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Abstract

As a generalization of Drinfeld modules, Greg Anderson introduced abelian ¢-modules and t-
motives over a perfect field. In this article we study relative versions of these over rings. We
investigate isogenies among them. Our main results state that every isogeny possesses a dual
isogeny in the opposite direction, and that a morphism between abelian t-modules is an isogeny if
and only if the corresponding morphism between their associated t-motives is an isogeny. We also
study torsion submodules of abelian t-modules which in general are non-reduced group schemes.
They can be obtained from the associated t-motive via the finite shtuka correspondence of Drinfeld
and Abrashkin. The inductive limits of torsion submodules are the function field analogs of p-
divisible groups. These limits correspond to the local shtukas attached to the t-motives associated
with the abelian t-modules. In this sense the theory of abelian ¢-modules is captured by the theory
of t-motives.
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1 Introduction
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As a generalization of Drinfeld modules [Dri74], Greg Anderson [And86] introduced abelian t-modules
and t-motives over a perfect field. In this article we study relative versions of these over rings and
generalize them to abelian Anderson A-modules and A-motives. The upshot of our results is that
the entire theory of abelian Anderson A-modules is contained in the theory of A-motives.
precisely, let IF, be a finite field with g elements, let C' be a smooth projective geometrically irreducible
curve over Fy and let @ = Fy(C) be its function field. Let co € C be a closed point and let A =
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I'(C \ {0}, O¢) be the ring of functions which are regular outside co. Let (R,~) be an A-ring, that
is a commutative unitary ring together with a ring homomorphism v: A — R. We consider the ideal
J=(@®1-1®7v(a): a € A) = ker(y® idg: Ag = R) C A := A®p, R and the endomorphism
o = idy®Frobyr: a® b — a® b? of Agr. For an Ar-module M we set "M = M ®4, - Ar =
M ®R, Frob, R, and for an element m € M we write oyym:=m® 1 € o"M.

Definition 1.1. An effective A-motive of rank r over an A-ring R is a pair M = (M, Tps) consisting
of a locally free Agr-module M of rank r and an Ag-homomorphism 7);: c*M — M whose cokernel is
annihilated by J™ for some positive integer n. We say that M has dimension d if coker 757 is a locally
free R-module of rank d and annihilated by J¢. We write rk M = r and dim M = d for the rank and
the dimension of M.

A morphism f: (M, 7p) — (N, 7n) between effective A-motives is an Ag-homomorphism f: M —
N which satisfies f o1y =7y oo™ f.

Note that 1) is always injective and coker 73 is always a finite locally free R-module by Proposi-
tion 2.3 below. We give some explanations for this definition in Section [2] and also define non-effective
A-motives. If R is a perfect field, A = F,[t] and in addition, M is finitely generated over the non-
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commutative polynomial ring R{7} := { Y b;7": n € No,b; € R} with 7b = b?r, which acts on
i=0

m € M via 7: m — 1pr(o}ym), then (M, 7yr) is a t-motive in the sense of Anderson [And86, §1.2].

Next let us define abelian Anderson A-modules. In Section [B] we give some explanations on the
terminology in the following

Definition 1.2. Let d and r be positive integers. An abelian Anderson A-module of rank r and
dimension d over R is a pair E = (F, ) consisting of a smooth affine group scheme E over Spec R of
relative dimension d, and a ring homomorphism ¢: A = Endpg-groups(EF), a — ¢, such that

(a) there is a faithfully flat ring homomorphism R — R’ for which E'x gSpec R’ & Gi r as Fg-module
schemes, where F, acts on E via ¢ and F, C A,

(b) (Liegpq — 7(&))d =0on LieE for all a € A,

(c) the set M := M(E) := My(E) := Hompg_groups,F,-lin(E, Ga,r) of Fy-equivariant homomorphisms
of R-group schemes is a locally free Ar-module of rank r under the action given on m € M by

Ada: M — M, m—mop,

R>b: M—M, m—bom

A morphism f: (E,¢) — (E',¢') between abelian Anderson A-modules is a homomorphism of group
schemes f: E — E' over R which satisfies ¢/, o f = f o ¢, for all a € A.

In particular, if R is a perfect field and A = F[t], then an abelian Anderson A-module is nothing
else than an abelian t-module in the sense of Anderson [And86, §1.1]. When ¢ is not a prime and R
is not a field, we do not know the answer to the following

Question 1.3. If we weaken Definition [[L2(a)| and only require that there is an isomorphism of group
schemes E Xgpec r Spec R = Gg r» do we get an equivalent definition?

For general A and R, the abelian Anderson A-modules of dimension 1 over R are precisely the
Drinfeld A-modules over R; see Definition B.7] and Theorem B9l Anderson’s anti-equivalence [And86),
Theorem 1] between abelian t-modules and ¢-motives directly generalizes to the following



Theorem If E = (E,p) is an abelian Anderson A-module then M(E) = (M,Ty) with
Tm: oM — M, oym — Frobgg, ,om is an effective A-motive of the same rank and dimension
as E. The contravariant functor E — M(E) is fully faithful. Its essential image consists of all effec-
tive A-motives M = (M, 1pr) over R for which there exists a faithfully flat ring homomorphism R — R’
such that M ®@g R’ is a finite free left R'{T}-module under the map 7: M — M, m — 1ar(oh,m).

The main purpose of this article is to study isogenies and their (co-)kernels over arbitrary A-rings
R. Here a morphism f: E — E’ between abelian Anderson A-modules over R is an isogeny if it is
finite and surjective. On the other hand, a morphism f € Hompg(M,N) between A-motives over R
is an isogeny if f is injective and coker f is finite and locally free as R-module. We give equivalent
characterizations in Propositions £.2] 5.4 and 5.8 The following are our two main results.

Theorem Let f € Homg(E,E') be a morphism between abelian Anderson A-modules and
let M(f) € Homp(M', M) be the associated morphism between the associated effective A-motives
M = M(E) and M' = M(E'). Then

(a) f is an isogeny if and only if M(f) is an isogeny.

(c) If f is an isogeny, then ker f and coker M (f) correspond to each other under the finite shtuka
equivalence which we review in Section [{]

Corollary If f € Homg(M,N) is an isogeny between A-motives then there is an element
0# a € A and an isogeny g € Homp(N, M) with fog =a-idy and go f = a- idy. The same is
true for abelian Anderson A-modules.

This leads to the following result about torsion points in Section [6l Let (0) # a C A be an ideal
and let £ = (F,p) be an abelian Anderson A-module over R. The a-torsion submodule Ela] of E
is the closed subscheme of E defined by Efa](S) = {P € E(S): ¢o(P) = 0 for all a € a} on any
R-algebra S.

Theorem Ela] is a finite locally free group scheme over R. It is étale over R if and only if
a+J = Ar. If M = M(E) is the associated A-motive then E[a] and M /aM correspond to each other
under the finite shtuka equivalence reviewed in Section [4]

If a+J = Ag and § = Spec () is a geometric base point of Spec R, then we also prove in Theorem [6.6]
that Ea](2) is a free A/a-module of rank r which carries a continuous action of the étale fundamental
group 75 (Spec R, 5).

In the final Section [l we turn towards the case where p C A is a maximal ideal and where all
elements of v(p) C R are nilpotent. In this case, we can associate with an A-motive M over R a local
shtuka M p(M); see Example[7.2land with an abelian Anderson A-module E a divisible local Anderson
module E[p™] = h_H)lE[p"] in the sense of [HS15]; see Definition [T.3] and Theorem If M =M(E)

then M p(M) and E[p>] correspond to each other under the local shtuka equivalence from [HS15]; see
Theorems [7.4] and
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Notation

Throughout this article we denote by

Nsg and Ny the positive, respectively the non-negative integers,

F, a finite field with ¢ elements and characteristic p,

C a smooth projective geometrically irreducible curve over F,,
Q:=F,C) the function field of C,

o0 a fixed closed point of C,

Foo the residue field of the point co € C,

A:=T(C ~{o0},0¢) the ring of regular functions on C' outside oo,

(R,v: A— R) an A-ring, that is a ring R with a ring homomorphism v: A — R,
AR = A®y, R,

o = idy ® Froby r the endomorphism of Ar with a ® b+— a ® b? for a € A and b € R,

0" M := M ®R, Frob, r B = M ®ap, o Ar the Frobenius pullback for an Ag-module M,

0"V :=V @R, Frob, B the Frobenius pullback more generally for an R-module V,
opvi=v®1edV for an element v € V,

oc*f:=f®id: 0*M — ¢*N for a morphism f: M — N of Agr-modules,

J:=ker(y®idgr: Ap > R)=(a®1—-1®~(a): a € A) C Ag.

Note that v makes R into an F,-algebra. Further note that J is a locally free Agr-module of rank 1.
Indeed, J = I ®a, Ag for the ideal [ ;== (a®1—-1®a:a € A) C Ay = A®p, A. The latter is a
locally free A4-module of rank 1 by Nakayama’s lemma, because I ®4, Aa/I = I/I? = 9114 /F, is a
locally free module of rank 1 over A4/I = A.

We will sometimes reduce from the ring A to the polynomial ring [F,[t] by applying the following

Lemma 1.4. Let a € ANFy and let F[t] be the polynomial ring in the variable t. Then the homomor-
phism Fylt] = A, t — a makes A into a finite free F[t]-module of rank equal to —[F : Fy]ords(a),
where ords, is the normalized valuation of the discrete valuation ring Oc -

Proof. If ords(a) = 0 then a would have no pole on the curve C, hence would be constant. Since C
is geometrically irreducible this would imply a € F, which was excluded. Therefore a is non-constant
and defines a finite surjective morphism of curves f: C' — ]P’IIFq with Spec A — SpecF,[t] = ]P’]qu ~ {0},
where oo’ € IP]qu is the pole of t. By [GW10, Proposition 15.31] its degree can be computed in the fiber
fHod") = {oo} as deg f = [Foo : Foo]-€(00) where Fory = Fy and ef(00) = ordes f*(1) = — ordes(a)
is the ramification index of f at oo. Since Spec A = f~1(SpecF,[t]) we conclude that A is a finite
(locally) free F,[t]-module of rank —[Fo, : Fy] orde(a). O

2 A-Motives

We keep the notation introduced in the introduction and generalize Definition [I.I] to not necessarily
effective A-motives.

Definition 2.1. An A-motive of rank r over an A-ring R is a pair M = (M, 1ys) consisting of a
locally free Ag-module M of rank r and an isomorphism outside the zero locus V(J) of J between
the induced finite locally free sheaves 7as: 0" M|gpec A v(7) = Mlspec Ag-v(7)-

A morphism f: (M,1y) — (N, 7n) between A-motives is an Ag-homomorphism f: M — N which
satisfies f o Tpy = 7v 0 0" f. We write Hompg(M, N) for the A-module of morphisms between M and
N. The elements of QHomp(M,N) := Hompr(M,N) ®4 Q are called quasi-morphisms. We also set
Endg(M) := Hompg(M, M) and QEndp(M) := QHomp(M, M) = Endg(M) ©4 Q.



To explain the relation between Definitions [[.1] and 2Tl we begin with a

Lemma 2.2. Let f: M — N be a homomorphism between finite locally free Ag-modules M and N
of the same rank, and assume that coker f is a finitely generated R-module, then f is injective and
coker f is a finite locally free R-module.

Proof. To make the proof more transparent, we choose an element t € A\ F,. Then A is a finite free
[F,[t]-module by Lemma [[.4, and M and N are finite locally free modules over R[t]. Also t acts as an
endomorphism of the finite R-module coker f. By the Cayley-Hamilton Theorem [Eis95, Theorem 4.3]
there is a monic polynomial g € R[t] which annihilates coker f. This implies on the one hand that

M/gM — N/gN — coker f — 0

is exact, and therefore coker f is an R-module of finite presentation, because R[t]/(g) is a finite free
R-module of rank deg; g. On the other hand it implies that M [é] - N [%] is an epimorphism, whence
an isomorphism by |[GW10, Corollary 8.12], because M and N are finite locally free over R[t] of the
same rank. Since g is a non-zero divisor on R[t] and thus also on M, the localization map M — M [é]
is injective, and hence also f is injective.

We obtain the exact sequence 0 - M — N — coker f — 0, which yields for every maximal ideal
m C R with residue field £k = R/m the exact sequence

0 — Torl(k,coker f) — M ®pk — N®pk —> (coker f)®@prk —> 0.

Again the k[t]-modules M @i k and N ®pg k are locally free of the same rank and (coker f) ®p k is
a torsion k[t]-module, annihilated by g. Since k[t] is a PID, this implies that M ®r k — N ®p k is
injective and so Torf(k, coker f) = (0). Since coker f is finitely presented, it is locally free of finite
rank by Nakayama’s Lemma; e.g. [Eis95, Exercise 6.2]. O

For the next proposition note that [ is an invertible sheaf on Spec Ap as we remarked before
Lemma [I.4]

Proposition 2.3. (a) Let (M, 7ar) be an A-motive. Then there exist integers e,e’ € Z such that
JE 1o (0* M) € M and T¢ -7']\_41 (M) C o*M. For any such e, e’ the induced Ag-homomorphism
s J€-0"M — M is injective, and the quotient M /7y (T - 0*M) is a locally free R-module
of finite rank, which is annihilated by Je+e'.

(b) An A-motive (M, Tar) is an effective A-motive, if and only if Tar(o*M) C M.

(c) Let (M,7pr) be an effective A-motive over R. Then (M, Tyr|spec Ap-v()) 95 an A-motive. More-
over, Tpr: 0*M — M is injective and coker Tpr s a finite locally free R-module.

(d) Let M = (M, Tpr) be an effective A-motive over a field k. Then M has dimension dimy, coker 7.

Proof. @ Working locally on affine subsets of Spec Ap we may assume that J is generated by a
non-zero divisor h € J. By [EGA| I, Théoreme 1.4.1(d1)] we obtain for every generator m of the
Apg-module 6*M an integer n such that locally h™ - 7p7(m) € M. Taking e as the maximum of the n
when m runs through a finite generating system of o*M, yields J¢ - pr(0*M) C M. The inclusion
J¢ 'TA_41 (M) C 0*M is proved analogously.

Let e and ¢’ be any integers with 7a/(J¢-0* M) C M and 73, (J¢ - M) C 0*M, whence J¢7¢ - M C
Ta(J€ - 0*M). Then M/ (J€ - 0*M) is annihilated by J¢t¢, and hence a finite module over
Ap/Jet¢" and over R. Therefore 7p7: J¢-0*M — M is injective, and the quotient M /7 (€ - o*M)
is a finite locally free R-module by Lemma

Since J" - coker 7 = (0), the map 7as[spec 45 v(7) IS an epimorphism between locally free sheaves
of the same rank, and hence an isomorphism by [GWI0L Corollary 8.12]. Thus M is an A-motive and
the remaining assertions follow from @ Also follows directly.



@ Set d := dimy coker 77. Since every h € J which generates J locally on Spec Ay is nilpotent on
the k-vector space coker 77, it satisfies hY = 0 by the Cayley-Hamilton theorem from linear algebra.
We conclude that J¢ - coker 73y = (0) and M has dimension d. O

Proposition 2.4. (a) If S is an R-algebra, then M = (M, 7p1) — M @ S == (M Qg S, 7 ® idg)
defines a functor from (effective) A-motives of rank r (and dimension d) over R to (effective)
A-motives of rank r (and dimension d) over S.

(b) Every A-motive over R and every morphism f € Hom(M,N) between A-motives over R can be
defined over a subring R’ of R, which viavy: A — R’ C R is a finitely generated A-algebra, hence
noetherian.

Proof. @ This is obvious.

[(B)] Every A-motive M = (M, y) has a presentation of the form A%™ N AGmo Ly M — 0.
Since M is locally free over Ap, there is a section s of the epimorphism p. It corresponds to an
endomorphism S of AS™ with SU = 0 such that there is a map W: AR — AY™ with S —1d = UW,
The isomorphism 7,7 lifts to diagram

(0*AE™)|spec Apv(7) — (0" AZ™)|spec Ap-v(7) —— 0" Mspec apv(g) ——=0  (2.1)

Tll ) Tol TMl

@ (S5}
ARn1|SpeCAR\V(J) ARnO|SpeCAR\V(j) M|SpocAR\V(J) ——0.

Likewise 7']\_/[1 lifts to a similar diagram with vertical morphism Tf) and T7. The equations 7y oyt = id
and 7;,' o7y = id imply the existence of matrices V and V' in AR gpec Ap~vi(g) With Too Ty —1d =
UoV and T{oTp—1d = c*UoV’. Let R’ C R be the A-algebra generated by the finitely many elements
of R which occur in the entries of the matrices U, S, W, Ty, T, T}, T{, V and V'. Define M’ as the Ap/-
module which is the cokernel of U € A™™, and define 7as: 0*M'|gpec 4 v(7) = M'lSpec g ()
and 7y, M "lspec Agv(7) = T M'|spec ap~v(7) as the Ar-homomorphisms given by diagram (2.1])
and its analog for TA}l. Then M’ is via S a direct summand of A%"O, hence a finite locally free Ap/-
module, and 7,4 and T]\_/Il, are inverse to each other. It follows from diagram (2.I)) that M' @ g R = M
and TV @ idR = TM-

Finally, the assertion for the morphism f € Hompg(M, N) follows from a diagram similar to (2.1)
for f instead of 7. O

We end this section with the following observation.

Proposition 2.5. Let M and N be A-motives over R and let f € Homgr(M,N) be a morphism.
Then the set X of points s € Spec R such that f ® id, ) = 0 in Homy,) (M ®r k(s), N @p k(s))

is open and closed, but possibly empty. Let Spec R C SpecR be this set, then f ® idg = 0 in

Homﬁ(M QR E,N QR E) In particular if Spec R is connected and S # (0) is an R-algebra, then the
map Hompg(M,N) — Homg(M @ S,N ®r S), f — [ ® idg is injective.

Proof. We fix an element t € A\ F,. Then A is a finite free F,[t]-module. By Proposition 2.3] we can
find integers e, e’ with J¢-7x(0*N) C N and J¢ - 73,/ (M) C 0*M, such that d := e +¢' is a power of
q. We obtain morphisms (t —y(t))Ty: 0*N — N and (t — v(t)) 73/ : M — ¢*M. So the equation
fory =7noc*f implies (t? — (1)) f = (t — y(t))¢Tny 0 0 f o (t — y(t))e/T]\_/[l. We view M and N
as modules over R[t] and replace Ag by RJt]. Since M and N are finite projective R[t]-modules there
are split epimorphisms R[t]®" — M and R[t]®" —» N. Then R[t]®" — M LN R[t]®" is given
by a matrix F' € R[t]”X”/ whose entries are polynomials in ¢. Let I C R be the ideal generated by the



coefficients of all these polynomials. A prime ideal p C R belongs to the set X if and only if I C p. In
particular X = V(I) C Spec R is closed.

On the other hand, we consider the map R[t]®" — o*N

- el7'71 / / /
T € R[t]™" and the map R[t]®" — M m) o*M — R[t]®" as a matrix V € R[t]” *™. The

formula (t7 —~v(t)?) f = (t — y(t))Tn 0 0¥ f o (t — ()¢ 73, implies (t? — y()))F =T o(F)V, and it
follows that the entries of the matrix (t% — v(¢)?)F are polynomials in ¢ whose coefficients lie in I9,
If Zf:o bit' is an entry of F then (t% — ~(t)9) Zf:o bit! = Zfig(bi_d — (t)%b;)t" is the corresponding
entry of (t — y(t)4)F and all b;_gq — (t)%b; € I9. By descending induction on i = £ +d,...,0 we see
that all b; € I9. It follows that the finitely generated ideal I C R satisfies I = I9. By Nakayama’s
lemma [Eis95, Corollary 4.7] there is an element b € 1 + I such that -1 = (0). Now let p C R be
a prime ideal which lies in X, that is I C p. Then p lies in the open subset Spec R[3] C Spec R on
which F' = 0 and hence f = 0. In particular X C Spec R[] C X. Therefore X is open and closed and
f=0on X.

Now let Spec R be connected and S # (0) be an R-algebra. Let f € Hompg(M,N) be such that
f®idg =0 in Homg(M ®pr S,N ®g S). Let s € SpecS be a point and let s’ € Spec R be its image.
Then f ® id,y) = 0 and the set X from above is non-empty. Since it is open and closed and Spec R
is connected, it follows that X = Spec R and f = 0. This proves the injectivity. O

Bl iCVEr Ny VPN R[t]*™ as a matrix

Corollary 2.6. Let M and N be A-motives over R with Spec R connected. Then Homp(M,N) is a
finite projective A-module of rank less or equal to (tk M)-(rk V).

Proof. If R = k is a field and M and N are effective, the result is due to Anderson [And86l Corol-
lary 1.7.2]. For general R we apply Proposition with S = R/m for m C R a maximal ideal,
and use that over the Dedekind ring A every submodule of a finite projective module is itself finite
projective. ]

3 Abelian Anderson A-modules

We recall Definition of abelian Anderson A-modules from the introduction. Let us give some
explanations. All group schemes in this article are assumed to be commutative.

Definition 3.1. Let O be a commutative unitary ring. An O-module scheme over R is a commutative
group scheme E over R together with a ring homomorphism O — Endg(FE).

For a group scheme E over Spec R we let E™ := E X ... xg E be the n-fold fiber product over R.
We denote by e: Spec R — FE its zero section and by Lie F := HomR(e*Q}E R R) the tangent space
of E along e. If E is smooth over Spec R, then Lie F is a locally free R-module of rank equal to the
relative dimension of F over R. In particular Lie E" = (Lie F)®". For a homomorphism f: F — E’ of
group schemes over Spec R we denote by Lie f: Lie E — Lie E’ the induced morphism of R-modules.

Also we define the kernel of f as the R-group scheme ker f := E x Spec R where ¢/: Spec R — FE’
f7 El76,
is the zero section. There is a canonical isomorphism

E x E = Exkerf (3.1)
LESf R

given on T-valued points P, Q € E(T) for any R-scheme T by (P,Q) — (P,Q — P). If P € E(k) for a
field k and P’ = f(P) € E'(k), pulling back ([BI)) under P: Speck — F yields an isomorphism of the

fiber Speck x FE of f over P’ with Speck x g ker f.
P Ef
On G, r = Spec R[z] the elements b € R, and in particular y(a) € R for a € Fy, act via b*: R[z] —
R[z], © v br. This makes G, r into an Fj-module scheme. In addition let 7 := Frob, g, , be the



relative g-Frobenius endomorphism of G, r = Spec R[z] given by x — z9. It satisfies LieT = 0 and
Tob="0lo7. We let

R{r} = { X br":neNyb e R} with 7b = bir (3.2)
1=0

be the non-commutative polynomial ring in 7 over R. For an element f = Y, b;7° € R{r} we set
f@) =% bt

Lemma 3.2. There is an isomorphism of R-modules R{T}d/Xd ~ HomR_gmups,Fq_hn(Gg’R,GgiR),
which sends the matriz F' = (fi;); ;j to the Fq-equivariant morphism f: GZ,R — Giij of group schemes
over R with f*(yi;) = >_; fij(x;) where GZ,R = Spec R[x1,...,x4] and GZ:R = SpecRly1, ..., ya].
Under this isomorphism the map f + Lie f is given by the map R{T}¥*? — R¥*4 F =" F, " —
F.

Proof. This is straight forward to prove using Lucas’s theorem [Luc78| on congruences of binomial

coefficients which states that (If’;ﬁ’;) =(7) (%) mod p for all n,m,t,s € Ny, and implies that () =

0 mod p for all 0 < i < n if and only if n = p© for an e € Ny. O

Remark 3.3. The affine group scheme F and its multiplication map A: F xg E — E are described
by its coordinate ring Bg := I'(FE, Og) together with the comultiplication A*: By — Br ®g Bg. If
we write G, g = Spec R[{] the map

ME) = {zeBg:A*z=2®1+1®2z and g,z =y(a)z for all a € F, }
m o m(§)

is an isomorphism of Ap-modules. Choosing an element A € F, with F; = [F,(\) we obtain an exact
sequence of R-modules

0—>M(E) Bg Brp®rBrg © Bg (33)

m——sm*(§), z—— (A"z—2®1-10z, ¢iz—y(\)z)

This shows that for every flat R-algebra R’ we have M(E) ®p R’ = M(E xpr Spec R'), because
I'(E xg R',Opxp) = Bp @r R'. In particular, if R’ satisfies condition [(a)] of Definition then
M(E) ®g R’ = R'{7}'*¢ by Lemma 3.2

From this we see that for any R-algebra S the tensor product of the sequence (B.3]) with S stays
exact and M(E) @r S = M(E Xgpec g Spec S). Namely, we choose a faithfully flat morphism R — R’
as in Definition and tensor (B.3) with S ®p R’. This tensor product stays exact by Lemma
because M (E) ®g R’ = R'{7}1*%. Since S — S ®g R’ is faithfully flat, already the tensor product of
B3) with S was exact.

Definition 3.4. If £ is an abelian Anderson A-module we consider in addition on M (E) the map
7:m + Frobyg, pom. Since 7(bm) = b%7(m) the map 7 is o-semilinear and induces an Ag-linear
map 7a: oM — M. We set M(E) := (M(E),7m) and call it the (effective) A-motive associated
with E.

This definition is justified by the following relative version of Anderson’s theorem [And86, Theo-
rem 1].

Theorem 3.5. If E = (E,p) is an abelian Anderson A-module of rank r and dimension d then
M(E) = (M, 7p) is an effective A-motive of rank r and dimension d. There is a canonical isomor-
phism of R-modules

coker 7y = Hompg(Lie E,R), m mod 7p;(c*M) — Liem. (3.4)



The contravariant functor E — M(E) is fully faithful. Its essential image consists of all effective
A-motives M = (M, 1p) over R of some dimension d, for which there exists a faithfully flat ring
homomorphism R — R’ such that M @ R’ is a finite free left R'{T}-module under the map 7: M —
M, m — 7y (oym).

Proof. We first establish the isomorphism [B.4). If m = 72, (3, m; ® b;) = 3, b; 0o Froby g, pom; with
m; € M and b; € R, then Liem = 0 because Lie Frobq,GayR = 0. So the map (B.4) is well defined. To
prove that it is an isomorphism one can apply a faithfully flat base change R — R’, see [EGAL § 01.6.6],
such that E ®r R’ = Gl p, and Lie E @p R’ = (R)®?. Then M @p R = R'{r}'*? by Remark B.3]
and the inverse map is given by the natural inclusion (R')**¢ C R'{7}1*4 Fy s Fyr°.

As a consequence, coker )y is a locally free R-module of rank equal to d = dim £ and annihilated by
J? because of condition @ in Definition This implies coker Tas|spec 4z~ v(7) = (0), and therefore
the morphism 7p7: 0" M|spec 45 v(7) = Mspec Ag-v(7) 18 surjective. By [GW10, Corollary 8.12] it is
an isomorphism, because M and o*M are finite locally free over Ar of the same rank. Thus M (E) is
an A-motive and even an effective A-motive of dimension d by Proposition 2.3]

Let E = (F,¢) and E' = (E',¢') be two abelian Anderson A-modules over R and let M = M(E)
and M' = M(E’) be the associated effective A-motives. To prove that the map

HomR(EaE/) — HOIHR(M,M/), f — (m/ —m' o f) (35)

is bijective, we again apply a faithfully flat base change R — R/, such that F @z R’ = Gg’ r and
E' @r R = Gg:R,. Then Homp/ (E ®g R, E' ®r R') = {F € R/{T}d/XdZ pLoF=Fop,Vae A} by
Lemma Also M(E) ®g R = R'{7}"*¢ and M(E") ®p R' = R'{7}*%. The condition h o 7pp =
Tmoo*h on an element h € Homp (M(E') @ R/, M(E)®p R') implies that h: R{r}»d — R/{r}1xd
is a homomorphism of left R'{7}-modules, hence given by multiplication on the right by a matrix
H e R'{7}¥* Then m'op,0H = h((a®1)-m') = (a®1)-h(m') = m'oHop, implies ¢, 0 H = Hoyp,
for all a € A. Tt follows that the map (B3] is bijective over R'. So every h € Homp(M(E'), M(E))
gives rise to a morphism f’ € Homp (E ®r R, E' ®r R’) which carries a descent datum because h
was defined over R. Since by [BLRI0, §6.1, Theorem 6(a)] the descent of morphisms relative to the
faithfully flat morphism R — R’ is effective, f’ descends to the desired f € Hompg(E, E’). This shows
that the functor E — M (E) is fully faithful.

Let M = (M, ) be an effective A-motive of dimension d over R for which there exists a faithfully
flat ring homomorphism R — R’ such that M ®g R’ = R'{r}'*?. Observe that coker(ry; ® idps) =
(R'{r}/R'{r}r)**4 = (R")™?. For alla € A we have 7- (a® 1)m = o(a® 1) - 7(m) = (a @ 1)Tm.
Therefore the map m — (a ® 1)m is a homomorphism of left R'{r}-modules, and hence given by
(a®1)m =m - ¢, for a matrix ¢}, € R'{r}?*?. Then E' := (F' = GZ’R,, ¢ A— R} g — o)
satisfies M(E') = M ®r R. Again (a®1—-1® ’y(a))d = 0 on coker 77 implies (Lie ¢ — ’y(a))d =0
on Lie E’. So E' is an abelian Anderson A-module over R’ with M(E') & M ®r R'. Consider the ring
R” := R’ ®r R’ and the two maps p1,p2: R’ — R” given by p1(b') = b ® 1 and pa(b') =1 @Y. The
canonical isomorphism p}(M ®g R') = p5(M ®g R') induces an isomorphism p*E’ = p5E’ which is a
descend datum on E’ relative to R — R’. Since faithfully flat descend on affine schemes is effective
by [BLR90, §6.1, Theorem 6(b)] there exists a group scheme E over R with a ring homomorphism
¢©: A = Endp.groups(E) such that (E,p) @g R = E’. By [EGA| IV, Proposition 2.7.1 and IVy,
Corollaire 17.7.3] the group scheme F is affine and smooth over R and hence (E, ) is an abelian
Anderson A-module with M (E,p) = M. O

The theorem implies the following

Corollary 3.6. The assertions of Proposition and Corollary also hold for abelian Anderson
A-modules. O



An important class of examples are Drinfeld modules. We recall their definition from [Dri74] § 5]
and [Sa197, §1].

Definition 3.7. A Drinfeld A-module of rank r € N5y over R is a pair E = (F,p) consisting
of a smooth affine group scheme E over Spec R of relative dimension 1 and a ring homomorphism
¢: A — Endp groups(E), a — ¢q satisfying the following conditions:

(a) Zariski-locally on Spec R there is an isomorphism a: E == G, r of F;-module schemes such
that

(b) the coefficients of ®, := a o p, 0ca™t = Y bi(a)T? € Endg.groups,Fy-lin(Ga,r) = R{7} satisfy
i>0
bo(a) = v(a), by(q)(a) € R* and b;(a) is nilpotent for all i > r(a) := —r [Fo : Fy] ordeo(a).

If b;(a) = 0 for all i > r(a) we say that E is in standard form.

It is well known that every Drinfeld A-module over R can be put in standard form; see [Dri74, § 5]
or [Mat96, §4.2]. This is a consequence of the following lemma of Drinfeld [Dri74, Propositions 5.1
and 5.2] which we will need again below. For the convenience of the reader we recall the proof.

Lemma 3.8. (a) Letb =" bi7" € R{r} and let r be a positive integer such that b, € R* and b;
is nilpotent for all i > r. Then there is a unique unit c = ,~,c;m" € R{T}* with co =1 and ¢;
nilpotent for i > 0, such that c™tbe = >I_, bir" with b € R*.

(b) Let Spec R be connected and let b = > b;7" and ¢ = > i ;7" € R{T} with m,n > 0 and
b, cn € R*. Let d € R{7} ~ {0} satisfy db=cd. Thenm =n and d =3 '_,d;7* with d, € R*.
Proof. [(a)| was also reproved in [Lau96, Lemma 1.1.2] and [Mat96], Proposition 1.4].
[(b)] We write d = Y7 d;7* with d, # 0. The equation db = cd implies > (di_jb]qlﬂ - cjdiq_Jj) = 0 for
all 4, where the sum runs over j = max{0,7 — r},..., min{i, max{m,n}}. We now distinguish three
cases.
If m > n then i = m + r yields drbnq: = 0, whence d,, = 0 which is a contradiction.
If m < n then ¢« = n + r yields cndd” = 0, whence d, € p for every prime ideal p C R. For
n4r>i>n weobtain c,d? = Y (di_jb;»fﬁ
0<j<n
that d;_,, € p for every prime ideal p C R for alli—n =r,...,0. Sotheideal I := (d;: 0<i<r)CR

— deiq_ﬂ j) and by descending induction on i it follows

r m+r ;
is contained in every prime ideal p C R. Now i = m +7 yields d.bj}, = > ¢;d ¢

q
' Mtr—j? whence d, € 19.
j=m

For m+7r > i > m we obtain di_mbﬁiim = OSjZ<m ali_jb]‘,f’J _ OSJZSn cjdiq_]j and by descending induction
on i it follows that d;_,, € I? for all i —m =r,...,0. Therefore the finitely generated ideal I satisfies
I = I? and by Nakayama’s lemma [Eis95, Corollary 4.7] there is an element f € 1+ I such that
f-I =(0). Since I C p for all prime ideals p C R, the element 1 — f is a unit in R and I = 0. Therefore
d; = 0 for all 4 which is a contradiction.

If m = n then cmdgm = drb?rz and we consider the ideal I = (d,) C R. Again I = I?" and by
[Eis95, Corollary 4.7] there is an element f € 14 I such that f-d, = 0. Now assume that d, € p
for some prime ideal p C R. Then f ¢ p, whence p € Spec R[%] C Spec R and d,, = 0 on the open
neighborhood Spec R[%] of p. Since the set of prime ideals p C R with d, € p is closed in Spec R
and the latter is connected, it follows that d. = 0 on all of Spec R. This is a contradiction and so

our assumption was false. In particular d, is not contained in any prime ideal and so d, € R* as
desired. H

Theorem 3.9. The abelian Anderson A-modules of dimension 1 and rank r over R are precisely the
Drinfeld A-modules of rank r over R.
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Proof. Let E be a Drinfeld A-module of rank r over R. Choose a Zariski covering as in Deﬁnition
such that E is in standard form. Since Spec R is quasi-compact this Zariski covering can be refined
to a covering by finitely many affines. Their disjoint union is of the form Spec R’ and the ring
homomorphism R — R’ is faithfully flat. So E satisfies conditions @ and of Definition
Choose an element t € ANTF,. Then A is a finite free IFy[t]-module of rank equal to —[Fo, : Fy] ordeo(t)
by Lemma [[.4l Writing &, = Z:S% bi(t)T" with r(t) = —r [Foo : Fgl ordes(t) and b, (t) € (R)*, we
make the following

r(t)—1
Claim. As an R'[t]-module M (E) ®r R = EB R'[t]-7*. (3.6)
=0

By Remark B.3] and Lemma we have M (E) ®r R' = M(E Xspecr Spec R') = R'{r}. We prove
by induction on n that for every ¢ = 7 Oc 7 € R{r} = M(E) there are uniquely determined

elements fy(t) € R'[t] such that ¢ = T(t) fg() . If n < r(t) then we take fg() = ¢ If
n > r( ), dividing ¢ by ®; on the right produces uniquely determined g = En r(t) ¢;i7" and h =

Zr(t) hett € R'{r} with ¢ = g<I>t + h. Namely, starting with g; = 0 for ¢ > n — r(t) we can and
i+r(t

j . ¢ i
must take g; = br(t)( i (t Z g] bg+r ) for i =n—r(t),...,0 and hy = ¢y — ]gogj bg_j for

rt)-1 .
¢ =r(t) —1,...,1. The induction hypothesis implies g = > fo(t)-7¢. Now fi(t) := fo(t)-t + hy
=

satisfies ¢ = ZES())_I fe(t)-7¢. This proves the claim.

By faithfully flat descent [EGAL IVg, Proposition 2.5.2] with respect to R[t] — R/[t] and by the
claim, M (E) is finite, locally free over R[t] and in particular flat over R. We next show that it is
finitely presented over Ag. Namely, let (m;);cr be a finite generating system of M (E) over R|[t]. Using
it as a generating system over Ar we obtain an epimorphism p: Af% — M(E). Since Ap is a finite
free R[t]-module, also AL is a finite free R[t]-module and so the kernel of p is a finitely generated
Rt]-module, whence a finitely generated Ar-module. This shows that M(E) is a finitely presented
Apr-module. From [EGAl IV3, Théoreme 11.3.10] it follows that M (E) is finite locally free over Ag,
because for every point s € Spec R the finite A, )-module M(E) ®r k(s) is a free x(s)[t]-module and
hence a torsion free and flat A, ,-module. Its rank is 7 as can be computed by comparing the ranks
of A and M(E)®pg R over R'[t]. This proves that E is an abelian Anderson A-module of dimension
1 and rank r over R.

Conversely let E = (E, ¢) be an abelian Anderson A-module of dimension 1 and rank r over R. Let
R — R’ be a faithfully flat ring homomorphism and let a: E X g Spec R' == G, g be an isomorphism
of F,-module schemes as in Definition [[L(a)l For a € A write

¢, = sz(a)'rz = 0409%004_1 € EndR’—groups,]Fq—lin(Ga,R’) = R,{T}y

where n(a) € Ny and b;(a) € R'. For a € F, we obtain ®, = y(a)7°. For t := a € A\TF, we consider A
as a finite free Fy[t]-module of rank —[F : Fy]orde(a) by Lemma[l4l Then M (E) is a finite locally
free R[t]-module of rank r(a) := —r [Fo : Fy] ords(a) by condition |(c)| of Definition Let p C R/
be a prime ideal, set k = Frac(R'/p), and consider the abelian Anderson A-module E X r Spec k over
k and the free k[t]-module M (E) ®r k = M(E x g Speck) of rank r(a). By an argument similarly
to our claim (B.0) we see that deg, (®q @r/ 1) = r(a), that is b, (a) ® 1 € k* and bi(a) ® 1, = 0
for all i > r(a). This implies that b,(q)(a) € (R')* and b;(a) is nilpotent for all i > r(a) by [Eis95,
Corollary 2.12]. By Lemma we may change the isomorphism « such that &, = Z:iao) bi(a)7t
with by(q)(a) € (R')* for one a € A, and by Lemma this then holds for all a € A, because
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O, P, = D, = D P,. By condition of Definition we have bg(a) = v(a). Thus E x g Spec R is
a Drinfeld A-module of rank r over R’ in standard form.

It remains to show that we can replace the faithfully flat covering Spec R* — Spec R by a Zariski
covering. For this purpose consider R” := R’ ® g R’ and the two projections pr;: Spec R’ — Spec R’
onto the i-th factor for i = 1,2. Then h:= Yoo him" := pricopria™" € R"{r}* satisfies hg € (R")*
and h; is nilpotent for all ¢ > 0; see [Mat96], Proposition 1.4]. By Lemma[3.8(b)|the equation prj®,oh =
hopri®, implies that h; = 0 for alli > 0 and h = hg € (R")* C R"{r}*. The cocycle h := (Spec R’ —
Spec R, h) defines an element in the Cech cohomology group H}pqc(Spec R,G,,). By Hilbert 90, see
[Mil80l Proposition II1.4.9] we have ﬂjlcpqc(Spec R,G,,) = fIlzar(Spec R,G,,). This means that there
is a Zariski covering Specﬁ — Spec R, where Spec§ = ][, Spec EZ is a disjoint union of open affine
subschemes Spec R; C Spec R, and a unit h = (hij)i; € (R®g R)* = [[; ;(R; ®r R;)*, such that
(Specé — Spec R, l~1) = h. Let E be the smooth affine group and F,-module scheme over Spec R with
B E‘Specﬁi =+ G, p. and B = hijoB; on Spec R; @ R;. Then over Spec R'®@rR =], Spec R ®gr R;
we have an isomorphism & := (8, toa);: E = E. Let p;: Spec(R’@Rﬁ)@JR(R’@RE) — Spec R'®pR
be the projection onto the i-th factor for s = 1,2. Then pg&op’f&_l = (hi_jlh)m = 1. This shows that &
descends to an isomorphism &: E ~ E over Spec R by [BLR90, §6.1, Theorem 6(a)]. On Spec EQ now
pioa: E == G_ 5 is an isomorphism of F-module schemes. Moreover @, := ,Bidogpaod_l,@i_l € Ri{r}

satisfies O, ® 1 = P, ® 15 in (R ®gr R;)){r} D R;{r} and by what we proved for ®, above, this

implies that E is a Drinfeld A-module of rank r over R which by R and (B; o &); is put in standard
form. O

4 Review of the finite shtuka equivalence

In preparation for our main results in Sections [ and 6] we need to recall Drinfeld’s functor [Dri&7,
§2] and the equivalence it defines between finite F,-shtukas and finite locally free strict F,-module
schemes; see also [Abr06], [Tag95) § 1], [Lau96, § B.3] and [HS15| §§3-5].

Definition 4.1. A finite F,-shtuka over R is a pair V = (V, Fy/) consisting of a finite locally free R-
module V on R and an R-module homomorphism Fy : 6*V — V. A morphism f: (V, Fy) — (V', Fy/)
of finite Fy-shtukas is an R-module homomorphism f: V — V' satisfying f o Fyy = Fyr oo™ f.

We say that Fy is nilpotent if there is an integer n such that F{} := Fyoo*Fyo.. .oa("_l)*Fv =0.
A finite F,-shtuka over R is called étale if Fy is an isomorphism. If V = (V, Fy) is étale, we define
for any R-algebra R’ the T-invariants of V over R’ as the Fg-vector space

VI(R) = {ve@V®@rR:v=Fy(opv)}. (4.1)

Recall that an R-group scheme G = Spec B is finite locally free if B is a finite locally free R-
module. By [EGAl I, Proposition 6.2.10] this is equivalent to G being finite, flat and of finite
presentation over Spec R. Every finite locally free R-group scheme G = Spec B is a relative complete
intersection by [SGA 3| I1I1.4.15]. This means that locally on Spec R we can choose a presentation
B = R[Xy,...,X,]/I where the ideal I is generated by a regular sequence; compare [EGAl TV,
Proposition 19.3.7]. The zero section e: Spec R — G defines an augmentation ep := ¢*: B — R
of the R-algebra B. Set Ip := kerep. For the polynomial ring R[X]| = R[Xy,..., X,] set Ipx) =
(X1,...,Xy) and egx): R[X] - R, X, — 0. Faltings [Fal02] and Abrashkin [Abr06] consider the
deformation B® := R[X]/(I-I rlx]) and the canonical epimorphism B’ — B. They remark that there
is a unique morphism

N: B — (Be®rB) = RX®1,10X]/U®1+1®)(Igx®1+1® Igy)
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lifting the comultiplication A: B — B®pg B and satisfying (id s ®633) oA’ = idp, = (eljg ® ide)OAb,
where €% : B’ — R is the augmentation map; see [Abr06, § 1.2] or [IS15, Remark after Definition 3.5].
It satisfies A°(z) —2®1—1®x € I @I forall x € Iy,. Set G = (G, G”) := (Spec B, Spec B”). The
co-Lie complex of G over SpecR (that is, the fiber at the zero section of G of the cotangent complex;
see [[I72, § VIL.3.1]) is the complex of finite locally free R-modules of rank n

d
05/ Spec R 0 — (I/I*)®B,es B == Qpixi/r ORX) eppg B — 0 (4.2)

concentrated in degrees —1 and 0 with d being the differential map. Note that (I/1%) ®p ., R =
ker(B* — B) and Q}B[X]/R ORIX], ey BB = ker(e’)/ ker(e’3)? can be computed from (B, B”). Up to
homotopy equivalence it only depends on G and not on the presentation B = R[X]/I. The co-Lie
module of G over R is defined as wg := HO(EQ: / Spec ) = coker d. We can now recall the definition of
strict Fg-module schemes from Faltings [Fal02] and Abrashkin [Abr06]; see also [HS15, §4].

Definition 4.2. Let (G,[.]) be a pair, where G = Spec B is an affine flat commutative group scheme
over R which is a relative complete intersection and where [.]: F; — Endg groups(G), @ +— [a] is a
ring homomorphism. Then (G, [.]) is called a strict Fy-module scheme if there exists a presentation
B = R[X)/T and a lift [.]": F, — Endpalgebras(B’), @ + [a]’ of the F-action on G, such that
the induced action on Ké /Spec R is equal to the scalar multiplication via v: F, — R, and such that
(1’ = idp and [0 = €%, as well as [ad]’ = [a]’ o [a)* and [a + a]> = m o ([a) ® [a]’) o A", where
m: (B ®g B)” — B’ is induced by the multiplication map B’ @z B* — B’ in the ring B® and the
homomorphism [a)’ ® [@]’: B> ®g B* — B’ ®g B’ induces a homomorphism (B ® B)’ — (B ®g B)"
denoted again by [a]” ® [a]’. If G is finite locally free, such a lift a + [a]> then exists for every
presentation and is uniquely determined by [HS15, Lemmas 4.4 and 4.7].

Example 4.3. The group scheme Gi  is a strict Fg-module scheme for any d, because we can choose
B = R[X1,...,Xg) and so I = (0) and B* = B, and a € F, acts as [a]*X; = a - X;. Moreover, every
Fy-linear group homomorphism (Gfi R GZ: g is strict in the sense of [Fal02, Definition 1], meaning

that the homomorphism lifts to a homomorphism between the B” which is equivariant for the [F,-action
b

via [.]".
Lemma 4.4. Let G be a finite locally free group scheme over R, let Fq — Endpg_groups(G) be a ring
homomorphism, and let R — R’ be a faithfully flat ring homomorphism. Then G is a strict Fg-module
scheme if and only if G xg R is.

Proof. Let pr: Spec ' — Spec R be the induced morphism and let pr;: Spec R’ ®g R’ — Spec R’
be the projection onto the i-th factor. Let G = Spec B, let R'[X] — B ®r R’ be a presentation,
and let F, — EndR_algebras((B QR R’)b), a +— [a]” be a lift of the F,-action on G as in Definition [£.2]
which makes G xp R’ into a strict Fg-module scheme over R'. Moreover, let f: R[Y] — B be an
arbitrary presentation and let G = (Spec B, Spec R[Y]/(Y)ker(f)) be the corresponding deformation.

By [HS15, Lemmas 4.4 and 4.7] there exists a unique lift a — mb on the deformation G x g R’ = pr*g .
By the uniqueness the two lifts prﬂ?ﬂb and prgmb on the deformation prj pr*g = pr3 pr*g coincide.
By faithfully flat descent [BLRI0, § 6.1, Theorem 6] this lift descends to a lift on the deformation g ,
which makes G into a strict Fj-module scheme over R. O

To explain the equivalence between finite F,-shtukas and finite locally free strict IF,-module schemes
over R we recall Drinfeld’s functor.

Definition 4.5. Let V = (V, Fy/) be a pair consisting of a (not necessarily finite locally free) R-module
V and a morphism Fy : 0*V — V of R-modules. Following Drinfeld [Dri87, § 2] we define

Dr,(V) := Spec (630 Symp V) /I
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where the ideal I is generated by the elements v®? — Fy (o}v) for all v € V. (Here v®? lives in
Sym?V and Fy(oiv) in Sym' V.) Then Dr,(V) is a group scheme over R via the comultiplication
A:v—v®1+1®v and an Fi-module scheme via [a]: v — av for a € F,. It has a canonical
deformation

Dry(V)’ := Spec (@0 Symp V) /(I - Ip),

where Iy = ,,~; Symp V is the ideal generated by the v € V. This deformation is equipped with
the comultiplication A°: v — v ® 1 + 1 ® v and the F-action [a)’: v + av. We set Dry(V) =
(Dr,(V),Dry(V)?). On its co-Lie complex [a] acts by scalar multiplication with a because (av)®? —
Fy (o} (av)) = a9(v®1—Fy (o}v)). Therefore Dry(V) is a finite locally free strict Fg-module scheme if V
is a finite locally free R-module. Every morphism (V| Fy/) — (W, Fyy), that is, every R-homomorphism
f:V = W with foFy = Fy oo*f, induces a morphism Dr,(f): Dry(W, Fy) — Dry(V, Fy/). So Dr,
is a contravariant functor. If f is surjective then Dr,(f) is a closed immersion.

Conversely, with a (not necessarily finite locally free) F,-module scheme G over R we associate the
pair M (G) := (My(G), Far,(c)) consisting of the R-module

MQ(G) = HomR—groups,]Fq—lin(GyGa,R)

and the R-homomorphism Fy; qy: 0" My(G) — My(G) which is induced from M,(G) — My(G),
m +— Froby g, ,om. Every morphism of Fj-module schemes f: G — G’ induces an R-homomorphism
M, (G") = M (G), m" — m’o f. Note that by an argument as in Remark B.3] we have M (G) ®r S =
M (G Xspec g Spec S) for every R-algebra S.

There is a natural morphism V' — M (Dry(V)), v = f,, where f,: Dry(V) — Gur = Spec R[¢]
is given by f;({) = v. There is also a natural morphism of group schemes G — Dr, (M, (G)) given

by @ Sym} My(G)/I — I'(G,Ocq), m — m*(§), which is well defined because Fy, (q)(c*m)*(§) =
n>0

(Frobg g, zom)*(§) = m*(£7) = (m*(¢))".
Example 4.6. For example if E = (E, ) is an abelian Anderson A-module of dimension d, then
M (E) = (My(E), Fi,(p)y) was denoted M (E) = (M(E), Ta(g)) in Definition .2l There is a canonical

isomorphism £ -~ Dr, (M (£)) which is constructed as follows. We set G, g = Spec R[¢] and consider
for each m € My(E) = Hompg_groups,Fo-lin(E, Ga,r) the element m*(§) € I'(E, Op). We claim that

(@0 Symp My(E)) / (m®? = Fary ) (03, (mym): m € My(E)) == T(E,Op), m=m*(§) (4.3)

is an isomorphism of R-algebras. To prove that it is an isomorphism we may apply a faithfully
flat base change R — R’ over which we have an Fg-linear isomorphism a: E @r R’ ~ Gg R =

Spec R'[z1,...,x4]. Let m; := prioa € My(E) ®g R’ where pr;: GZ,R’ — Gg p is the projection
onto the i-th factor. Then M,(E) ®r R' = @% , R'{r}-m; by Remark B3 and the inverse of (3

sends a*(z;) to m;. This is indeed the inverse, because (£3) sends each of the generators 7/m; =
Frobg; g, ,om; of the R'-module My(E) @ R’ to (Froby g, ,om;)*(§) = mi(£9) = o*(z;)?, and this

. . J .
inverse sends it back to m;@q = Frob g, ,omi = 7/m,;.

The following theorem goes back to Abrashkin [Abr06, Theorem 2]. Statements |(b)H(d)| were
proved in [HS15, Theorem 5.2].

Theorem 4.7. (a) The contravariant functors Dry and M, are mutually quasi-inverse anti-equiva-
lences between the category of finite Fy-shtukas over R and the category of finite locally free strict
Fy-module schemes over R. Both functors are F,-linear and exact.

Let V. = (V, Fy) be a finite Fy-shtuka over R and let G = Dry(V). Then
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(b) the Fy-module scheme Dry(V) is étale over R if and only if V is étale.

(¢) the natural morphisms V. — M (Dry(V)), v = f, and G — Dry(M ,(G)) are isomorphisms.

(d) the co-Lie complex E;Tq(v)/s 1s canonically isomorphic to the complex 0 — o*V oy .

5 Isogenies

Definition 5.1. A morphism f € Hompg(E, E’) between two abelian Anderson A-modules E and E’
over R is an isogeny if f: E — E’ is finite and surjective. If there exists an isogeny between E and E’
then they are called isogenous. (Being isogenous is an equivalence relation; see Corollary below.)

An isogeny f: E — E' is separable if f is étale, or equivalently if the group scheme ker f is étale
over R. Indeed, since f is flat by Proposition it suffices to see that all fibers of f over E’ are
étale by [BLR90, §2.4, Proposition 8]. Now all fibers are isomorphic to ker f by the remarks after

@G,

We recall the following well known criterion for being an isogeny. For the convenience of the reader
we include a proof.

Proposition 5.2. Let f: E — E' be a morphism between two affine, smooth R-group schemes E
of relative dimension d and E' of relative dimension d', such that the fibers of E' over all points of
Spec R are connected. Then the following are equivalent:

(a) f is finite and faithfully flat, that is flat and surjective; see [EGAL 07.6.7.8],
(b) ker f is finite and f is flat,
(c) ker f is finite and f is surjective,
(d) ker f is finite and d = d',
(e) ker f is finite and f is an epimorphism of sheaves for the fpgc-topology.
If R =k is a field, then these conditions are equivalent to
(f) [ is surjective and d = d'.

Proof. We show that @ implies all other conditions. This is obvious for @ and @ To prove
that d = d' let m C R be a maximal ideal and consider the base change to k = R/m. Then
fxidy: Exgrk — E'x gk is a finite surjective morphism, and hence d = dim Ex gk = dim E' x gk = d’;
see [Eis95, Corollary 9.3].

Conversely, clearly We now show |(f)={(c)| and |(b)={(c)={(d)=1(b)={(a)l Gener-
ally note that by the remarks after (8I]) all non-empty fibers of f are isomorphic to ker f.

First assume and note that when R = k is a field, the ring I'(E’, Og/) is an integral domain
by our assumptions on E’. The surjectivity of f implies that f*: T'(E’,Og/) — I'(E, OF) is injective
of relative transcendence degree d — d’ = 0. Since all fibers of f are isomorphic to ker f, [Eis95,
Corollary 14.6] implies that ker f is finite over Speck and holds.

We next show for general R that implies Namely, f is of finite presentation by [EGA| IV,
Proposition 1.6.2(v)], because E and E’ are of finite presentation over R. Therefore @implies that f
is universally open by [EGA| IVy, Théoréme 2.4.6]. In particular (f x idg)(E xrk) C E' xgk is open
for every point Speck — Spec R of Spec R. Since E’ x g k was assumed to be connected, it possesses
no proper open subgroup, and hence f x idy is surjective. This establishes

To prove that implies @ again consider the morphism f x idy: Exgk — E' x gk over a point
Spec k — Spec R of Spec R. Since f x idy is surjective, f*® idg: T'(E',Op/)@rk — T'(E,Op) gk is
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injective, because otherwise its kernel would define a proper closed subscheme of E’ x gk through which
f x idy factors. Since all fibers of f are isomorphic to ker f, and hence finite, [Eis95, Corollary 13.5]
shows that ' = dimT'(F',Op/) ®r k = dimT'(E,Op) ®r k = d.

We prove the implication [(d)F=={(b)] Consider the fiber f x idx: E Xp k — E’' X k over a point
Speck — Spec R of Spec R and the inclusion (I'(E',Op) ®@p k)/ker(f* @ idy) — I'(E,Op) ®r k.
Since all fibers of f are finite, [Eis95, Corollary 13.5] implies dimT'(E',Op) @ k = d = d =
dimI(E,0p) @p k = dim(T'(E', Og/) @r k) / ker(f* ® idg). It follows that ker(f* @ idy) = (0) and
f*@idg: T(F,O0p)®rk — T'(E,Op) ®@gk is injective. Let m C T'(E, Og) ®g k be a maximal ideal.
Then (f*® id) ' (m) C T(E',Og/) ®g k is a maximal ideal by [Eis95, Theorem 4.19]. Since the fiber
of f over m is finite, [Eis95, Theorem 18.16(b)| implies that f ® idy is flat at m. Since E and E’ are
smooth over R it follows from [EGAL IV3, Théoreme 11.3.10] that f is flat.

Finally we show that @ and together imply @ By and the morphism f: E — FE’' is
faithfully flat. Whether f is finite can by [EGAL IVy, Proposition 2.7.1] be tested after the faithfully
flat base change F — E’. By (3.)) the finiteness of the projection E X gr E — E onto the first factor
follows from the finiteness of ker f over Spec R. This proves @ O

Corollary 5.3. Let f € Homg(E, E') be an isogeny. Then
(a) the kernel ker f of f is a finite locally free group scheme and a strict Fy-module scheme over R.
(b) E' is the quotient E/ker f.

Proof. @ Since f is flat of finite presentation by [EGAL IV;, Proposition 1.6.2(v)], ker f is flat of
finite presentation over R. Since it is also finite, it is finite locally free. Over a faithfully flat R-algebra
R’ both E and E’ become isomorphic to powers of G, g/ and hence are strict Fg-module schemes by
Example 3] Therefore (ker f) @ g R’ is a strict F-module scheme over R’ by [Fal02, Proposition 2]
and ker f is a strict F,-module scheme over R by Lemma [4.4

[(b)] This follows from [SGA 3| Théoreme V.4.1]. O

Proposition 5.4. (a) If E and E' are Drinfeld A-modules over R with Spec R connected and f €
Homy(E, E'), then f is an isogeny if and only if f # 0.

(b) If this is the case then f is separable if and only if Lie f € R*.

Proof. @ Let f: E — E’ be an isogeny, then f # 0 because the zero morphism is not surjective.
Conversely let f # 0. By Propositionwe must show that ker f is finite. This question is local on
Spec R, so we may assume that F = F' = G, g and that £ = (E,¢) and E' = (E', ) are in standard
form. Let t € ANF,, and hence deg, ¢; > 0 and deg, ¢y > 0. By Lemmaapplied to fop; = of
we have f =3I fir® € R{r} with f, € R*. It follows that ker f = Spec R[z]/(3_1, f;z?") which is
finite over R.

[(b) By the Jacobi criterion [BLRI0, §2.2, Proposition 7], ker f = Spec R[z]/(> i, fiz?') is étale if and
onlyifLief:fO:ag—(f)eRx. O

Next we turn to A-motives.

Definition 5.5. A morphism f € Hompg (M, N) between A-motives over R is an isogeny if f is injective
and coker f is finite and locally free as R-module. If there exists an isogeny between M and N then
they are called isogenous. (Being isogenous is an equivalence relation; see Corollary below.) A
quasi-morphism f € QHomp(M, N) which is of the form g ® ¢ for an isogeny g € Homg (M, N) and
a c € @ is called a quasi-isogeny.
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If f is an isogeny and M and N are effective, then the snake lemma yields the following commutative
diagram with exact rows and columns

0 0 ker(Tcokerf) (5.1)
o*f
0 o*M o*N o*(coker f) ——0
T™M TN Tcoker f
0 M f N coker f ———0

0 —— ker(Teoker f) — coker 7y —— coker Ty —— coker(Teoker ) — 0.

Namely, by local freeness of coker f the upper row is again exact and identifies o*(coker f) with
coker (o™ f).

An isogeny f: M — N between effective A-motives is separable if Teoker f: 0*(coker f) — coker f
is an isomorphism.

Remark 5.6. If f € Homp(M,N) is an isogeny and S is an R-algebra, then the base change f ®
idg € Homg(M ®r S,N ®r S) of f to S is again an isogeny. This follows from the exact sequence

0— M BEN N — coker f — 0 because coker f is a flat R-module.

Example 5.7. For 0 # a € A the morphism a: M — M is an isogeny with coker a = M/aM. Let M
be effective. Then a is separable if and only if ker(7¢okera) = coker(Teokera) = (0). That is, if and only
if multiplication with a is an automorphism of coker 7ps. Since a — ~y(a) is nilpotent on coker 7a; this
is the case if and only if v(a) € R*. For the corresponding result about abelian Anderson A-modules

see Corollary B.1T1

Proposition 5.8. Let M and N be A-motives over R. If M and N are isogenous then tk M = rk N,
and if, moreover, M and N are effective, then rkgcoker Ty = rkgcoker 7y. Conversely assume
tkM = rk N and let f € Homg(M,N) be a morphism such that coker f is a finitely generated R-
module. Then f is an isogeny.

Proof. Let f: M — N be an isogeny. Since M, respectively coker 1), are finite locally free over Ag,
respectively over R, we can compute their ranks by choosing a maximal ideal m C R and applying the
base change from R to k = R/m. Then f® idy is still an isogeny by Remark Since coker(f ® idy)
is a torsion Ag-module it follows that

tkM = rka, M = 1ka, (M ®r k) = tka, (N ®rk) = tka, N = rkN.

If M and N are effective, we consider diagram (5.1I) for the isogeny f ® idg. Since coker(f ® idy)
and o* coker(f ® idy) are finite dimensional k-vector spaces of the same dimension, the right vertical
column and the bottom row of diagram (G.I]) imply that

rkg coker Tpy = dimy, coker(7y; ® idg) = dimg coker(7y ® idg) = rkg coker 7y .
The converse follows from Lemma, O

After these preparations we are now able to formulate and prove our main theorem.

Theorem 5.9. Let f € Homg(E, E') be a morphism between abelian Anderson A-modules and let
M(f) € Homg(M', M) be the associated morphism between the associated effective A-motives M =
M(E) and M' = M(E'). Then
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(a) f is an isogeny if and only if M (f) is an isogeny.
(b) f is a separable isogeny if and only if M(f) is a separable isogeny.
(c) If f is an isogeny there are canonical A-equivariant isomorphisms of finite IFq-shtukas
(coker M (f), Teoker m(f)) ==+ M, (ker f)
and of finite locally free R-group schemes

Dr,(coker M(f)) == ker f.

Proof. In the beginning we do neither assume that f nor that M(f) is an isogeny. We denote by ¢
the inclusion ker f < E. Consider the Az-homomorphism M (E) — M (ker f), m +— m o, which is
compatible with the Frobenii 7/(g) and Fiy, (er )- Since m = M (f)(m’) = m/o f implies m’o for = 0,
it factors over

coker M(f) — M (ker f), mmod im M(f)+— mour. (5.2)

On the other hand we claim that there are A-equivariant morphisms
Dr, (M, (ker f)) — Dry(coker M(f)) < ker f — E.. (5.3)

where the last two are closed immersions. The first morphism is obtained from (5.2]). Moreover,
the epimorphism M (E) — coker M (f) induces by Example an A-equivariant closed immersion
a: Drg(coker M(f)) < Dry(M(E)) = E. We compose it with f: E — E’ and show that the com-
position factors through the zero section ¢’: Spec R — E’. This will imply that « factors through
ker f. We can study this composition after a faithfully flat base change R — R’ over which we have
an Fy-linear isomorphism 8: E' ®p R’ = Ga r =9SpecR'[y1,...,yal. Let m} :=priof e M(E")@r R
where pr;: Gg r — Gqor = Spec R[{] is the projection onto the i-th factor. Then prf(§) = y; and
o f*5* (i) = a frmi(€) = a* o M(f)(m})*(€) = 0 because M(f)(m}) = 0 in coker M(f).

@ Now assume that f is an isogeny. Then ker f is a finite locally free group scheme over R, and
a strict Fy-module scheme by Corollary [5.3 So M (ker f) is a finite locally free R-module by
Theorem M and the morphism Dr, (M (ker f)) — ker f in (53) is an isomorphism. This shows
that Drgy(coker M (f)) == ker f. We next show that the map (5.2)) is an isomorphism. Its cokernel
is a finite R-module because M (ker f) is. We apply again a faithfully flat base change R — R
such that E @ R’ = G4 o and E’ ®r R = Gg - Then f is given by a matrix F € R/{r}¥*d by
Lemma By falthfully flat descent and by Nakayama s lemma [Eis95, Corollaries 2.9 and 4.8] the
map (0.2]) will be surjective if for all maximal ideals m’ C R’ its tensor product with k := R'/m’ is
surjective. By Remark B.3] and its analog for M (ker f) the tensor product of (5.2) with k equals
coker M (f x idg) — Mq(ker(f X idk)), where f x idy: E xgpk — E' xg k is given by the matrix
F := F ® 1}. In particular ker(f x idg) = Speck[x1,...,2q)/(f*(ye): 1 < £ < d). Since ker f is
finite, k[x1,...,zq]/(f*(ye): 1 <€ < d) is a finite dimensional k-vector space. For fixed 4 this implies
that {x“x x! ¢’ . } is linearly dependent and there is a positive integer N and b;, € k such that

z’z’

n

z bi g “in K[z, ..., 24 /(f*(ye): 1 < £ < d). We introduce the new variables Zip = T

for 1 <3 < d and 0 <n < N. Then f*(y,) is a k-linear relation between the z;,. Furthermore
klzy,...,zq)/(f*(ye): 1 <€ <d) = kl[zin:1<i<d, <n<N]/I with

(f*(yz) ¢ Ebnzm, Zin —zi7n+1:1§z’§d,0§n<N).
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d N
Let Z1,...,%, be a k-basis of (D @ k-zin)/(f*(ye): 1 < £ < d). Then there are elements ¢;; € k for
i=1n=0
1 <i4,5 < r such that

K, zd/(F ) 1< < d) = k3. 5]/ (3 — Y ey5:1<i<r) = B.
j=1

Moreover, the group law on ker f is given by the comultiplication A*: B — By B, A*(Z;) = z; @ 1+
1 ® z; and the F-action is given by px: B — B, ¢3(%;) = v(A\)-Z;.
We now are ready to compute M, (ker(f x idg)) from B3). If G, = Speck[¢] then every

element m € Mq(ker(f X idk)) satisfies m*(§) = ) {02: y dey,. 0, zfl - ... 2t with de, .0 € k.
i€10...q—
Since the 2{' - .... % form a k-basis of B, the conditions A*m*(€) = m*(€) ® 1 + 1 ® m*(£) in

B ®j B and oym*(§) = m*(y(\)-§) = ’y()\) m*(§) in B for A € F, imply as in Lemma that
m*(§) =di0..0%1+ ...+ do..0,1-Z. Since Z; is a k-linear combination of the z;, = :E;]-n the morphism
m: Expk — Gqp with m*(§) = dio..0-Z1 + ...+ do...0,1-2 belongs to M(E xpg k) and maps to m
under the map coker M (f x idg) — M, (ker( fx idk)). This proves that (5.2]) is surjective.

In order to show that (5.2)) is injective let m € M(E) be an element with m ot = 0. By [SGA 3|
Théoréme V.4.1] the morphism m: E — G, g factors through E/ker f == E’ (use Corollary
in the form m = m’ o f for an m’ € M(E’). This shows that m mod im M (f) = 0 in coker M(f). All
together we have proved that coker M(f) == M (ker f) is a finite locally free R-module. Moreover,
M(f) is injective, because if m’ € M(E") satisfies m’ o f = M(f)(m’) = 0 the surjectivity of f implies
m’ = 0. More precisely, f is an epimorphism of sheaves for the fpgc-topology by Proposition
Now the injectivity of M(f) follows from the left exactness of the functor Homp.groups,Fy-lin( s » Ga,R)-
This proves that M(f) is an isogeny, and it also proves

Conversely assume that M(f) is an isogeny. Then d := dim £ = dim E’ by Theorem and Proposi-
tion 5.8l We prove that ker f is finite. For this purpose we apply a faithfully flat base change R — R’
such that £ @ R’ = GZ,PJ = Spec R'[x1,...,24] and E' ®p R’ = GZ’R, = Spec R[y1,...,yq]. Also

d d
when we write G, g = Spec R'[¢] then M(E xg R') = @ R'{r}-m; and M(E' xr R') = @ R'{r}-m
=1 i=1

where m}(§) = x; and m,*(§) = y;. Consider the epimorphism of R-modules
4 g
EB @D R -m"m; = M(E xg R')— coker M(f ® idps).
0<n

Since coker M (f ® idg/) is finite locally free over R, and hence projective, this epimorphism has a
d N

section s whose image lies in @ @@ R’-7"m; for some N. It follows that 7V im; — s(5(7V*+1my))
i=1n=0

maps to zero in coker M (f ® idg/). That is, there are elements b; ; , € R and m; € M(E' x g R') with

d N
N m; — 30 5T byt my = M(f)(m}). Applying this equation to ¢ yields
j=1n=0

d N
- ZZ i,4,n $q = *ffbé*(g) € f*R/[ylv"'vyd] = f*F(ElvoE’) ®RR/-

Thus f x idr: E xg R’ — E' xg R’ is finite. By faithfully flat descent [EGAl TV5, Proposition 2.7.1]
also f is finite. By Proposition this proves that f is an isogeny and establishes @

Finally follows from |(c)| and Theorem A.7(b)} O
Corollary 5.10. If E and E' are isogenous abelian Anderson A-modules then Tk E =1k E’.
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Proof. This follows directly from Theorems [3.5], and Proposition 5.8 O

Corollary 5.11. Let E be an abelian Anderson A-module over R and let a € A. Then ¢,: E — E is
an isogeny. It is separable if and only if v(a) € R*.

Proof. The assertion follows from Theorem and Example (.7l The criterion for separability can
also be proved without reference to A-motives; see our proof of Theorem [6.4|(b)| below. O

We next come to our second main result.

Theorem 5.12. Let M and N be two A-motives over R and let f € Homgr(M,N) be a morphism.
Then the following are equivalent:

(a) f is an isogeny,

(b) there is an element 0 # a € A such that f induces an isomorphism of Ag[t]-modules M[1] =~
N[3].

a

In particular, a quasi-morphism f € QHomp(M,N) is a quasi-isogeny if and only if it induces an
isomorphism f: M[L] == N[L] for an element a € A\ {0}.

Proof. |(b)={(a)| Clearly rk M = rk N. Since coker f is a finitely generated Agr-module, (coker f) ® 4
A[] = (0) implies that a™ - coker f = (0) for some positive integer n. Therefore, coker f is a finitely
generated module over Ap/(a™) = A/(a™) ®r, R, whence over R. So|(a)]follows from Proposition 5.8

(a)==1(b)| If R is a field this was proved in [BHIIl Corollary 5.4] and also follows from [Pap08|
Proposition 3.4.5] and [Tae09), Proposition 3.1.2]. We generalize the proof to the relative situation.

1. If f is an isogeny, then coker f is a finite locally free R-module, which we may assume to be
free after passmg to an open affine covering of Spec R. Let t € A \ I, and consider the finite flat
homomorphism A := F qlt] — A from Lemma [[.4] under which we view M and N as A-motives by
restriction of scalars. That is, we view M and N as locally free R[t]-modules of rank 7 = rk M -rk; A
and 7y and 7y as R[t][%]—isomorphisms. By multiplying both 75y and 7 with (¢ —~(¢))¢ for e > 0
we may assume that M and N are effective A-motives without changing the isogeny f: M — N. Let
a = anngp(coker f) = ker(R[t] — Endg(coker f)) be the annihilator of coker f. By the Cayley-
Hamilton theorem [Eis95, Theorem 4.3] (applied with I = R), the monic characteristic polynomial
of the endomorphism ¢ of coker f lies in a. This shows that R[t]/a is a quotient of the finite R-module
R[t]/(xt). In particular the closed subscheme V := Spec R[t]/a of A}, = Spec R[t] is finite over Spec R.
On its open complement f: M — N is an isomorphism.

We now consider the exterior powers A”M and A"N of the R[t]-modules M and N and set £ :=
(N"M)Y @ ATN. These are invertible R[t]-modules. The isogeny f induces a global section A™f of
the invertible sheaf £ on A which provides an isomorphism OAl ~5 £, 1 = ATf on A N V.
Likewise we obtain global sections ATc* f, resp. A"Tar, resp. A'Tn Of the invertible sheaves o* L, resp.
(NTo*M)Y @ ATM, resp. (N'o*N)¥ @ ATN by the effectivity assumption on M and N. Diagram (5.1))
implies that there is an equality of global sections

ANfR N Ty = Ny @ ATo* f (5.4)

of (N"e*M)" @ "N = L& (No*M)" @ AN"M) = ((AN"6*N)" @ A'N) @ o*L.
Since V is proper over Spec R and the projective line ]P’}[z is separated, the map V — A}% — ]P’}[z is a
closed immersion which does not meet {oco} xr, Spec R, where {oo} = IP’l ~ Al Thus we may glue £

with the trivial sheaf Opl v on PL \ V along the isomorphism Opl S ﬁ 1 »—) AT f over AL\ V. In
this way we obtain an 1nvert1ble sheaf £ on the projective line IP’l By replacing £ with £® O]Pn (m-00)
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for a suitable integer m we may achieve that £ has degree zero (see [BLRI0, § 9.1, Proposition 2]) and
induces an R-valued point of the relative Picard functor Picgﬂ % cf. [BLRIO0, §8.1]. Since Pic%l /R, is
trivial, [BLR90, § 8.1, Proposition 4] shows that £ = K ®p OP1 for an invertible sheaf K on Spec R.
Replacing Spec R by an open affine covering which trivializes K we may assume that there is an
isomorphism «: £ = RJ[t] of R[t]-modules. Let h := (A" f) € RJ[t].

2. Let d := rkg coker 73y We claim that locally on Spec R there is a positive integer ny and for every
integer n > ng an isomorphism of R[t]-modules

(N'o* M) @y ATM)T = R[t] with  (AT7a)®0" — (£ —~(2))" (5.5)

and similarly for N. To prove the claim we apply Proposition Z3(c)|to the A-motive A”M and derive
that A"mpr: A" 0" M — A"M is injective coker ATy is a finite locally free R-module, annihilated by
a power of t — y(t). Consider the exact sequence

/\FTA1® id(/\”:]%)\/

0 — A"o*M @y (N"M)Y » R[t] —> coker A"y ®@ppg (AN"M)Y — 0. (5.6)
Choose an open affine covering of Spec R[t] which trivializes the locally free R[t]-module A" M. Pulling
back this covering under the section Spec R =~ Spec R[t]/(¢t — 7(t)) < Spec R[t] gives an open affine
covering of Spec R on which we may find an isomorphism coker A"7ar ® gy (ANTM)Y == coker /\FTM-
We replace Spec R by this open affine covering and even shrink it further in such a way that coker A"
becomes a free R-module. By [Eis95 Proposition 4.1(b)] the sequence (5.6]) is then isomorphic to the
sequence

0 R[t] —L—~ R[{] coker APryy ——= 0, (5.7)

where g € R[t] is a monic polynomial of degree equal to rkz(coker A™7y7). We now tensor sequence (5.7))
over R with k := Frac(R/p) where p C R is a prime ideal. It remains exact because coker A"7ys is
free. Since k[t] is a principal ideal domain the elementary divisor theorem applied to

Tam ® idg

0 0

oc*M ®pk M ®pk coker Ty ®p k
allows to write 7y; ® idj as a diagonal matrix. This shows that coker A"ry ®p k is a k-vector space
of dimension equal to rkr(coker 7a7) =: d. Since t —~(t) is nilpotent on this vector space, the Cayley-
Hamilton theorem from linear algebra implies g mod p = (¢t — y(¢))?. In particular the coefficients of
the difference ¢’ := g — (t — v(¢))¢ lie in every prime ideal of R, and hence are nilpotent by [Eis95,
Corollary 2.12]. Therefore there is a positive integer ng with (¢')9"° = 0, whence g7 = (t — (t))?"?
for every n > ng. The ¢"-th tensor power of the isomorphism between (the left entries in) the
sequences (0.0) and (5.7)) provides the isomorphism in (5.5]). This proves the claim.

3. Since d = rkg coker 7y = rkp coker 7y by Proposition 0.8, equations (5.4]) and (5.5]) imply that for
n > 0 there is an isomorphism 3: o*£®7" =~ £®4" of R[t]-modules sending (t — y())?" (o AT £)®4
to (t —v(t))4" (AT f)®9" and hence (o* AT f)®9" to (AT f)®9" because t — (t) is a non-zero divisor. In
particular the isomorphism

a®?" o Bo (c*a®1") 7L Rlt] & 0" L% 2 £ >~ R[],

which is given by multiplication with a unit u € R[t]*, sends o(h?") = o*a®1" (ATo* f)2" to h1" =
a®4" (AT £)24" . We thus obtain the equation h?" = u - o(h?") in R[t].

By Lemma [B.I3] below, u = >+, wit’ with ug € R* and w; € R nilpotent for all i > 1. Let
R = R[vo]/(vg_luo — 1) be the finite étale R-algebra obtained by adjoining a (¢ — 1)-th root vy of
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uy'. Then there is a unit v = D i1 vit' € R'[t]* with v = u - o(v). Indeed the latter amounts to the
equations

o= Yupl,  and B = (B4 ¥ (Y
J=0 j=21
which have the solutions 3t = >~ -, (> s Z—g (U;;j )q)qn because the u; are nilpotent. Therefore

the element v™1h?" € R'[t] satisfies o(v™1h?") = v~'h?". Working on each connected component of
Spec R’ separately, Lemma [5.14 below shows that a := v~ 1h?" € F,[t] C A.

In the ring R'[t][2] the element h becomes a unit. Therefore the map a~1 o h: R'[t][1] — L[1],
1 — AT f is an isomorphism. This implies that A" f: AT M [é] — ATN [%] is an isomorphism, and hence
also f: M[L] — N[2] by Cramer’s rule (e.g. [Bou70, I11.8.6, Formulas (21) and (22)]). Thus we have
established étale locally on Spec R. Replacing a by the product of all the finitely many elements

a obtained locally, establishes @ globally on Spec R.

4. To prove the statement about quasi-morphisms f € QHomp(M, N) assume first, that f induces
an isomorphism f: M[1] = N[1] for some a € A~ {0}. Then g :=a"- f € Homg(M,N) for n >0,
because M is finitely generated. In particular g is an isogeny and f = g ® a™" is a quasi-isogeny.
Conversely, if f is a quasi-isogeny, that is f = g ® ¢ for an isogeny g € Homgr(M,N) and a ¢ € Q,
there is an element a € A \ {0} such that g: M[L] = N[L]. If d is the denominator of c it follows
that f: M[] = N[L]. O

To finish the proof of Theorem [5.12] we must demonstrate the following two lemmas.

Lemma 5.13. An element u = ), uit’ € R[t] is a unit in R[t] if and only if ug € R* and u; is
nilpotent for all i > 1.

Proof. If the u; satisfy the assertion then there is a positive integer n such that u?n =0 for all : > 1.
Therefore u?" = ugn is a unit in R[t] and so the same holds for w.

Conversely if u is a unit then wy must be a unit in R. By [Eis95, Corollary 2.12] the kernel of the
map R — Hpc r R/p where p runs over all prime ideals of R, equals the nil-radical of R. Under this
map u is sent to a unit in each factor R/p[t]. Since R/p is an integral domain, the w; for i > 1 must
be sent to zero in each factor R/p. This shows that u; is nilpotent for ¢ > 1. O

Lemma 5.14. Assume that R contains no idempotents besides 0 and 1, that is Spec R is connected.
Then R° :={x € R: 29 =z} =T,.

Proof. Let m C R be a maximal ideal and let z € R/m be the image of x. Then z¢ = Z implies that
T is equal to an element o € F, C R/m. Now e := (v — a)97! satisfies € = (z — )77 2(29 — o) =
(r — )9~ = ¢, that is e is an idempotent. Since e € m we cannot have e = 1 and must have e = 0.
Therefore t —a = (r —a)!=(z —«a)-e=0in R, thatisz = a € Fy. O

Corollary 5.15. If f € Hompr(M,N) is an isogeny between A-motives then there is an element
0# a € A and an isogeny g € Homp(N, M) with fog =a-idy and go f = a- idy. The same is
true for abelian Anderson A-modules.

Proof. Let a € A be the element from Theorem As in the proof of |(b)=={(a)| of this theorem
there is a positive integer n such a™-coker f = (0). Therefore there is a map ¢g: N — M with
go f=a"idy and fog=a" idy. This implies that g is injective, because a™ is a non-zero divisor
on N. From

fogory = a7y = Tyocdta"idy = Tyod foo¥g = formpog

and the injectivity of f we conclude that goTy = Tpr00*g and that g € Hompg(N, M). By construction
g induces an isomorphism N [%] =~ M [%] after inverting a. So ¢ is an isogeny by Theorem [5.121 The
statement about abelian Anderson A-modules follows from Theorems and O
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Corollary 5.16. The relation of being isogenous is an equivalence relation for A-motives and for
abelian Anderson A-modules.

Proof. This follows from Theorem and Corollary O

Corollary 5.17. Let v(A N~ {0}) C R* and let f € Homgr(M,N) be an isogeny between effective
A-motives M and N. Then f is separable. The same is true for isogenies between abelian Anderson
A-modules.

Proof. Consider diagram (5.1) and set K := coker(7coker £). As in the proof of Theorem [5.12] there is
an element 0 # a € A and a positive integer n with a” - coker f = (0), and hence a" - K = (0). Let e
be an integer with ¢¢ > rkg coker 7y and ¢¢ > n. Then (a® 1 —1®v(a))?" - coker 75y = (0). Therefore

0=(a®1l-12%a)" K = (¥ ®1-12va)?) K = —y(a)! K.

Since y(a) € R* we have K = (0), and since coker f and o*(coker f) are finite locally free R modules
of the same rank, [GW10], Corollary 8.12] shows that Teoker £ is an isomorphism, that is f is separable.
The statement about abelian Anderson A-modules follows from Theore O

Corollary 5.18. If f € Homgr(M,N) and g € Hompg(N, M) are isogenies between A-motives with
fog=a-idy and go f = a- idy for an a € A, then there is an isomorphism of Q-algebras
QEndp(M) = QEndg(N) given by h@b+ fohog® 2 for h € Endgr(M). O

Example 5.19. Let R be an A-ring of finite characteristic p, that is v: A — R factors through
Fp, := A/p for a maximal ideal p C A. Let ¢ € N5g be divisible by [F, : F,]. Then o™(J) =
(a®1—-1®~(@?:a € A) = J C Ag, because the elements y(a) € [F, satisfy v(a)? = y(a).
Let M = (M, 7)) be an A-motive over R. Then o”*M = (6" M,c% 1)) is also an A-motive over
R, because o), is an isomorphism outside V(¢™*J) = V(J). If M is effective, then the Ag-
homomorphism

Frpe pf i= Ty i= Tmoo™mpyo0...0 oV e M — M (5.8)

L

satisfies 7oy 0 0¥ Frye 3y = Frpe pp 0 07" 7ar. Moreover, it is injective and its cokernel is a successive

extension of the o coker 7js for i = 0,...,¢ — 1, whence a finitely presented R-module. Therefore
Fr o py € Homp (O’Z*M , M) is an isogeny, called the ¢°-Frobenius isogeny of M. It is always inseparable,
because the ¢-th power of 757, which equals Fr ¢ 5, annihilates the cokernel of Fr ¢ 5.

If M is not effective, let n € N5 be such that p” = (a) is principal. Then (e ® 1) C J and
(a®1) C 0™ 7 for all i. This shows that

Froep = = Tmootmaro... oo, O'Z*M[é] =~ M[2] (5.9)

is a quasi-isogeny in QHomp (O’Z*M , M) by Theorem [5.12], called the q‘-Frobenius quasi-isogeny of M.

Finally if R = k is a field contained in F ¢ then oM = M and Fr. v € QEnd; (M ), respectively
Fre pr € Endg (M) if M is effective. In this case, A[r] lies in the center of End,(M) and Q[n] lies in
the center of QEnd, (M), because every f € Endy(M) satisfies f o 7y = oy 0 0*f and o™ f = f. If
k = F,, the center equals A[r], respectively Q[r], and the isogeny classes of A-motives are largely
controlled by their Frobenius endomorphism; see [BH09, Theorems 8.1 and 9.1].

6 Torsion points

Definition 6.1. Let (0) # a = (a1,...,a,) C Abeanideal and let E = (E, ) be an abelian Anderson
A-module over R. Then

Eld] := ker(@ay,..an = (Pars---»Pan): B —> E")

is called the a-torsion submodule of E.
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This definition is independent of the generators (a,...,a,) of a by the following

Lemma 6.2. (a) If (a1,...,a,) C (b1,...,by) C A are ideals then ker(gp, . p,,) — ker(pq,,...an) 1S
a closed immersion.

(b) If (a1,...,ay) = (b1,...,by,) then ker(vp, . b,) = ker(pq,, . .an)-

(¢) For any R-algebra S we have Ela|(S) = {P € E(S): po(P)=0 for alla € a}.
(d) Ela] is an A/a-module via A/a — Endg(E[a]), b+ @p.

(e) Ela] is a finite R-group scheme of finite presentation.

Proof. @ By assumption there are elements ¢;; € A with a; =) y cijbj. Therefore p,, =  Pei; Pb;
and the composition of ¢y, p,, : E — E™ followed by (¢;;)ij: E™ — E™ equals @q, 4, E — E".
This proves @ and clearly @ implies @

To prove let P: SpecS — E be an S-valued point in E(S) with 0 = ¢4 (P) := ¢, o P for all
aca Ifa=(ay,...,a,) then in particular ¢,, o P =0 for i = 1,...,n. Therefore P factors through
ker Pay,....an = E[a]

Conversely let P: SpecS — El[a] be an S-valued point in E[a](S) and let a € a. By [(b)] we may
write a = (ay,...,a,) with a; = a to have Ela] = ker ¢, . 4,. Therefore p,(P) := ¢, o P = 0. This
proves
@ The relation ab = ba in A implies ¢, 0 Y, = ©p © p,. Using that the closed subscheme E[a] is
uniquely determined by it follows that the ring homomorphism A — Endg(E[a]), b — ¢u|g(q 18
well defined. If b € a then clearly ¢y|gpq) = 0 and so this ring homomorphism factors through A/a.
@ Ifa = (a1,...,ay) then Ela] = ker ¢g, . 4, is of finite presentation, because ¢q, .. g, is & morphism
of finite presentation between the schemes E and E™ of finite presentation over R by [EGA| IV,
Proposition 1.6.2]. The finiteness of Efa] follows for a = (a) from Corollaries [5.11] and [£.3] and for
general a from @ by considering some (a) C a. U

The following lemma is a version of the Chinese remainder theorem in our context.
Lemma 6.3. Let (0) # a,b C A be two ideals with a +b = A.
(a) For an abelian Anderson A-module E there is a canonical isomorphism Ela] x g E[b] = E]ab].
®

(b) For an effective A-motive M there is a canonical isomorphism M /abM =~ M /aM ® M /bM
of finite IFy-shtukas.

Proof. By the Chinese remainder theorem there is an isomorphism A/ab =~ A/a x A/b whose inverse
is given by (x4, xp) — bzq + axp for certain elements a € a and b € b which satisfy a« = 1 mod b and
b =1 mod a, and hence a + b = 1 mod ab.

@ follows directly from this, because M /aM = M ®4 A/a.

[(2)] By Lemma [6.2(a)] the addition A on E[ab] defines a canonical morphism Ela] x g E[b] < E[ab] x g
E[ab] Ny [ab]. Its inverse is described as follows. The elements a,b € A from above satisfy ab C ab
and ba C ab. By Lemma the endomorphism ¢, of E[ab] factors through E[b] and ¢ factors
through Ela]. So the inverse is the morphism (¢p, ¢q): E[ab] — E[a] x g E[b]. Indeed, for x € E[ab],
we compute ©p(x) + ©o(x) = @arp(x) = p1(x) = z, because a + b = 1 mod ab. On the other hand,
for x € Efa] and y € E[b], we compute ¢y(z +y) = pp(z) = x and @q(r + y) = @q(y) = y, because
b=1mod a and a =1 mod b. O

Theorem 6.4. Let E be an abelian Anderson A-module and let (0) # a C A be an ideal.

(a) Then Ela] is a finite locally free group scheme over Spec R and a strict Fq-module scheme.
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(b) Ela] is étale over R if and only if R-~y(a) = R, that is if and only if a + J = Ap.

(c) If M = M(E) is the associated effective A-motive then there are canonical A-equivariant iso-

morphisms
M/aM == M (Ela]) of finite Fy-shtukas and
Dry(M/aM) == Edq of finite locally free R-group schemes.
Proof. Since A is a Dedekind domain, a = pi*-...-p¢" for prime ideals p; € A and positive integers e;.

By Lemma [6.3] and the exactness of the functors Dry and M, see Theorem it suffices to treat
the case a = p°. Let A, be the localization of A at p. Since A/p® = A, /p®A, there is an element z € A
which is congruent modulo a to a uniformizer of A,. Moreover, since E[p®] is an Ay /p®Ap-module,
every ¢, with s € A\ p is an automorphism of E[p¢]. Let 0 < n < e. We denote the inclusion
E[p"] < E[p°] of Lemmal6.(a)| by in. By Lemma6.2(c)| the endomorphism ¢¢~" of E[p¢] has kernel
E[pc~"] and factors through the closed subscheme E[p"]| via a morphism je,: E[p¢] — E[p"] with
@S " =ipe0jen. We claim that je, is an epimorphism in the category of sheaves on the big fpgc-site
over Spec R, and we therefore have an exact sequence

le—n,e

0

Elpe"]

Ep"] 0. (6.1)

To prove the claim let S be an R-algebra and let P: Spec S — E[p"] be an S-valued point in E[p"](S).
Since @,e-n: E — E is an isogeny by Corollary [5.11] hence an epimorphism of fpgc-sheaves by Propo-
sition there exists a faithfully flat S-algebra S’ and a point P’ € E(S’) with ¢,e—n(P’) = P.
We have to show that P’ € E[p°](S’). For this purpose let a € p®. Then § = £(§)° in A, for
ce A, s € A~ p. We compute

pa(P) = p;l opeopmopen(P) =l opeopn(P) =0,

because z" € p™. This proves our claim and establishes the exactness of ([G.1]).

We now use that A is a Dedekind domain with finite ideal class group. This means that for
the prime ideal p C A there are (arbitrarily large) integers e such that p® = (a) is principal. Then
Ep¢] = ker ¢, is a finite locally free R-group scheme by Corollaries 511 and 5.3l If 0 < n < e then
we show that E[p"] is flat over R. Namely, using the epimorphism je,: E[p¢] — E[p"] from (GII)
and the flatness of E[p] over R, the flatness of E[p"]| will follow from [EGAL IV3, Théoréme 11.3.10]
once we show that je,, is flat in each fiber over a point of Spec R. This follows from [DG70} §III.3,
Corollaire 7.4] and so E[p"] is flat over R for all n. By Lemma this proves that E[p”] is a
finite locally free group scheme over Spec R. Moreover, it is a strict Fg-module scheme by [Fal02),
Proposition 2], because for p" = (ay,...,a,) the morphism g, . 4, is strict Fy-linear by Example [£.3]
So @ is established.

If a = p® = (a) we know from Theorem [5.9c)| applied to the isogeny ¢, and coker M (¢,) = M /aM
that holds. If 0 < n < e we use the exact sequence (6.1I]) and the fact that the functors Dr, and
M, are exact by Theorem L7l Namely, multiplication with z°~" on M /aM has cokernel M /p*~" M
and image isomorphic to M /p™ M. We obtain an exact sequence of finite F,-shtukas

Bn n

[ a@ e—
0 M/p"M —"5~ Mjabf —2"

My 0 (6.2)
with Bne 0 qepn = 27" on M /aM. Applying Dr, to (6.2]), using the exactness of Dry, and that
Dry(M/aM) = E[p¢] and Dry(2°7") = ¢¢", proves Dry(M/p"M) = E[p"]. Conversely applying
M, to (6.0, using the exactness of M, and that M /aM = M(E[p°]) and 27" = M (¢5™"), proves
M/p"M = M (E[p"]). This establishes |(c)|in general.
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@Let R-~y(a) = R, that is there are elements a1, ...,a, € aand by,...,b, € Rwith Y ;" | b;y(a;) = 1.
1

Then the open subschemes Spec R[W] C Spec R cover Spec R and it suffices to check that E[a] is
étale over Spec R[ﬁ] for each i. But there Ela] is a closed subscheme of E|a;] which is étale by
Corollary 5.11l This shows that Efa] is unramified over R. Since it is flat by (&)} it is étale as desired.

Conversely assume that R - ~y(a) C m for a maximal ideal m C R and set k = R/m. Over a field
extension k' of k we have E xp k = G¢,, = Speck/[z1,...,74). We will show that E[a] x g k" is not
étale over k' by applying the Jacobi criterion [BLR90, §2.2, Proposition 7]. Let a = (ai,...,a,). Then
Ela] = Speck'[z1,...,z4)/ (¢}, (x1,...,24): 5 =1,...,n). The Jacobi matrix is

Lie g,
_ : c (ki/)ndxd‘
Lie ¢q,,

¢y,
8:Ei

Since y(a;) = 0 in &’ each Lie,, is a nilpotent d x d matrix. Since @4, © Ya; = Pasa; = Pa; © Pa; WE
have Lie ¢, (ker Lie p,;) C ker Lie ;. Therefore all ker Lie ,, have a non-trivial intersection. This
shows that the rank of the Jacobi matrix is less than d and E[a] x g k' is not étale over £’ O

Proposition 6.5. Let M = (M, 1) be an A-motive over R of rank r and let (0) # a C A be an
ideal with R - v(a) = R, that is a + J = Ag. Let § = SpecS) be a geometric base point of Spec R.
Then M /aM is an étale finite F,-shtuka whose T-invariants (M /aM)7 (), see [@I), form a free
A/a-module of rank r which carries a continuous action of the étale fundamental group Wft(Spec R,S).

Proof. This result and its proof are due to Anderson [And86, Lemma 1.8.2] for R a field. We let
G := Res/qr, GL;, 4/4 be the Weil restriction with G(R') = GL,(A/a ®F, R') for all F,-algebras R’.
Then G is a smooth connected affine group scheme over F, by [CGP10l, Proposition A.5.9]. Thus by
Lang’s theorem [Lan56, Corollary on p. 557] the Lang map L: G — G, g + g-o*g~" is finite étale
and surjective (although not a group homomorphism if » > 1 and a # A).

Since a + J = Ag the isomorphism 7a: 0" M|gpec 45 v(7) = M|spec Ap-v(7) of M induces an
isomorphism 77/qp: 0 M/aM == M/aM and makes M /aM into a finite IFj-shtuka, which is étale.
After passing to a covering of Spec R by open affine subschemes, we may assume that there is an
isomorphism «: (A/a)" ®p, R == M/aM and then o' o Tp;/qp © 0% is an element b € G(R) and

corresponds to a morphism b: Spec R — G. The fiber product Spec R x G is finite étale over Spec R
b,G,L

and of the form Spec R’. The projection onto the second factor G corresponds to an element ¢ € G(R')
with ¢ - o*c™! = b, that is ¢ = b- oc*c. This implies a o ¢ = Tajam © 0 (o ¢), and thus a o c is an
isomorphism (A/a)" == (M /aM)™(R') := {m & M/aM ®r R': m = ma;(c};m) }. The proposition
follows from this. O

Theorem 6.6. Let E be an abelian Anderson A-module over R of rank r and let M = M(E) be its
associated effective A-motive. Let (0) # a C A be an ideal with R -~y(a) = R, that is a+ J = Ag.
Then for every R-algebra R’ such that Spec R' is connected, there is an isomorphism of A/a-modules

Ela)(R) = HomA/a((]\_J/aM)T(R/), Homp, (A/a, Fq)) ,
P — [m — [a— mopy(P)]].

In particular, if 5 = SpecQ is a geometric base point of Spec R, then E[a](2) is a free A/a-module of
rank v which carries a continuous action of the étale fundamental group W‘ft(Spec R,S).

Proof. This result and its proof are due to Anderson [And86, Proposition 1.8.3] for R a field. For
general R the proof was carried out in [BHO7, Lemma 2.4 and Theorem 8.6]. The last statement
follows from Proposition O
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7 Divisible local Anderson modules

In this section we consider the situation where p C A is a maximal ideal and the elements of y(p) C R
are nilpotent. Let ¢ be the cardinality of the residue field F, = A/p and f = [F, : F,], that is

G = q/. We fix a uniformizing parameter z € Frac(A) at p. It defines an isomorphism F,[2] =~ gp =
{iinA/p". We consider the p-adic completion A, g := {iLnAR/p" = (Fy, ®r, R)[#]. By continuity the

map -y extends to a ring homomorphism ~: Ep — R. We consider the ideals a; = (a®1— 1®’y(a)qi ta €
F,) C Ay g for i € Z/fZ. By the Chinese remainder theorem A, p decomposes

Ar = Fpes, Rl = [ Apr/a:,
i€Z/fZ

and g,% r/a; is the subset of g,% g on which a ® 1 acts as 1 ® y(a)? for all @ € F,. Each factor is
canonically isomorphic to R[z]. The factors are cyclically permuted by o because o(a;) = a;41. In
particular & := o/ stabilizes each factor and acts on it via 6(z) = z and &(b) = b4 for b € R. The
ideal J := (a®1—-1®~(a): a € A) C Ar decomposes as follows J-A\p,R/ao = (z — v(2)) and
j-A\p,R/ai = (1) for i # 0. In particular, A\pﬂ/ao equals the J-adic completion of Ag, as y(z) is
nilpotent in R; compare also [AHI14, Lemma 5.3]. We also set R((2)) := R[2][1].

Definition 7.1. A local 6-shtuka (or local shtuka) of rank r over R is a pair M = (M, Ty;) consisting
~ N1
=) T Mgl I
Ty (6 6*M) C M then M is called effective, and if Ty (0 6*M) = M then M is called étale.
A morphism of local shtukas f: (M SThp) — (M’ ,Typ) over R is a morphism of R[z]-modules
f: M — M’ which satisfies Ty 00" f = fory.

of a locally free R[z]-module M of rank r, and an isomorphism Ty &*M]|

Example 7.2. Let M = (M, 7)) be an A-motive over R. We consider the p-adic completion M ® 4,,

Ap r:=(M®a, Ap R, TM®1) = hm M /p" M. We define the local 6-shtuka at p associated with M as

Mp(M) (]\4®ARA,J Rr/00, (TM®1) ) where 7']]\;, = ryoo*rmyo...oo =D, Tt equals the J-adic

completion of M and therefore is effective if and only if M is eﬁectlve because of Proposition 23l Of

course if Fy, = Fy, and hence ¢ = ¢ and ¢ = o, we have Ap r = R[2] and M p(M) =M ®ap Ap,R
Also for f > 1 the local shtuka M (M ) allows to recover M ®4, Ap, r via the isomorphism

f-1 f-1
EB(TM ® 1) mod a;: (EB o™ (M @4, Ap.r/a0), (Th @ 1) @ EB id) == M ®a, Apr,
=0 i=0 i£0

because for i # 0 the equality J ’gm r/a; = (1) implies that 73y ® 1 is an isomorphism modulo a;; see
[HK16, Example 2.2] or [BH11l Propositions 8.8 and 8.5] for more details.

Let M = (M, 7,;) be an effective local shtuka over R. Set M, = (M,, Tp,) = (M /2" M , Tyy mod z”)

and G, = qu(M »). Then G, is a finite locally free strict Fp-module scheme over R and M, =
M4(Gp) by Theorem 7 Moreover, Gy, inherits from M, an action of Fy[2]/(2"). The canon-
ical epimorphisms M ntl M induce closed immersions i,: G, < Gp11. The inductive limit
Drg(M) == hm G, in the category of sheaves on the big fppf-site of Spec R is a sheaf of Fy[2]-modules

that satlsﬁes the following

Definition 7.3. A p-divisible local Anderson module over R is a sheaf of Fy[z]-modules G on the big
fppf-site of Spec R such that

(a) G is p-torsion, that is G = h_H)lG[Zn], where G[2"] := ker(2": G — G),
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(b) G is p-divisible, that is z: G — G is an epimorphism,

(c) For every n the Fy-module G[2"] is representable by a finite locally free strict Fy-module scheme
over R (Definition [£.2]), and

(d) there exist an integer d € Zs, such that (z —7(2))? = 0 on wg where wg = {iLnCUG[Zn} and

waGpan] = e*Q};[z”]/SpecR is the pullback under the zero section e: Spec R — G[2"].

A morphism of p-divisible local Anderson modules over R is a morphism of fppfsheaves of Fy[z]-
modules. The category of divisible local Anderson modules is Fy[z]-linear. It is shown in [HS15|
Lemma 8.2] that wg is a finite locally free R-module and we define the dimension of G as rkwg. A
p-divisible local Anderson module is called étale if wg = 0. Since wg surjects onto each wgy.n), this is
the case if and only if all G[z"] are étale, see [HS15, Lemma 3.7].

Conversely with a p-divisible local Anderson module G over R one associates the local shtuka

My(G) = 1(121]\_4[}((}[2"]). Multiplication with z on G gives M;(G) the structure of an R[z]-module.

In [HS15, Theorem 8.3] we proved the following

Theorem 7.4. (a) The two contravariant functors Drg and M, are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over R and the category of p-divisible
local Anderson modules over R.

(b) Both functors are Fyp[z]-linear and map short exact sequences to short exact sequences. They
preserve étale objects.

Let M = (M,TM) be an effective local shtuka over S and let G = Dry(M) be its associated p-divisible
local Anderson module. Then

(c) G is a formal Lie group if and only if Ty, is topologically nilpotent, that is im(T;‘Z) C zM for an
integer n.

(d) the R[z]-modules Wy, (1) and coker Ty, are canonically isomorphic.

We now want to show that for an abelian Anderson A-module E over R the local shtuka M p (M (E ))
corresponds to the p-power torsion of E as in the following

Definition 7.5. Let £ be an abelian Anderson A-module over R and assume that the elements of
~v(p) C R are nilpotent. We define E[p°] := h_n)lE[p”] and call it the p-divisible local Anderson module

associated with £.
This definition is justified by the following

Theorem 7.6. Let E = (E, ) be an abelian Anderson A-module over R and assume that the elements
of v(p) C R are nilpotent. Then

(a) all Ep"] are finite locally free strict Fy-module schemes,
(b) E[p°] is a p-divisible local Anderson module over R,

(c) If M = M(E) is the associated effective A-motive of E and M = Mp(M) =M ®ap, gpﬁ/ao 18
the local 6-shtuka at p associated with M, then there are canonical isomorphisms

M4 (E[p=]) = M,(M) and  E[p>®] = Drg(M,(M)),
M(E[p®]) = M@a, Ayr and  E[p®] = Dry(M ®a, Ayg),
M (Ep"]) = M/p"M and  E[p"] = Dry(M/p"M).
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Proof. @ By Lemma [£.4] we may test strictness after applying a faithfully flat base change to R
and assume that £ = GZ,R = Spec R[z1,...,24) = Spec R[X] and M(E) = R{r}*4. We set B :=
L(E[p"], Ogpr)) and I = ker(R[X] — B) and Iy = (21, ...,24), and consider the deformation B’ =
R[X]/I-Iy. The endomorphisms ¢, of E for a € A satisfy ¢i(I) C I and ¢}(Ip) C Ip. This
defines a lift A — End R_algcbras(Bb), a+— [a]b := ¢ compatible with addition and multiplication as in
Definition

Let N > dim E be a positive integer which is a power of ¢ such that y(a) = 0 for every a € p™.
Choose A € Fy, with F, = F4(\) and let g be the minimal polynomial of X over F,. Choose an element
t € A with t mod p™ = X in A/p"™ = Fy[2]/(z"). Then g(¢) € p", and hence v(g(t))Y = 0. On Lie E
the equation g(t"V) = g(t)" implies Lie pgeny = Lie 90%) —y(g)N = (Lie Pgt) — v(g(t)))N =0. So
gy € Endp groupsF q-lin(Gi R = R{7}%*4 as a polynomial in 7 has no constant term. This means
that gpz(tN)(xi) € I§. Moreover, since g(t) € p" we have g4y = 0 on E[p"] and hence Poct) (x;) € I.
Therefore ‘pZ(téN)(IO) = Qo) © Pyan-n-1y © CPZ(tN)([O) C 902@)([8) C 30 (Io)? C I-1y. In other words
[g(t‘jN)]l’ = [0]" on B°. This shows that the map F, = Fq[t‘jN]/(g(t‘jN)) — EndR—algebras(Bb) lifts the
action of F, C Fy[2]/(2™) on E[p"] and is compatible with addition and multiplication.

We compute the induced action on the co-Lie complex Eé /Spec R of G = (Spec B, Spec B?). In
degree 0 we have Eg/spocR = Q}Z[;(]/R OR[X], eppx] R = @?:1 R-x; = Ip/I2. From t — \ € p" we obtain
Y(tV) —y(A) = y(t — A)? =0 in R. On Lie E this implies Lie p,un — v(A) = (Lie gy — v(¢))¥V =0
and therefore p;av —v(A) € Endpg_groups F q_lin(Gi Rr) = R{7}%*4 as a polynomial in 7 has no constant
term. This implies that (v —7v(X))(Io) C I§ C I§. We conclude that ¢4V acts as the scalar v(\) on
Io/12.

To compute the action of 4V on Eg_ /1Spec r We use that by Theorem Eé /Spec R is homotopically
equivalent to the complex 0 — o*M/p"c*M — M/p"M — 0 where M, (E[p"]) = M/p"M and
M = M(E) = (M, 7u); see Theorem[6.4(c)] Since t¥ —v()\) = (t®1—1®7(t))?Y = 0 on coker 75/ there
is an Agr-homomorphism h: M — ¢*M with h s = (t‘fN—’y()\))-idU*M and Ty h = (t‘iN —’y()\))-idM.
This means that ¢ is homotopic to the scalar multiplication with y()\) on 0 — ¢*M/p"c*M L
M/p"M — 0, and therefore also on gg/SpCCR Let h': Iy/I3 — gg/lspocR : 7! be this homotopy,
that is (t9V —y(A\))[;—1 = h'd and (¢t — (A Drosiz = dh’. But we must show that 7V and ~()\) are

not only homotopic on K_C: /Spec R’ but equal.

Since 0 = g(t?V) = HieZ/fZ(t‘?N — ~v(A)7) on Eg'/ Spec g We can decompose (7= Hz‘eZ/fZ(ﬁ_l)i
where (£71); = ker(ti¥ — y(\)7": ¢=1 — ¢~1). Since the differential d of K_C:/SPOCR is an R-homo-
morphism and equivariant for the action of t4V, it maps (¢ ~!); into ker(t4V - (AT : Io/13 — Io/13)
which is trivial for i # 0. This shows that 0 = h'd = ¢tV — y(\) = v(A\? — X) on (£71);, whence
(¢=1); = (0) for i # 0, because y(A\4 — \) € R*. We conclude that £~ = (£71)g and t?V acts as the
scalar y(A) on ¢~1. This proves that E[p"] is a finite locally free strict Fp-module scheme over R.

[(b)] By construction ker(z": E[p>] — E[p>]) = E[p"] and E[p>] is p-torsion. Using the epimorphism
Jn+in: E}p"*t!] - E[p"] from (6.I) with innt1 © Jntin = @, we see that E[p*>] is p-divisible. In
@ we saw that E[p"] is representable by a finite locally free strict F,-module scheme over R. It
remains to verify condition [(d)] of Definition 73l Since E[p"] < E is a closed immersion, wppyn]
is a quotient of wy = Hompg(Lie E, R). Since A/p™ = Fy[z]/(2"), there is an element a € A with
z—a € p", whence ¢, = ¢, on E[p"]. Therefore (Lie p, —y(a))? = 0 on Lie E implies (¢, —v(2))" =
(0a —y(@))N +~(a—2)Y =0on wglpr)- It follows that (v, — ¥(z))N =0 on WElpe] = {EIWE[pn}, and

that E[p*] is a p-divisible local Anderson module over R.
We have Mq(E[Pn]) = HomR—groups,Fq—lin(E[pn]7 Ga,R) = M/PnM and E[pn] = qu(M/PnM) by

29



Theorem [6.4)(c). This implies

M,(Ep¥) = lmM,(Ep") = imM/p"M = M ©a, Ay r

(_
and E[p™] = lim Dry(M /p"M) = Dry(lim M /p"M) = Drg(M ©a, Ay p).
On E[p"] every A € Fy acts as ¢y and on G4 g as y(A). Therefore
Mq (E[Pn]) = HomR—groups,Fp—lin (E[Pn], Ga,R)
= M (E[p"])/aoM,(E[p"])
- M/pnM ®Kp,R A\pvR/ao

where the second equality is due to the fact that g,% Rr/0p is the summand of Xp, r on which A® 1 acts
as 1 ®y(A) for all A € F,. This implies

~

M (E[p™])) =lmM/p"M @5 Apr/ao =M @, Apr/ao = My(M) = M.

On the other hand, since E[p"] is a finite locally free strict Fy-module by [(a)] E[p"] = Dry(M 4(E[p"])) =

q
Dry(M /p" M) by Theorem and so E[p] = lim Dr(M /p" M) = Drg(M,(M)). O
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