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Abstract

Bounded local G-shtukas are function field analogs for p-divisible groups with extra structure.
We describe their deformations and moduli spaces. The latter are analogous to Rapoport-Zink
spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine Deligne-
Lusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deforma-
tion of a local G-shtuka is isomorphic to the completion of a corresponding affine Deligne-Lusztig
variety in that point. This yields bounds on the dimension and proves equidimensionality of the
basic affine Deligne-Lusztig varieties.
Mathematics Subject Classification (2000): 20G25 (11G09, 14L05, 14M15)

1 Introduction

Deformations and moduli spaces of p-divisible groups play an important role for the local theory
and the reduction modulo p of Shimura varieties. A first case was studied by Drinfeld [Dr] who used
such a moduli space to uniformize certain Shimura curves. Generalizing Drinfeld’s result, Rapoport
and Zink [RZ] constructed formal schemes over Zp parametrizing p-divisible groups together with
a quasi-isogeny to a fixed p-divisible group, and also variants including extra structure such as a
polarization, endomorphisms, or a level structure. These spaces are used to uniformize Shimura
varieties (for a corresponding group, i.e. a restriction of scalars of some general linear or symplectic
group) along Newton strata.

In this article we consider an analog over the local function field Fq((z)). Here we are not restricted
to the general linear or symplectic groups. We replace p-divisible groups by so-called local G-shtukas
for any split connected reductive group G over the finite field Fq. To define them, let LG be the loop
group of G, that is, the ind-scheme over Fq representing the sheaf of groups for the fpqc-topology
whose sections for an Fq-algebra R are given by LG(SpecR) = G

(
R[[z]][1z ]

)
. Let K be the infinite

dimensional affine group scheme over Fq with K(SpecR) = G
(
R[[z]]

)
. Every K-torsor over an Fq-

scheme S for the fpqc-topology is already a K-torsor for the étale topology (Proposition 2.2). For
such a K-torsor G on S let LG be the associated LG-torsor and σ∗LG the pullback of LG under
the q-Frobenius morphism Frobq : S → S. As our base scheme for a local G-shtuka let S be an
Fq[[z]]-scheme on which z is locally nilpotent and denote the image of z in OS by ζ. Then a local G-
shtuka over S is a pair G = (G, ϕ) consisting of a K-torsor G on S and an isomorphism of LG-torsors
ϕ : σ∗LG ∼−→ LG. Let k be an algebraically closed field extension of Fq. Local G-shtukas over k
can also be described as follows. There exists a trivialization G ∼= Kk and with respect to such a
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trivialization ϕ corresponds to an element b ∈ LG(k). A change of the trivialization replaces b by
g−1bσ∗(g) for g ∈ K(k), where σ∗ is the endomorphism of K and of LG induced by Frobq : S → S.

An important invariant of G over k is its Hodge polygon which controls the relative position of
G and the image of σ∗G under ϕ. We fix a Borel subgroup B of G containing a split maximal
torus T . Let b ∈ LG(k) be as above. Then the Hodge polygon of G is defined (using the Cartan
decomposition) to be the unique dominant cocharacter µG ∈ X∗(T ) with b ∈ K(k)zµGK(k). Clearly
µG does not depend on the chosen trivialization G ∼= Kk. If µ is any dominant cocharacter of G we
say that G is bounded by µ if µG � µ in the Bruhat ordering of X∗(T ). In Definition 3.5 we also
extend this ad hoc definition of boundedness to not necessarily reduced base schemes S.

The affine Grassmannian is the quotient sheaf Gr = LG/K for the fppf -topology. It is an ind-
scheme over Fq which is of ind-finite type; see [BD, §4.5], [BL], [LS], who comprehensively develop
the theory of the affine Grassmannian over the field of complex numbers. Most of their results, and
in particular all we use here, also hold with the same proofs over Fq. For instance [NP], [Fa] reprove
some statements. Moreover [PR2] present a generalization of results and proofs to twisted affine flag
varieties over Fq.

One main result of our present article, Theorem 5.6, identifies the universal deformation space
Spf D for deformations bounded by µ of a local G-shtuka G over a field k′ with the completion of
a closed subscheme of Gr×SpecFq Speck

′[[ζ]] determined by µ. It is noetherian of relative dimension
〈2ρ, µ〉 over k′[[ζ]], and D := (D/ζD)red is normal and Cohen-Macaulay. Here ρ is the half-sum of
the positive roots of G. We call Spf D the universal (ζ = 0)-deformation space of G.

We construct moduli spaces of local G-shtukas G bounded by µ together with a quasi-isogeny
δ to a fixed trivializable local G-shtuka G over k′, which are the analogs of the moduli spaces of
p-divisible groups defined by Rapoport and Zink, [RZ]. They are formal schemes locally formally of
finite type over k′[[ζ]] (Theorem 6.3) whose underlying topological spaces can be described as follows.
Inside the affine Grassmannian we consider the affine Deligne-Lusztig variety which is defined to be
the locally closed reduced ind-subscheme of Gr whose points over an algebraically closed extension
k of k′ are

Xµ(b)(k) :=
{
g ∈ Gr(k) = LG(k)/K(k) : g−1bσ∗(g) ∈ K(k)zµK(k)

}

and the closed affine Deligne-Lusztig variety X�µ(b) =
⋃

µ′�µXµ′(b). They are schemes locally of
finite type over k′ (Corollary 6.5). The underlying topological space of the Rapoport-Zink space of
local G-shtukas bounded by µ is isomorphic to X�µ(b) where b ∈ LG(k′) describes the Frobenius ϕ
of G.

We consider a second invariant of a local G-shtuka G over k, its Newton polygon. It is the
quasi-cocharacter νG ∈ X∗(T )Q associated by Kottwitz [Ko1, Ko2] to the σ-conjugacy class of b ∈
LG(k). Kottwitz’s articles only consider the analogous case of σ-conjugacy classes of elements
b ∈ G(Frac(W (k)) where W (k) is the ring of Witt vectors over k. The arguments carry over literally
to the equal characteristic case. By definition νG is invariant under isogeny. Under specialization
Hodge and Newton polygon behave like those of p-divisible groups: there is a generalization of
Grothendieck’s specialization theorem by Rapoport and Richartz [RR]. By results of Vasiu [Vas]
the Newton stratification is pure, that is the Newton polygon of a local G-shtuka over a connected
scheme jumps in codimension one or is constant (Theorem 7.4). Using these two properties we study
the Newton stratification on the universal (ζ = 0)-deformation space of an arbitrary local G-shtuka
G over k and give lower bounds for the dimensions of the strata (Proposition 7.8).

2



We show that a local G-shtuka over a reduced complete local ring whose Newton polygon ν = νG
is basic, that is central in G, is isogenous to a constant local G-shtuka (Proposition 8.1), which
is an analog of a result of Oort and Zink, [OZ, Proposition 3.3]. It allows to compare the Newton
stratum Nν in the universal (ζ = 0)-deformation to the Rapoport-Zink space. Here we use a bijection
between bounded local shtukas over SpecR and Spf R for any complete local ring R of characteristic p
(Proposition 3.16) to pass from the universal deformation (which is a formal scheme) to the associated
scheme. We obtain

Theorem 1.1. Let b ∈ LG(k) be basic and let µ ∈ X∗(T ) be dominant and such that X�µ(b) 6= ∅.
Let g ∈ X�µ(b) be a k-valued point and let (X�µ(b))

∧
g be the completion of X�µ(b) in this point.

Let Nν be the basic Newton stratum in the universal (ζ = 0)-deformation of G =
(
Kk, g

−1bσ∗(g)σ∗
)

bounded by µ. Then (X�µ(b))
∧
g is canonically isomorphic to Nν.

Using the dimension formula for affine Deligne-Lusztig varieties in [GHKR1], [Vi1], and Theorem
1.1, we show that these varieties are also equidimensional. A similar strategy is used by de Jong and
Oort in [dJO, Proposition 5.19 and Corollary 5.20] to show equidimensionality of a moduli space of
p-divisible groups.

Theorem 1.2. Let b ∈ LG(k) be basic and let µ ∈ X∗(T ) be dominant and such that X�µ(b) 6= ∅.
Then Xµ(b) and X�µ(b) are equidimensional of dimension 〈ρ, µ〉 − 1

2def(b). Here ρ is the half-sum
of the positive roots of G and def(b) = rk(G)− rk(J) is the defect of b (see 7.9).

For Xµ(b), this finishes the proof of a conjecture by Rapoport [Ra, Conjecture 5.10]. For Xµ(b)
with b ∈ T

(
k((z))

)
(not necessarily basic) Theorem 1.2 has been shown in [GHKR1, Proposition

2.17.1]. For X�µ(b), this theorem immediately implies

Corollary 1.3. Let b ∈ LG(k) be basic and µ ∈ X∗(T ) be dominant. Then X�µ(b) is the closure of
Xµ(b) in Gr.

Proof. We have 〈ρ, µ′〉 < 〈ρ, µ〉 for every µ′ � µ with µ′ 6= µ. Thus dimXµ′(b) < dimXµ(b) for each
such µ′. Hence equidimensionality of X�µ(b) implies that Xµ(b) is dense in X�µ(b).

A more careful analysis of the proof of Theorem 1.2 yields

Corollary 1.4. Let G be a local G-shtuka over k which is basic and bounded by some µ ∈ X∗(T ).
Let D be the universal (ζ = 0)-deformation ring for deformations of G that are bounded by µ. Then
the generic fibre of the local G-shtuka over SpecD corresponding to the universal family over Spf D
has Newton polygon µ.

We prove Theorem 1.1, Theorem 1.2 and Corollary 1.4 in Section 8.
In the non-basic case the dimensions of the affine Deligne-Lusztig varieties and the lower bound

on the dimension of the corresponding (non-basic) Newton stratum differ by 〈2ρ, ν〉. Especially,
Theorem 1.1 does not hold in this general situation. The same difference between the dimensions
already occurs for p-divisible groups. There, work of Oort [O1] shows that up to a finite morphism
the Newton stratum Nν is a product of the underlying scheme of a Rapoport-Zink space with a
so-called central leaf, and by [O2], or [Ch2] the difference 〈2ρ, ν〉 between the dimensions is the
dimension of this central leaf. In a sequel to this article we show that a similar structure exists in
the non-basic case for our deformations of local G-shtukas.
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In the last section we define local G-shtukas with Iwahori-level structure. Using a variant of
Theorem 1.1 we can compare the Newton stratum of an associated universal (ζ = 0)-deformation
with an affine Deligne-Lusztig variety inside the affine flag manifold in the basic case. This proves
the basic case of a conjecture by Beazley [Be, Conjecture 1]. The strategy used to prove Theorem 1.2
also gives a lower bound on the dimension of the affine Deligne-Lusztig variety in the Iwahori setting.
However, in this case the lower bound depends on the maximal length of a chain of Newton polygons
in the universal deformation, for which a general formula is not known to us.
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2 Notation and complements on torsors for loop groups

We denote by Fq the finite field with q elements and by k an algebraically closed field which is also
an Fq-algebra. Let Fq[[z]] be the ring of power series in the indeterminate z and let NilpFq[[z]] be the
category of Fq[[z]]-schemes on which z is locally nilpotent. For a scheme S in NilpFq[[z]] we denote by
ζ ∈ OS the image of z and we write from now on S ∈ NilpFq[[ζ]]. We view z and ζ as algebraically
independent indeterminates.
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A reference for the various topologies (fpqc, fppf , ét in addition to the Zariski topology) that we
consider on the category of all Fq-schemes is [SGA 3, Exposé IV, §6.3]. Let OS [[z]] be the sheaf of
OS-algebras on S for the fpqc-topology whose ring of sections on an S-scheme Y is the ring of power
series OS [[z]](Y ) := Γ(Y,OY )[[z]]. This is indeed a sheaf being the countable direct product of OS .
Let OS((z)) be the fpqc-sheaf of OS-algebras on S associated with the presheaf Y 7→ Γ(Y,OY )[[z]][

1
z ].

If Y is quasi-compact then OS((z))(Y ) = Γ(Y,OY )[[z]][
1
z ] by [Ha, Exercise II.1.11]. We denote by σ∗

the endomorphism of OS [[z]] and OS((z)) that acts as the identity on the variable z, and as b 7→ bq

on local sections b ∈ OS . For a sheaf M of OS [[z]]-modules on S we set σ∗M := M ⊗OS [[z]],σ∗ OS [[z]].
Let G be a split connected reductive group over Fq. Let B ⊃ T be a Borel subgroup and a

maximal split torus of G. Recall that a weight λ ∈ X∗(T ) is called dominant if 〈λ, α∨〉 ≥ 0 for
every positive coroot α∨ of G, and similarly for coweights. We consider the ordering � on the group
of coweights X∗(T ) of G, which is defined as µ1 � µ2 if and only if the difference µ2 − µ1 is a
non-negative integral linear combination of simple coroots. If µ1, µ2 are dominant it coincides with
the Bruhat ordering. On X∗(T ) we consider the analogous ordering. On X∗(T )Q = X∗(T )⊗Z Q we
use the ordering with µ1 � µ2 if and only if the difference µ2 − µ1 is a non-negative rational linear
combination of simple coroots. For µ ∈ X∗(T ) we denote by zµ the image of z ∈ Gm

(
Fq((z))

)
under

the morphism µ : Gm → T .
Let LG be the loop group of G, see [Fa, Definition 1]. That is, LG is the ind-scheme of ind-finite

type over Fq representing the sheaf of groups for the fpqc-topology on Fq-schemes S given by

LG(S) = G
(
OS((z))(S)

)
.

On NilpFq[[ζ]] the local nilpotency of ζ on S implies that the sheaf LG is canonically isomorphic

to the sheaf associated with the presheaf S 7→ G
(
Γ(S,OS)[[z]][

1
z−ζ ]

)
. We denote by K the infinite

dimensional affine group scheme over Fq whose S-valued points for an Fq-scheme S are K(S) =
G
(
OS [[z]](S)

)
= G

(
Γ(S,OS)[[z]]

)
. In the natural way K can be viewed as a subsheaf of LG. For any

scheme S ∈ NilpFq[[ζ]] we denote by KS the induced sheaf of groups for the fpqc-topology on S. The
endomorphism σ∗ induces an endomorphism of LG and K.

Let ∗ ∈ {fpqc, fppf , ét}. Let S ∈ NilpFq[[ζ]] and let H be a sheaf of groups on S for the ∗-topology.
In this article a (right) H-torsor for the ∗-topology on S is a sheaf G for the ∗-topology on S together
with a (right) action of the sheaf H such that G is isomorphic to H on a ∗-covering of S. Here H
is viewed as an H-torsor by right multiplication. The H-torsors are classified up to isomorphism by

Čech cohomology Ȟ
1
(S∗,H), which is a pointed set. For H = K the categories of torsors for the

three different topologies fpqc, fppf , ét are equivalent by Proposition 2.2 below. Therefore we simply
speak of K-torsors on S.

Let K ′ be equal to K or to the Iwahori subgroup

I(S) :=
{
g ∈ K(S) = G

(
Γ(S,OS)[[z]]

)
: gmod z ∈ B(S)

}
.

Let G be a K ′-torsor on S for the ∗-topology. Then G is trivialized by a ∗-covering S′ → S and
GS′ ∼= K ′S′ is an affine scheme. The covering S′ → S is in particular an fpqc-covering, and the fpqc-
descent is effective by [BLR, §6.1, Theorem 6]. Hence G is an (infinite dimensional) affine scheme over

S. With G we associate an LG-torsor LG for the ∗-topology via the map Ȟ
1
(S∗,K

′) → Ȟ
1
(S∗, LG).

Also for an LG-torsor LG on S we denote by σ∗LG the pullback of LG under the q-Frobenius
morphism Frobq : S → S.

5



The pointed set Ȟ
1
(S∗,K

′) also classifies another kind of torsors which we introduce now.
Throughout this article (i.e. for the definition of local G-shtukas) we only use the first kind of torsors.

However, the second interpretation of Ȟ
1
(S∗,K

′) turns out to be useful to compare these sets for the
various topologies in Proposition 2.2. Besides, it relates the torsors underlying local G-shtukas to
global versions as studied by Varshavsky [Var]. To explain it let S be an Fq-scheme and let S[[z]] be
the formal scheme over Spf Fq[[z]] in the sense of [EGA, Inew, Section 10] consisting of the topological
space S endowed with the structure sheaf OS [[z]]. Equivalently S[[z]] is the formal completion of
A1
S = S×Fq SpecFq[z] along the closed subscheme S×Fq V(z). Let G′ be the smooth affine parahoric

group scheme over Fq[[z]] with K ′(Fq) = G′(Fq[[z]]), with generic fiber G ×Fq Fq((z)) and connected

special fiber; see [HR] or [BT, 4.6.2, 4.6.26, and 5.2.6]. We write Ĝ′ = G′×Spec Fq[[z]] Spf Fq[[z]] for the
z-adic formal completion of G′. It is an affine formal scheme over Spf Fq[[z]]. There is an equality

K ′(S) = G′
(
Γ(S,OS)[[z]]

)

= HomFq[[z]]

(
Γ(G′,O′G) , Γ(S,OS)[[z]]

)

= Homcont
Fq[[z]]

(
Γ(Ĝ′,O

Ĝ′) , Γ(S,OS)[[z]]
)

= HomSpf Fq[[z]]

(
S[[z]] , Ĝ′

)

where the latter Hom group denotes morphisms of formal schemes over Spf Fq[[z]], and the last

equation holds by [EGA, Inew, Proposition 10.4.6] since Ĝ′ is affine.

Definition 2.1. Let ∗ ∈ {fpqc, fppf , ét}. We denote by PHS∗(S[[z]], Ĝ′) (for principal homogenous
space) the set of isomorphism classes of z-adic formal schemes Ĝ over S[[z]] together with an action

Ĝ′×̂Spf Fq[[z]]Ĝ → Ĝ of Ĝ′ on Ĝ such that there is a covering S′[[z]] → S[[z]] where S′ → S is a ∗-covering

and a Ĝ′-equivariant isomorphism α : Ĝ×̂S[[z]]S
′[[z]] ∼−→ Ĝ′×̂Spf Fq[[z]]S

′[[z]]. Here Ĝ′ acts on itself by

right multiplication. The set PHS∗(S[[z]], Ĝ′) is a pointed set, the distinguished point being the trivial
torsor.

Proposition 2.2. (a) There is a natural bijection of pointed sets Ȟ
1
(S∗,K

′) = PHS∗(S[[z]], Ĝ′).

(b) Ȟ
1
(Sét,K

′) = Ȟ
1
(Sfppf ,K

′) = Ȟ
1
(Sfpqc ,K

′).

(c) Let S = SpecA be an affine Fq-scheme, let a ⊂ A be a nilpotent ideal and set A = A/a and
S = SpecA. Then for any K ′-torsor G over S whose pull back to S admits a trivialization
ᾱ : GS

∼−→ K ′
S
, there is a trivialization α : G ∼−→ K ′S lifting ᾱ. Likewise for any formal

Ĝ′-torsor Ĝ over S[[z]] as in Definition 2.1 whose pull back to S[[z]] admits a trivialization ᾱ,
there is a trivialization α of Ĝ lifting ᾱ.

We are mainly interested in statement (c) for K ′ and in statement (b). However, we prove them

using Ĝ′.

Proof. (a) Let Ĝ be a formal Ĝ′-torsor representing a class in the set PHS∗(S[[z]], Ĝ′), and let α :

Ĝ×̂S[[z]]S
′[[z]] ∼−→ Ĝ′×̂Spf Fq[[z]]S

′[[z]] be a trivialization over S′[[z]] for a ∗-covering S′ → S. We can pull
back α to S′[[z]]×̂S[[z]]S

′[[z]] = S′′[[z]] for S′′ = S′ ×S S′ under the two projections pi : S
′′[[z]] → S′[[z]].

Then h := p∗2α ◦ p∗1α
−1 is a Ĝ′-equivariant automorphism of Ĝ′×̂Spf Fq[[z]]S

′′[[z]], hence given by an
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element h ∈ HomSpf Fq[[z]]

(
S′′[[z]] , Ĝ′

)
= K ′(S′′). Clearly h is a 1-cocycle for the covering S′ → S

and induces a cohomology class in Ȟ
1
(S∗,K

′).
Conversely any such cohomology class is represented by a ∗-covering S′ → S and a 1-cocycle

h ∈ K ′(S′′). The latter defines a descent datum on Ĝ′×̂Spf Fq[[z]]S
′[[z]] which we must prove to be

effective. Let n be a positive integer and consider the situation modulo zn. Then h (mod zn) is a
descent datum on

Ĝ′×̂Spf Fq[[z]]S
′[[z]]×̂Spf Fq[[z]] SpecFq[[z]]/(z

n) = G′ ×Spec Fq[[z]]

(
S′ ×Fq SpecFq[z]/(z

n)
)
.

SinceG′ is affine and S′×FqSpecFq[z]/(z
n) → S×FqSpecFq[z]/(z

n) is an fpqc-covering by base change
from S′ → S, the descent is effective by [BLR, §6.1, Theorem 6a] and we obtain an affine scheme
Ĝn over S ×Fq SpecFq[z]/(z

n). It is of finite presentation and smooth by [EGA, IV2, Proposition
2.7.1 and IV4, Corollaire 17.7.3] since the same holds for G′ over Fq[[z]]. For varying n we obtain

an inductive system Ĝn with Ĝn+1 ×Fq[[z]]/(zn+1) Fq[[z]]/(z
n) = Ĝn whose limit exists as a z-adic affine

formal scheme Ĝ over S[[z]] with underlying topological space Ĝ1 by [EGA, Inew, Corollary 10.6.4].

(b) Due to (a) and the injectivity of the natural maps PHSét(S[[z]], Ĝ′) →֒ PHSfppf (S[[z]], Ĝ′) →֒

PHSfpqc(S[[z]], Ĝ′) we only need to prove surjectivity of these maps. So let Ĝ be a formal Ĝ′-torsor

over S[[z]] representing an element of PHSfpqc(S[[z]], Ĝ′). We must show that Ĝ is trivial over S′[[z]]

for an étale covering S′ → S. As in (a), Ĝ = lim
−→

Ĝn is the limit of smooth affine schemes Ĝn over

S ×Fq SpecFq[z]/(z
n). Since Ĝ1 is smooth over S it has a section s1 : S → Ĝ1 over an étale covering

S′ → S. We may further assume that S′ is (the disjoint union of a family of) affine (schemes).
Then the section s1 lifts inductively for all n to a section sn : S′ ×Fq SpecFq[z]/(z

n) → Ĝn by the

smoothness of Ĝn. In the limit this gives a section s : S′[[z]] → Ĝ which induces a trivialization of
Ĝ×̂S[[z]]S

′[[z]] over S′[[z]] as desired.

(c) We first consider a cohomology class in Ȟ
1
(Sét,K

′) whose image under Ȟ
1
(Sét,K

′) → Ȟ
1
(S ét,K

′)

is trivial. By (a) this class corresponds to a formal Ĝ′-torsor Ĝ over Spf A[[z]] whose pull back
to Spf A[[z]] is trivial. As above Ĝ is the limit of SpecA[z]/(zn)-schemes Ĝn which are of finite
presentation and smooth. By the triviality of Ĝ×̂Spf A[[z]] Spf A[[z]] there exists a section ᾱ : Spf A[[z]] →

Ĝ. Modulo z it induces a section SpecA → Ĝ1 which lifts by the smoothness of Ĝ1 to a section
SpecA → Ĝ1. It inductively lifts by the smoothness of Ĝn to a section SpecA[z]/(zn) → Ĝn. In
the limit we obtain a section β : Spf A[[z]] → Ĝ (which in general does not lift the initial section
ᾱ : Spf A[[z]] → Ĝ). Nevertheless, the section yields a trivialization of Ĝ over Spf A[[z]] and this proves

that the only cohomology class which becomes trivial under Ȟ
1
(Sét,K

′) → Ȟ
1
(S ét,K

′) is the trivial
one.

We have to prove the existence of a trivialization α which lifts ᾱ both in the situation for formal
Ĝ′-torsors Ĝ and for K ′-torsors G. Let the torsor be represented by S′ → S and h ∈ K ′(S′′). The

trivialization ᾱ after pull back to S of the formal Ĝ′-torsor Ĝ over S[[z]], respectively the K ′-torsor

G over S, is given by an element ḡ ∈ K ′(S
′
) with p∗2(ḡ) p

∗
1(ḡ)

−1 = h (mod a) in K ′(S
′′
). Similarly

the trivialization β of Ĝ over S[[z]], respectively G over S, is given by an element f ∈ K ′(S′) with

p∗2(f) p
∗
1(f)

−1 = h in K ′(S′′). Let f̄ be the pullback of f to S. Then p∗2(f̄
−1ḡ) = p∗1(f̄

−1ḡ) in K ′(S
′′
)

implies that f̄−1ḡ ∈ K ′(S) = G′
(
A[[z]]

)
. Since ker(A[[z]] → A[[z]]) is nilpotent and G′ is smooth over

Fq[[z]] we can lift f̄−1ḡ to an element f−1g ∈ G′
(
A[[z]]

)
with which we multiply f to obtain an element
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g ∈ K ′(S′) satisfying p∗2(g) p
∗
1(g)

−1 = h and lifting ḡ ∈ K ′(S
′
). Then g induces a trivialization α of

Ĝ over S[[z]], respectively G over S, which lifts the trivialization ᾱ as desired.

Proposition 2.3 (Hilbert 90 for loop groups). Let G = GLr. As before let K be the associated
fpqc-sheaf over Fq whose Y -valued points are K(Y ) = GLr

(
Γ(Y,OY )[[z]]

)
. Then for any Fq-scheme

S
Ȟ

1
(SZar ,K) = Ȟ

1
(Sét,K) = Ȟ

1
(Sfppf ,K) = Ȟ

1
(Sfpqc ,K)

and this pointed set parametrizes isomorphism classes of locally free sheaves of rank r on the formal
scheme S[[z]], or equivalently sheaves of OS [[z]]-modules on S which locally for the Zariski-topology
on S are isomorphic to OS [[z]]

⊕r. In particular, any fpqc-sheaf of OS [[z]]-modules on S which is
isomorphic to OS [[z]]

⊕r fpqc-locally on S is already isomorphic to OS [[z]]
⊕r Zariski-locally on S.

Proof. The second and third equality were proved in the preceding proposition. Consider a cohomol-

ogy class in Ȟ
1
(Sfpqc ,K) and represent it by an fpqc-covering S′ → S and a 1-cocycle h ∈ K(S′′) for

S′′ = S′ ×S S′. Let pi : S
′′ → S′ be the projection onto the i-th factor. On the sheaf F ′ = OS′ [[z]]⊕r

consider the descent datum given by the isomorphism h : p∗1OS′ [[z]]⊕r ∼−→ p∗2OS′ [[z]]⊕r, v′′ 7→ h v′′ over

S′′. In this way Ȟ
1
(Sfpqc ,K) parametrizes isomorphism classes of pairs (S′ → S , h) where S′ → S

is an fpqc-covering and h is a descent datum on F ′ = OS′ [[z]]⊕r.
Modulo zn such a descent datum induces a descent datum on the trivial sheaf F ′n of rank r on

S′ ×Fq SpecFq[z]/(z
n). By fpqc-descent [BLR, §6.1, Theorem 4] and [EGA, IV2, Proposition 2.5.2]

the sheaf F ′n descends to a locally free sheaf Fn of rank r on S ×Fq SpecFq[z]/(z
n). By [EGA, Inew,

Proposition 10.10.8.6] the projective limit F = lim
←−

Fn is a locally (in the Zariski-topology) free sheaf

of rank r on S[[z]]. Since S is the underlying topological space and OS [[z]] is the structure sheaf of
the formal scheme S[[z]] the sheaf F is nothing else than a sheaf of OS [[z]]-modules on S. This proves
the proposition.

3 Local G-shtukas

Definition 3.1. A local G-shtuka over S is a pair G = (G, ϕ) consisting of a K-torsor G on S together
with an isomorphism ϕ : σ∗LG ∼−→ LG of the associated LG-torsors.

If f : S′ → S is a morphism in NilpFq[[ζ]] there is a natural way to pull back a local G-shtuka G
from S to S′. We denote the pullback by GS′ or f∗G.

Remark 3.2. In particular, if G = (G, ϕ) is a local G-shtuka over a noetherian complete local ring R
with algebraically closed residue field, then G is isomorphic to the trivial torsor, and the morphism
ϕ can be written as bσ∗ for some b ∈ LG(R). Indeed, G is trivialized by an étale R-algebra by
Proposition 2.2, but every étale R-algebra decomposes into a direct sum of copies of R.

For G = GLr local G-shtukas previously appeared in the literature as pairs (M,ϕ) where M
is a locally free sheaf of OS [[z]]-modules of rank n, and where ϕ : σ∗M [ 1

z−ζ ]
∼−→ M [ 1

z−ζ ] is an
isomorphism. They were first introduced by Anderson [An] in the case when S is the spectrum of
a complete discrete valuation ring. Genestier [Ge] constructed Rapoport-Zink spaces for them in
the Drinfeld case and used these to uniformize Drinfeld modular varieties. Local GLr-shtukas were
further used and studied, among others, in [Ha1, Ha2]. (To be precise, in all these references they
have to satisfy an additional boundedness condition in the style of Definition 3.5 and Example 4.5
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below.) The two definitions of local GLr-shtukas given above are equivalent by Proposition 2.3.
For more details see Section 4. Local GLr-shtukas are analogs in the arithmetic of local function
fields of p-divisible groups, or more precisely of F -crystals. To a large extent they behave similarly
(see also [Ha3] and [Ha1] where they were called Dieudonné Fq[[z]]-modules). Similarly to p-divisible
groups which describe the local behaviour of abelian varieties at the prime p, there is also a global
version of local G-shtukas. In [Var] Varshavsky describes G-shtukas which are defined using a smooth
projective curve instead of Spf Fq[[z]].

We define the Hodge polygon of a local G-shtuka. Let S ∈ NilpFq[[ζ]]. Let G and H be K-torsors

on S and let δ : LH ∼−→ LG be an isomorphism of the associated LG-torsors. For a geometric point
s : Speck → S, we can choose trivializations of s∗G and s∗H. Then δ corresponds to an element
g ∈ LG(k). Changing the trivializations changes g within its K(k)-double coset. The Cartan
decomposition shows that LG(k) is the disjoint union of the sets K(k)zµK(k) where µ ∈ X∗(T ) is a
dominant coweight. Obviously the double coset of g does not depend on the chosen algebraic closure
k of κ(s).

Definition 3.3. The dominant element µδ(s) ∈ X∗(T ) with g ∈ K(k)zµδ(s)K(k) is called the Hodge
polygon of δ at s. If G = (G, ϕ) is a local G-shtuka over S, we write µG(s) := µϕ(s).

Let π1(G) be the quotient of X∗(T ) by the lattice generated by the coroots. For any coweight
µ ∈ X∗(T ) let [µ] be its image in π1(G).

Proposition 3.4. Let G and H be K-torsors on S and let δ : LH ∼−→ LG be an isomorphism of the
associated LG-torsors. Then the function S → π1(G), s 7→ [µδ(s)] is locally constant on S.

Proof. By Proposition 2.2 we can choose trivializations for the torsors G and H over an étale covering
f : S′ → S. Thus δ corresponds to an element of LG(S′). This induces a morphism from S′ to
the affine Grassmannian Gr. By [PR2, Theorem 0.1] the group π1(G) equals the set of connected
components π0(Gr) and the induced morphism S′ → π0(Gr) = π1(G) does not depend on the chosen
trivializations. Hence it descends to a morphism S → π0(Gr) which coincides with [µδ( . )]. Therefore
[µδ( . )] is locally constant.

Let B ⊂ G be the Borel subgroup opposite to our fixed B. For a dominant weight λ of G we let
V (λ) :=

(
IndG

B
(−λ)dom

)∨
be the Weyl module of G with highest weight λ. It is a cyclic G-module

generated by a B-stable line on which B acts through λ. Any other such G-module is a quotient of
V (λ), see for example [Ja, II.2.13]. For a K-torsor G on a scheme S we denote by Gλ the fpqc-sheaf
of OS [[z]]-modules on S associated with the presheaf

Y 7−→
(
G(Y )×

(
V (λ)⊗Fq OS [[z]](Y )

))/
K(Y ) .

This means in particular that if S′ → S is an étale covering trivializing G (see Proposition 2.2) and
if α : GS′

∼−→ KS′ is an isomorphism of K-torsors with p∗2α ◦ (p∗1α)
−1 = g ∈ K(S′′) on S′′ = S′ ×S S′

(with pi the projection onto the i-th factor) then

Gλ(Y ) ∼=
{
v′ ∈ V (λ)⊗Fq OS [[z]](Y ×S S′) : p∗2v

′ = g · p∗1v
′ on Y ×S S′′

}
.

By Proposition 2.3 the sheaf Gλ is locally free in the Zariski-topology on S.
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Furthermore, if G and H are K-torsors on S and δ : LH ∼−→ LG is an isomorphism of the
associated LG-torsors then δ induces an isomorphism of sheaves of OS((z))-modules

δ : Hλ ⊗OS [[z]] OS((z))
∼−→ Gλ ⊗OS [[z]] OS((z)) .

Indeed, if over an étale covering S′ → S there are trivializations α : GS′
∼−→ KS′ and β : HS′

∼−→ KS′

with p∗2α ◦ (p∗1α)
−1 = g ∈ K(S′′) and p∗2β ◦ (p∗1β)

−1 = h ∈ K(S′′) and αδβ−1 = ∆ ∈ LG(S′), then δ
sends v′ ∈ Hλ(Y )⊗OS [[z]](Y ) OS((z))(Y ) to ∆ · v′.

Definition 3.5. Let S be a connected scheme in NilpFq[[ζ]] and let µ be a dominant coweight of G.
Let either z̃ = z − ζ or z̃ = z.

(a) Let G and H be K-torsors on S and let δ : LH ∼−→ LG be an isomorphism of the associated
LG-torsors. The isomorphism δ is bounded by (µ, z̃) if for each dominant weight λ of G

δ(Hλ) ⊂ z̃ −〈 (−λ)dom,µ〉 Gλ ⊂ Gλ ⊗OS [[z]] OS((z)) and (3.1)

[µ] = [µδ(s)] in π1(G) for all s ∈ S. (3.2)

(b) A local G-shtuka (G, ϕ) over S is bounded by µ if the isomorphism

ϕ : σ∗LG ∼−→ LG

is bounded by (µ, z − ζ).

Remark 3.6. Bounds using z̃ = z are only used in some of the proofs to bound quasi-isogenies
between local G-shtukas (see for example Definition 3.8 and the proof of Theorem 6.3).

Instead of using Weyl modules for the definition of boundedness one could also use a different class
of representations such as for example the class of all induced representations V (λ)∨ = IndG

B
(−λ)dom,

or the class of all representations with lowest weight (−λ)dom, or the class of all tilting modules
[Ja, Chapter E]. It follows from Lemma 3.10(b) below that on reduced schemes S in NilpFq[[ζ]]

the boundedness definitions for all these classes are equivalent. However, they may differ in their
nilpotent structure.

Lemma 3.7. The monoid X∗(T )+ of dominant weights is finitely generated. Condition (3.1) holds
for all dominant weights (and fixed z̃ = z − ζ or z̃ = z) if and only if it holds for a finite generating
system.

Proof. Every dominant weight is a non-negative integral linear combination of the dominant weights
in a generating system. So it suffices to show that if condition (3.1) holds for two dominant weights
λ and λ′ then it also holds for λ+ λ′. Now V (λ+ λ′) is a G-submodule of V (λ)⊗ V (λ′). Indeed, as
V (λ) and V (λ′) are Weyl modules, they trivially admit a Weyl-filtration, i.e. a filtration with Weyl-
modules as factors. By [Ja, II.4.19, II.4.21] the same is true for V (λ) ⊗ V (λ′). By Weyl’s character
formula [Ja, Corollary II.5.11] the character of V (λ)⊗V (λ′) contains λ+λ′ as highest weight. Thus
we can find V (λ+ λ′) as a submodule of V (λ) ⊗ V (λ′) by [Ja, II.4.19]. Consequently also Hλ+λ′ is
a submodule of Hλ ⊗Hλ′ and the same holds for CGλ+λ′ . Now the linearity of λ 7→ 〈 (−λ)dom, µ〉
for dominant λ proves the lemma.
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Definition 3.8. A quasi-isogeny between local G-shtukas (G, ϕ) → (G′, ϕ′) over S is an isomorphism
of the associated LG-torsors f : LG ∼−→ LG′ with ϕ′σ∗(f) = fϕ. The set of quasi-isogenies between
G and G ′ over S is denoted QIsogS(G,G

′).

As one might expect from the analogy with p-divisible groups, quasi-isogenies are rigid in the
following sense.

Proposition 3.9. Let G = (G, ϕ) and G ′ = (G′, ϕ′) be two local G-shtukas over S ∈ NilpFq[[ζ]] and

let i : S →֒ S be a closed immersion defined by a sheaf of ideals I which is locally nilpotent. Then

i∗ : QIsogS(G,G
′) ∼−→ QIsogS(i

∗G, i∗G′) , f 7→ i∗f

is a bijection of sets. Let now S be quasi-compact and let G,G ′ both be bounded. Then an element of
the right hand side is bounded by (µ, z) for some µ if and only if the corresponding element over S
is bounded by (µ̃, z) for some µ̃.

Proof. Arguing by induction over OS/I
qn it suffices to treat the case where Iq = (0). In this case

the q-Frobenius Frobp factors as S
j
−→ S

i
−→ S where j is the identity on the underlying topological

space |S| = |S| and on the structure sheaf this factorization is given by

OS
i∗

−−→ OS

j∗
−−→ OS

b 7→ bmod I 7→ bq .

Therefore σ∗f = j∗(i∗f) for any f ∈ QIsogS(G,G
′). We obtain the diagram

LG ∼=

f
// LG′

σ∗LG

∼=ϕ

OO

∼=

j∗(i∗f)
// σ∗LG′

∼= ϕ′

OO
(3.3)

from which the bijectivity is obvious.
For the assertion on boundedness we may again assume that Iq = (0). One direction is obvious,

thus we now consider the case that i∗f is bounded by µ. We use Lemma 3.7. Let Λ be a finite gener-
ating system of the monoid of dominant weights. The λ ∈ Λ fall into two classes according to whether
〈λ, 2ρ∨〉 = 0 (i.e. λ is central) or 〈λ, 2ρ∨〉 > 0. Since (−2ρ∨)dom = 2ρ∨, we have 〈(−λ)dom, 2ρ

∨〉 > 0
for each λ in the second class. Since S is quasi-compact, we can find an m ≥ 0 such that for all those
λ, (3.1) is satisfied for the coweight 2mρ∨ + µ. For the λ with 〈λ, 2ρ∨〉 = 0 note that as λ is central,
−λ is also dominant. If G is bounded by some ω, applying (3.1) to λ and −λ implies that ϕ induces
an isomorphism

ϕ : σ∗Gλ
∼−→

(
1

z−ζ

)〈−λ,ω〉
Gλ .

We get a similar isomorphism for G′ with some ω′. Observe that 〈λ, ω〉 = 〈λ, ω′〉 since λ is central,
[ω] = [ω′] in π1(G) by (3.2), and f ◦ ϕ = ϕ′ ◦ σ∗f . Also the boundedness of i∗f over S by µ yields
(by applying j∗) an isomorphism

fλ : Gλ
∼=

(
1

z−ζ

)〈λ,ω〉
σ∗Gλ

∼−→
(

1
z−ζ

)〈λ,ω〉(1
z

)〈−λ,µ〉
σ∗G′λ

∼=
(
1
z

)〈−λ,µ〉
G′λ =

(
1
z

)〈−λ,2mρ∨+µ〉
G′λ

over S, proving that f is bounded by 2mρ∨ + µ.
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Lemma 3.10. Let G and H be K-torsors on S for a connected scheme S ∈ NilpFq[[ζ]]. Let either

z̃ = z − ζ or z̃ = z and let δ : LH ∼−→ LG be an isomorphism of the associated LG-torsors. Let µ be
a dominant coweight of G satisfying (3.2).

(a) Then the condition that δ is bounded by (µ, z̃) is representable by a finitely presented closed
immersion into S.

(b) If S is reduced then δ is bounded by (µ, z̃) if and only if this holds for the pullback to every
geometric point of S. By (a) it is even enough to consider the pullback to the generic points of
S.

Proof. We prove the lemma for z̃ = z − ζ, the other case is completely analogous. Fix a generating
system Λ of the monoid X∗(T )+ of dominant weights and consider for each λ ∈ Λ the isomorphism

δ : Hλ ⊗OS [[z]] OS [[z]][
1

z−ζ ]
∼−→ Gλ ⊗OS [[z]] OS [[z]][

1
z−ζ ].

Since both questions are local on S we can assume that S = SpecR and Gλ and Hλ are free R[[z]]-
modules. Then δ(Hλ) is contained in (z − ζ)−NλGλ ⊂ Gλ ⊗R[[z]] R[[z]][ 1

z−ζ ] for some Nλ ≫ 0. So δ is

bounded by µ if and only if δ maps all generators ofHλ to zero in (z−ζ)−NλGλ/(z−ζ)−〈(−λ)dom ,µ〉Gλ =:
Mλ for all λ ∈ Λ (by Lemma 3.7). Let M :=

⊕
λ∈ΛMλ. Since M is a free R-module of finite rank

this condition is represented by a finitely presented closed immersion. This proves (a).
The condition in (b) is clearly necessary. Since M →֒ M ⊗R

∏
p⊂R κ(p)alg where the product is

taken over all prime ideals p of R, the condition is also sufficient.

Lemma 3.11. Let k be an algebraically closed field in NilpFq[[ζ]] (hence ζ = 0 in k) and let G and H

be K-torsors over k. Let δ : LH ∼−→ LG be an isomorphism of the associated LG-torsors with Hodge
polygon µδ(Spec k) and let µ be a dominant coweight of G. Then δ is bounded by (µ, z) if and only
if µδ(Speck) � µ.

Proof. After choosing trivializations of G and H the isomorphism δ is represented by left multipli-
cation with an element szµ

′

t ∈ LG(k) for µ′ := µδ(Spec k) and s, t ∈ K(k). Let λ be a dominant
weight of G and consider the Weyl module V (λ). By Weyl’s character formula [Ja, Corollary II.5.11]
its weights λ′ all satisfy −(−λ)dom � λ′ � λ and the weight −(−λ)dom occurs. Let vλ′ ∈ V (λ) be an
element of the weight space of λ′. Then

δ(t−1vλ′) = z〈λ
′,µ′〉 · s(vλ′) ∈ z〈λ

′,µ′〉 Gλ .

In particular δ(Hλ) ⊂ z−〈(−λ)dom ,µ′〉Gλ r z−nGλ for all n < 〈(−λ)dom, µ
′〉. So δ is bounded by µ if

and only if µ− µ′ is a linear combination of coroots (by (3.2)) with 〈(−λ)dom, µ− µ′〉 ≥ 0 for every
dominant λ. This is equivalent to µ′ � µ.

Example 3.12. For G = Gm we give an example of a local G-shtuka over R = k[ε]/(ε2) which is
not bounded by any coweight µ. Let G = (KR, bσ

∗) with b = 1 + ε
z . The Hodge polygon in the

special point is equal to µ = (0) ∈ Z. Thus in the special point it is bounded by µ = (0) and by no
other µ′. But as b /∈ Gm

(
R[[z]]

)
, the boundedness condition does not hold on all of SpecR.

On the other hand we have
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Lemma 3.13. Let G and H be K-torsors on a quasi-compact connected scheme S ∈ NilpFq[[ζ]]. Let

either z̃ = z − ζ or z̃ = z and let δ : LH ∼−→ LG be an isomorphism of the associated LG-torsors.
Assume that G is semi-simple or that S is reduced. Then there is a dominant µ ∈ X∗(T ) such that
δ is bounded by (µ, z̃).

Proof. Let {λ1, . . . , λn} with λi 6= 0 be a finite generating set of the monoid of dominant weights of
G. Let {λn′ , . . . , λn} be the subset of weights that are central in G, that is orthogonal to the sum 2ρ∨

of the positive coroots. If G is semi-simple, the latter set is empty. Since S is quasi-compact, there
are constants ci for i = 1, . . . , n with δ(Hλi

) ⊂ z̃ −ciGλi
. We have to show that there is a dominant

µ with [µ] = [µδ(s)] in π1(G) for all s ∈ S and 〈(−λi)dom, µ〉 ≥ ci for all i. As S is connected,
[µδ(s)] ∈ π1(G) is constant. Let µ be dominant with [µ] = [µδ(s)]. Replacing µ by µ+2cρ∨ for c ∈ N

leaves the image in π1(G) invariant and replaces 〈(−λi)dom, µ〉 by 〈(−λi)dom, µ〉+ c〈(−λi)dom, 2ρ
∨〉.

For non-central λi, the last bracket is strictly positive. Thus for i = 1, . . . , n′ − 1 we can choose c
large enough to ensure that 〈(−λi)dom, µ + 2cρ∨〉 ≥ ci. For G semi-simple this proves the lemma.
Consider now the case that S is reduced. We want to show that µ+2cρ∨ also satisfies the analogous
condition for i ≥ n′. As S is reduced, it is by Lemma 3.10 enough to check the condition in each
geometric point separately. Thus we have to show that 〈(−λi)dom, µδ(s)〉 ≤ 〈(−λi)dom, µ + 2cρ∨〉
for i ≥ n′. As λi is central, both sides are determined by the images of µδ(s) resp. µ + 2cρ∨ in
π1(G) = X∗(T )/(coroot lattice). As those images agree, the two sides are equal.

Proposition 3.14 (Soergel). Let V =
⊕

λ∈Λ V (λ) be the direct sum of Weyl modules over a finite
generating system Λ of the monoid X∗(T )+ of dominant weights for G. Then the natural map
η : G → GL(V ) is a closed immersion.

Proof. We first prove injectivity for points with values in an algebraic closure of Fq. Every such

point lies in a Borel subgroup and is thus conjugate to an element g ∈ B(Falg
q ). Assume that

g ∈ ker(η)(Falg
q ). Let g = gsgu be its decomposition into semi-simple and unipotent part. For each

λ ∈ Λ consider a highest weight vector vλ ∈ V (λ). That is, vλ generates the G-module V (λ), and
B stabilizes Fq · vλ and operates through the quotient T and the weight λ on vλ. In particular
λ(gs) · vλ = λ(g) · vλ = η(g)(vλ) = vλ, and hence λ(gs) = 1. Since this holds for all λ in a generating
system of X∗(T ), we must have gs = 1. So ker(η) is a closed normal subgroup consisting solely of

unipotent elements. Since G is reductive we conclude ker(η)(Falg
q ) = (1).

For η to be a closed immersion it remains to prove that the induced map on Lie algebras is
injective. Since ker(η) is normal in G, the torus T acts on it and the Lie algebra of ker(η) decomposes
into weight spaces under T . So it suffices to show that η is injective on LieT and on LieUα for each
root subgroup Uα. Our argument for injectivity on points also shows that η is injective on LieT .

Now we consider Uα. By conjugation with the longest element of the Weyl group it suffices to
treat the case where α is a negative root. For this consider a dominant weight λ (not necessarily in
Λ) and the B-representation Wλ := (−λ)⊗ ResGB IndG

B
λ where

IndG
B
λ :=

{
f ∈ Fq[G] : f(xb) = λ(b)−1f(x) for all x ∈ G, b ∈ B

}
.

Let U be the unipotent radical of B. Via restriction to U we get a map Wλ → Fq[U ]. This is an
inclusion, since every f ∈ Wλ which is zero on U is also zero on the big cell UB, hence zero in Fq[G].
For t ∈ T we have (tf)(x) = f(t−1x) = f(t−1xt t−1) = λ(t) Int∗t (f)(x) with Int∗t (f)(x) := f(t−1xt).
The inclusion Wλ ⊂ Fq[U ] is equivariant under T , where T acts on Fq[U ] through Int∗t . Note that
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the weights of Fq[U ] are in Q≤0 · R
+ := {

∑
β∈R+ nβ · β : nβ ∈ Q, nβ ≤ 0}, where R+ is the set of

positive roots. The inclusion is also equivariant under U , where U operates on Fq[U ] through left
translation.

We choose λ such that w(λ + ρ) − λ − α − ρ /∈ Q≥0 · R
+ for all w 6= 1 in the Weyl group W ,

where ρ is the halfsum of all positive roots. To see that such a λ exists, let α1, . . . , αr be the simple
roots of G and choose µj ∈ X∗(T )Q for j = 1, . . . , r with 〈αi, µj〉 = δij . Let

N = max
{
〈−α , µj〉 : j = 1, . . . , r

}
∈ N0

and let λ = 2Nρ. For any 1 6= w ∈ W there exists a µj with 〈ρ−w(ρ), µj〉 6= 0, i. e. 〈ρ−w(ρ), µj〉 ≥
1/2. Then

〈w(λ+ ρ)− λ− α− ρ , µj〉 ≤ (2N + 1) 〈w(ρ) − ρ , µj〉+ 〈−α , µj〉 < 0 ,

and this implies that w(λ + ρ)− λ− α − ρ /∈ Q≥0 · R+ for all w 6= 1. Note that for this choice of λ
we have λ = (−λ)dom.

We next use Kostant’s character formula [Kn, Corollary 5.83]. Note that although it is stated in
loc. cit. for Lie algebra representations in characteristic zero, the formula also holds in our situation
because it is a formal consequence (see [Kn, proof of Corollary 5.83]) of Weyl’s character formula
[Ja, Corollary II.5.10]. Let µ be a weight and

P(µ) := #
{
(nβ)β∈R+ : nβ ∈ N>0, µ =

∑

β∈R+

nβ · β
}

= dimFq (Fq[U ])−µ ,

the dimension of the (−µ)-weight space of Fq[U ]. If µ /∈ Q≥0 ·R
+ then P(µ) = 0. Kostant’s formula

says that the α-weight space of Wλ has dimension

dimFq(Wλ)
α = dimFq

(
IndG

B
λ
)λ+α

=
∑

w∈W

(−1)ℓ(w)P(w(λ + ρ)− λ− α− ρ)

which is for our choice of λ

= P(λ + ρ− λ− α− ρ) = dimFq (Fq[U ])α .

In particular, Wλ generates the Fq-algebra Fq[Uα]. Assume that u ∈ LieUα lies in ker(η). Since
V (λ) is a G-submodule of a tensor power of V (see the argument of Lemma 3.7), u acts trivially on
V (λ). As λ = (−λ)dom, it also acts trivially on Wλ. Therefore u acts trivially on Fq[Uα]. Since this
operation is via left translation we must have u = 0. This proves that η is injective on LieUα and
finishes the proof.

Remark 3.15. The corresponding map η′ : G → GL(V ′) where V ′ is a sum over Λ of corresponding
irreducible highest weight representations is in general not an immersion. This already occurs for
G = PGL2 in characteristic 2, where one can choose Λ to consist of the only positive root α. The
corresponding Weyl module V (α) is the dual of the adjoint representation. With respect to the
decomposition V (α) = (LieT ⊕ LieUα ⊕ LieU−α)

∨ it is given by

η : PGL2 → GL(V (α)) , g =

(
a b
c d

)
7−→




1 ac
det g

bd
det g

0 a2

det g
b2

det g

0 c2

det g
d2

det g


 .
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It is an extension of a two-dimensional irreducible representation V ′ by the trivial representation,
and the corresponding map η′ : PGL2 → GL(V ′) is not injective on tangent spaces.

For the next proposition recall that by [EGA, 0I, Lemma 7.7.2], a linearly topologized Fq[[ζ]]-
algebra R is admissible if R = lim

←−
Rα for a projective system (Rα, uαβ) of discrete rings such that

the filtered index-poset has a smallest element 0, all maps R → Rα are surjective, and the kernels
Iα := keruα,0 ⊂ Rα are nilpotent.

Proposition 3.16. Let R be an admissible Fq[[ζ]]-algebra as above with filtered index-poset N0. Then
the pullback under the natural morphism Spf R → SpecR defines a bijection between local G-shtukas
bounded by µ over SpecR and over Spf R.

Remark 3.17. Without the boundedness by µ the pullback map is in general only injective. The
corresponding result for p-divisible groups is shown by Messing in [Me, Lemma II.4.16] and by de
Jong in [dJ, Lemma 2.4.4].

Proof of Proposition 3.16. A local G-shtuka over Spf R is by definition a projective system (Gn)n∈N0

of local G-shtukas Gn over Rn with Gn−1
∼= Gn ⊗Rn Rn−1. The pullback under Spf R → SpecR

sends a local G-shtuka G to the projective system (G ⊗R Rn)n. We describe the inverse map. By
Proposition 2.2 there is an étale R0-algebra A0 which trivializes G0. By [SGA 1, Théorème I.5.5]
there is a unique étale R-algebra A with A ⊗R R0

∼= A0. Set An := A ⊗R Rn. By Proposition 2.2
we can simultaneously trivialize all Gn over An. Thus Gn ⊗Rn An

∼= (KAn , bnσ
∗) for bn ∈ LG(An) =

G
(
An[[z]][

1
z−ζ ]

)
with bn ⊗An An−1 = bn−1. We must show that b := lim

←−
bn exists as an element of

G
(
A[[z]][ 1

z−ζ ]
)
. Note that without the boundedness by µ this is in general false.

Consider the representation η : G → GL(V ) with V being the Fq-vector space
⊕

λ∈Λ V (λ) from
Proposition 3.14. Let N be a positive integer with N ≥ 〈(−λ)dom, µ〉 for all λ ∈ Λ. Then the
boundedness by µ implies that (z − ζ)N · η(bn) ∈ Mr

(
An[[z]]

)
, that is the denominator of bn is

bounded by (z − ζ)N independently of n. Clearly the projective system
(
(z − ζ)N · η(bn)

)
n
has a

limit in Mr

(
A[[z]]

)
. It is of the form (z − ζ)N · η(b) for a b ∈ G

(
A[[z]][ 1

z−ζ ]
)
by construction. The

local G-shtuka
(
KSpecA, bσ

∗
)
over SpecA inherits a descent datum from the Gn. This gives us the

desired local G-shtuka over SpecR.

4 The general linear group

In this section we consider the case G = GLr and give the translation between GLr-torsors and
locally free sheaves of finite rank. This special case has the advantage that the similarity to the
theory of crystals is visible more clearly.

Let B ⊂ GLr be the Borel subgroup of upper triangular matrices and let T be the torus of diagonal
matrices. Then X∗(T ) ∼= Zr with simple coroots ei− ei+1 for i = 1, . . . , r− 1. Also X∗(T ) ∼= Zr. Let
λi = (1, . . . , 1, 0, . . . , 0) with multiplicities i and r−i. The Weyl module V (λ1) =

(
IndGLr

B
(−λ1)dom

)∨
of highest weight λ1 is simply the standard representation of GLr on the space of column vectors
with r rows, and V (λi) = ∧iV (λ1). For an Fq-scheme S we have K(S) = GLr

(
Γ(S,OS)[[z]]

)
. By

Proposition 2.3 there is an equivalence between the category of K-torsors on S and the category of
sheaves of OS [[z]]-modules which Zariski-locally on S are free of rank r with isomorphisms as the
only morphisms. This equivalence sends G to the sheaf Gλ1

associated with the presheaf

Y 7−→
(
G(Y )×

(
V (λ1)⊗Fq OS [[z]](Y )

))/
GLr

(
Y [[z]]

)
;
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compare the discussion before Definition 3.5. On the sheaf Gλ1
the group GLr acts via the standard

representation (which corresponds to λ1 as above).

Definition 4.1. A local shtuka over S ∈ NilpFq[[ζ]] (of rank r) is a pair (M,ϕ) where M is a sheaf of
OS [[z]]-modules on S which Zariski-locally is free of rank r, together with an isomorphism of OS((z))-
modules ϕ : σ∗M ⊗OS [[z]] OS((z))

∼−→ M ⊗OS [[z]] OS((z)).
A quasi-isogeny between local shtukas (M,ϕ) → (M ′, ϕ′) is an isomorphism of OS((z))-modules
f : M ⊗OS [[z]] OS((z))

∼−→ M ′ ⊗OS [[z]] OS((z)) with ϕ′σ∗(f) = fϕ.

Lemma 4.2. Under the functor G 7→ Gλ1
=: M the category of local GLr-shtukas over S with quasi-

isogenies as morphisms is equivalent to the category of local shtukas over S with quasi-isogenies as
morphisms.

Let M = (M,ϕ) be a local shtuka over S ∈ NilpFq[[ζ]] and let s : SpecL → S be a point with
L a field. By the elementary divisor theorem (i.e. the Cartan decomposition for G = GLr) there
are L[[z]]-bases m1, . . . ,mr of Ms and n1, . . . , nr of σ∗Ms with ϕ(ni) = z−ei ·mi and ei = ei(M ; s).
The elementary divisors e1 ≥ . . . ≥ er are called the Hodge weights of M s. The decreasing ordering
e1 ≥ . . . ≥ er corresponds to the choice that the Borel subgroup B is the group of upper triangular
matrices and that we want (e1, . . . , er) to be dominant. The vector µ = (e1, . . . , er) is also called
the Hodge polygon of M s. This name comes from the fact that one often considers the polygon
associated to µ which is the graph of the piecewise linear continuous function [0, r] → R with 0 7→ 0
and slope ei on [i−1, i]. Note that we chose the opposite ordering e1 ≥ . . . ≥ er than Katz [Ka] does
and therefore the shape of our polygons is opposite to the one of Katz.

The second coordinate e1 + . . . + er of the endpoint of the polygon associated to µ equals the
valuation ordz(detϕ) of the determinant of ϕ with respect to any L[[z]]-bases of Ms and σ∗Ms. One
easily checks that it is a locally constant function on S. In view of π1(GLr) ∼= Z and [µM (s)] =
ordz(det s

∗ϕ) this gives a simple proof of Proposition 3.4 for G = GLr.
The ordering on X∗(T ) can also be visualized using the associated polygons: µ′ � µ if and only

if the polygon associated to µ′ lies below the polygon associated to µ and both polygons have the
same endpoint. Writing µ′ = (di) and µ = (ei) this is equivalent to e1 + . . . + ei ≥ d1 + . . . + di for
all 1 ≤ i ≤ r with equality for i = r.

Lemma 4.3. Let d1 ≥ . . . ≥ dr be integers. Then a local GLr-shtuka G is bounded by µ =
(d1, . . . , dr) ∈ Zr = X∗(T ) if and only if its associated local shtuka (M,ϕ) satisfies

ϕ
(
∧iσ∗M

)
⊂ (z − ζ)dr−i+1+...+dr ∧i M for 1 ≤ i ≤ r with equality for i = r .

In this case coker
(
ϕ : σ∗M → (z − ζ)drM

)
is a locally free sheaf of OS-modules of finite rank on S.

Proof. To prove the first assertion we use Lemma 3.7. The dominant weights λi = (1, . . . , 1, 0, . . . , 0)
with 1 repeated i times for 1 ≤ i ≤ r, together with −λr generate the monoid X∗(T )+ of dominant
weights of GLr. The Weyl module V (λi) associated with λi is the i-th exterior power of the standard
representation V (λ1). The Weyl module V (λr) is one dimensional and therefore equal to V (−λr)

∨;
cf. [Ja, Remark 3, p. 177]. This is responsible for the equality for i = r.

To prove that cokerϕ is locally free note that ϕ : σ∗M → (z − ζ)drM is injective. Let s :
Specκ(s) → S be a point of S and consider the sequence

0 −→ TorOS

1 (κ(s), coker ϕ) −→ s∗σ∗M
s∗ϕ

−−−→ s∗(z − ζ)drM −→ s∗ cokerϕ −→ 0 .
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As M is locally free we have s∗σ∗M ∼= κ(s)[[z]]⊕r ∼= s∗(z − ζ)drM . The boundedness condition says
for i = r that det(s∗ϕ) equals zd1+...+dr times a unit. Therefore the map s∗ϕ is injective. So cokerϕ
is finitely presented by construction and flat over S by Nakayama’s Lemma; e.g. [Ei, Exercise 6.2],
hence locally free of finite rank.

Remark 4.4. Over a field S = s = Spec k the elementary divisor theorem (or Lemma 3.11) tells us
that M is bounded by µ = (di) if and only if e1(M ; s)+ . . .+ ei(M ; s) ≤ d1+ . . .+di for all 1 ≤ i ≤ r
with equality for i = r, that is the Hodge polygon µM(s) :=

(
ei(M ; s)

)
satisfies µM (s) � µ.

Example 4.5. Consider µ = (d, 0, . . . , 0) for some d ≥ 0. Then a local GLr-shtuka G over S is
bounded by µ if and only if its associated local shtuka (M,ϕ) satisfies that ϕ : σ∗M → M is a true
morphism of OS [[z]]-modules and cokerϕ is locally free of rank d on S.

5 Deformation theory of local G-shtukas

Before we treat deformations let us return to the affine Grassmannian Gr. Consider the formal scheme
Spf Fq[[ζ]] as the ind-scheme lim

−→
SpecFq[ζ]/(ζ

n) and let Ĝr be the fiber product Gr×Spec Fq Spf Fq[[ζ]]

in the category of ind-schemes ([BD, 7.11.1]). Thus Ĝr is the restriction of the sheaf Gr to the fppf -site

of schemes in NilpFq[[ζ]]. We can also think of Ĝr as the formal completion of Gr×SpecFq SpecFq[[ζ]]
along the special fiber V(ζ) ⊂ Gr×Spec Fq SpecFq[[ζ]].

The following proposition is a variant of [LS, Proposition 3.10]. Namely loc. cit. treats the case
where G is a G-torsor over X ×Fq S for a smooth projective connected curve, and δ is a trivialization
outside a single point p ∈ X. Our proposition is the infinitesimal variant and the argument of loc.
cit. carries over literally. We will give a detailed proof of this fact in a slightly modified situation in
Theorem 6.2.

Proposition 5.1. The ind-scheme Ĝr pro-represents the functor
(
NilpFq[[ζ]]

)o
−→ Sets

S 7−→
{
Isomorphism classes of pairs (G, δ) where

G is a K-torsor on S and

δ : LG ∼−→ LGS is an isomorphism of the associated LG-torsors
}
.

Here (G, δ) and (G′, δ) are isomorphic if δ−1 ◦ δ′ is an isomorphism G′ → G.

Definition 5.2. We write Ĝr = lim
−→

Xn for some quasi-compact schemes Xn ∈ NilpFq[[ζ]]. Let

either z̃ = z− ζ or z̃ = z. Then the condition that the inverse γ := δ−1 of the universal isomorphism
δ : LGXn

∼−→ LGXn from Proposition 5.1 is bounded by (µ, z̃) is represented by a closed subscheme of
Xn by Lemma 3.10. The inductive limit of these closed subschemes defines a closed ind-subscheme

of Ĝr, which we call Ĝr
�(µ,z̃)

. The fibers over ζ = 0 of Ĝr
�(µ,z−ζ)

and Ĝr
�(µ,z)

coincide as ind-
subschemes of Gr.

To describe Ĝr
�(µ,z−ζ)

and Ĝr
�(µ,z)

recall that the Cartan decomposition defines a stratification
of Gr by the Schubert cells Grµ := Kz(−µ)domK/K for dominant coweights µ. Note that our unusual
definition of Grµ is motivated by Proposition 5.5 and Remark 5.8 below. The following result is
well-known.
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Proposition 5.3. (a) The Schubert cell Grµ is a locally closed subscheme of Gr which is a quasi-
projective scheme over Fq.

(b) The closure of Grµ in Gr equals the union Gr�µ :=
⋃

µ′�µGrµ
′

. The latter is a projective

scheme over Fq and Grµ is open in Gr�µ.

(c) Both Grµ and Gr�µ are irreducible and of dimension 〈2ρ, µ〉 where 2ρ is the sum of all positive
roots of G.

Proof. Note that (−µ)dom = w0(−µ) where w0 is the longest element of the Weyl group. Thus µ′ � µ
if and only if (−µ′)dom � (−µ)dom. Besides, 〈2ρ, (−µ)dom〉 = 〈2ρ, µ〉. Now the assertion follows from
[NP, Lemma 2.2 and the remarks thereafter] or [BD, 4.5.8, 4.5.12], except for the projectivity of
Gr�µ which we now prove. Since K is an affine scheme, it and Grµ are quasi-compact. Since there
are only finitely many µ′ � µ, also Gr�µ is quasi-compact and then its projectivity follows from the
facts that Gr is ind-projective (that is Gr = lim

−→
Xn for projective Fq-schemes Xn; see [BD, Proof of

4.5.1(iv) and 7.11.2(iii)]), that Gr�µ is closed in Gr, and the following Lemma 5.4. Note that strictly
speaking the results in [BD, §4.5] are proved only over the base field C but their proofs also work
over Fq.

Lemma 5.4. Let X be an ind-scheme over a base scheme S, cf. [BD, 7.11.1], that is X is a sheaf of
sets for the fppf -topology on S, which can be represented as the limit lim

−→
Xα of an inductive system

of quasi-compact S-schemes Xα and closed immersions Xα →֒ Xβ for α ≤ β in a directed set. If U
is a quasi-compact S-scheme, then any S-morphism f : U → X, that is section f ∈ X(U), factors
through some Xα0

.

Note that since the presheaf U 7→ lim
−→

Xα(U) is not a sheaf, an argument for this is required.

Proof. Since X is the sheaf associated with the presheaf U 7→ lim
−→

Xα(U), the morphism f is given by

a covering U ′ → U for the fppf -topology and an element f ′ ∈ lim
−→

Xα(U
′). This means that there is

an fppf -morphism U ′′ → U and a Zariski covering U ′′ =
⋃

i U
′′
i such that U ′ =

∐
i U
′′
i . In particular

f ′ ∈
∏

i lim−→
Xα(U

′′
i ) and for each i there is an αi with f ′|U ′′

i
∈ Xαi

(U ′′i ). Since U is quasi-compact,

already finitely many of the U ′′i form an fppf -covering of U . Replacing U ′ by their union we can
assume that U ′ is also quasi-compact. Then taking α0 as an upper bound of the finitely many αi

involved yields f ′ ∈ Xα0
(U ′). By fppf -descent [BLR, §6.1, Theorem 6a] the morphism f factors

through Xα0
.

Proposition 5.5. Let either z̃ = z−ζ or z̃ = z. Then the ind-scheme Ĝr
�(µ,z̃)

is a ζ-adic noetherian
formal scheme over Fq[[ζ]] whose underlying topological space is Gr�µ.

Proof. We claim that Ĝr
�(µ,z̃)

×Spf Fq[[ζ]] SpecFq[[ζ]]/(ζ
n) =: Yn is a scheme locally of finite type over

Fq[[ζ]]/(ζ
n) with underlying topological space Gr�µ. From the claim the proposition follows by [EGA,

Inew, Corollary 10.6.4].
To prove the claim let us first recall the structure of Gr as an ind-scheme. Choosing an embedding

G ⊂ GLr induces an injection of Gr into the affine Grassmannian for GLr which we denote by
G̃r. The ind-scheme structure on G̃r can be described as follows. The valuation ordz det(A) for
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A ∈ GLr

(
k((z))

)
yields a locally constant function on G̃r; see Proposition 3.4. So G̃r is the disjoint

union of the G̃r(h) := {A ∈ G̃r : ordz det(A) = h }. Let N be a positive integer and let X̃(h)N be

the reduced subscheme of G̃r(h) defined by

X̃(h)N (k) := {A ∈ G̃r(h)(k) : A ∈ Mr

(
z−Nk[[z]]

)
/GLr

(
k[[z]]

)
} .

Then the X̃(h)N are projective Fq-schemes, X̃N :=
∐

h X̃(h)N is a scheme locally of finite type over

Fq, and G̃r = lim
−→

X̃N . The inclusion Gr →֒ G̃r realizes Gr as a closed ind-subscheme and the induced

ind-scheme structure of Gr does not depend on the chosen embedding; see [BD, Theorem 4.5.1] in
characteristic zero, but note that the proof also works over Fq.

We consider the G-module V and the induced embedding η : G → GL(V ∨) of Proposition 3.14.
Let N = N(n, µ) ∈ N be a power of q such that N ≥ n and N ≥ 〈(−λ)dom, µ〉 for all λ ∈ Λ. On

Yn we have (z − ζ)N = zN − ζN = zN . By our definition of Ĝr
�(µ,z̃)

, the universal isomorphism
γ := δ−1 : LGYn

∼−→ LG|Yn on Yn is bounded by (µ, z̃), hence satisfies

γ
(
KYn

)
λ

= γ
(
V (λ)⊗Fq OYn [[z]]

)
⊂ z̃ −〈(−λ)dom ,µ〉 Gλ ⊂ z−NGλ

for all λ ∈ Λ and both choices of z̃. By Proposition 2.3 we may choose bases of the Gλ Zariski-locally
on Yn. Then γ is represented on V =

⊕
λ∈Λ V (λ) as a matrix A in the right coset

A ∈ GLdimV

(
Yn[[z]]

)
\MdimV

(
z−NYn[[z]]

)
.

On V ∨ =
(⊕

λ∈Λ V (λ)
)
∨
its inverse δ = γ−1 is represented by its transpose

AT ∈ MdimV

(
z−NYn[[z]]

)
/GLdimV

(
Yn[[z]]

)
.

Therefore Yn is a closed subscheme of X̃N ×SpecFq SpecFq[[ζ]]/(ζ
n), hence locally of finite type over

Fq[[ζ]]/(ζ
n). The reduced closed subscheme underlying Yn can be computed by looking at geometric

points x ∈ Gr. Over x the isomorphism γx = δ−1x is given by an element g ∈ K
(
κ(x)

)
zµγ (x)K

(
κ(x)

)

after choosing a trivialization of Gx. By definition of Ĝr this means that the point x is given by
g−1 ∈ LG(κ(x)) with g−1 ∈ Grµγ (x). By Lemma 3.11 the point x belongs to Yn if and only if
µγ(x) � µ, which is equivalent to x lying in Gr�µ.

Let µ ∈ X∗(T ) be dominant and let G = (G, ϕ
G
) be a local G-shtuka bounded by µ over a field

k′ ∈ NilpFq[[ζ]]. Assume that there is a trivialization α : G ∼−→ Kk′ such that α : G ∼−→ (Kk′ , b0σ
∗) for

some b0 ∈ LG(k′). Note that if k′ is algebraically closed, a trivialization always exists by Remark 3.2.
The inverse b−10 of b0 defines a point x ∈ Gr(k′) (which depends on the chosen trivialization). Since
G is bounded by µ, (b−10 )−1 = b0 is bounded by µ and we have x ∈ Gr�µ(k′) by Proposition 5.5. Let

D be the complete local ring of Ĝr
�(µ,z−ζ)

at the point x. It is a complete noetherian local ring over
k′[[ζ]].

Theorem 5.6. D pro-represents the formal deformation functor of G

F :
(
Artinian local k′[[ζ]]-algebras with residue field k′

)
−→ Sets ,

A 7−→
{
Isomorphism classes of pairs (G, β) where

G is a local G-shtuka over SpecA bounded by µ and

β : G ∼−→ G ⊗A k′ is an isomorphism of local G-shtukas
}
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where (G, β) and (G ′, β′) are isomorphic if there exists an isomorphism η : G → G′ with β′ =
(η ⊗A k′) ◦ β.

Proof. We first construct the universal pro-object over D. Let Dn = D/mn
D where mD is the maximal

ideal of D. By [NP, Lemma 2.1] the projection morphism LG → Gr has a section in an open
neighborhood of the image of 1 ∈ LG(k′). Translating by b−10 ∈ LG(k′) we obtain a section in an open

neighborhood of x ∈ Gr(k′). Since mD is nilpotent on Dn, the natural map SpecDn → Ĝr
�(µ,z−ζ)

→

Ĝr can be given by some element b̃−1n ∈ LG(Dn) = G
(
Dn[[z]][

1
z−ζ ]

)
with b̃−1n ⊗Dn k′ = b−10 . Note

that b̃−1n is only determined up to multiplication on the right with elements g ∈ K(Dn) satisfying
g ⊗Dn k′ = 1. By construction γn = (b̃−1n )−1 = b̃n is bounded by (µ, z − ζ). We choose the b̃n in
a compatible way and let b̃ ∈ G

(
D[[z]][ 1

z−ζ ]
)
be the limit. The boundedness by µ of all b̃n implies

the existence and boundedness by µ of b̃ by the same argument as in Proposition 3.16. Although
b̃−1 is still only determined up to right multiplication with elements g ∈ K(D) as above, we take
Guniv := (KD, b̃σ

∗) and α : G ∼−→ Guniv ⊗D k′ so that (Guniv, α) ∈ F (D) because b̃ and b̃σ∗ are
bounded by µ. In particular we obtain a morphism of functors Homk′[[ζ]](D, . ) → F by sending

u : D → A to the deformation
(
KA, u(b̃)σ

∗, α
)
∈ F (A).

We will show that this morphism of functors is an isomorphism. Let (G, β) ∈ F (A). Let m ⊂ A
be the maximal ideal. We use induction on An := A/mqn to show the following

Claim. For each n there is a uniquely determined k′[[ζ]]-homomorphism un : D → An with

(
KAn , un(b̃)σ

∗, α
)

= (G, β)⊗A An in F (An) .

For n = 0 we have A0 = k′ and there is only one k′[[ζ]]-homomorphism, namely u0 : D →
D/mD = k′ = A0. This proves the claim for n = 0 since u0(b̃) = b0 and

(
Kk′ , b0σ

∗, α
)
is isomorphic

to (G, β)⊗A k′ via β ◦ α−1.
Now let n ≥ 1 and assume that we have already constructed the uniquely determined un−1. In

particular there is an isomorphism η :
(
KAn−1

, un−1(b̃)σ
∗
)
∼−→ G ⊗A An−1 with (η⊗An−1

k′) ◦α = β.

By Proposition 2.2 the trivialization η lifts to a trivialization η′ : KAn
∼−→ G ⊗A An. We let bn :=

(η′)−1 ϕG σ
∗(η′) ∈ G

(
An[[z]][

1
z−ζ ]

)
and replace (G, β)⊗A An by

(
KAn , bnσ

∗, α
)
. Then bn ⊗An An−1 =

un−1(b̃). Consider the diagram

SpecAn
b−1n //________

Specun

))R

R

R

R

R

R

R

R

LG //
Ĝr

SpecAn−1

OO

Specun−1
// SpecD

b̃−1

OO

//
Ĝr
�(µ,z−ζ)

OO

Here the right square commutes by the definition of b̃. The element b−1n yields a morphism SpecAn →

Ĝr which factors through Ĝr
�(µ,z−ζ)

, since G and hence (b−1n )−1 are bounded by µ. As bn⊗An k
′ = b0,

the maximal ideal of An is sent to x ∈ Ĝr
�(µ,z−ζ)

. Since An is complete, the morphism even factors
through SpecD. We obtain a homomorphism un : D → An with un(b̃)⊗An An−1 = un−1(b̃) and such

that g := bnun(b̃
−1) ∈ K(An) by definition of Ĝr. In particular g ⊗An An−1 = 1, hence σ∗(g) = 1.

We now replace
(
KAn , bnσ

∗, α
)
by

(
KAn , g

−1bnσ
∗(g) · σ∗, α

)
, that is, we change η′ to η′g. Then

un(b̃) = g−1bn = g−1bnσ
∗(g) as desired.
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It remains to show that un is uniquely determined. Let un, u
′
n : D → An be two homomorphisms

as in our claim. Applying ⊗AnAn−1 and exploiting the uniqueness for n − 1 we see that un(b̃) ⊗An

An−1 = u′n(b̃)⊗An An−1. So there is a g ∈ K(An) with g−1un(b̃)σ
∗(g) = u′n(b̃) and g ⊗An An−1 = 1.

In particular σ∗(g) = 1 and hence u′n(b̃
−1) = un(b̃

−1)g. This implies that the compositions of un and

u′n with SpecD → Ĝr coincide. By the definition of D this implies un = u′n as desired.

Remark 5.7. From now on we always consider the deformation ring D with a fixed isomorphism of
functors Homk′[[ζ]](D, . ) ∼= F (and thus a fixed universal local G-shtuka over D) as in the proof.

Remark 5.8. One could avoid the inversion b−10 and the definition of Grµ as Kz(−µ)
dom

K/K by

instead considering the affine Grassmannian (K\LG)×SpecFq Spf Fq[[ζ]] and defining Ĝr
�(µ,z−ζ)

as a
closed subscheme of the latter. On the other hand, it is not clear to us whether the two conditions
that δ−1 is bounded by µ and that δ is bounded by (−µ)dom are equivalent over a non-reduced scheme.

Therefore we do not know whether one could also define Ĝr
�(µ,z−ζ)

as the subscheme on which δ is
bounded by (−µ)dom. As mentioned in Remark 3.6, we could in the definition of boundedness also
take the class of all G-modules of lowest weight (−λ)dom or the class of all tilting modules. The
latter are self-dual by [Ja, E.6]. Then we would have that δ−1 is bounded by µ if and only if δ is
bounded by (−µ)dom.

Proposition 5.9. Let D be the deformation ring from Theorem 5.6. Then the reduced quotient
D = (D/ζD)red is a complete normal noetherian integral domain of dimension 〈2ρ, µ〉 and Cohen-
Macaulay.

Proof. The ring D equals the completion of the local ring of x in Gr�µ. Since Gr�µ is irreducible,
reduced, normal, and Cohen-Macaulay (by [PR1, Theorem 6.1] for SLn or [Fa, Theorem 8 and
Remark before Corollary 11] in general) this local ring is a normal integral domain and Cohen-
Macaulay. By Zariski’s Main Theorem [ZS, Theorem VIII.32] and [Ei, Proposition 18.8] the same
is then true for its completion D. By Proposition 5.3, Gr�µ has dimension 〈2ρ, µ〉. Thus the same
holds for D.

Note that if one is only interested in the dimension (as we are in Proposition 7.8), one does not
need the normality. Namely, Gr�µ is equidimensional of dimension 〈2ρ, µ〉. Thus the same holds for
every local ring. By [HIO, Theorem 18.17] the completion of a local equidimensional and universally
catenary ring is equidimensional.

Example 5.10. Contrary to p-divisible groups the deformation space of a local G-shtuka is in general
not smooth. Consider for example the ring A = Fq[[ζ]]/(ζ

2) and the local shtuka

(M,ϕ) =
(
A[[z]]⊕2,

(
z 0
0 z − 2ζ

)
σ∗

)
.

According to Lemma 4.3 and since the determinant of ϕ equals (z− ζ)2, it is bounded by (2, 0) . We
claim that it cannot be deformed to a local shtuka over Ã = Fq[[ζ]]/(ζ

3) bounded by any µ (which

is then of the form (µ1, 2 − µ1)dom). Indeed assume there is a deformation (M̃, ϕ̃) = (Ã[[z]]⊕2, b̃σ∗)
with

b̃−

(
z 0
0 z − 2ζ

)
= ζ2

(
c11 c12
c21 c22

)
∈ ζ2M2

(
Ã[[z]]

)
.
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Then det b̃ = z2 − 2ζz + ζ2z(c11 + c22) and the boundedness by (µ1, 2 − µ1) requires that this
determinant differs from (z − ζ)2 by a unit in Ã[[z]]×. However this is not the case.

Nevertheless deformation from k′ to k′[[ζ]] is always possible:

Lemma 5.11. Let G be a local G-shtuka over a field k′ ∈ NilpFq[[ζ]] of the form G =
(
Kk′ , bσ

∗
)
for

some b ∈ LG(k′). Then there exists a local G-shtuka Ĝ over k′[[ζ]] with Ĝ ⊗k′[[ζ]] k
′ ∼= G. If G is

bounded by some dominant coweight µ ∈ X∗(T ) then we can find a Ĝ which is also bounded by µ.

Proof. Write b = s0z
µ′

t0 for some dominant µ′ ∈ X∗(T ) and s0, t0 ∈ K(k′). Choose lifts s, t ∈
K
(
k′[[ζ]]

)
of s0 and t0 and set Ĝ :=

(
Kk′[[ζ]], s(z − ζ)µ

′

t · σ∗
)
. Then Ĝ is a local G-shtuka over k′[[ζ]].

Moreover, G is bounded by µ if and only if µ′ � µ by Lemma 3.11. Then 〈(−λ)dom, µ
′〉 ≤ 〈(−λ)dom, µ〉

for all dominant weights λ. This shows that Ĝ is bounded by µ.

6 Rapoport-Zink spaces for local G-shtukas and affine Deligne-

Lusztig varieties

We explain the relation between local G-shtukas and affine Deligne-Lusztig varieties. Let k′ be a
field containing Fq. Recall that LG(k′) =

∐
K(k′)zµK(k′) where the union is over all dominant

coweights µ. We recall the definition of affine Deligne-Lusztig varieties from [GHKR1].

Definition 6.1. For an element b ∈ LG(k′) and a dominant µ ∈ X∗(T ) the affine Deligne-Lusztig
variety Xµ(b) is the locally closed reduced ind-subscheme over k′ of the affine Grassmannian Grk′ :=
Gr⊗Fqk

′ defined by

Xµ(b)(k′) =
{
g ∈ Grk′(k′) : g

−1bσ∗(g) ∈ K(k′)zµK(k′)
}
,

where k′ is an algebraic closure of k′. The closed affine Deligne-Lusztig variety X�µ(b) is the closed
reduced ind-subscheme of Grk′ defined by

X�µ(b)(k′) =
⋃

µ′�µ

Xµ′(b)(k′).

Left multiplication by g ∈ LG(k′) induces an isomorphism between Xµ

(
g−1bσ∗(g)

)
and Xµ(b).

There is a criterion for Xµ(b) to be non-empty, see [KR] and [Ga]. In Corollary 6.5 we give a proof
for the well known fact that both Xµ(b) and X�µ(b) are schemes locally of finite type over k′.

We fix a local G-shtuka G over k′ of the form G = (Kk′ , bσ
∗) for some b ∈ LG(k′). For a scheme

S ∈ Nilpk′[[ζ]] we denote by S̄ the closed subscheme V(ζ) ⊂ S. Recall the ind-scheme Ĝr from

Section 5 and set Ĝrk′ := Ĝr⊗Fq k
′.

Theorem 6.2. The ind-scheme Ĝrk′ pro-represents the functor
(
Nilpk′[[ζ]]

)o
−→ Sets

S 7−→
{
Isomorphism classes of pairs (G, δ̄) where

G is a local G-shtuka over S and

δ̄ : GS̄ → GS̄ is a quasi-isogeny
}

Here (G, δ̄) and (G′, δ̄′) are called isomorphic if δ̄−1 ◦ δ̄′ lifts to an isomorphism G′ → G.
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Proof. Let us first reformulate the theorem by lifting the statement to k′[[ζ]]. By Lemma 5.11 we may
choose a local G-shtuka Ĝ over k′[[ζ]] which lifts G. Note that Ĝ has a trivialization Ĝ = (Kk[[ζ]], b̂σ

∗);
see the proof of Lemma 5.11. By rigidity of quasi-isogenies (Proposition 3.9) the functor in question
is isomorphic to the functor

(
Nilpk′[[ζ]]

)o
−→ Sets

S 7−→
{
Isomorphism classes of pairs (G, δ) where G is a local

G-shtuka over S and δ : G → ĜS is a quasi-isogeny
}

Here (G, δ) and (G ′, δ′) are called isomorphic if δ−1 ◦ δ′ is an isomorphism G ′ → G.

Let x ∈ Ĝrk′(S) for a scheme S ∈ Nilpk′[[ζ]]. The projection morphism LG → Gr admits local
sections for the étale topology by [BD, Theorem 4.5.1]. Note that in [BD] this is proved to hold even
Zariski locally over an algebraically closed field of characteristic zero. Using [NP, Lemma 2.1] the
proof carries over for our base field Fq after allowing a finite separable extension of Fq. Consequently
there is an étale covering S′ → S such that x is represented by an element g′ ∈ LG(S′). Define
(G′, ϕ′, δ′) over S′ as follows. Let G′ = KS′ , let the quasi-isogeny δ′ : (G′, ϕ′) → ĜS′ be given by
y 7→ g′y, and the Frobenius by ϕ′ = (g′)−1b̂σ∗(g′)σ∗. We descend (G′, ϕ′, δ′) to S. For an S-scheme
Y let Y ′ = Y ×S S′ and Y ′′ = Y ′ ×Y Y ′, and let pi : Y

′′ → Y ′ be the projection onto the i-th factor.
Since g′ comes from an element x ∈ Ĝrk′(S) there is an h ∈ K(S′′) with p∗1(g

′) = p∗2(g
′) ·h. Consider

the fpqc-sheaf G on S whose sections over an S-scheme Y are given by

G(Y ) :=
{
y′ ∈ K(Y ′) : p∗1(y

′) = h−1 · p∗2(y
′) in K(Y ′′)

}

on which K(Y ) acts by right multiplication. Then G is a K-torsor on S because over Y = S′ there
is a trivialization

KS′
∼−→ GS′ , f 7→ hp∗1(f) ∈ K(S′′)

due to the cocycle condition on h. Moreover, ϕ′ descends to an isomorphism ϕ : σ∗LG(Y ) ∼−→
LG(Y ) , σ∗(y′) 7→ (g′)−1b̂σ∗(g′)σ∗(y′) making (G, ϕ) a local G-shtuka over S. Also δ′ descends to a
quasi-isogeny of local G-shtukas

δ : LG(Y ) ∼−→ LG(Y ) =
{
f ′ ∈ LG(Y ′) : p∗1(f

′) = p∗2(f
′) in LG(Y ′′)

}
, y′ 7→ g′y′ .

Note that this is well defined. Namely, if g′ is replaced by g̃′ with u′ = (g̃′)−1g′ ∈ K(S′) then left mul-
tiplication with u′ defines an isomorphism

(
KS′ , (g′)−1b̂σ∗(g′)σ∗, g′

)
∼−→

(
KS′ , (g̃′)−1b̂σ∗(g̃′)σ∗, g̃′

)
.

Also h̃ = p∗2(u
′)hp∗1(u

′)−1 and hence left multiplication with u′ descends to an isomorphism G ∼−→ G̃
over S.

Conversely let G = (G, ϕ) be a local G-shtuka and let δ : G → GS be a quasi-isogeny over S. By
Proposition 2.2 there is an étale covering S′ → S such that the pull back of G to S′ is trivial. After
choosing a trivialization, the map δ is given by an element g′ ∈ LG(S′) whose image in Ĝrk′(S

′) is
independent of the chosen trivialization. The quasi-isogeny δ also determines ϕ = (g′)−1b̂σ∗(g′)σ∗.

Since G was defined over S the element g′ descends to a point x ∈ Ĝrk′(S). Clearly these two
constructions are inverse to each other.

Next we want to show that X�µ(b) is the underlying reduced subscheme of an equal characteristic
Rapoport-Zink space for local G-shtukas. More precisely, consider again the local G-shtuka G =
(Kk′ , bσ

∗) from above. Note that each isogeny class of local G-shtukas has a representative over a
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finite field, so we may assume that k′ is finite. Besides we may assume that bσ∗ is decent, i.e. there
are an integer s > 0 and a cocharacter ω ∈ X∗(T ), such that

(bσ∗)s := b σ∗(b) · . . . · (σ∗)s−1(b) (σ∗)s = zω(σ∗)s . (6.1)

Let µ ∈ X∗(T ) be a dominant coweight such that G is bounded by µ, and consider the functor
M : (Nilpk′[[ζ]])

o → Sets,

S 7−→
{
Isomorphism classes of pairs (G, δ̄) where

G is a local G-shtuka over S bounded by µ and

δ̄ : GS̄ → GS̄ is a quasi-isogeny
}
.

Again S̄ denotes the closed subscheme V(ζ) ⊂ S.

Theorem 6.3. Let X̂�µ(b) be the closed ind-subscheme of Ĝrk′ defined by the condition that the

universal G-shtuka G over Ĝrk′ from Theorem 6.2 is bounded by µ. Then X̂�µ(b) is a formal scheme
over Spf k′[[ζ]] which is locally formally of finite type. It pro-represents the functor M : (Nilpk′[[ζ]])

o →
Sets. Its underlying reduced subscheme equals X�µ(b).

Here by the underlying reduced subscheme we mean the subscheme corresponding to the largest
ideal of definition. Also recall that a formal scheme over k′[[ζ]] in the sense of [EGA, Inew, 10] is
called locally formally of finite type if it is locally noetherian and adic and its reduced subscheme is
locally of finite type over k′. It is called formally of finite type if in addition it is quasi-compact. For
the proof of the theorem we need the following proposition in which 2ρ∨ is the sum of all positive
coroots of G.

Proposition 6.4. Let b ∈ LG(k′) satisfy a decency condition with the integer s as in (6.1). Assume
k′ ⊂ Fqs. Then there is a natural number d0 such that for every algebraically closed field k and any
point (G, δ̄) ∈ M(k) there is a point (G ′, δ̄′) ∈ M(Fqs) such that δ̄−1 ◦ δ̄′ is bounded by 2d0ρ

∨.

Proof. By trivializing G the assertion is equivalent to the statement that for any g ∈ LG(k) with
g ∈ X�µ(b)(k) there is a g′ ∈ LG(Fqs) with g′ ∈ X�µ(b)(Fqs) and such that g−1g′ ∈ Kzµ

′
K for some

µ′ � 2d0ρ
∨. This last condition is especially satisfied if the distance of g and g′ in the Bruhat-Tits

building of G is less than d0. Hence the proposition follows from [RZ2, Theorem 1.4 and Subsection
2.1].

Proof of Theorem 6.3. Note that by construction X̂�µ(b) represents M. Also X̂�µ(b) is a closed

ind-subscheme of Ĝrk′ by Lemma 3.10. We show that the underlying topological space of X̂�µ(b) is

the ind-scheme X�µ(b). As X�µ(b) and the underlying reduced ind-subscheme of X̂�µ(b) are both

reduced ind-subschemes of Gr, it then follows that they are equal. Let x ∈ Ĝr be a point with values
in an algebraically closed field κ(x). Put (Ḡ, δ̄) := (G, δ)Spec κ(x), and let δ̄ be given by g ∈ LG(κ(x))
with respect to some trivialization of Ḡ = (Ḡ, ϕ̄). Then ϕ̄ = g−1bσ∗(g) · σ∗ and g ∈ Xµ′(b) for the

Hodge polygon µ′ = µḠ(x) of (Ḡ, ϕ̄) (Definition 3.3). We have that g ∈ X̂�µ(b) if and only if (Ḡ, ϕ̄)

is bounded by µ. By Lemma 3.11 this is equivalent to µ′ � µ, or to g ∈ X�µ(b) as desired.
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It remains to show that X̂�µ(b) is a formal scheme locally formally of finite type. We follow the

proof of [RZ, Theorem 2.16]. By Lemma 5.11 we can choose a lift Ĝ of G to k′[[ζ]] which is bounded by
µ, and using rigidity (Proposition 3.9) we replace M by the isomorphic functor

(
Nilpk′[[ζ]]

)o
−→ Sets

S 7−→
{
Isomorphism classes of pairs (G, δ) where

G is a local G-shtuka over S bounded by µ and

δ : G → ĜS is a quasi-isogeny
}
.

For v ∈ π1(G) let M(v) be the open and closed ind-subscheme of M = X̂�µ(b) where the image
of δ in π1(G) is v (using Proposition 3.4). By [Vi2, Proof of Lemma 1] there is a self-quasi-isogeny
jv of Ĝ whose image in π1(G) is the given v. Composition of the quasi-isogenies δ with jv yields an
isomorphism between the ind-subschemes M(0) and M(v). Hence it is enough to prove the theorem
for M := M(0) instead of X̂�µ(b).

We consider two kinds of ind-schemes related to M. Let n ∈ N. By Lemma 3.10, the condition
that the universal δ, δ−1, and σ∗δ over X̂�µ(b) are all bounded by (2nρ∨, z) is represented by a closed

ind-subscheme Mn of X̂�µ(b). Note that (3.2) in Definition 3.5 implies that Mn is contained in
M. We show that Mn is a ζ-adic noetherian formal scheme over k′[[ζ]]. The condition that the

universal δ on Ĝr from Proposition 5.1, as well as δ−1 and σ∗(δ) are all bounded by (2nρ∨, z) is

represented by a closed ind-subscheme X̂n of Ĝr due to Lemma 3.10. By an argument analogous to
Proposition 5.5, X̂n is a ζ-adic noetherian formal scheme over k′[[ζ]] whose underlying topological
space is the projective scheme Gr�2nρ

∨

from Proposition 5.3. The Frobenius ϕG of the universal G-
shtuka G = (G, ϕG) over X̂

n from Theorem 6.2 satisfies ϕG = δ−1 ◦ϕ
Ĝ
◦σ∗(δ) and hence ϕG(σ

∗Gλ) ⊆

z−〈(−λ)dom,4nρ∨〉(z − ζ)−〈(−λ)dom,µ〉Gλ due to the definition of X̂n and the boundedness of Ĝ by µ.
Analogous to Lemma 3.10, the condition that ϕG as above is bounded by (µ, z − ζ) is equivalent to
the following condition. For each λ, the images of the generators of σ∗Gλ in the locally free sheaf
z−〈(−λ)dom,4nρ∨〉(z−ζ)−〈(−λ)dom ,µ〉Gλ

/
(z−ζ)−〈(−λ)dom ,µ〉Gλ of finite rank on X̂n have to vanish. Hence

Mn is a ζ-adic noetherian closed formal subscheme of X̂n over k′[[ζ]] whose reduced subscheme is
projective.

For n ∈ N let Mn be the ind-scheme which is the formal completion of X̂�µ(b) along the
closed subset (Mn)red, where (Mn)red denotes the topological space underlying Mn. In particular
(Mn)red = (Mn)red. Over a field in Nilpk′[[ζ]], Lemma 3.11 implies that δs is bounded by 2nρ∨ if and

only if δ−1 or σ∗δ are bounded by 2nρ∨. Hence Mn represents the subfunctor of M

S 7−→ {(G, δ) ∈ M(S) : for all closed points s ∈ S the map δs is bounded by 2nρ∨}.

Claim. Mn is representable by a formal scheme which is formally of finite type over Spf k′[[ζ]].

Fix n and for each m ≥ n let Mm
n be the formal completion of Mm along (Mn)red, i.e. the ind-

scheme on which all the above boundedness conditions are satisfied. It is an adic noetherian formal
scheme over k′[[ζ]]. We fix an affine open subscheme U of (Mn)red. For m ≥ n we have (Mn)red =
(Mm

n )red, and thus we get an affine open formal subscheme Spf Rm of Mm
n whose underlying set

is U . Since by construction Mm → Mm+1 is a closed immersion, we have a projective system of
surjective maps of adic rings Rm+1 → Rm. Let R be its limit. We write Rm = R/am for ideals
am ⊂ R. Let J be the inverse image in R of the largest ideal of definition of Rn. We have to prove
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that R is a J-adic ring. Since Rm is J-adic for all m we may write R = lim
←−

R/(am + Jc). The

limit is taken independently over m and c. By [RZ, 2.5] it is enough to show that for each c the
descending sequence am + Jc ⊇ am+1 + Jc ⊇ · · · stabilizes. Let Gm be the universal local G-shtuka
on Spf Rm. Since R/Jc = lim

←−
Rm/Jc is an admissible ring, G = lim

←−
Gm defines a local G-shtuka

on SpecR/Jc for every c by Proposition 3.16. By rigidity (Proposition 3.9), we may also lift the
quasi-isogeny δ from R/J = Rn/J to R/Jc. We want to see that there is an integer m0 ≥ n, such
that δ, δ−1, and σ∗δ are bounded by 2m0ρ

∨ over R/Jc. By the second assertion of Proposition 3.9,
they are all bounded by some coweight ω whose image in π1(G) is trivial. Choosing m0 such that
ω � 2m0ρ

∨ we obtain a bound of the desired form. Hence by the universal property of Mm0
n there

is a unique map Rm0
→ R/Jc inducing the given point (G, δ). For any m ≥ m0 the composite

Rm → Rm0
→ R/Jc → Rm/JcRm is the projection, since both maps induce (Gm, δ) over Rm/JcRm.

Thus the first map yields an isomorphism Rm/JcRm → Rm0
/JcRm0

. This implies that the sequence
above stabilizes and proves our claim.

Let d0 be as in Proposition 6.4. The assertion of the proposition obviously remains valid for M.
For two closed points x = (G, δ), x′ = (G ′, δ′) ∈ M we define d(x, x′) to be the smallest n ∈ N such
that δ−1 ◦ δ′ is bounded by 2nρ∨. For a point y ∈ M(Fqs) we denote by Mn(y) the closed subset of
points x of Mn with d(x, y) ≤ d0. By the triangular inequality for d we obtain that Mn(y) = ∅ if

d
(
(G, id), y

)
> n + d0, that is if y /∈ Mn+d0 . For each positive integer f let Uf

n be the open formal
subscheme of Mn whose underlying set is the complement of

⋃

y∈M(Fqs) , d((G, id),y)≥f

Mn(y) =
⋃

y∈Mn+d0
(Fqs ) , d((G, id),y)≥f

Mn(y) .

Note that this union is finite because the underlying reduced subscheme of Mn+d0 is the projective
scheme (Mn+d0)red.

Claim 2. If n ≥ f + d0 then Uf
n = Uf

n+1.

We first show this for the underlying sets. Let x ∈ Uf
n+1(k) be a point with values in an

algebraically closed field k. We have to show that d
(
(G, id), x

)
≤ n. By Proposition 6.4 there

is a y ∈ M(Fqs) such that d(x, y) ≤ d0 and x ∈ Mn+1(y). By the definition of Uf
n+1, we have

d
(
(G, id), y

)
< f , hence d

(
(G, id), x

)
< f + d0 ≤ n. The equality of formal schemes follows because

Mn is the completion of Mn+1 along the (closed) image of (Mn)red. Indeed, this implies that Uf
n is

the completion of Uf
n+1 along Uf

n+1. Hence the claim follows.

Let Uf = Uf
n for some n ≥ f + d0. Then Uf → Uf+1 is an open immersion of formal schemes

formally of finite type. Moreover, M has the limit topology of the limit over its intersections with
the subschemes of Ĝrk′ where the universal δ is bounded by 2nρ∨. The underlying topological space
of such an intersection is equal to that of Mn. Since the topological space |Uf | underlying Uf is
open in each Mn, it is also open in M. This shows that the formal scheme Uf equals the formal
completion of the open ind-scheme M||Uf | of M supported on |Uf | along the whole set |Uf |, whence

M||Uf | = Uf . Since Uf is formally of finite type by construction, also M||Uf | is. In order to

prove the theorem it remains to show that M =
⋃

f U
f . We prove that every point x ∈ M with

d
(
(G, id), x

)
< f −d0 is contained in the open set Uf . Indeed, if x is in the complement of Uf , there

is a y ∈ M(Fqs) with d(x, y) ≤ d0 and d
(
(G, id), y

)
≥ f , a contradiction. The theorem follows.
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Corollary 6.5. Let b ∈ LG(k′) be decent. The affine Deligne-Lusztig varieties X�µ(b) and Xµ(b) are
schemes locally of finite type over k′. The irreducible components of X�µ(b) (respectively of Xµ(b))
are projective (respectively quasi-projective).

Proof. Let V ⊂ X�µ(b) be an irreducible component and let η be its generic point. At η the universal
δ, δ−1, and σ∗δ are bounded by 2nρ∨ for some n. Due to Lemma 3.10 they are then bounded by
2nρ∨ on all of V . Hence V is contained in the projective scheme (Mn)red as a closed subscheme,
and therefore V is projective. Since Xµ(b) is open in X�µ(b), each irreducible component of Xµ(b)
is quasi-projective.

Note that if one only wants to prove this corollary, one can use a significantly simplified version
of the proof of Theorem 6.3. Namely one does not need the distinction between Mn and Mn, and
the fact that Mn is a formal scheme formally of finite type.

Remark 6.6. If one chooses a different definition for boundedness as mentioned in Remark 3.6, one
possibly obtains a different Rapoport-Zink space X̂�µ(b), whose underlying topological space still
coincides with X�µ(b). If one enlarges the class of G-modules which are used to define boundedness,
one obtains the new Rapoport-Zink space as a closed subspace of the former one.

7 The Newton stratification

Let G be a local G-shtuka over an algebraically closed field k. By Remark 3.2, G is isomorphic to
the trivial K-torsor on k and the Frobenius is given by some element b ∈ LG(k). Changing the
trivialization corresponds to σ-conjugation of b by elements of K(k). On the other hand, considering
b up to σ-conjugation by LG(k) corresponds to considering the local G-isoshtuka LG ∼= (LGk, bσ

∗).
We briefly review Kottwitz’s classification of the latter kind of σ-conjugacy classes. To be precise,
we use the analog for the equal characteristic case of his classification.

Remark 7.1. Let G be a connected reductive group over an algebraically closed field k of charac-
teristic p. Let B(G) be the set of σ-conjugacy classes of elements b ∈ LG(k). We denote the class of
b (which contains all g−1bσ∗(g) for g ∈ LG(k)) by [b]. In [Ko1], [Ko2], Kottwitz classifies the classes
[b] ∈ B(G) by two invariants. For split groups the first invariant, the Kottwitz point κ(b) has the
following explicit definition. Let µG ∈ X∗(T ) be dominant with b ∈ K(k)zµGK(k). Then κ(b) is the
image of µG under the projection X∗(T ) → π1(G). Indeed, the maps κG considered by Kottwitz are
invariant under σ-conjugation of b, they are group homomorphisms, and are natural transformations
in G. For G = Gm we have κG(b) = vz(b). See [RR, Section 1] for the reformulation as maps to
the fundamental group. Let now G be split. The properties of κG mentioned above show that κG is
trivial on K(k) as each such element is σ-conjugate to 1 (by a version of Lang’s theorem), and that
the torus element zµ is mapped to its image in π1(G). Together we obtain the explicit description
of κG given above. Hence κG : LG(k) → π1(G) coincides with the map in Proposition 3.4. The
second invariant is the Newton point or Newton polygon νb ∈ X∗(T )Q. For G = GLn this is the usual
Newton polygon of the σ-linear map bσ∗, for general G it is defined by requiring that it be functorial
in G. The two invariants have the same image in π1(G)Q, which is the quotient of X∗(T )Q by the
sub-vector space generated by the coroots. Note that not all elements of X∗(T )Q occur as Newton
points. For a description of the set of Newton polygons in X∗(T )Q see also [Ch1, 4].
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If G is a local G-shtuka on S ∈ NilpFq[[ζ]], we consider the function [bG ] : S → B(G) with s 7→ [b(s)]
where [b(s)] is the element associated to the reduction of G in the geometric point s. The Newton
polygon of [b(s)] is called the Newton polygon of G in s.

We use the following analogy to isocrystals with G-structure defined by Rapoport and Richartz,
[RR]. Let S be a connected Fq-scheme. Let IsoshS be the category of pairs (N,F ) consisting of an
S((z))-module N which is étale-locally on S free of finite rank and of an isomorphism F : σ∗(N) → N .
The elements of IsoshS are called local isoshtukas, and are a function field analog of isocrystals. Let
G be as above and G = (G, ϕ) a local G-shtuka on S. Let V be an Fq((z))-representation of G. Then
let GV be the sheaf associated with the presheaf

Y 7−→
(
G(Y )×

(
V ⊗Fq((z)) OS((z))(Y )

))/
K(Y ) .

Together with the σ-linear isomorphism induced by (ϕ, idV ) it is an element of IsoshS, since G is
trivialized by an étale covering of S according to Proposition 2.2. This defines an exact faithful
tensor functor G : RepFq((z))G → IsoshS. These functors, called isoshtukas with G-structure, are
the function field analog of isocrystals with G-structure as defined by Rapoport and Richartz in
[RR, Definition 3.3]. Note that the rational invariant [b] of G as defined above is the same as the
σ-conjugacy class of the Frobenius of the local isoshtuka with G-structure associated to G in [RR,
3.4(i)].

Proposition 7.2. Let G be a local G-shtuka over an algebraically closed field in NilpFq[[ζ]]. Let ν be
its Newton polygon and let µ be its Hodge polygon (as in Definition 3.3). Then ν � µ as elements
of X∗(T )Q.

Proof. This result is first shown by Katz in [Ka, 1.4.1] (Mazur’s Theorem) for σa-F -crystals. It is
generalized in [RR, Theorem 4.2 (ii)] to elements b ∈ G(L) where G is an unramified reductive group
over k and where L is the quotient field of the Witt ring of k. Proposition 7.2, which is the function
field analog of those results, can be shown by the same argument.

The behaviour of [b] under specialization is described by the following theorem. Its proof is
completely analogous to the corresponding proof in [RR], using again the above analogy between local
G-shtukas and isocrystals with G-structure. Note that the additional statement in [RR, Theorem
3.6(i)] that the image of ν in π1(G)Q is locally constant is in our context a consequence of Proposition
3.4.

Theorem 7.3 ([RR, Theorem 3.6]). Let S ∈ NilpFq[[ζ]] and let G be a local G-shtuka on S. For each
b0 ∈ B(G), the subset {s ∈ S : νb(s) � νb0} is Zariski-closed on S and locally on S the zero set of a
finitely generated ideal.

Let S and G be as in the theorem and let ν ∈ X∗(T )Q be a Newton polygon. Then by Theorem
7.3 the reduced subscheme N�ν of S with

N�ν = {s ∈ S : νb(s) � ν}

is a closed subscheme of S and similarly

Nν = {s ∈ S : νb(s) = ν}

defines a locally closed subscheme of S, called the Newton stratum associated to G and ν.
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Theorem 7.4. Let S be an integral and locally noetherian Fq-scheme and let G be a local G-shtuka
on S. Let ν be the Newton polygon in the generic point of S. Then the Newton stratification on S
defined by G satisfies the purity property, that is the inclusion of the stratum Nν in S is an affine
morphism.

Proof. For G = GLr this can be shown in mostly the same way as Vasiu’s corresponding result for
F -crystals, [Vas, Theorem 6.1]. The only place where one needs more than the obvious translation is
that the results from his Section 5.1 (whose proof does not generalize directly) have to be replaced by
our Corollary 10.3. As the composition of affine morphisms is affine, this also implies the theorem for
all G which are a product of finitely many factors GLri . For general G one considers a finite number
of representations λi of G distinguishing the different Newton polygons on S (for example one for
each simple factor of the adjoint group Gad). Then the Newton stratifications of S corresponding to
G and Gλ1

× . . .× Gλl
coincide.

Corollary 7.5. Let S be an integral, locally noetherian Fq-scheme of dimension d and let G be a
local G-shtuka on S. Let S′ be the complement of the generic Newton stratum. Then S′ is empty or
pure of dimension d− 1.

Proof. By replacing S by suitable open subschemes, we may assume that S is affine and that S′ 6= ∅.
Similarly it is enough to show that dim(S′) = d− 1. By Theorem 7.4, S r S′ is affine. By [EGA, IV
Corollaire 21.12.7] this implies that dim(S)− dim(S′) ≤ 1.

See [Vas, Remark 6.3(a)] for another proof of this corollary.

Definition 7.6. Let S be a scheme and let G be a local G-shtuka on S. Let Y be an irreducible
component of the Newton stratum Nν ⊆ S for some ν. We call a chain of Newton polygons ν =
νn ≺ νn−1 ≺ . . . ≺ ν0 with νi 6= νi−1 for all i realizable in S at Y if for each i there is an irreducible
subscheme Si of the corresponding Newton stratum Nνi such that Si ⊆ Si−1 rSi−1 for all i > 0 and
such that Sn = Y . We call n the length of the chain.

Let α∨

1 , . . . , α
∨
r be the simple coroots of G. Then we choose ωi ∈ X∗(T )Q for i = 1, . . . , r with

〈ωi, α
∨

j 〉 = δij . Note that these elements are in general not unique. However, we will only use them
in expressions of the form 〈ωi, µ〉 for µ in the sub-vector space of X∗(T )Q generated by the coroots.
These values do not depend on the particular choice of the ωi.

Corollary 7.7. Let S be an irreducible Fq-scheme and let G be a local G-shtuka on S. Let ν0 be the
Newton polygon of G at the generic point of S. Let ν � ν0 with Nν 6= ∅ and let Y be an irreducible
component of Nν.

(a) The difference dimS − dimY equals the maximal length n of a realizable chain of Newton
polygons in S at Y .

(b) dim(Y ) ≥ dim(S)−
∑

i⌈〈ωi, ν0 − ν〉⌉.

Proof. Let νn ≺ . . . ≺ ν0 be a maximal realizable chain at Y and let Si be corresponding irreducible
subschemes of Nνi . As the chain is maximal, ν0 is equal to the Newton polygon at the generic point
of S, so we may assume that S0 is dense in S. We have to show that we can modify the Si such that
they satisfy in addition that dimSi − dimSi+1 = 1 for all i. As the Si are irreducible and not equal,
the difference is at least one. As Si+1 is irreducible, it is contained in an irreducible component of
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Si r (Nνi ∩ Si), which by Corollary 7.5 has dimension dim(Si) − 1. As the chain is maximal, the
generic Newton polygon of this component is νi+1. For i + 1 < n this implies that we may replace
Si+1 by that component (using increasing induction on i) and obtain dimSi+1 = dimSi − 1. For
i + 1 = n this implies that Si+1 is already equal to that component, and therefore has dimension
dimSn−1 − 1.

(b) is an immediate consequence of [Ch1, Theorem 7.4 (iv)] on the maximal length of chains of
comparable Newton polygons between ν0 and ν (that are not necessarily realizable).

Note that a consequence of the proof is that already the Si we started with have dimension
dimS − i.

Proposition 7.8. Let D be the coordinate ring of the universal deformation bounded by µ of a local
G-shtuka over k with Newton polygon ν and let D = (D/ζD)red. Let G be the local G-shtuka over
S = SpecD corresponding to the universal family over Spf D as in Proposition 3.16. Let Nν be the
closed Newton stratum inside S and let Y be any irreducible component of Nν. Then

dim(Y ) ≥ 〈2ρ, µ〉 −
∑

i

⌈〈ωi, µ − ν〉⌉.

Proof. By Proposition 5.9, S = SpecD is equidimensional of dimension 〈2ρ, µ〉. We apply Corollary
7.7 (b) to the reduced subscheme S′ of an irreducible component of S. By the corollary it is enough
to show that the Newton polygon in the generic point of S′ is � µ. This follows from Proposition
7.2, because the same inequality holds for the Hodge polygon by Lemma 3.11.

Remark 7.9. By [Ko3], the estimate can be rewritten as

〈2ρ, µ〉 −
∑

i

⌈〈ωi, µ− ν〉⌉ = 〈ρ, µ + ν〉 −
1

2
def(b). (7.2)

Here b ∈ LG(k) is any element with Newton polygon ν and κ(b) = [µ]. Furthermore, def(b) =
rk(G) − rkFq((z))(J) where J := QIsog(G) is the group of quasi-isogenies of G = (Kk, bσ

∗) and where
rkFq((z)) J is the rank of a maximal Fq((z))-split subtorus of J . The group J is the set of Fq((z))-valued
points of a reductive algebraic group over Fq((z)) which is an inner form of a Levi subgroup of G.
This can be shown using the same argument as for the analogous statement for p-divisible groups,
compare [Ko1], [RZ, Corollary 1.14] or [Ko2]. Note that using 1.1 of [Ko3], one sees that (7.2) also
holds without the additional assumption that the derived group of G is simply connected (which is
a general assumption in Kottwitz’s paper).

8 Basic Newton strata

An element b ∈ LG(k) is called basic if its Newton point ν ∈ X∗(T )Q is central in G (compare [Ko1,
§5.1]). Note that this property only depends on the σ-conjugacy class of b.

Proposition 8.1. Let G = (G, ϕ) be a local G-shtuka over a reduced noetherian complete local ring
R over Fq with algebraically closed residue field. Let its Newton polygon be constant on SpecR and
basic. Then there exists a local G-Shtuka F over Fq and a quasi-isogeny G → F ×Spec Fq SpecR.
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Proof. By Remark 3.2 the K-torsor G over R is isomorphic to the trivial torsor KR, and choosing
a trivialization ϕ can be written as bσ∗ for some b ∈ LG(R). Let m be the maximal ideal of R and
let k = R/m. There is an h > 0 and a lift of hν ∈ X∗(T )Q to X∗(T ) which maps to h[µG ] in π1(G).
Indeed, after multiplying ν by the common denominator h1 we obtain an element of X∗(T ) whose
class in π1(G) coincides with h1[µG ] up to torsion. By multiplying with a second integer, we may
assume that the two elements are equal. As k is algebraically closed, [Ko1, §4.3] shows that there
is a y ∈ LG(k) such that the reduction ϕh of ϕh modulo m maps y to cy for the central element
c := zhν ∈ LG(k) (where hν denotes the lifted element of X∗(T )). Since k ⊂ R we may replace
G ∼=

(
KR, bσ

∗
)
by the quasi-isogenous local G-shtuka

(
KR, y

−1bσ∗(y) · σ∗
)
and we may assume that

ϕh = c (σh)∗.

Claim. There is a quasi-isogeny between G and a local G-shtuka (G′, ϕ′) with G′ = KR and
(ϕ′)h = c (σh)∗.

Identifying G with the trivial torsor, the claim is equivalent to the existence of an element x ∈ LG(R)
with ϕh(x) = cx. Replacing ϕ by c−1ϕh and σ by σh we may assume that h = 1, and c = 1. As c
is central and commutes with σ∗, the σ-conjugacy class of this renormalized ϕ is [1] in each point
of SpecR. Let x̃ ∈ LG(R) = G(R((z))) be a lift of 1 ∈ LG(k). Then ϕ(x̃) ≡ x̃ (mod m). As ϕ is

σ-linear, ϕn(x̃) ≡ ϕn−1(x̃) (mod (σ∗)n−1(m)). Thus the sequence ϕn(x̃) has a limit x ∈ G
(
R̂((z))

)
.

The congruences further show that ϕ(x) = x. To prove the claim it remains to show that x ∈ LG(R).
As in the proof of Proposition 3.16 we have to show that the denominators occurring in ϕn(x̃) are
bounded independently of n. As R is a reduced noetherian ring, it is enough to check this in each
generic point η of SpecR separately. Let k(η) be an algebraic closure of k(η) and let x̃η be the image

of x̃ in LG(k(η)). Let ϕη be the induced map on LG(k(η)). As k(η) is algebraically closed and as

ϕη is in the class [1] ∈ B(G), there is a y ∈ LG(k(η)) with ϕη(y) = y. Then

ϕn
η (x̃η) = ϕn

η (yy
−1x̃η) = ϕn

η (y) · (σ
n)∗(y−1x̃η) = y · (σn)∗(y−1x̃η).

This shows that the z-powers occurring in ϕn
η (x̃η) are bounded independently of n. Especially,

x ∈ LG(R). This proves the claim.
It remains to show that if G is a local G-shtuka with ϕh = c (σh)∗, then G is isogenous to a

constant local G-shtuka FR as in the assertion. Over the residue field k this follows again from
the classification of σ-conjugacy classes, see Remark 7.1. As G is trivial we may thus assume that
ϕ = bσ∗ for some b whose reduction b modulo m is defined over Fq. Let b̃ be the image of b ∈ LG(Fq)
in LG(R). It suffices to show that b = b̃. We use induction on n to show that b ≡ b̃ (mod (σ∗)n(m)).
For n = 0 this follows from the definition of b̃. Assume that b ≡ b̃ (mod (σ∗)n(m)). Then

bσ∗(bσ∗)h−1 = c = b̃h = b̃σ∗(b̃h−1) ≡ b̃σ∗(bσ∗)h−1 (mod (σ∗)n+1(m)).

Thus b ≡ b̃ (mod (σ∗)n+1(m)).

We are now able to give the proofs of Theorem 1.1, Theorem 1.2 and Corollary 1.4.

Proof of Theorem 1.1. By Theorem 6.3 we obtain a local G-shtuka G ′ over (X�µ(b))
∧
g together with

a quasi-isogeny to
(
K(X�µ(b))∧g

, bσ∗
)
. Then G′ is a deformation of its special fibre, which is isomorphic

to (Kk, g
−1bσ∗(g)σ∗). By definition it is isogenous to a constant local G-shtuka, and especially its
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Newton polygon is constant. Also, its Hodge polygon is � µ in every point of (X�µ(b))
∧
g . Since ζ = 0

on (X�µ(b))
∧
g and (X�µ(b))

∧
g is reduced (being the completion of a reduced local ring) G ′ defines a

morphism f : (X�µ(b))
∧
g → Nν .

To construct a morphism in the opposite direction, we use Proposition 8.1. Let G be the universal
object over Nν . By the proposition there is a quasi-isogeny δ from G to a constant local G-shtuka.
Changing this quasi-isogeny by a quasi-isogeny between constant local G-shtukas, we may assume
that the constant local G-shtuka is (Kk, bσ

∗) and that the quasi-isogeny at the special fibre is given
by g. Since ζ = 0 on Nν and Nν is reduced this yields a morphism h : Nν → (X�µ(b))

∧
g . The

composition f ◦ h first constructs the additional quasi-isogeny δ, and then forgets it. Thus it is
the identity. The composition h ◦ f is the identity by rigidity of quasi-isogenies of local G-shtukas
(Proposition 3.9).

Proof of Theorem 1.2. Note that as b is basic, 〈ρ, ν〉 = 0. By [GHKR1], and [Vi1] we already know
that Xµ(b) and X�µ(b) have dimension 〈ρ, µ〉 − 1

2def(b). It remains to show that each irreducible
component has at least this dimension. This is an immediate consequence of Theorem 1.1 together
with the lower bound on the dimension of each irreducible component of Nν in Proposition 7.8 and
Remark 7.9.

Proof of Corollary 1.4. From Theorem 1.2 and Theorem 1.1 we obtain that Nν is equidimensional
of dimension 〈ρ, µ〉 − 1

2def(b) = 〈2ρ, µ〉 −
∑

i⌈〈ωi, µ− ν〉⌉. Let ν0 be the Newton point at the generic
point of SpecD. By Corollary 7.7(b) we obtain

∑

i

⌈〈ωi, µ− ν〉⌉ ≤
∑

i

⌈〈ωi, ν0 − ν〉⌉.

The two sides of this inequality are the maximal lengths of chains of comparable Newton polygons
between ν and µ, respectively ν0 (see [Ch1, Theorem 7.4 (iv)]). As ν0 � µ, the right hand side is
strictly smaller than the left hand side unless µ = ν0.

9 The Iwahori case

In this section we replace the maximal bounded open subgroup K by an Iwahori subgroup I of G and
explain how some of the preceding results can be generalized to this situation. Again we can relate
the dimension of the basic Newton stratum of some universal (ζ = 0)-deformation to the dimension
of an affine Deligne-Lusztig variety. However, in this case one does not have a closed expression for
the dimension of the basic Newton stratum yet.

As before let G be a split connected reductive group over Fq. Let B be a Borel subgroup and let
T ⊆ B be a split maximal torus. Let π : R[[z]] → R be the projection. Let I be the Iwahori subgroup
scheme of K over Fq defined as

I(R) := { g ∈ G
(
R[[z]]

)
: π(g) ∈ B(R) }

on any Fq-algebra R. Let W̃ ∼= W ⋉ X∗(T ) denote the extended affine Weyl group of G. Then
LG(k) =

∐
x∈W̃

I(k)xI(k) by the Bruhat-Tits decomposition.
We now define the analog of local G-shtukas, with K replaced by I. We restrict our attention to

base schemes S with ζ = 0.
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Definition 9.1. (a) A local G-shtuka with I-structure over an Fq-scheme S is a pair I = (I, ϕ)
consisting of an I-torsor I on S (for the étale topology) together with an isomorphism ϕ :
σ∗Ĩ ∼−→ Ĩ. Here Ĩ denotes the LG-torsor associated to I.

(b) We fix an element x ∈ W̃ . A local G-shtuka with I-structure I over S is of affine Weyl type
x if étale-locally on S, the shtuka is isomorphic to a trivial I-torsor IS with ϕ = bσ∗ for some
b ∈ I(S)xI(S).

Remark 9.2. (a) Lemma 9.3 shows that this rather ad hoc definition is analogous to the notion
of a local G-shtuka with fixed Hodge polygon µ.

(b) Let R be a complete local noetherian ring with algebraically closed residue field. In the same
way as Proposition 3.16 one can show that there is an equivalence of categories between local
G-shtukas with I-structure of affine Weyl type x over SpecR and over Spf R.

Lemma 9.3. Let (G, ϕ) be a local G-shtuka which has constant Hodge polygon µ and is bounded by
µ over an Fq[[ζ]]/(ζ)-scheme S. Then étale-locally on S the K-torsor G is trivial and ϕ is given by
an element of K(S)zµK(S).

Proof. By Proposition 2.2 there is an étale covering S′ → S such that GS′ is trivial. Choosing a
trivialization we can write ϕ = bσ∗ for some b ∈ LG(S′). Then b−1 induces a morphism S′ →
Gr which factors through Gr�µ by Proposition 5.5 since ϕ is bounded by µ. Since the Hodge
polygon is equal to µ it factors through the open subscheme Grµ which is the homogeneous space
Kz(−µ)domK/K. This proves our assertion.

Like Gr also the affine flag variety F := LG/I is an ind-scheme of ind-finite type. Analogously

to Proposition 5.3 we have for any x ∈ W̃ :

Remark 9.4. (a) The set I(k)xI(k)/I(k) is the set of k-valued points of a locally closed reduced
subscheme Fx of F which is of finite type over k.

(b) Fx is irreducible and of dimension ℓ(x), the length of x ∈ W̃ .

Let G = (G, ϕG) be a local G-shtuka with I-structure of affine Weyl type x over an algebraically
closed field k ∈ NilpFq[[ζ]]. Choosing a trivialization of G, we can write ϕG = b0σ

∗ for some b0 ∈

I(k)xI(k). Then b−10 defines a point in Fx−1(k). Let DI be the complete local ring of Fx−1 at this
point. It is a complete noetherian local ring over k. Note that ℓ(x−1) = ℓ(x), so Fx−1 has dimension
ℓ(x).

Theorem 9.5. DI pro-represents the formal (ζ = 0)-deformation functor of G

F :
(
Artinian local k[[ζ]]/(ζ)-algebras with residue field k

)
−→ Sets

A 7−→
{
Isomorphism classes of pairs (G, β) where

G is a local G-shtuka with I-structure of affine Weyl type x over SpecA ,

β : G ∼−→ G ⊗A k is an isomorphism of local G-shtukas with I-structure
}

where (G, β) and (G ′, β′) are isomorphic if there exists an isomorphism γ : G → G ′ with β′ =
(γ ⊗A k) ◦ β.
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Proof. The proof of this theorem is the same as for Theorem 5.6, always replacing K by I.

Let G be the local G-shtuka with I-structure over SpecDI which corresponds via Remark 9.2
(b) to the chosen universal local G-shtuka with I-structure over Spf DI . It consists of the trivial
I-torsor IDI

together with ϕ = bDI
σ∗ for some element bDI

∈ LG(DI). As in Section 7 we can

consider the function assigning to each geometric point of SpecDI the σ-conjugacy class of bDI
in

that point. This induces a Newton stratification on SpecDI . We denote by N I
ν the locally closed

reduced subscheme of SpecDI where the Newton polygon of bDI
is equal to ν.

We fix an element b ∈ LG(k) and some x ∈ W̃ . The affine Deligne-Lusztig variety XI
x(b)

associated to G, I, b, and x is defined as the locally closed reduced subscheme of the affine flag
variety F whose k-valued points for an algebraically closed field k are given by

XI
x(b)(k) =

{
g ∈ LG(k)/I(k) : g−1bσ∗(g) ∈ I(k)xI(k)

}
.

Theorem 9.6. Let g ∈ LG(k) be a representative of an element of XI
x(b) and assume that the

Newton polygon ν of b is basic. Let N I
ν be the closed Newton stratum in the universal (ζ = 0)-

deformation of the local G-shtuka with I-structure
(
Ik, g

−1bσ∗(g)σ∗
)
. Then N I

ν is isomorphic to the
completion of XI

x(b) at g.

Proof. The proof of this theorem is the same as for Theorem 1.1, always replacing K by I. The main
ingredient is in both cases Proposition 8.1, which considers elements of LG(DI) up to σ-conjugation.
This result does not depend on the subgroups K or I.

Corollary 9.7. Let b be basic. Let S be an irreducible component of XI
x(b) and let g ∈ S be a k-valued

point not contained in any other irreducible component of XI
x(b). Then dimS = ℓ(x)− d(g, x) where

d(g, x) is the maximal length of a realizable chain of Newton polygons in the universal deformation
of (Ik, g

−1bσ∗(g)σ∗) at its closed Newton stratum (which is irreducible).

Proof. This is an immediate consequence of Theorem 9.6 and Corollary 7.7(a).

Remark 9.8. For deformations of local G-shtukas (without Iwahori-structure) we saw that such
maximal lengths of realizable chains in the universal deformation of g bounded by some µ are equal
to the maximal length of chains of Newton polygons between µ and the basic Newton polygon. These
lengths are given by Chai’s formula, compare Corollary 7.7(b). For deformations of local G-shtukas
with I-structure, the situation is more difficult. Let b ∈ I(k)xI(k) and let µ be the dominant element

in the Weyl group orbit of the translation part of x ∈ W̃ . Let ν be the Newton polygon of b. Then in
general not every Newton polygon ν ′ with ν � ν ′ � µ arises as the Newton polygon of some point in
the universal deformation of b of affine Weyl type x. Let N(b, x) be the set of Newton polygons that
occur in the universal deformation of b. Then the maximal chain lengths in N(b, x) are in general
shorter than those in the set of all Newton polygons between ν and µ. Up to now there is no closed
expression for N(b, x). A second question is whether there always is a chain in N(b, x) of maximal
length that is realizable in the universal deformation. However this last assertion holds in all known
examples (for example for G = SL3 and all b, x by [Be]).

We spend the rest of this section using Theorem 9.6 to prove the basic case of a conjecture of
Beazley [Be, Conjecture 1] comparing dimensions of affine Deligne-Lusztig varieties inside the affine

flag variety with codimensions of Newton strata in I(k)xI(k). Let b ∈ LG(k) be basic and x ∈ W̃
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with XI
x(b) 6= ∅. We consider the subset IxI := I(k)xI(k) ⊂ LG(k). Let ν be the Newton polygon

of b and let (IxI)ν be the subset of IxI of elements having Newton polygon ν. Theorem 10.1 for
B = IxI implies that there is a bounded open subgroup I0 of I(k) such that the Newton polygon of
an element of IxI only depends on its image in IxI/I0. This last set is naturally the set of k-valued
points of a scheme. The specialization property of Newton polygons then shows that (IxI)ν/I0 is
the set of k-valued points of a closed subscheme of IxI/I0. We define codim

(
(IxI)ν ⊆ IxI

)
:=

dim IxI/I0 − dim(IxI)ν/I0. By our choice of I0 it is independent of I0, provided I0 is small enough.
A subset S of IxI that is right invariant under a (sufficiently small) group I0 is called irreducible
if S/I0 is irreducible. Again this is independent of the choice of I0. The notions of irreducible
component or smoothness for such subsets are defined similarly.

Proposition 9.9. Let b ∈ LG(k) be basic and x ∈ W̃ such that XI
x(b) 6= ∅. Then

dimXI
x(b) = ℓ(x)− codim

(
(IxI)ν ⊆ IxI

)
.

This proposition proves the basic case of [Be, Conjecture 1].

Proof. By Theorem 9.6 and Remark 9.4 it is enough to show that codim((IxI)ν ⊆ IxI) is equal to
dimSpecDI−dimN I

ν where N I
ν is the Newton stratum in the universal (ζ = 0)-deformation SpecDI

associated to some g ∈ XI
x(b) such that XI

x(b) is smooth and of maximal dimension in g. As in the
proof of Proposition 7.8 one sees that SpecDI and the completion of IxI/I0 in b are equidimensional.
The assertion is then an immediate consequence of Proposition 9.10 and Corollary 7.7 (a).

Proposition 9.10. Let b ∈ I(k)xI(k) with Newton polygon ν, let Y be an irreducible component
of (IxI)ν . Assume that Y is the only such component containing b, and that Y is normal in b.
Then the closed Newton stratum N I

ν in the universal (ζ = 0)-deformation of the local G-shtuka with
I-structure (Ik, bσ

∗) is irreducible. Let I0 be a subgroup of I such that the Newton polygon of an
element of IxI only depends on its I0-coset. Then a chain of Newton polygons is realizable in the
universal (ζ = 0)-deformation at its closed Newton stratum if and only if it is realizable in IxI/I0
at Y/I0.

Proof. If Spf R1 and Spf R2 are the completions of IxI/I0 and (IxI)ν/I0 in b, let Y = SpecR1 and
Yν = SpecR2. We choose a representative f ∈ I(Y )xI(Y ) of the universal element of IxI/I0 over Y
with f ⊗R1

k = b. We consider the local G-shtuka with I-structure I = (IY , fσ
∗) over Y . Since I

is a deformation of its special fiber (Ik, bσ
∗) this induces a morphism π : Y → SpecDI mapping Yν

to N I
ν and also each other Newton stratum of Y to the corresponding Newton stratum in SpecDI .

Let f ′ be such that (IDI
, f ′σ∗) is the universal object over SpecDI and that f ′ ⊗DI

k = b. Then

f ′ ∈ I(DI)xI(DI). This provides a section of π. Especially π is surjective. Our assumptions on Y
imply that the closed Newton stratum in Y is irreducible by Zariski’s Main Theorem [ZS, Theorem
VIII.32]. Therefore the closed Newton stratum N I

ν in SpecDI is also irreducible. Thus the chains
realizable in Y at Yν are also realizable in SpecDI at N I

ν .
For the other direction let ν = νn ≺ . . . ≺ ν0 be a realizable chain of Newton polygons in SpecDI

at Sn = N I
ν and let Si be corresponding irreducible subschemes of SpecDI . Let Yi ⊆ Y be the

inverse image of Si under π. Then Yn = Yν . We want to show that νn ≺ . . . ≺ ν0 is also realizable in
Y . To do that we use decreasing induction on i to show that there is an irreducible component Y ′i
of Yi with Y ′i+1 ⊆ Y ′i . As Y ′i+1 is (by induction) irreducible, it is enough to show that Y ′i+1 ⊆ Yi, or

that Yi+1 ⊆ Yi. Let y be a geometric point of Yi+1 with values in some field k̃. As Si+1 ⊆ Si there
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is a k̃[[t]]-valued point of Si ∪ Si+1 with special point π(y) and general point in Si. Let f ′
k̃[[t]]

be the

reduction of f ′ at this point and let f ′
k̃
be the reduction in its special point. As π(f ′

k̃
) = π(y) there

is an i ∈ I(k̃) with i−1f ′
k̃
σ∗(i) = y. Then i−1f ′

k̃[[t]]
σ∗(i) is a k̃[[t]]-valued point with special point y

and general point in Yi. This finishes the proof that chains realizable in SpecDI are also realizable
in Y .

Appendix: Admissibility

In this section we provide the results needed to generalize Vasiu’s proof of purity for F -crystals to
local G-shtukas. Theorem 10.1 also implies admissibility of the Newton stratification of I-double
cosets needed in Section 9.

For n ≥ 0 let In = {g ∈ K(k) : g ≡ 1 (mod zn), g ∈ B (mod zn+1)}. Here B is the chosen Borel
subgroup. Recall that a subset of LG(k) is bounded if and only if it is contained in a finite union of
K-double cosets KzµK.

Theorem 10.1. Let B be a bounded subset of LG(k). Then there is a c ∈ N such that for each
d ∈ N, each g ∈ B and each h ∈ Id+c there is a k ∈ Id with gh = k−1gσ∗(k).

Proof. Note that the set of σ-conjugacy classes of elements of B is finite. We write B as a disjoint
union of its intersections with the different σ-conjugacy classes and consider each subset separately.
Thus from now on we assume that all elements of B are σ-conjugate under LG(k). Let ν be their
Newton polygon. Then B lies in a finite union of double cosets Kzµ

′
K with ν � µ′ and all occurring

µ′ have the same image in π1(G). Hence B ⊂
∐

µ′�µKzµ
′
K for some µ.

We first show that there is a bounded subset C of LG(k) and an element b ∈ LG(k) such that
each element of B is σ-conjugate via an element of C to b. There is a standard parabolic subgroup
P = MN of G with Levi component M and a b ∈ M in the given σ-conjugacy class withM -dominant
Newton polygon ν such that b is superbasic in M . Indeed, M is simply the smallest standard Levi
subgroup of the centralizer of ν in G such that the given σ-conjugacy class contains an element of M .
Each g ∈ B is of the form g = f−1bσ∗(f) for some f ∈ LG(k). We have to show that we may take
all f in some bounded subset of LG(k). Using the Iwasawa decomposition we write f = mnk with
m ∈ M(k((z))), n ∈ N(k((z))) and k ∈ K. Thus all elements of B are σ-conjugate via K to elements
of the form m−1bσ∗(m)

(
(m−1bσ∗(m))−1n−1(m−1bσ∗(m))σ∗n

)
∈ MN . These elements are still all

in
∐

µ′�µKzµ
′

K and in the same σ-conjugacy class. We claim that the Levi parts l := m−1bσ∗(m)
of these elements are then again in a finite union of M(k[[z]])-double cosets, namely those contained
in

∐
µ′�µKzµ

′
K. To see this, consider for a λ ∈ X∗(T ) which is central in M and with 〈α, λ〉 > 0

for each root of T in N the element gx ∈ LG(k[x]) given by g0 = l and gx = λ(x)gλ(x)−1 for
x 6= 0. An easy calculation shows that this defines an element of LG(k[x]). As λ(x) ∈ K, all gx
for x 6= 0 are in

∐
µ′�µKzµ

′
K. As this union is closed, it also contains g0 = l. Reformulating

the boundedness for the elements l in terms of m, we obtain m ∈ XM
µ′ (b), where µ′ is one of these

finitely many dominant coweights of M . By [Vi2, Proposition 1], m is of the form m = jm0 for some
j ∈ JM = {x ∈ M(k((z))) : x−1bσ∗(x) = b} and m0 in some fixed connected component of XM

�µ′(b).
As the element g we started with only determines m up to left multiplication by JM , we may assume
that m = m0. As b is superbasic in M , each connected component of XM

�µ′(b) is a projective scheme
of finite type (see for example [Vi1]). Especially, all elements m (for one µ′, but then also for all
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of the finitely many occurring µ′) are in some bounded subset of LG(k). By σ-conjugating g with
m−1 = m−10 we obtain an element g′ of the form ñ−1bσ∗(ñ) for ñ = mnm−1 ∈ N(k((z))). Thus
g′ = bn′ with n′ = b−1ñ−1bσ∗(ñ) ∈ N . So far we only conjugated g by elements in a bounded subset
of LG(k), thus the n′ still are contained in a subset of N(k((z))) which can be bounded by a bound
only depending on the original B. Let N0 be a given bounded open subgroup of N(k((z))). By
σ-conjugating by a sufficiently dominant element of T (Fq((z))) which is central in M we may map all
n′ in this bounded subset to N0. Note that again the element we conjugate by is uniformly bounded
(by a bound depending on B and the chosen N0). Using Lemma 10.2 for b and N0 = Icb ∩ N (for
d = 0), we obtain that each element of B is σ-conjugate by an element of a bounded set C to b.

Let c1 be such that fId+c1f
−1 ∈ Id for all f ∈ C and all d. Let further c2 be such that

σ∗(f)−1Id+c2σ
∗(f) ∈ Id for all f ∈ C and all d. Let c = cb + c1 + c2. Let g ∈ B and h ∈ Id+c

for some d > 0. Let f ∈ C with f−1gσ∗(f) = b. Then

gh = fb
(
σ∗(f−1)hσ∗(f)

)
σ∗(f−1)

As the expression in the bracket is in Id+cb+c1 by our choice of c2, Lemma 10.2 shows that there is
an k′ ∈ Id+c1 such that this equals

= fk′−1bσ∗(k′)σ∗(f−1)

= (fk′f−1)−1gσ∗(fk′f−1).

As fk′f−1 ∈ Id by the choice of c1, this proves the theorem.

Lemma 10.2. Let b ∈ LG(k). Then there is a cb ∈ N such that for each d ∈ N and each g ∈ Id+cb

there is a k ∈ Id with bg = k−1bσ∗(k).

Proof. By σ-conjugating b we may assume that b is equal to the standard representative of its σ-
conjugacy class as defined in [GHKR2, 7.2]. More precisely, this implies that b has the following
properties. LetM be the centralizer of the G-dominant Newton polygon of b, it is the Levi component
of a standard parabolic subgroup P of G. Then the standard representative is an element b of the
extended affine Weyl group W̃M of M with bIMb−1 = IM where IM = I ∩M . Note that this M is
not the same as in the proof of Theorem 10.1. There we considered a Levi such that no σ-conjugate
of b is contained in an even smaller one. Here, the Levi subgroup M is the largest standard Levi
subgroup such that b is basic in M . As b is in W̃M , there is an r > 0 such that br = zrν .

It is enough to prove the lemma for d > 0. Let cb be so large that biId+cbb
−i ⊆ Id for all

i ∈ [−r + 1, . . . , r − 1]. (Using that Id is generated by the corresponding affine root subgroups,
one sees that if this condition holds for one d then it holds for all.) For the groups In we have an
Iwahori decomposition In = IN,nIM,nIN,n where the factors are the intersections of In with N , M

and N and where N and N are the unipotent radicals of P and its opposite parabolic. Let g ∈ Id+cb

and let g = gNgMgN be its decomposition. We begin by showing that there is an fN ∈ IN,d with

f−1
N

bgσ∗(fN ) ∈ bIM,d+cbIN,d+cb . Recall that b
r = zrν for a ν with 〈α, ν〉 < 0 for every root of T in N .

Thus g 7→ b−1gb is an elementwise topologically nilpotent map on N . The definition of cb together
with br = zrν also implies that b−igbi ∈ Id for all i ≥ 0 and g ∈ IN,d+cb

. Let f1 = (σ∗)−1(gN ). Then

f−11 bgNgMgNσ∗(f1) = f−11 bgNgM

= b(b−1f−11 b)gNgM .
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Note that [Ia, Ia′ ] ⊂ Ia+a′ for all a, a
′. As b−1f−11 b ∈ Id, the above product lies in bgNgM (b−1f−11 b)I2d+cb .

Repeating this construction for g′ ∈ gNgM (b−1f−11 b)I2d+cb and its Iwahori decomposition g′ =
g′Ng′Mg′

N
yields an f2 = (σ∗)−1(g′

N
). We have g′

N
∈ (b−1f−11 b)IN,2d+cb

, and by the choice of cb,
this is in Id. We iterate this process and let fN = f1 ◦ f2 ◦ · · · . As conjugation by b is elementwise
topologically nilpotent on N , the product converges. We obtain that bg is σ-conjugate via an element
of IN,d to an element of the form bg̃ with g̃ = g̃N g̃M ∈ IN,d+cbIM,d+cb . A similar argument (using

f1 = bg̃N b−1 and that g 7→ bgb−1 is elementwise topologically nilpotent on N) shows that we may
also achieve that g̃N = 1. For g ∈ IM,d+cb we use that b−1IM,ab = IM,a for all a. In this situation
the argument in [GHKR2, 6.3] also shows that bg is σ-conjugate via IM,d (or even IM,d+cb) to b.

Corollary 10.3. Let (M, bσ∗) and (M ′, b′σ∗) be two effective local shtukas over k of rank r bounded
by µ and µ′. Then there is a c ∈ N only depending on µ and µ′ with the following property. Let
g : M → M ′ be a linear map with (b′σ∗(g)− gb)(x) ∈ zc+dM ′ for some d and every x ∈ σ∗M . Then
there exists a homomorphism of local shtukas f : (M, bσ∗) → (M ′, b′σ∗) with (f − g)(x) ∈ zdM ′ for
every x ∈ M .

Recall that a local shtuka over k is effective if and only if its Hodge polygon has only non-negative
slopes.

Proof. Let M̃ = M ⊕M ′ and b̃ : σ∗M̃ → M̃ with b̃ = (b, b′). Consider g̃ : M̃ → M̃ with g̃|M ′ = idM ′

and g̃(m) = m+ g(m) for m ∈ M . In matrix form we obtain

g̃−1b̃σ∗(g̃) =

(
b 0

−gb+ b′σ∗(g) b′

)
,

so the entries in the lower left block are congruent to zero modulo zc+d. We use Theorem 10.1 for
G = GL(M̃ ) and B = Kb̃K. We obtain that there is a c (only depending on B, i. e. on the Hodge
polygon of b̃ or equivalently on those of b and b′), such that such a matrix is σ-conjugate via a k ∈ Id

to b̃. An easy calculation shows that if we write k =

(
k1 k2
k3 k4

)
, then f = gk1 + k3 has all claimed

properties.

The last corollary was also proved by Fessler [Fe] using a different method.

References
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