ã/Fq
) which is the image

of (λj) under the isomorphism from Proposition 5.45, that is ηj : m 7→ ωÃ,λj ,m. Let ňj := Ξ(ηj) ∈
H1,Betti(M̌ (E), Ã) and λ′j := δ0(ňj) ∈ H1,Betti(E, Ã). We must show that λ′j = λj for all j, or

equivalently ωÃ,λj ,ni
= ωÃ,λ′j ,ni

=
∑∞

k=0 ni
(
expE (Lieϕ−k−1t (λ′j))

)
tkdt for all i and j; see (5.29).

Fix a k and write ňj = m̌′′j,k + tk+1m̌′j,k with m̌′j,k ∈ M̌(E) ⊗AC
O
( .
CC r

⋃
i∈N>0

V(σi∗J)
)
and

m̌′′j,k ∈ M̌(E). Then m̌′′j,k + tk+1m̌′j,k = ňj = τ̌M̌ (σ̌∗ňj) = τ̌M̌(σ̌∗m̌′′j,k) + tk+1τ̌M̌ (σ̌∗m̌′j,k) and

(5.53) λ′j = δ0(ňj) = δ0
(
m̌′′j,k + tk+1m̌′j,k − τ̌M̌(σ̌∗m̌′′j,k)

)
= Lieϕk+1

t δ0
(
τ̌M̌ (σ̌∗m̌′j,k)

)
,

because δ0
(
τ̌M̌ (σ̌∗m̌′′j,k)

)
= 0. Let m̌j,k := τ̌M̌(σ̌∗m̌′j,k) − m̌′j,k = t−k−1(m̌′′j,k − τ̌M̌(σ̌∗m̌′′j,k)) ∈ M̌ (E).

Then (5.53) and Corollary 5.23 imply

expE
(
Lieϕ−k−1t (λ′j)

)
= expE

(
δ0(m̌

′
j,k + m̌j,k)

)
= δ1(m̌j,k) .

We write ni = mi,k + tk+1m′i,k for an mi,k ∈ M and an m′i,k ∈ M ⊗AC
O( .CC). Then we obtain

mi,k − τM(σ∗mi,k) = ni − tk+1m′i,k − τM (σ∗ni) + tk+1τM(σ∗m′i,k) = tk+1(τM (σ∗m′i,k)−m′i,k). Setting



5 ANDERSON A-MODULES 90

η′′j,k := Ξ−1(m̌′′j,k) ∈ M̌(M) = HomAC
(σ∗M,Ω1

AC/C
) and using (5.9), we compute

ni
(
expE (Lieϕ−k−1t (λ′j))

)
:= mi,k

(
expE (Lieϕ−k−1t (λ′j))

)

= (mi,k ◦ m̌j,k)(1)

= −Res∞̃ t
−k−1η′′j,k(σ

∗mi,k)

= Rest=0 t
−k−1η′′j,k(σ

∗mi,k)

= Rest=0 t
−k−1ηj(σ

∗ni)

= −Res∞̃ t
−k−1ηj(ni)

= −Res∞̃ t
−k−1δij dt

= δijδk0 ,

where in lines four and six we use [Vil06, Theorem 9.3.22] and that η′′j,k(σ
∗mi,k) ∈ Ω1

AC/C
and ηj(ni) =

ηj(σ
∗ni) ∈ Ω1

A/Fq
, as ni = σ∗ni in Λ(M ), and in line five we use that t−k−1

(
ηj(σ

∗ni)− η′′j,k(σ∗mi,k)
)
=

t−k−1
(
ηj(σ

∗ni − σ∗mi,k) + (ηj − η′′j,k)(σ∗mi,k)
)
= ηj(σ

∗m′i,k) + Ξ−1(m̌′j,k)(σ
∗mi,k) is holomorphic at

t = 0. By (5.29) this implies

ω
Ã,λ′j ,ni

=
∞∑

k=0

ni
(
expE (Lieϕ−k−1t (λ′j))

)
tkdt = δijdt = ω

Ã,λj ,ni

as desired.

Example 5.49. Let C = P1
Fq
, A = Fq[t], z = 1

t , θ = c∗(t) = 1
ζ ∈ C, and let E = (Ga,C, ϕt = θ + τ)

be the Carlitz module. It is uniformizable, abelian and A-finite and its (dual) A-motive was described
in Examples 3.9, 3.39, 4.7, and 4.37. Let η ∈ C satisfy ηq−1 = −ζ. By [Tha04, p. 47 bottom] the

period lattice Λ(E) := ker(expE ) is generated by the Carlitz period π̃ :=
(
ηq
∏∞
i=1(1 − ζq

i−1)
)−1

,

which is the function field analog of 2iπ. In particular, the Carlitz period equals δ0
(
(ηq ℓ̌−ζ )

−1
)
for the

generator (ηq ℓ̌−ζ )
−1 of Λ

(
M̌(E)

)
from Example 4.37. The compatibility of Proposition 5.48 implies

various interesting identities, like for example

∞∑

k=0

expE (θ−k−1π̃)tk = (ηℓ−ζ )
−1 = η−1 ·

∞∏

i=0

(1− ζqit)−1

for the (1× 1-)scattering matrix; see Remark 5.34

Lemma 5.50. Let Ã →֒ A be a finite flat morphism such that Q/Quot(Ã) is a separable field extension
(where SpecA and Spec Ã are smooth affine curves over Fq). Then for any field extension k/Fq and
any finite projective Ak-module P the map

Tr
A/Ã

: HomAk
(P,Ω1

Ak/k
) −→ Hom

Ãk
(P,Ω1

Ãk/k
) , f 7−→ Tr

A/Ã
◦f

is an isomorphism of Ak-modules.

Proof. This is a special case of [Har66, Corollary 3.4(c), p. 384], which is reproved in elementary terms
by [Sin97, Theorem 4.1.5], respectively [And86, Lemma 4.2.1] when Ã = Fq[t].

Proof of Theorem 5.41. The commutativity of diagram (5.52) for H1,Betti implies the commutativity of
diagram (5.38) on the level of the underlying Q-vector spaces. This suffices, because the compatibility
with the weight filtrations and the Hodge-Pink lattices was proved in Theorems 4.32, 5.38 and 5.39.
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Theorem 5.51. If E is a uniformizable A-finite Anderson A-module there are canonical comparison
isomorphisms, sometimes also called period isomorphisms for all v

hBetti,v : H1,Betti(E,Av) = Λ(E)⊗A Av ∼−→ H1,v(E,Av) = HomA

(
Qv/Av , E(C)

)
,

λ⊗ y 7−→
(
x 7→ expE (Lieϕxy(λ))

)

where xy is viewed as an element of A[ 1a ]/A for ve = (a) as above, and

hBetti, dR : H1,Betti(E,C[[z − ζ]]) ∼−→ H1,dR(E,C[[z − ζ]]) and

hBetti, dR : H1,Betti(E,C)
∼−→ H1,dR(E,C)

which are compatible with the Hodge-Pink lattices and Hodge-Pink filtration provided on the Betti real-
ization H1,Betti(E,Q) = H1(E) via the associated Hodge-Pink structure H1(E). All these isomorphisms
are compatible with the comparison isomorphisms from Theorem 4.36 and Proposition 5.48.

Proof. From Theorem 5.21 we obtain the commutativity of the diagram

H1,Betti(M̌ ,A)⊗A Av ∼=
hBetti,v

//

δ0 ⊗ 1 ∼=
��

H1,v(M̌ ,Av)

∼=
��

H1,Betti(E,A)⊗A Av
hBetti,v

// H1,v(E,Av)

where the right vertical isomorphism was defined in Proposition 5.48. This proves that hBetti,v is
an isomorphism and compatible with the comparison isomorphisms from Theorem 4.36 and Proposi-
tion 5.48.

We define hBetti,dR as the composition (hM̌ ⊗ idC[[z−ζ]]) ◦ (δ−10 ⊗ idC[[z−ζ]]) :

H1,Betti(E,C[[z − ζ]]) ∼−→ H1,Betti(M̌,C[[z − ζ]]) ∼−→ H1,dR(M̌,C[[z − ζ]]) =: H1,dR(E,C[[z − ζ]]) .

All compatibilities follow immediately.

Remark 5.52. Let E be an abelian, respectively A-finite Anderson A-module. Then the various
comparison isomorphisms between the cohomology realizations of E, of M = M (E) and M̌ = M̌(E)
are compatible with a change of the ring A as follows. Let Ã ⊂ A be a subring such that Q is a finite
separable extension of Q̃ = Quot(Ã) and let π : C → C̃ be the corresponding finite flat morphism
of projective curves. Then ∞̃ := π(∞) is the complement of Spec Ã ⊂ C̃ and π−1(∞̃) = {∞}, and
so π−1(Spec Ã) = SpecA and A is a finite locally free Ã-module of rank rkÃA = [Q : Q̃]. In this

way E becomes an abelian (respectively Ã-finite) Anderson Ã-module and M (respectively M̌) is its
associated (dual) Ã-motive. We have rkÃE = [Q : Q̃] · rkAE and dimÃE = dimAE. When we

compute the cohomology modules of E as an A-module (respectively Ã-module) we add the index A
(respectively Ã) to the notation, and similarly for M and M̌ .

(a) Then the Betti (co)homology satisfies

H1,Betti,A(E,A) = Λ(E) = H
1,Betti,Ã

(E, Ã) ,

H1
Betti,A(M,A) = Λ(M ) = H1

Betti,Ã
(M, Ã) , and

H1,Betti,A(M̌ ,A) = Λ(M̌ ) = H
1,Betti,Ã

(M̌, Ã) .
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The isomorphisms from Propositions 5.45 and 5.48 and 4.38 are compatible with the change of rings
Ã ⊂ A via the following commutative diagrams

H1,Betti,A(M̌,A)
δ0
∼=

// H1,Betti,A(E,A)

H
1,Betti,Ã

(M̌, Ã)
δ0
∼=

// H
1,Betti,Ã

(E, Ã)

and

H1,Betti,A(E,A)⊗A H1
Betti,A(M,A)

βA
// Ω1
A/Fq

,

Tr
A/Ã

��

(λ,m) 7−→ ωA,λ,m ,

H1,Betti,Ã(E, Ã)⊗Ã H1
Betti,Ã

(M, Ã)
β
Ã

//

OOOO

Ω1
Ã/Fq

, (λ,m) 7−→ ωÃ,λ,m .

The proof is similar to (5.29) and also follows from Lemma 5.50.

(b) For the de Rham cohomology let z̃ be a uniformizing parameter of C̃ at ∞̃ and let ζ̃ := c∗(z̃).
Then z̃ − ζ̃ is a uniformizing parameter at the point J̃ := (ã⊗ 1− 1⊗ c∗(ã) : ã ∈ Ã) ⊂ ÃC, and also
at every point P ∈ CC lying above V(J̃) ∈ C̃C by Lemma 1.3. Therefore, P is unramified and

(5.54) A⊗
Ã
C[[z̃ − ζ̃]] =

∏

P |V(J̃)

ÔCC,P =
∏

P |V(J̃)

C[[z̃ − ζ̃]] .

Let pr : A⊗
Ã
C[[z̃ − ζ̃]] ։ ÔCC,V(J) = C[[z − ζ]] be the projection onto the factor for P = V(J). This

induces the left column in the following diagram

H1
dR,A

(
M,C[[z − ζ]]

)
H1

Betti,A

(
M,C[[z − ζ]]

)
∼=

hBetti, dR,A
oo

σ∗M ⊗AC
C[[z − ζ]] Λ(M )⊗A C[[z − ζ]]∼=

hBetti, dR,A
oo

σ∗M ⊗AC

(
AC ⊗ÃC

C[[z̃ − ζ̃]]
)

pr
OOOO

Λ(M )⊗A
(
A⊗Ã C[[z̃ − ζ̃]]

)
∼=

h
Betti, dR,Ã

oo

pr
OOOO

H1
dR,Ã

(
M,C[[z̃ − ζ̃]]

)
H1

Betti,Ã

(
M,C[[z̃ − ζ̃]]

)
.∼=

h
Betti, dR,Ã

oo

If moreoverM is uniformizable, also the right column exists and the diagram is commutative, where the
horizontal isomorphisms are the period isomorphisms from Theorem 3.37. There are similar diagrams
for (uniformizable) dual A-motives and for (uniformizable) abelian or A-finite Anderson A-modules,
which fit into the comparison diagrams

HomQ̃

(
Ω1
Q̃/Fq

, H1
dR,Ã

(M,C[[z̃ − ζ̃]])
) pr

// // HomQ

(
Ω1
Q/Fq

, H1
dR,A(M,C[[z − ζ]])

)

H1
dR,Ã

(E,C[[z̃ − ζ̃]]) pr
// // H1

dR,A(E,C[[z − ζ]])

respectively

H1
dR,Ã

(E,C[[z̃ − ζ̃]]) pr
// // H1

dR,A(E,C[[z − ζ]])

H1
dR,Ã

(M̌ ,C[[z̃ − ζ̃]]) pr
// // H1

dR,A(M̌ ,C[[z − ζ]])
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Note that Ω1
Q̃/Fq

= Q̃ dz̃ and Ω1
Q/Fq

= Qdz̃.

(c) For the Hodge-Pink structures, (a) and (b) imply the compatibility

( idH , idW•H , pr) : H1
Ã
(M ) = (H,W•H, q) −→ H1

A(M ) =
(
H,W•H, pr(q)

)
,

where pr is the projection of (5.54) onto the factor for P = V(J).

(d) For H1
v let ṽ ∈ C̃r{∞̃} be a closed point and let v1, . . . , vn be the points of Cr{∞} lying above

ṽ. Then A⊗
Ã
Ãṽ =

∏n
i=1Avi . This induces the decomposition

H1
ṽ,Ã

(M, Ãṽ) =

n∏

i=1

H1
vi,A(M,Avi)

and similarly for dual A-motives and for abelian or A-finite Anderson A-modules. All comparison
isomorphism are compatible with these product decompositions.

6 Applications

Theorem 3.34, that is the Hodge conjecture, has consequences for the motivic Galois groups of (dual)
A-motives and Anderson A-modules from Definitions 3.28 and 4.24 and the Hodge-Pink groups of
mixed Q-Hodge-Pink structures from Definition 2.12. For a uniformizable dual A-motive M̌ our
motivic Galois group ΓM̌ equals the motivic Galois group defined by Papanikolas [Pap08, § 3.5.2]. We
also explain further results known about this group.

Theorem 6.1. Let M (respectively M̌) be a uniformizable mixed (dual) A-motive and let H := H1(M )
(respectively H := H1(M̌)) be the associated mixed Q-Hodge-Pink structure. Then the motivic Galois
group ΓM (respectively ΓM̌ ) is canonically isomorphic to the Hodge-Pink group ΓH .

Proof. This is a direct consequence of the canonical equivalence 〈〈M〉〉 ∼−→ 〈〈H〉〉 (respectively 〈〈M̌ 〉〉 ∼−→
〈〈H〉〉) from Theorem 3.34(d) (respectively Theorem 4.33(d)).

Proposition 6.2. The motivic Galois group ΓM of a uniformizable mixed A-motive M is smooth and
connected.

Proof. It was proved by Pink [Pin97b, Proposition 9.4 and 9.6] that ΓH1(M) is connected and re-
duced and satisfies ΓFrob∗qn H1(M )

∼= ΓH1(M) ×Q,Frobqn Q for every n ∈ N. So in particular, also

ΓH1(M) ×Q,Frobqn Q is reduced. Since every finite purely inseparable extension of Q is contained in an
extension of the form Frobqn : Q→ Q by [Sil86, Proof of Corollary II.2.12], this implies by [EGA, IV2,
Proposition 4.6.1(d)] that ΓH1(M) is geometrically reduced, and hence smooth. The statement for ΓM
follows from Theorem 6.1.

The v-adic cohomology realization H1
v(M,Qv) of a (uniformizable) A-motive M defines an ex-

act tensor functor (3.8). If M is defined over a subfield L ⊂ C, the elements of Gal(Lsep/L) act
on H1

v(M
′, Qv) for M ′ ∈ 〈〈M 〉〉 as tensor automorphisms. If M is uniformizable this action is com-

patible with the comparison isomorphism hBetti,v : H1
Betti( . , A) ⊗A Qv ∼−→ H1

v( . , Qv). This induces
homomorphisms of groups

(6.1) Gal(Lsep/L) −→ ΓM (Qv) and Gal(Lsep/L) −→ ΓM (AfQ) ,

where AfQ := Â⊗A Q denotes the finite adeles of Q. Here Â := lim
←−

A/I is the projective limit where

I runs over the ideals of A different from (0). Richard Pink and his group also proved the following
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Theorem 6.3. Let E be a Drinfeld A-module and let H = (H,W•H, q) := H1(E) be its Q-Hodge-Pink
structure. Then

(a) ΓH equals the centralizer CentGL(H) EndC(E) of EndC(E) inside GL(H).

Assume now that E is defined over a finitely generated subfield L ⊂ C such that EndL(E) = EndC(E).

(b) For every place v the image of Gal(Lsep/L)→ CentGL(H1,v(E,Qv)) EndC(E) is v-adically open.

(c) The image of Gal(Lsep/L)→ ΓH(A
f
Q) is open in the adelic topology.

Proof. (a) was proved by Pink [Pin97b, Theorem 10.3] taking into account that EndC(E) ⊗A Q ∼=
EndC(H) by Theorems 5.7 and 3.34(b), respectively Theorems 5.11 and 4.33(b).

(b) was proved by Pink [Pin97a, Theorem 0.2].

(c) was proved in the formulation that the image of Gal(Lsep/L)→
(
CentGL(H) EndC(E)

)
(AfQ) is open

by Pink and Rütsche [PR09b, Theorems 0.1 and 0.2] after previous work by Pink, Breuer, Rütsche
and Traulsen [Pin97a, BP05, PT06, PR09a]. Using (a) yields our formulation.

Remark 6.4. Note that for M = M(E) when E is a Drinfeld module, Theorem 6.3(b) implies
that ΓM = CentGL(H) EndC(M ). This point of view is taken in [CP12, Theorem 3.5.4]. Indeed,
the inclusion ΓM ⊂ CentGL(H) EndC(M) is automatic by Lemma 1.8. Since the commutation with
EndC(M ) is a linear condition, CentGL(H) EndC(M ) is an irreducible group. Therefore, if ΓM was a
proper subgroup, the image of (6.1) could not be open in CentGL(H) EndC(M ) in contradiction to (b).

Therefore, Theorem 6.3(a) is equivalent to Theorem 6.1 for Drinfeld modules.

The motivic Galois group also carries information about transcendence. For example Papaniko-
las [Pap08, Theorem 1.7] proved the following analog of Grothendieck’s period conjecture.

Theorem 6.5. Let M̌ be a uniformizable dual Fq[t]-motive which is defined over the algebraic closure
L ⊂ C of Fq(θ) where θ = c∗(t). Let Ψ̌ be a rigid analytic trivialization of M̌ as in Lemma 4.18 and let
LM̌ be the field extension of L generated by the entries of the matrix Ψ̌|t=θ. Then the transcendence
degree of LM̌ over L is equal to the dimension of the algebraic group ΓM̌ .

Papanikolas [Pap08, Theorem 4.5.10] also shows that ΓM̌ equals the Galois group ΓΨ̌ of the Frobe-

nius difference equation σ̌∗Ψ̌ = Ψ̌ · Φ̌ corresponding to M̌ . The group ΓΨ̌ can be computed explicitly
in many cases. This is a powerful tool which already lead to several transcendence results. For
example it was applied to determine all algebraic relations among Carlitz logarithms by Papaniko-
las [Pap08, Theorem 1.2.6], respectively among Carlitz (Multi-)Zeta-values and Gamma-values by An-
derson, Brownawell, Chang, Mishiba, Papanikolas, Thakur and Yu [ABP04, CY07, CPY10, CPTY10,
CPY11, Mis14], respectively among periods and logarithms of Drinfeld-modules by Chang and Pa-
panikolas [CP11, CP12, Cha12]; see the article of Chang [Cha20] in this volume for an overview of
these results.

There is also a comparison isomorphism between the v-adic cohomology and the de Rham coho-
mology of an A-motive defined over an extension of Qv; see [HK16, Remark 4.16]. Analogous to and
inspired by Theorem 6.5, Mishiba [Mis12] related the transcendence degree of that comparison iso-
morphism to the dimension of the motivic Galois group ofM and applied this to the Carlitz A-motive;
see [HK16, Remark 4.17 and Example 4.19].

Example 6.6. To end this section we compute the motivic Galois group of the uniformizable mixed

Fq[t]-motive M = (M, τM ) with M = A⊕2C and τM = Φ :=

(
t− θ b
0 (t− θ)3

)
from Example 3.35

and the associated dual Fq[t]-motive M̌ = M̌(M) from Example 4.34. Since M is an extension

(6.2) 0 −→ 1l(1) −→ M −→ 1l(3) −→ 0 ,
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the representation ρ of ΓM on H1(M ) can be written in upper diagonal matrix form such that the
diagonal entries are representations corresponding to the simple constituents of M . Therefore, ΓM is
a subgroup of

{
( u ∗0 u3 )

}
⊂ GL2,Q. There are now two cases, according to whether the extension (6.2)

splits or not. We will discuss a criterion for the splitting in Example 7.4 below.
If the extension splits, then 〈〈M〉〉 = 〈〈1l(1)〉〉 and ΓM ∼= Γ1l(1) = Gm,Q by Example 3.29. In this

case ∗ = 0 and the isomorphism is given by Gm,Q
∼−→ ΓM , u 7→ diag(u, u3).

Conversely, if ∗ = 0 the inclusion 〈〈1l(1)〉〉 ⊂ 〈〈M〉〉 is an equivalence of categories by Theorem 1.6(b),
because the corresponding group homomorphism ΓM

∼−→ Gm,Q,
(
u 0
0 u3

)
7→ u is an isomorphism. This

implies that (6.2) splits. We conclude that if (6.2) does not split, then ΓM is the semi-direct product
Ga,Q ⋊Gm,Q, where Gm,Q acts on Ga,Q by multiplication with the character u 7→ u2.

7 σ-bundles

In this section we give the proof of Theorems 3.34 and 4.33, which uses in particular the classification
of σ-bundles associated with uniformizable mixed (dual) A-motives.

7.1 Definition of σ-bundles

Recall the punctured open unit disc
.
DC = {0 < |z| < 1} around ∞ introduced at the beginning of

Section 3.3 and set

.
O := Γ(

.
DC,O .

DC
) =

{∑

i∈Z

biz
i : bi ∈ C, lim

i→±∞
|bi| |ζ|si = 0 for all s > 0

}
.

This disc can be exhausted by the closed annuli {|ζ|s ≤ |z| ≤ |ζ|s′} for s, s′ ∈ Q with 0 < s′ ≤ s. Hence,
.
DC is a quasi-Stein space in the sense of Kiehl [Kie67, §2]. In particular, the functor F 7→ Γ(

.
DC,F)

is an equivalence between the category of locally free coherent sheaves on
.
DC and the category of

finite projective
.
O-modules; see Gruson [Gru68, Chapter V, Theorem 1 and Remark on p. 85]. Note

further, that the rings

C〈 z
ζs′
, ζ

s

z 〉 := Γ
(
{|ζ|s ≤ |z| ≤ |ζ|s′} , O{|ζ|s≤|z|≤|ζ|s′}

)

=
{∑

i∈Z

biz
i : bi ∈ C, lim

i→±∞
|bi| |ζ|s

′′i = 0 for all s′ ≤ s′′ ≤ s
}

and

C〈 zζs 〉 := Γ
(
{|z| ≤ |ζ|s} , O{|z|≤|ζ|s}

)

=
{∑

i∈N0

biz
i : bi ∈ C, lim

i→+∞
|bi| |ζ|si = 0

}

are principal ideal domains by [Laz62, Proposition 4].

Definition 7.1. A σ-bundle (over
.
O) is a pair F = (F , τF ) consisting of a finite projective

.
O-module

F (or, equivalently, locally free coherent sheaf on
.
DC) together with an isomorphism τF : σ

∗F ∼−→ F .
We define the rank of F as rkF := rk .

O
F .

A homomorphism f : (F , τF ) → (G, τG) between σ-bundles is a homomorphism f : F → G of.
O-modules which satisfies τF ◦ σ∗f = f ◦ τG .

The τ -invariants of (F , τF ) are defined as Fτ := { f ∈ F : τF (σ
∗f) = f }.

If follows from Theorem 7.3(a) below that the module F underlying a σ-bundle is actually free.



7 σ-BUNDLES 96

Example 7.2. (a) The trivial σ-bundle is (F , τF ) = (
.
O, id .

O
). Its τ -invariants are (

.
O, id .

O
)τ = { f ∈

.
O : σ∗(f) = f } = Fq((z)) = Q∞, because f =

∑
i∈Z biz

i = σ∗(f) =
∑

i∈Z b
q
i z
i implies bi = bqi , whence

bi ∈ Fq, and lim
i→±∞

|bi| |ζ|si = 0 implies that there is an integer n with bi = 0 for all i < n.

(b) More generally, for relatively prime integers d, r with r > 0 we let Fd,r be the σ-bundle consisting
of Fd,r =

.
O⊕r with

τFd,r
:=




0 1 0 0

0

0 1

z−d 0 0



.

(c) We exhibit the following τ -invariants of F
1,1

= (
.
O, z−1). Let α ∈ C with 0 < |α| < 1. Then

the product ℓ−α :=
∏
i∈N0

(1 − αqi

z ) ∈
.
O has simple zeroes exactly at z = αq

i
for i ∈ N0 and satisfies

(1 − α
z )σ
∗(ℓ−α) = ℓ−α. To obtain a non-zero ℓα = ℓ+α · ℓ−α ∈ F1,1

τ satisfying z−1σ∗(ℓα) = ℓα we need

a function ℓ+α =
∑
i≥0

biz
i ∈

.
O with b0 6= 0 satisfying σ∗(ℓ+α) = (z − α)ℓ+α. The latter amounts to the

equations bq−10 = −α and bqi = bi−1−αbi for i > 0. Since C is algebraically closed these equations can
be solved recursively, yielding an element ℓα ∈ F1,1

τ , which due to z−1σ∗(ℓα) = ℓα has simple zeroes

exactly at z = αq
i
for all i ∈ Z. Note that ℓα is not canonically defined but depends on the chosen

solutions bi. A different choice replaces ℓ+α by ℓ̃+α = u · ℓ+α for u ∈ Fq[[z]]
×

because u = ℓ̃+α/ℓ
+
α ∈ C[[z]]

×

satisfies σ∗(u) = u. One can prove that in fact, all τ -invariants in F1,1
τ are obtained in this way; see

[HP04, Theorem 5.4].

(d) On the other hand Fd,rτ = (0) for d < 0. Indeed, since (τFd,r
)r = z−d Idr, any such τ -invariant

(f1, . . . , fr)
T satisfies fj = z−dσr∗(fj) for all j. If we write fj =

∑
i∈Z biz

i with bi ∈ C this implies

bi = bq
r

i+d = bq
kr

i+kd for all i, k ∈ Z. As |bi+kd| → 0 for (i+ kd)→ −∞, that is for k → +∞, this implies
bi = 0 for all i.

The structure theory of σ-bundles was developed in [HP04].

Theorem 7.3. (a) Any σ-bundle F is isomorphic to
⊕

iFdi,ri for pairs of relatively prime integers
di, ri with ri > 0, which are uniquely determined by F up to permutation. They satisfy rkF =∑

i ri and we define the degree of F as degF :=
∑

i di.

(b) There is a non-zero morphism Fd′,r′ → Fd,r if and only if d′

r′ ≤ d
r .

(c) Any σ-sub-bundle F ′ ⊂ Fd,r⊕n satisfies degF ′ ≤ d
r · rkF ′.

(d) If F ′ ⊂ F is an inclusion of σ-bundles with rkF ′ = rkF = r, then for any s > 0 we have

degF − degF ′ = dimC(F/F ′)|{ |ζ|sq<|z|≤|ζ|s} .

Proof. Statements (a) (b) and (c) are [HP04, Theorem 11.1, Proposition 8.5, and Proposition 7.6,
respectively], but (c) also easily follows from (a) and (b). Namely, F ′ ∼=

⊕
iFdi,ri by (a) with di

ri
≤ d

r
by (b) yields (c).

(d) We use the results of Lazard [Laz62] and normalize his valuation v such that v(ζ) = 1. Then his
ring LC[s, qs[ is the ring of rigid analytic functions on { |ζ|sq < |z| ≤ |ζ|s} and his ring LC[s, qs] is
our C〈 zζs ,

ζqs

z 〉. Since the latter is a principal ideal domain we may choose bases of F ′ ⊗ .
O
C〈 zζs ,

ζqs

z 〉
and F ⊗ .

O
C〈 zζs ,

ζqs

z 〉 and write the inclusion F ′ ⊂ F with respect to these bases as a matrix T .
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By the elementary divisor theorem there are matrices U, V ∈ GLr
(
C〈 zζs ,

ζqs

z 〉
)
such that UTV =

diag(f1, . . . , fr) is a diagonal matrix with diagonal entries fi ∈ C〈 zζs ,
ζqs

z 〉. Changing U we can multiply
the fi with units and by [Laz62, Proposition 4] we may assume that they are monic polynomials in
C[z], all of whose zeroes α satisfy |ζ|qs ≤ |α| ≤ |ζ|s. Considering those zeroes α of all the fi which
satisfy |ζ|qs < |α| they even satisfy |ζ|s′ ≤ |α| ≤ |ζ|s for an s′ with s ≤ s′ < qs. We write fi = f ′i · f̃i
with f ′i , f̃i monic such that all zeros α of f ′i , respectively of f̃i, satisfy |ζ|s

′ ≤ |α| ≤ |ζ|s, respectively
|α| = |ζ|qs. Then f̃i is a unit in LC[s, qs[ and

(F/F ′)|{ |ζ|sq<|z|≤|ζ|s} ∼=
r∏

i=1

LC[s, qs[ /(f
′
i) =

r∏

i=1

C[z]/(f ′i) ,

where the last equality follows by Euclidean division in LC[s, qs[ in the style of [Laz62, Lemma 2].
This implies

dimC(F/F ′)|{ |ζ|sq<|z|≤|ζ|s} =
r∑

i=1

degz f
′
i = dimCC[z]/(f ′1 · · · f ′r) = dimC(LC[s, qs[)/(det T ) ,

because detT differs from f ′1 · · · f ′r by a unit in LC[s, qs[.
We now compute detT in a different way. Namely, by Theorem 7.3(a) there are isomorphisms F ∼=⊕
iFdi,ri and F ′ ∼=

⊕
j Fd′j ,r′j . These provide

.
O-bases of F and F ′ with respect to which the inclusion

F ′ ⊂ F is given by a matrix S. Then S ·τF ′ = τF ·σ∗S implies detS ·±z− degF ′

= ±z− degF ·σ∗(detS),
and hence, f := q−1

√
±1 ·detS = z−e ·σ∗(f) with e := degF −degF ′. From [Har11, Proposition 1.4.4]

it follows that f = g · ℓα1 · . . . · ℓαe with g ∈ Fq((z))
×

and |ζ|qs < |αi| ≤ |ζ|s. Since ℓαi(z − αi)−1 is a
unit in LC[s, qs[, and the matrices T and S differ by a base change over LC[s, qs[, we conclude that

dimC LC[s, qs[ /(detT ) = dimC LC[s, qs[ /(f) = dimC LC[s, qs[ /

e∏

i=1

(z − αi) = e.

The theorem follows.

7.2 The pair of σ-bundles associated with an A-motive

Consider a uniformizable A-motive M over C. Then E(M) := (E(M ), τE) := Λ(M ) ⊗A F0,1 is a

σ-bundle with E(M ) := Λ(M ) ⊗A
.
O and τE = id. By Proposition 3.30, E(M ) coincides via hM with

M⊗AC

.
O on

.
DCr

⋃
i∈N0
{z = ζq

i} and via σ∗hM it coincides with σ∗M⊗AC

.
O on

.
DCr

⋃
i>0{z = ζq

i}.
So it can be obtained as a modification of M ⊗AC

.
O at all places z = ζq

i
for i ≥ 0.

But M also gives rise to a second σ-bundle as follows. The isomorphism τM is an isomorphism
between σ∗M and M outside z = ζ. So one can modify M ⊗AC

.
O at z = ζq

i
for i < 0 to obtain a

σ-bundle F(M) = (F(M ), τF ) with

F(M ) :=
{
f ∈M ⊗AC

.
O[ℓ−1ζ ] : τ iM (σi∗f) ∈M ⊗AC

C[[z − ζ]] for all i ∈ Z
}

(7.1)

=
{
f ∈ E(M)[ℓ−1ζ ] : τ iM (σi∗f) ∈M ⊗AC

C[[z − ζ]] for all i ∈ Z
}

and τF = τM ⊗ id. To see that this is indeed a σ-bundle, we view it as a sheaf. Then

Γ
(
{|ζ|s ≤ |z| ≤ |ζ|s′} , F(M )

)
=

{
f ∈ Λ(M )⊗A C〈 z

ζs′
, ζ

s

z 〉[ℓ
−1
ζ ] : τ iM (σi∗f) ∈M ⊗AC

C[[z − ζ]]

for all i ∈ Z with |ζ|qis ≤ |ζ| ≤ |ζ|qis′
}
.

The latter is a finite free module over the principal ideal domain C〈 z
ζs′
, ζ

s

z 〉, because by Proposition 3.30

it is contained in the free module ℓ−dζ · Λ(M)⊗A C〈 z
ζs′
, ζ

s

z 〉 if Jd ·M ⊂ τM(σ∗M).
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Again by Proposition 3.30, F(M ) coincides via hM with M ⊗AC

.
O on

.
DCr

⋃
i<0{z = ζq

i} and via

σ∗hM it coincides with σ∗M ⊗AC

.
O on

.
DCr

⋃
i≤0{z = ζq

i}.

Definition 7.4. The pair (F(M), E(M)) constructed above is called the pair of σ-bundles associated
with the uniformizable A-motive M .

Assume that M is effective with τM (σ∗M) (M . Then we visualize these σ-bundles over
.
O by the

following diagram, in which the thick lines represent sheaves on
.
DC:

(7.2)

F(M )

E(M)

M⊗AC

.
O σ∗M⊗AC

.
O

.
DC

. . . z = ζ1/q z = ζ z = ζq . . .

Sheaves drawn higher contain the ones drawn below. All sheaves coincide outside
⋃
i∈Z{z = ζq

i}.
At those points in

⋃
i∈Z{z = ζq

i} where two sheaves are drawn at almost the same height, they

also coincide. Indeed, E(M ) coincides via hM with M ⊗AC

.
O outside

⋃
i∈N0
{z = ζq

i} and via σ∗hM

with σ∗M ⊗AC

.
O outside

⋃
i∈N>0

{z = ζq
i} and is contained in these modules by Proposition 3.30.

Via τM also M contains σ∗M and differs from it only at z = ζ. Finally, one sees that M ⊗AC

.
O

is via hM
−1 contained in F(M ) and they coincide outside

⋃
i<0{z = ζq

i}. Namely, the condition
τ iM (σi∗f) ∈M ⊗AC

C[[z − ζ]] for i < 0 is equivalent to (setting j := −i > 0)

f ∈ τ jM
(
σj∗(M ⊗AC

C[[z − ζ]])
)
= τ jM (σj∗M)⊗AC

C[[z − ζqj ]] = M ⊗AC
C[[z − ζqj ]] .

In particular, for f ∈ M ⊗AC

.
O the condition is satisfied for i < 0 and obviously for i ≥ 0 proving

M⊗AC

.
O ⊂ F(M ). In terms of Definition 3.32 this also shows E(M )⊗ .

O
C[[z−ζ]] = H1(M)⊗QC[[z−ζ]] =

p and F(M )⊗ .
O
C[[z − ζ]] = q.

Proposition 7.5. Let M be a uniformizable mixed A-motive, (F(M ), E(M)) the associated pair of
σ-bundles and let H1(M) = (H,W•H, q) be its mixed Hodge-Pink structure.

(a) The τ -invariants of E(M) are

E(M)τ =
(
Λ(M )⊗A F0,1

)τ
= Λ(M )⊗A Q∞ = H ⊗Q Q∞ = H∞ .

(b) We have deg E(M) = 0 and degF(M) = dimM = degqH
1(M ).

(c) If M is pure of weight µ = k
l with (k, l) = 1, then F(M) ∼= F⊕ rkM/l

k,l . In particular,

degqH
1(M) = degF(M) =

k · rkM
l

= µ · rkH1(M) = degW H1(M) .

(d) If M is mixed, then also degqH
1(M ) = degW H1(M) and degqWµH

1(M) = degW WµH
1(M) for

all µ.

Proof. (a) is obvious from the construction of E(M).

(b) Since E(M ) = H ⊗Q F0,1
∼= F0,1

⊕ dimQH it has degree zero. There is an integer d ∈ N0 with
τM (Jd · σ∗M) ⊂ M . It follows that τE(ℓ

d
ζ · E) ⊂ F . We consider the σ-bundle E ′ := H ⊗Q F−d,1 and
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the inclusions E ′ →֒ E(M), f 7→ ℓdζ · f and E ′ →֒ F(M), f 7→ τE(ℓ
d
ζ · f). If r = rkM = dimQH then

deg E ′ = −dr. By Theorem 7.3(d) and Remark 2.8(a) we compute

degF(M ) = degF(M)− deg E ′ − dr = dimC q/(z − ζ)dp− dr = degqH
1(M )

because on the annulus {|ζ|q < |z| ≤ |ζ|} the quotient F(M )/E ′ equals q/(z − ζ)dp. The equality
dimM = degqH

1(M) follows directly from the definitions.

(c) To prove that F(M ) ∼= F⊕ rkM/l
k,l , recall from Proposition 3.14(c) that M extends to a locally

free sheaf M on CC on which zkτ lM is an isomorphism locally at ∞. We consider the ring of rigid
analytic functions C〈zζ 〉 on the closed disc {|z| ≤ |ζ|} ⊂ CC of radius |ζ| around∞. Then we obtain an

isomorphism zkτ lM : σl∗
(
M⊗OCC

C〈zζ 〉
)

= (σl∗M)⊗OCC
C〈 z

ζql
〉 ∼−→ M⊗OCC

C〈 z
ζql
〉, because z has no

other poles or zeroes besides∞ on the disc DC. Since C〈zζ 〉 is a principal ideal domain, we can choose

a basis {e1, . . . , er} of M ⊗OCC
C〈zζ 〉 with respect to which τM is given by a matrix Φ ∈ C〈 zζq 〉[z−1]r×r

and zkτ lM by the matrix U := zk ·Φ ·σ∗(Φ) · . . . ·σ(l−1)∗(Φ) ∈ GLr
(
C〈 z

ζql
〉
)
. We will prove the following:

Claim. There is a matrix S =
∑∞

i=0 Siz
i ∈ GLr

(
C〈zζ 〉

)
with U · σl∗(S) = S.

The equation is equivalent to σl∗(S) = U−1S. Writing U−1 =
∑∞

i=0 Uiz
i with U0 ∈ GLr(C) we can

solve the equation σl∗(S0) = U0S0 for S0 ∈ GLr(C) by Lang’s theorem [Lan57, Corollary on p. 557]
and then recursively solve the system of Artin-Schreier equations

σl∗(S−10 Sj)− S−10 Sj =

j−1∑

i=0

S−10 U−10 Uj−iSi

for Sj ∈ Cr×r. To compute the radius of convergence of S, let c ≥ 1 be a constant with |Uiζq
li| ≤ c

for all i where |Uiζq
li| denotes the maximal absolute value of the entries of the matrix Uiζ

qli. Then

σl∗(Sjζ
j) =

j∑

i=0

(
Uj−iζ

ql(j−i)
)
(Siζ

i) ζ i(q
l−1) .

This implies the estimate |Sjζj|q
l
= |σl∗

(
Sjζ

j
)
| ≤ c ·max{ |Siζ i| : 0 ≤ i ≤ j }, from which induction

yields |Sjζj| ≤ c1/(q
l−1) for all j ≥ 0. In particular S ∈ GLr

(
C〈 z

ζql
〉
)
. But now the equation σl∗(S) =

U−1S shows that σl∗(S) ∈ GLr
(
C〈 z

ζql
〉
)
, hence, S ∈ GLr

(
C〈zζ 〉

)
proving the claim.

A consequence of the claim is that we may use S to produce a new basis ofM⊗OCC
C〈zζ 〉 with respect

to which zkτ lM = Idr is the identity matrix. Thus alsoM⊗AC
O{0<|z|≤|ζ|} = F(M)⊗ .

O
O{0<|z|≤|ζ|} has

a basis with respect to which τ lF = z−k. By Theorem 7.3(a) this is only possible if F(M) ∼= F⊕ rkM/l
k,l .

In particular, degF(M) = k · rkM/l. This is what we wanted to prove.

(d) If M is mixed, the construction of F(M) applies to WµM and GrWµ M to yield an exact sequence

(7.3) 0 −→
⋃

µ′<µ

F(Wµ′M) −→ F(WµM) −→ F(GrWµ M) −→ 0

of σ-bundles. Indeed, the restriction of (7.3) to {0 < |z| ≤ |ζ|} equals the tensor product over AC of
0 → ⋃

µ′<µWµ′M → WµM → GrWµ M → 0 with O{0<|z|≤|ζ|}. Therefore, it is exact because GrWµ M

is locally free over AC. Since σ−1({0 < |z| ≤ |ζ|}) = {0 < |z| ≤ |ζ|1/q} successive application of the
isomorphism τ−1F yields exactness of (7.3) on all of

.
DC. In particular, F(WµM) equals the intersection

of E(WµM)[ℓ−1ζ ] with F(M ) inside E(M )[ℓ−1ζ ].
Since the degree is additive in the sequence (7.3), (b) and (c) imply inductively for increasing

µ that degqWµH
1(M ) = degF(WµM) =

∑
µ′≤µ µ

′ · rk(GrWµ′ M) =: degW WµH
1(M) and so also

degqH
1(M) = degW H1(M ).
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The reader should be warned however, that in the mixed case the weights di
ri

of F(M) ∼=
⊕

iFdi,ri
do not need to coincide with the weights of M .

Example 7.6. Recall the mixed A-motive M with weights 1 and 3 from Example 3.35, whose Hodge-
Pink structure H1(M ) has Hodge-Pink weights (1, 3) or (0, 4) if (t − θ)|b or (t − θ) ∤ b, respectively.
The motivic Galois group ΓM of M was computed in Example 6.6.

The associated σ-bundles can be described by the following diagram.

(7.4) 0 // E(W1M) = F0,1
� _

·ηℓ−ζ

��

// E(M) = F⊕20,1
� _

·


 ηℓ−ζ f

0 (ηℓ−ζ )
3




��

// E(GrW3 M) = F0,1
� _

·(ηℓ−ζ )3

��

// 0

0 //W1M ⊗AC

.
O //M ⊗AC

.
O // GrW3 M ⊗AC

.
O // 0

(
.
O, t− θ)

·η−1ℓ+ζ
��

(
.
O⊕2,Φ)

��

(
.
O, (t− θ)3)

·(η−1ℓ+ζ )3

��

0 // F1,1 = (
.
O, z−1) // F(M) ∼=

⊕
iFdi,ri // F3,1 = (

.
O, z−3) // 0

where ℓ−ζ and ℓ+ζ were defined in Example 7.2(c). In particular, one sees that E(M ) →֒M ⊗AC
Ȯ is an

isomorphism outside
⋃
j∈N0
{z = ζq

j} andM⊗AC
Ȯ →֒ F(M ) is an isomorphism outside

⋃
j<0{z = ζq

j}.
We determine the isomorphy type of F(M) as in Theorem 7.3(a). If diri > 3, then by Theorem 7.3(b)

the map of Fdi,ri to F3,1 is zero, so Fdi,ri ⊂ F1,1 and again by Theorem 7.3, diri ≤ 1, a contradiction.

Similarly, if di
ri
< 1 then the map F1,1 → Fdi,ri is zero, and F3,1 ։ Fdi,ri , a contradiction. So

1 ≤ di
ri
≤ 3. Since degF(M ) = 4 the only possibilities are F(M ) ∼= F⊕22,1 or F(M) ∼= F1,1 ⊕F3,1.

The latter occurs if and only if the bottom horizontal sequence splits, that is if and only if there
are u, v ∈

.
O not both zero which define the map (u, v) : M⊗AC

.
O → F1,1,

(x
y

)
7→ ux+vy. This implies

that

(u, v)

(
ηℓ−ζ f

0 (ηℓ−ζ )
3

)
=
(
ηℓ−ζ u , uf + (ηℓ−ζ )

3 v
)

defines a morphism F⊕20,1 → F1,1. Since ηℓ
−

ζ u = z−1σ∗(ηℓ−ζ u) and it vanishes at z = ζ, it also vanishes

at z = ζq
i
for all i ∈ Z. Therefore, it is divisible by ℓζ , whence u = η−1ℓ+ζ · ũ with ũ = σ∗ũ ∈ Fq((z)).

If ũ = 0 then (ηℓ−ζ )
3 v = z−1σ∗((ηℓ−ζ )

3 v). Since this vanishes at z = ζ of order three, it also vanishes

at z = ζq
i
for all i ∈ Z of order three, and hence, it is divisible by (ℓζ)

3, that is v = (η−1ℓ+ζ )
3 · ṽ with

ṽ = z2σ∗(ṽ) ∈ F−2,1τ . By Example 7.2(d) this implies ṽ = 0 in contradiction to v 6= 0. So to split the
bottom horizontal sequence we must have u 6= 0.

We claim that in the case where (t− θ)|b in C[t], the bottom horizontal sequence splits if and only
if the sequence

(7.5) 0 −→ W1H
1(M)⊗Q Q∞ −→ H1(M )⊗Q Q∞ −→ H1(GrW3 M)⊗Q Q∞ −→ 0

of “Q∞-Hodge structures” splits. Namely, in this case f is divisible by ℓ−ζ by Example 3.35 and

therefore uf + (ηℓ−ζ )
3 v vanishes at z = ζq

i
for all i ∈ N0 and moreover for all i ∈ Z because it

is a τ -invariant in F1,1. Thus uf + (ηℓ−ζ )
3 v = ℓζ · h̃ for an element h̃ = σ∗h̃ ∈ Fq((z)). This

shows that in diagram (7.4) the top row is split by the morphism (ũ, h̃) : E(M ) → E(W1M). Since
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H1(M ) ⊗Q Q∞ = E(M )τ this defines the splitting of (7.5) on the level of the underlying Q∞-vector
spaces. It is automatically compatible with the weight filtration here. Moreover, the splitting (ũ, h̃)
is compatible with the splitting of the bottom row in diagram (7.4) and this shows that the splitting
respects the Hodge-Pink lattices.

Conversely, by construction of the σ-bundles E(M) and F(M) every splitting of (7.5) induces a
compatible splitting of the top and bottom row in diagram (7.4). Therefore, F(M) ∼= F1,1 ⊕F3,1.

Note that when the extension 0 −→ (C[t], t− θ) −→M −→
(
C[t], (t − θ)3

)
−→ 0, see (6.2), splits

then also (7.5) splits, but the converse is false in general. Namely, by Theorem 3.34(b) which we are
going to prove, the former occurs if and only if the associated sequence of Q-Hodge-Pink structures
analogous to (7.5) splits. This is the case if and only if h̃/ũ ∈ Q ⊂ Q∞ = Fq((z)).

Remark 7.7. In general, one defines the σ-bundle polygon SP (M ) of M as the piecewise linear
function on [0, n] whose slope on [j−1, j] is the j-th smallest of the weights di

ri
where F(M ) ∼=

⊕
i Fdi,ri .

Then the σ-bundle polygon lies above the weight polygonWP (M) from Remark 2.8(b) and both have
the same endpoint, SP (M) ≥ WP (M); see [Har11, Proposition 1.6.6] or Theorem 7.13 below. In
particular, after we have proved Theorem 3.34(a), Remark 2.8(b) yields SP (M) ≥WP (M) ≥ HP (M )
and Example 7.6 illustrates this.

7.3 The pair of σ-bundles associated with a dual A-motive

To a uniformizable dual A-motive M̌ = (M̌, τ̌M̌ ) we assign the pair of σ-bundles, which was associ-
ated in the previous section with the corresponding A-motive M := M(M̌ ) =

(
(σ̌∗M̌)∨, τ̌∨

M̌

)
. More

precisely, we set
E(M̌) := Λ(M̌ )∨ ⊗A F0,1

∼= Λ(M )⊗A F0,1 .

It is a σ-bundle with E(M̌ ) := Λ(M̌ )∨ ⊗A
.
O and τE = id. By Proposition 4.27, E(M̌ ) coincides via

σ̌∗hM̌
∨ with (σ̌∗M̌)∨⊗AC

.
O on

.
DCr

⋃
i∈N0
{z = ζq

i} and via hM̌
∨ with M̌∨⊗AC

.
O on

.
DCr

⋃
i>0{z =

ζq
i}. So it can be obtained as a modification of (σ̌∗M̌)∨ ⊗AC

.
O at all places z = ζq

i
for i ≥ 0.

Again M̌ gives rise to a second σ-bundle as follows. The isomorphism τ̌∨

M̌
is an isomorphism

between M̌∨ and (σ̌∗M̌)∨ outside z = ζ. So one can modify (σ̌∗M̌)∨ ⊗AC

.
O at z = ζq

i
for i < 0 to

obtain a σ-bundle F(M̌) = (F(M̌ ), τF ) with

F(M̌ ) :=
{
f ∈ (σ̌∗M̌)∨ ⊗AC

.
O[ℓ−1ζ ] : (τ̌∨

M̌
)i(σ̌−i∗f) ∈ (σ̌∗M̌)∨ ⊗AC

C[[z − ζ]] for all i ∈ Z
}

=
{
f ∈ E(M̌)[ℓ−1ζ ] : (τ̌∨

M̌
)i(σ̌−i∗f) ∈ (σ̌∗M̌)∨ ⊗AC

C[[z − ζ]] for all i ∈ Z
}
,(7.6)

and τF = τ̌∨

M̌
⊗ id.

This is indeed a σ-bundle, because it can be viewed like F(M ) above as a sheaf. Namely,

Γ
(
{|ζ|s ≤ |z| ≤ |ζ|s′} , F(M̌ )

)
=
{
f ∈ Λ(M̌)∨ ⊗A C〈 z

ζs′
, ζ

s

z 〉 :

(τ̌∨

M̌
)i(σ̌−i∗f) ∈ τ̌M̌ (σ̌∗M̌)⊗AC

C[[z − ζ]] for all i with |ζ|qis ≤ |z| ≤ |ζ|qir
}
.

The latter is a finite free module over the principal ideal domain C〈 z
ζs′
, ζ

s

z 〉, because by Proposition 4.27

it is contained in the free module ℓ−dζ · Λ(M̌)⊗A C〈 z
ζs′
, ζ

s

z 〉 if Jd · M̌ ⊂ τ̌M̌(σ̌∗M̌ ).

Again by Proposition 4.27, F(M̌ ) coincides via σ̌∗hM̌
∨ with (σ̌∗M̌)∨ ⊗AC

.
O on the space

.
DCr

⋃
i<0{z = ζq

i} and via hM̌
∨ with M̌∨ ⊗AC

.
O on

.
DCr

⋃
i≤0{z = ζq

i}.

Definition 7.8. The pair (F(M̌), E(M̌)) constructed above is called the pair of σ-bundles associated
with the uniformizable dual A-motive M̌ .
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Remark 7.9. The choice of a uniformizing parameter z ∈ Q at ∞ will give rise to isomorphisms
Ω1
Q/Fq

= Qdz ∼= Q and Λ
(
M (M̌)

)
⊗A Q = (Λ(M̌ )∨ ⊗A Q)⊗Q Ω1

Q/Fq

∼= Λ(M̌ )∨ ⊗A Q and(
E(M(M̌ )),F(M (M̌))

) ∼=
(
E(M̌),F(M̌ )

)
; see Proposition 4.17.

Assume that M̌ is effective with τ̌M̌ (σ̌∗M̌) ( M̌ . As in diagram (7.2) we visualize these σ-bundles

over
.
O by the following diagram, in which the thick lines represent sheaves on

.
DC:

F(M̌ )

E(M̌)

(σ̌∗M̌)∨⊗AC

.
O M̌∨⊗AC

.
O

.
DC

. . . z = ζ1/q z = ζ z = ζq . . .

Indeed, E(M̌ ) coincides via hM̌
∨ with M̌∨⊗AC

.
O outside

⋃
i∈N>0

{z = ζq
i} and via σ̌∗hM̌

∨ it coincides

with (σ̌∗M̌)∨⊗AC

.
O outside

⋃
i∈N0
{z = ζq

i} and is contained in these modules by Proposition 4.27. Via

τ̌∨

M̌
also (σ̌∗M̌)∨ contains M̌∨ and differs from it only at z = ζ. Finally, one sees that (σ̌∗M̌)∨ ⊗AC

.
O

is contained in F(M̌ ) via σ̌∗hM̌
∨ and they coincide outside

⋃
i<0{z = ζq

i}.

Proposition 7.10. Let M̌ be a uniformizable mixed dual A-motive, (F(M̌ ), E(M̌)) the associated pair
of σ-bundles and H1(M̌) = (H,W•H, q) its mixed Hodge-Pink structure.

(a) E(M̌ )⊗ .
O
C[[z − ζ]] = H1(M̌ )⊗Q C[[z − ζ]] = p and F(M̌ )⊗ .

O
C[[z − ζ]] = q ⊂ p[ 1

z−ζ ].

(b) The τ -invariants of E(M̌) are

E(M̌ )τ̌ =
(
Λ(M̌)∨ ⊗A F0,1

)τ̌
= Λ(M̌ )∨ ⊗A Q∞ = H ⊗Q Q∞ = H∞ .

(c) We have deg E(M̌) = 0 and degF(M̌) = dim M̌ = degqH
1(M̌ ).

(d) If M̌ is pure of weight µ = −k
l with (k, l) = 1, then H1(M̌) is pure of weight −µ = k

l and

F(M̌) ∼= F⊕ rk M̌/l
k,l . In particular,

degqH
1(M̌) = degF(M̌ ) =

k · rk M̌
l

= −µ · rkH1(M̌ ) = degW H1(M̌ ) .

(e) If M̌ is mixed, then also degqH
1(M̌ ) = degW H1(M̌) and degqWµH

1(M̌) = degW WµH
1(M̌) for

all µ.

Proof. We could adapt the proof of Proposition 7.5. However, everything also follows from combining
Remark 7.9 and Proposition 4.9 with 7.5.

Again, the reader should be warned that in the mixed case the weights di
ri

of F(M̌ ) ∼=
⊕

iFdi,ri
do not need to coincide with the negatives of the weights of M̌ . The analog of Example 7.6 for dual
A-motives is a case where this happens.

7.4 Proof of Theorem 3.34

Proof of Theorem 3.34(a). We want to show that H1(M) = (H,W•H, q) is locally semistable. So
let H ′∞ ⊂ H∞ be a Q∞-subspace and let H ′∞ = (H ′∞,W•H

′
∞, q

′) be the induced strict Q∞-subobject
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as in Definition 2.7. We have to show that degqH
′
∞ ≤ degW H ′∞ with equality for H ′∞ = (WµH)∞.

We consider two σ-bundles associated with H ′∞:

E ′ := (E ′, τE ′) := E(H ′∞) := H ′∞ ⊗Q∞
F0,1 ⊂ H∞ ⊗Q∞

F0,1 = E(M ) and

F ′ := (F ′, τF ′) := F(H ′∞) :=
{
f ∈ E ′[ℓ−1ζ ] : τ iE ′(σ

i∗f) ∈ q′ for all i ∈ Z
}
.

That these are σ-bundles is seen in the same way as for F(M) from (7.1). Note that q′ = q∩
(
H ′∞⊗Q∞

C((z − ζ))
)
implies that F ′ is the intersection of E ′[ℓ−1ζ ] and F(M ) inside E [ℓ−1ζ ]. The two σ-bundles

E ′ and F ′ coincide outside
⋃
i∈Z{z = ζq

i} and satisfy

p′ := H ′∞ ⊗Q∞
C[[z − ζ]] = E ′ ⊗ .

O
C[[z − ζ]] and F ′ ⊗ .

O
C[[z − ζ]] = q′ ⊂ p′[ 1

z−ζ ] .

Since deg E ′ = 0 we compute as in the proof of Proposition 7.5(b) using Theorem 7.3(d) that

degF ′ = degF ′ − deg E ′ = degqH
′
∞ .

From the weight filtration WµH
′
∞ = H ′∞ ∩ (WµH)∞ the σ-bundle F ′ inherits a weight filtration

with saturated σ-sub-bundlesWµF ′ = F(WµH
′
∞) being the intersection of (WµH

′
∞)⊗Q∞

.
O[ℓ−1ζ ] and

F(M ) inside E [ℓ−1ζ ]. Moreover, WµF ′ equals the intersection F(WµM)∩F ′ inside F , becauseWµF is

the intersection of (WµH)∞ ⊗Q∞

.
O[ℓ−1ζ ] and F(M ) inside E [ℓ−1ζ ]; see the proof of Proposition 7.5(d).

From the exact sequence

(7.7) 0 −→
⋃

µ′<µ

Wµ′F ′ −→ WµF ′ −→ GrWµ F ′ −→ 0

it follows that the natural morphism GrWµ F ′ → GrWµ F(M ) is injective. Since

GrWµ F(M ) = F(GrWµ M ) ∼= F (rkWµM)/l
k,l for µ = k

l with (k, l) = 1 by Proposition 7.5(c), Theorem 7.3

implies deg(GrWµ F ′) ≤ µ · rk(GrWµ F ′). Using rk(GrWµ F ′) = dimQ∞
(GrWµ H ′∞) and the additivity of

the degree in the exact sequence (7.7) we compute

degqH
′
∞ = degF ′ =

∑

µ∈Q

deg(GrWµ F ′) ≤
∑

µ∈Q

µ · dimQ∞
(GrWµ H ′∞) = degW H ′∞ .

Moreover, if H ′∞ = (Wµ̃H)∞, then WµH
′
∞ = (WµH)∞ and WµF ′ = F(WµM)∩F ′ = F(WµM) for

all µ ≤ µ̃ and so all the above inclusions and inequalities are equalities. This shows that H1(M) is
locally semistable and finishes the proof of Theorem 3.34(a).

Proof of Theorem 3.34(b). By construction the functor H1 is Q-linear. To prove exactness of
H1 let 0 → M ′ → M → M ′′ → 0 be an exact sequence of mixed A-motives. Then it follows from
Lemma 3.25 and Proposition 3.11(g) that 0→ H1(M ′)→ H1(M )→ H1(M ′′)→ 0 is exact and strictly
compatible with the weight filtrations. Consider the commutative diagram with exact rows

0 //M ′ ⊗AC
C[[z − ζ]] //

� _

h−1M ′

��

M ⊗AC
C[[z − ζ]] //

� _

h−1M
��

M ′′ ⊗AC
C[[z − ζ]] //

� _

h−1M ′′

��

0

0 // p′[ 1
z−ζ ]

// p[ 1
z−ζ ]

// p′′[ 1
z−ζ ]

// 0 ,

where the vertical maps come from Proposition 3.30. Their images are the Hodge-Pink lattices q ⊂
p[ 1
z−ζ ]. Since M ′ ⊂ M is saturated the sequence 0 → H1(M ′) → H1(M) → H1(M ′′) → 0 is strict

exact.
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To prove that H1 is faithful let f : M → M ′ be a morphism of A-motives with H1(f) = 0. This
implies that Λ(f) : Λ(M)→ Λ(M ′) is the zero map. Then by Definition 3.17 the map f ⊗ id : M ⊗AC

O(CC rDC)→M ′ ⊗AC
O(CC rDC) is the zero map and this implies f = 0.

To prove that H1 is full let g : H1(M ) → H1(M ′) be a non-zero morphism of Q-Hodge-Pink
structures. It can be interpreted as an injection 1l →֒ H1(M ′) ⊗ H1(M )∨ = H1(M ′ ⊗ M∨). It
suffices to show that this Hodge-Pink sub-structure 1l ⊂ H1(M ′ ⊗M∨) is of the form H1(M ′′) = 1l
for an A-sub-motive M ′′ ⊂ M ′ ⊗M∨ in the category A-MUMotI of uniformizable mixed A-motives
up to isogeny. Then necessarily M ′′ has rank 1 and virtual dimension 0 and hence, equals 1l; see
Example 3.6. Therefore, M ′′ = 1l can be reinterpreted as a morphism f : M → M ′ with H1(f) = g.
So Theorem 3.34(b) follows from Theorem 3.34(c).

Proof of Theorem 3.34(c). To show that the essential image of the functor H1 : M → H1(M) is
closed under forming subquotients we only need to treat the case of a Hodge-Pink sub-structure

H ′ = (H ′,W•H
′, q′) ⊂ H1(M ) = (Λ(M )⊗A Q,W•H, q) ,

because by the exactness of H1, quotient objects can be handled via their associated kernel subobjects.
By [Pin97b, Proposition 4.7(c)] the inclusion H ′ ⊂ H1(M ) is automatically strict. We will prove the
following

Claim 1. There is a saturated A-sub-motive M ′ ⊂ M with H1(M ′) = H ′ ⊂ H and such that the
Hodge-Pink lattice of M ′ equals q′.

We use the claim to prove Theorem 3.34(c) as follows. By Proposition 3.11(c) the A-sub-motive M ′

is mixed with WµM
′ =M ′ ∩WµM ⊂M . Then the exactness of H1 implies that

H1(WµM
′) = H1(M ′) ∩H1(WµM ) = H ′ ∩WµH = WµH

′

and in particular H1(M ′) = H ′.
To prove the claim, we set Λ′ := H ′ ∩ Λ(M ) and consider the σ-sub-bundle E ′ := Λ′ ⊗A F0,1 =

H ′ ⊗Q F0,1 ⊂ E(M) whose underlying module E ′ = H ′ ⊗Q
.
O is a saturated submodule of E(M). As

above we modify E ′ at ⋃i∈Z{z = ζq
i} according to the inclusion p′ = H ′ ⊗Q C[[z − ζ]] ⊂ q′ to obtain

the σ-sub-bundle

F ′ := (F ′, τF ′) := F(H ′) :=
{
f ∈ E ′[ℓ−1ζ ] : τ iE ′(σ

i∗f) ∈ q′ for all i ∈ Z
}
⊂ F(M ) .

Since q′ = q ∩ H ′ ⊗Q C((z − ζ)) this sub-bundle is also saturated. We now consider the admissible

covering
.
CC = {0 < |z| < |ζ|q−1} ∪ CC r {|z| ≤ |ζ|} of the rigid analytic curve

.
CC, and we define a

saturated locally free subsheafM′ ⊂M ⊗AC
O( .CC) of finite rank on

.
CC together with an isomorphism

τM′ : σ∗M′[J−1] ∼−→M′[J−1] by setting

M′|CCr{|z|≤|ζ|} := Λ′ ⊗A OCCr{|z|≤|ζ|} with τM′ := id

M′|
{0<|z|<|ζ|q−1}

:= F ′|
{0<|z|<|ζ|q−1}

with τM′ := τF ′

and glueing the two pieces on the overlap {|ζ| < |z| < |ζ|q−1} via the isomorphism

Λ′ ⊗A O{|ζ|<|z|<|ζ|q−1}
= E ′|

{|ζ|<|z|<|ζ|q−1}
= F ′|

{|ζ|<|z|<|ζ|q−1}
.

Since M ⊗AC
OCCr{|z|≤|ζ|}

∼= Λ(M )⊗AOCCr{|z|≤|ζ|} by Proposition 3.30 and Λ′ ⊂ Λ(M ) is saturated,

the subsheafM′ ⊂M ⊗AC
O( .CC) is saturated. Note that

(σ∗M′)|CCr{|z|≤|ζ|q} = σ∗
(
M′|CCr{|z|≤|ζ|}

)
= Λ′ ⊗A OCCr{|z|≤|ζ|q}

(σ∗M′)|{0<|z|<|ζ|} = σ∗
(
M′|

{0<|z|<|ζ|q−1}

)
= (σ∗F ′)|{0<|z|<|ζ|}
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and

(σ∗M′)|
{|ζ|q<|z|<|ζ|q−1}

[ 1
z−ζ ] = E ′|

{|ζ|q<|z|<|ζ|q−1}
[ 1
z−ζ ]

= F ′|
{|ζ|q<|z|<|ζ|q−1}

[ 1
z−ζ ] = M′|

{|ζ|q<|z|<|ζ|q−1}
[ 1
z−ζ ] .

Therefore, τM′ is an isomorphism between σ∗M′ andM′ outside z = ζ. At z = ζ we have

(σ∗M′)⊗O( .CC)
C[[z − ζ]] = E ′ ⊗ .

O
C[[z − ζ]] = p′ and

M′ ⊗O( .CC)
C[[z − ζ]] = F ′ ⊗ .

O
C[[z − ζ]] = q′ ⊂ p′[ 1

z−ζ ] .

So indeed τM′ : σ∗M′[J−1] ∼−→ M′[J−1] is a isomorphism. If p′ ⊂ q′, then E ′ ⊂ F ′ and therefore
τM′ : σ∗M′ →M′ is a morphism with coker τM′

∼= (F ′/E ′)⊗ .
O
C[[z − ζ]] ∼= q′/p′. We visualize this

case as follows.

F ′
( ❞

M′

❞

τM′(σ∗M′)

❞

E ′
( ❞

CC

|z| = 1 z = ζ z = 0

This picture has to be interpreted in the same way as diagram (7.2), except that here we see the entire
rigid analytic curve

.
CC = CCr {z = 0} to which we have extendedM′ and σ∗M′. Before we continue

with the proof we make the following

Definition 7.11. The M(H ′) := (M′, τM′) constructed above is called the analytic A-motive and
(F(H ′), E(H ′)) is called the pair of σ-bundles associated with the Q-Hodge-Pink structure H ′.

Especially for H ′ = H(M) we obtain Γ
( .
CC,M(H1(M ))

) ∼= M ⊗AC
O( .CC) by diagram (7.2) and

Proposition 3.30. Recall that the τ -invariants Λ(M) of M are computed as the τ -invariants of M ⊗AC

O
( .
CC r

⋃
i∈N0

V(σi∗J)
)
. For our H ′ the τ -invariants ofM(H ′) are

{
m ∈ Γ

( .
CC r

⋃
i∈N0

V(σi∗J),M′
)
: τM′(σ∗m) = m

}
= Λ′ ;

use [BH07, Proposition 3.4]. We therefore must show that M(H ′) ∼= M ′ ⊗AC
O( .CC) for a saturated

A-sub-motive M ′ ⊂M . For this we use the following

Lemma 7.12. The saturated analytic A-sub-motiveM′ ⊂M⊗AC
O( .CC) of rank r

′ := rkM′ descends
to a saturated A-sub-motive M ′ ⊂ M with M′ = M ′ ⊗AC

O( .CC) if and only if the saturated analytic
A-sub-motive ∧r′M′ ⊂ ∧r′M ⊗AC

O( .CC) descends to a saturated A-sub-motive N ′ ⊂ ∧r′M with
∧r′M′ = N ′ ⊗AC

O( .CC).

Proof. Clearly, the existence of M ′ implies the existence of N ′ := ∧r′M ′. Conversely, if N ′ = (N ′, τN ′)
exists, we defineM ′ := {m ∈M : m∧n = 0 for all n ∈ N ′}. Then the equality ∧r′M′ = N ′⊗AC

O( .CC)
implies that the submoduleM ′ ⊂M is cut out by the same linear conditions asM′ ⊂M ⊗AC

O( .CC).
ThusM′ =M ′ ⊗AC

O( .CC) because O(
.
CC) is flat over AC.

To construct τM ′ note that the isomorphism σ∗ : AC → AC is flat. Therefore, τM induces a map
τM ′ : σ∗M ′ → {m ∈M : m ∧ ñ = 0 for all ñ ∈ τN ′(σ∗N ′) ⊂ N ′}. The target of this map contains M ′

and even equals M ′ because M ′ ⊂M is saturated and JdN ′ ⊂ τN ′(σ∗N ′). Hence, M ′ := (M ′, τM ′) is
the desired A-sub-motive of M .
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By the lemma we may set r′ := rkH ′ = dimQH
′, consider the r′-th exterior powers of everything

and thus reduce to the case that rkH ′ = 1. Then H ′ is necessarily pure of some weight µ ∈ Z and
satisfies q′ = (z − ζ)−µ p′. Clearly, the A-motive 1l(µ) of rank 1 satisfies H ′ = H1(1l(µ)). But we have
to prove that 1l(µ) is an appropriate sub-motive of M . Since rkH ′ = 1 we have F(H ′) ∼= Fd,1 for

d = degF(H ′) = degF(H ′)− deg E(H ′) = degqH
′ = degW H ′ = µ .

Since Fµ,1 = (
.
O, τFµ,1 = z−µ) contains the tautological ODC

-lattice ODC
, M′ extends to a locally

free rigid analytic sheaf M′ on CC with τM′ : σ∗M′ ∼−→ M′
(
µ · ∞ − µ · V(J)

)
, where the notation(

µ · ∞ − µ · V(J)
)
means that we allow poles at ∞ of order less than or equal to µ and at V(J) of

order less than or equal to −µ. Note that a pole with negative order is a zero. Also since H ′ ⊂ H is a
strict subobject it already lies in WµH = H1(WµM ). We replace M by WµM and thus assume that
all weights of M are less than or equal to µ. By Proposition 3.14(b) there is an extension of M to a
locally free sheaf M on CC with τM : σ∗M →M

(
µ · ∞+ d̃ · V(J)

)
for some d̃ ∈ Z.

We want to show that the inclusionM′ →֒M ⊗AC
O( .CC) extends to an inclusionM′ →֒M ⊗OCC

OCC
. Consider the ring C〈zζ 〉 of rigid analytic functions on {|z| ≤ |ζ|} ⊂ CC. It is a principal ideal

domain. So the module M ⊗OCC
C〈zζ 〉 has a basis {e1, . . . , en} with respect to which zµτM : σ∗(M ⊗

C〈zζ 〉) = (σ∗M) ⊗ C〈 zζq 〉 → M ⊗ C〈 zζq 〉 is given by a matrix A =
∑∞

i=0Aiz
i ∈ C〈 zζq 〉n×n. After

tensoring with the ring C〈zζ ,
ζq

z 〉 of rigid analytic functions on {|ζ|q ≤ |z| ≤ |ζ|}, the inclusion Fµ,1 ∼−→
F(H ′) →֒ F(M ), 1 7→ f induces a map C〈zζ ,

ζq

z 〉 → F(M) ⊗ .
O
C〈zζ ,

ζq

z 〉 = M ⊗AC
C〈zζ ,

ζq

z 〉 with
τM (σ∗f) = z−µf . Hence, the coordinate vector x ∈ C〈zζ ,

ζq

z 〉n of f with respect to the basis {e1, . . . , en}
satisfies Aσ∗(x) = x. We write x =

∑
i∈Z xiz

i and make the

Claim 2. There is an integer k ∈ Z with xi = 0 for all i ≤ −k, in particular, zkx ∈ C〈zζ 〉n.

To prove the claim, assume the contrary and let c ≥ 1 with |Aiζqi| ≤ c for all i. Since x ∈ C〈zζ ,
ζ
z 〉n we

can find a negative integer m with xm 6= 0, |xmζm| =: c̃ ≤ c−1 ≤ 1, and |xm−iζm−i| ≤ c̃ for all i ≥ 0.
From xm =

∑∞
i=0Ai · σ∗(xm−i) we obtain

|xmζm| ≤ |ζ(1−q)m| max
i≥0

{
|Aiζqi| |σ∗(xm−i)ζqm−qi|

}
< c c̃q ≤ c̃ ,

a contradiction. This proves Claim 2.
We now replace M by M(k · ∞) and thus the basis {ei} by {z−kei} and x by zkx ∈ C〈zζ 〉n. This

shows that f ∈ M ⊗ C〈zζ 〉 and hence, the inclusion M′ →֒ M ⊗AC
O( .CC) extends to an inclusion

f̄ : M′ →֒ M ⊗OCC
OCC

. By the rigid analytic GAGA principle (see Lütkebohmert [Lüt90, Theo-

rem 2.8]) for the projective curve CC there is an algebraic subsheafM ′ →֒M over CC together with an
isomorphism τM ′ : σ∗M ′ ∼−→M ′

(
µ ·∞−µ ·V(J)

)
such thatM′ =M ′⊗OCC

OCC
and τM′ = τM ′ ⊗ id.

In particular, M ′ :=
(
Γ(

.
CC,M

′), τM ′

)
⊂ M is the desired A-sub-motive with H1(M ′) = H ′. This

proves Claim 1 and hence also Theorem 3.34(c).

Proof of Theorem 3.34(d). This follows directly from Theorem 3.34(c).

We want to end this section by discussing which Q-Hodge-Pink structures come from uniformizable
mixed A-motives. We give a criterion in terms of σ-bundles and the polygons from Remarks 2.8 and
7.7.

Theorem 7.13. Let H be a Q-Hodge-Pink structure. Then H = H1(M ) for a uniformizable mixed

A-motive M if and only if for every µ = k
l with (k, l) = 1 the σ-bundle is F(GrWµ H) ∼= F⊕(rkGrWµ H)/l

k,l ,

that is, if and only if the σ-bundle polygon of GrWµ H and the weight polygon of GrWµ H are equal,

SP (GrWµ H) =WP (GrWµ H). Since WP (GrWµ H) has one single slope µ, the latter holds if and only if
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SP (GrWµ H) lies above WP (GrWµ H) and both have the same endpoints, SP (GrWµ H) ≥WP (GrWµ H).
In this case the σ-bundle polygon of WµH lies above the weight polygon for every µ and both polygons
have the same endpoint, i.e. SP (WµH) ≥WP (WµH).

We remark that the condition SP (WµH) ≥WP (WµH) on the polygons of WµH in general does
not imply the condition on the polygons of GrWµ H and the existence of M .

Proof of Theorem 7.13. To prove the first direction let H = H1(M ). Then Proposition 7.5(c) yields

F(GrWµ H) ∼= F⊕(rkGrWµ H)/l

k,l . In particular, SP (GrWµ H) = WP (GrWµ H) is the polygon with one
single slope µ. Consider the exact sequence (7.3). Using the convention that the sum of two polygons
is defined to be the polygon whose slope multiset is the union of the slope multisets of its summands,
we compute by induction on µ

WP (WµH) = WP (
⋃

µ′<µ

Wµ′H) + WP (GrWµ H)

≤ SP (
⋃

µ′<µ

Wµ′H) + SP (GrWµ H)

≤ SP (WµH) .

Here the first equality follows from the definition of the weight polygon, the first inequality is the
induction hypothesis, and the final inequality follows from [Har11, Proposition 1.5.18].

Conversely, let F(GrWµ H) ∼= F⊕(rkGrWµ H)/l

k,l for µ = k
l with (k, l) = 1. Let d ∈ N0 be such that

(z − ζ)dp ⊂ q. Recall the construction of the associated analytic A-motive M(GrWµ H) =: (M, τM)
before Definition 7.11. It satisfies

M(GrWµ H)⊗O( .CC)
O{0<|z|≤|ζ|} = F(GrWµ H)⊗ .

O
O{0<|z|≤|ζ|} ∼= F

⊕(rkGrWµ H)/l

k,l ⊗ .
O
O{0<|z|≤|ζ|} .

Inside the right hand side the tautological C〈zζ 〉-lattice C〈zζ 〉⊕(rkGrWµ H) defines an extension ofM(GrWµ H)

to a locally free rigid analytic sheafM on CC with τM : σ∗M→M
(
k ·∞− d ·V(J)

)
such that zkτ lM

is an isomorphism locally at ∞. By the rigid analytic GAGA principle (see Lütkebohmert [Lüt90,
Theorem 2.8]) on the projective curve CC there is a locally free algebraic sheaf M together with a
homomorphism τM : σ∗M → M

(
k · ∞ − d · V(J)

)
such that M = M ⊗OCC

OCC
and τM = τM ⊗ id.

This implies that zkτ lM is an isomorphism locally at ∞. In particular, M(GrWµ H) :=
(
Γ(

.
CC,M), τM

)

is a pure A-motive of weight µ withM(GrWµ H) =M(GrWµ H)⊗AC
O( .CC).

We now consider the exact sequences

0 −→
⋃

µ′<µ

M(Wµ′H) −→ M(WµH) −→ M(GrWµ H) −→ 0 .

By induction on µ and application of Proposition 7.14 below we obtain a mixed (algebraic) A-motive
M with WµM ⊗AC

O( .CC) ∼=M(WµH) for all µ. Since H1(M) is computed from M ⊗AC
O( .CC) we

find H1(M ) ∼= H and the theorem is proved.

Proposition 7.14. Let M ′,M ′′ be A-motives and let 0→M ′⊗AC
O( .CC)→M→M ′′⊗AC

O( .CC)→ 0
be an exact sequence of analytic A-motives. Then there is an exact sequence of (algebraic) A-motives
0→M ′ →M →M ′′ → 0 and an isomorphism of extensions of analytic A-motives

0 //M ′ ⊗AC
O( .CC) //M ⊗AC

O( .CC) //

∼=
��

M ′′ ⊗AC
O( .CC) // 0

0 //M ′ ⊗AC
O( .CC) //M //M ′′ ⊗AC

O( .CC) // 0 .
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Proof. 1. LetR := Γ
(
{0 < |z| ≤ |ζ|},OCC

)
andRσ := σ∗(R) = Γ

(
{0 < |z| ≤ |ζ|q},OCC

)
be the rings of

rigid analytic functions on the punctured discs {0 < |z| ≤ |ζ|}, respectively {0 < |z| ≤ |ζ|q}. The exact
sequence of projective R-modules 0→M ′ ⊗AC

R→M⊗O( .CC)
R→M ′′ ⊗AC

R→ 0 splits and yields

an isomorphismM⊗O( .CC)
R ∼= (M ′⊕M ′′)⊗AC

R under which τM takes the form

(
τM ′ f ◦ τM ′′

0 τM ′′

)

for a homomorphism f ∈ HomAC
(M ′′,M ′) ⊗AC

Rσ which is in general not compatible with the τ ’s.
Note that f exists because τM ′′ ⊗ idRσ is an isomorphism. A change of the splitting corresponds to

an automorphism

(
idM ′ h
0 idM ′′

)
of (M ′ ⊕M ′′)⊗AC

R. This replaces
(
τM ′ f ◦ τM ′′

0 τM ′′

)
by

(
idM ′ h
0 idM ′′

)
·
(
τM ′ f ◦ τM ′′

0 τM ′′

)
· σ∗

(
idM ′ h
0 idM ′′

)−1
=

(
τM ′ f̃ ◦ τM ′′

0 τM ′′

)

for f̃ = f + h− τM ′ ◦ σ∗(h) ◦ τ−1M ′′ .
By [Har11, Proposition 1.4.1(b)] the functor F = (F , τF ) 7→ (F ⊗ .

O
R, τF ⊗ idRσ) is an equivalence

of categories between σ-bundles over
.
O and σ-bundles over R. We now consider the σ-bundle H :=

(H, τH : σ∗H ∼−→ H⊗RRσ) over R with H := HomAC
(M ′′,M ′)⊗AC

R and τH : σ
∗(h) 7→ τM ′ ◦σ∗(h) ◦

τ−1M ′′ . Then we just proved that the isomorphism classes of extensions of M ′′ ⊗AC
R by M ′ ⊗AC

R are
in bijection with

H1(H) := coker
(
1− τH ◦ σ∗ : H → H⊗R Rσ, h 7→ h− τH(σ∗h)

)
;

compare [Har11, Proposition 1.3.4] or [HP04, Proposition 2.4].

2. To change the analytic extension M into an algebraic extension we now proceed as follows. We
choose locally free sheaves M ′ and M ′′ on CC which extend M ′ and M ′′. Then τM ′ and τM ′′ have
poles of finite order on M ′, respectively M ′′. Since C〈zζ 〉 is a principal ideal domain we can choose

a basis of H := HomC〈 z
ζ
〉

(
M ′′ ⊗ C〈zζ 〉,M ′ ⊗ C〈zζ 〉

)
. With respect to this basis the element f ∈

HomAC
(M ′′,M ′)⊗AC

Rσ = H⊗C〈 z
ζ
〉Rσ associated withM in step 1 can be viewed as an element f =

∑
ν∈Z fνz

ν ∈ (Rσ)⊕n ⊂ C〈 zζq ,
ζq

z 〉⊕n. Also τH is given by a matrix T = (tij) ∈ GLn
(
C〈 zζq 〉[z−1]

)
. Let

c > 1 be a constant with ‖T‖q := max{‖tij‖q : 1 ≤ i, j ≤ n} ≤ c where for x =
∑

ν∈Z xνz
ν ∈ C〈 zζq ,

ζq

z 〉

‖x‖q := sup{ |xν | |ζ|νq : ν ∈ Z }

denotes the supremum norm on the annulus {|z| = |ζ|q}. By the convergence condition on f there is an

integer m ≤ 0 with
∥∥∑

ν≤m fνz
ν
∥∥
q
≤ C := c

2
3−2q < 1. Consider the linear function α : C〈 zζq ,

ζq

z 〉⊕n →
C〈 ζqz 〉⊕n, x =

∑
ν∈Z xνz

ν 7→ ∑
ν≤m xνz

ν which satisfies ‖α(x)‖q ≤ ‖x‖q. Also note that any element

x =
∑

ν≤m xνz
ν ∈ C〈 ζqz 〉⊕n satisfies

‖σ∗(x)‖q = sup{ |xqν | |ζ|νq : ν ≤ m } ≤ sup{
(
|xν | |ζ|νq

)q
: ν ≤ m } = ‖x‖qq .

Recursively we define g0 := α(f) and gk := α
(
Tσ∗(gk−1)

)
∈ C〈 ζqz 〉⊕n for all k ∈ N. Then we show by

induction that ‖gk‖q ≤ C1+ k
2 . Indeed ‖g0‖q ≤ C and we estimate

‖gk‖q ≤ ‖Tσ∗(gk−1)‖q ≤ ‖T‖q ‖gk−1‖qq ≤ c · C(1+ k−1
2

)q ≤ C
3
2
−q+q+ k−1

2 = C1+ k
2

as claimed. This implies that g :=
∑∞

k=0 gk converges in C〈 ζqz 〉⊕n ⊂ C〈 ζz 〉⊕n. By construction
α(g) = g. We compute α(f + Tσ∗(g) − g) = α(f) +

∑∞
k=0 α(Tσ

∗(gk)) −
∑∞

k=0 gk = 0. Hence,

h := f + Tσ∗(g) − g ∈ C〈 zζq 〉[z−1]
⊕n

. From the formula g = f + Tσ∗(g) − h one inductively sees

that g ∈ C〈 ζq
j

z 〉⊕n for all j ∈ N0, whence g ∈ R⊕n. Now consider the element f̃ := σ−1∗(T−1h) ∈
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C〈 zζ 〉[z−1]
⊕n
, which satisfies f − f̃ = Tσ∗(f̃ − g) − (f̃ − g). This shows that the class of f in H1(H)

is the same as the class of f̃ and we may identify M ⊗O( .CC)
R = (M ′ ⊕ M ′′) ⊗AC

R such that

τM =

(
τM ′ f̃ ◦ τM ′′

0 τM ′′

)
. Thus M extends to a locally free rigid analytic sheaf M on CC with

M⊗ C〈zζ 〉 = (M ′ ⊕M ′′) ⊗OCC
C〈zζ 〉. Since τM ′ , τM ′′ and f̃ all have poles of finite order at ∞, also

τM extends to τM : σ∗M→M
(
l · ∞ − d · V(J)

)
for some integers l and d with τM(σ∗M) ⊂ JdM.

Again the rigid analytic GAGA principle [Lüt90, Theorem 2.8] produces a locally free algebraic sheaf
M together with a homomorphism τM : σ∗M →M

(
l ·∞− d ·V(J)

)
such thatM =M ⊗OCC

OCC
and

τM = τM ⊗ id. By construction M :=
(
Γ(

.
CC,M), τM

)
is the extension of M ′′ by M ′ in the category

of A-motives we were searching. This proves the proposition.
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[BGR84] S. Bosch, U. Güntzer, R. Remmert: Non-Archimedean Analysis, Grundlehren 261, Springer-
Verlag, Berlin etc. 1984.

[BL85] S. Bosch, W. Lütkebohmert: Stable reduction and uniformization of abelian varieties I,
Math. Ann. 270 (1985), no. 3, 349–379.

[BLR90] S. Bosch, W. Lütkebohmert, M. Raynaud: Néron models, Ergebnisse der Mathematik und
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[BP05] F. Breuer, R. Pink: Monodromy groups associated to non-isotrivial Drinfeld modules
in generic characteristic, in “Number fields and function fields—two parallel worlds”,
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[EGA] A. Grothendieck: Élements de Géométrie Algébrique, Publ. Math. IHES 4, 8, 11, 17, 20, 24,
28, 32, Bures-Sur-Yvette, 1960–1967; see also Grundlehren 166, Springer-Verlag, Berlin etc.
1971; also available at http://www.numdam.org/numdam-bin/recherche?au=Grothendieck.

[Eis95] D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry, GTM 150,
Springer-Verlag, Berlin etc. 1995.

[Fin47] N. Fine: Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592;
available at http://www.jstor.org/stable/2304500.

[Fon82] J.-M. Fontaine: Sur certains types de représentations p-adiques du groupe de Galois d’un
corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), no. 3,
529–577; available at http://www.jstor.org/stable/2007012.

[Gar02] F. Gardeyn: A Galois criterion for good reduction of τ -sheaves, J. Number Theory 97 (2002),
447–471.

[Gek89] E.-U. Gekeler: On the de Rham isomorphism for Drinfel’d modules, J. Reine Angew. Math.
401 (1989), 188–208.

[Gek90] E.-U. Gekeler: De Rham cohomology for Drinfel’d modules, Séminaire de Théorie des Nom-
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