The Picard Functor

Urs T. Hartl

Definition

Let S be a base scheme and let $f: X \longrightarrow S$ be a morphism of schemes. Consider the contravariant functor from the category of S-schemes to the category of abelian groups

 $P_{X/S}: (\mathrm{Sch}/S) \longrightarrow (\mathrm{Ab}), \qquad S' \longmapsto \mathrm{Pic}(X \times_S S') = \mathrm{H}^1(X \times_S S', \mathcal{O}^*_{X \times_S S'}).$

The relative Picard functor is the (fppf)-sheaf associated to the functor $P_{X/S}$.

 $\operatorname{Pic}_{X/S} = \operatorname{R}^1 f_* \mathbb{G}_m$ as (fppf)-sheaves on S.

This means $\operatorname{Pic}_{X/S}$ is a contravariant functor from (Sch/S) to (Ab) such that, for each S-scheme T and for each morphism $T' \longrightarrow T$ which is either faithfully flat and of finite presentation, i.e. (fppf) or a Zariski-covering, the following sequence is exact:

$$\operatorname{Pic}_{X/S}(T) \longrightarrow \operatorname{Pic}_{X/S}(T') \xrightarrow{\longrightarrow} \operatorname{Pic}_{X/S}(T' \times_T T').$$

Every Element of $\operatorname{Pic}_{X/S}(T)$ for a quasi-compact S-scheme T can be given by a line bundle \mathcal{L}' on $X \times_S T'$ for some scheme T' which is (fppf) over T. Furthermore there exists an (fppf)-morphism $\widetilde{T} \longrightarrow T' \times_T T'$, such that the pullbacks with respect to the two projections $\widetilde{T} \longrightarrow T'$ are isomorphic.

Now consider the case:

(*) Let f be quasi-compact and quasi-separated with a section $x : S \longrightarrow X$ and (*) let $f_*\mathcal{O}_X = \mathcal{O}_S$ universally, i.e. still valid after any base change. This holds for example if f is proper and flat with geometrically reduced and irreducible fibers.

Then $\operatorname{Pic}_{X/S}$ is the contravariant Functor from (Sch/S) to (Ab) given by

$$S' \longmapsto \left\{ \begin{array}{ll} \text{Isomclasses of} & (\mathcal{L}, \lambda) : \mathcal{L} \text{ line bundle on } X \times_S S' \\ & \lambda : \mathcal{O}_{S'} \xrightarrow{\sim} (x \times \operatorname{id}_{S'})^* \mathcal{L} \text{ rigidification} \right\} \\ &= \operatorname{Pic}(X \times_S S') / \operatorname{Pic}(S') \,. \end{array}$$

The rigidification λ has two effects. It kills all line bundles coming from S' and secondly it causes the automorphism group of (\mathcal{L}, λ) to be trivial.

Representability

The functor $\operatorname{Pic}_{X/S}$ is called *representable* if there exists an S-scheme P such that there is an isomorphism of functors

$$\operatorname{Pic}_{X/S} \cong \operatorname{Hom}_{(\operatorname{Sch}/S)}(\bullet, P) =: P(\bullet).$$

In the case (*) this means, that there exists a rigidified line bundle $(\mathcal{P}, \rho) \in \operatorname{Pic}_{X/S}(P)$ called the Poincaré-bundle, with the universal property (Yoneda Lemma):

for every S-scheme S' and for every line bundle $(\mathcal{L}, \lambda) \in \operatorname{Pic}_{X/S}(S')$ there exists a unique morphism $g: S' \longrightarrow P$ with

$$(\mathcal{L}, \lambda) \cong (\operatorname{id}_X \times g)^*(\mathcal{P}, \rho).$$

Concerning the representability there is the following theorem.

Theorem 1. (Grothendieck)

Let $f: X \longrightarrow S$ be projective and finitely presented, flat with geometrically reduced and irreducible fibers. Then $\operatorname{Pic}_{X/S}$ is representable by a separated S-scheme which is locally of finite presentation over S.

<u>Proof:</u> cf. [FGA, n° 232, Thm. 3.1], [BLR, Thm. 8.2.1]

<u>1.</u> One introduces *effective*, relative Cartier divisors D on X over S, i.e. D is a closed subscheme of X, flat over S, which in each fibre is an effective Cartier divisor. One considers the contravariant functor

$$\begin{array}{rcl} \operatorname{Div}_{X/S}: & (\operatorname{Sch}/S) & \longrightarrow & (\operatorname{Sets}) \\ & & & \\ & & & \\ & & & \\$$

There is a morphism of functors $\operatorname{Div}_{X/S} \longrightarrow \operatorname{Pic}_{X/S}$ sending $D \mapsto \mathcal{O}_X(D)$, which is shown to be relatively representable, i.e. for each S-scheme S' the morphism

$$\operatorname{Div}_{X/S} \times_{\operatorname{Pic}_{X/S}} S' \longrightarrow S'$$

is a morphism of schemes. So the divisors inducing a given line bundle in $\operatorname{Pic}_{X/S}(S')$ are parameterized by a scheme.

<u>2.</u> One shows the representability of the functor $\operatorname{Div}_{X/S}$ using the existence of the Hilbertscheme. This is the hardest part of the proof.

<u>3.</u> For a fixed $\Phi \in \mathbb{Q}[t]$ one considers the subfunctor $\operatorname{Pic}_{X/S}^{\Phi}$ of $\operatorname{Pic}_{X/S}$, which consists of all elements having Hilbert-polynomial Φ with respect to the given projective embedding of X.

For suitable Φ there exists a finite union $D(\Phi)$ of connected components of $\text{Div}_{X/S}$ such that the functor $\text{Pic}_{X/S}^{\Phi}$ is the quotient

$$D(\Phi) \longrightarrow \operatorname{Pic}_{X/S}^{\Phi}$$

by a proper and smooth equivalence relation. One now shows that therefore it is representable by a scheme.

For general Φ there exists an $n_{\Phi} \in \mathbb{Z}$ such that the translate $\operatorname{Pic}_{X/S}^{\Phi} + \mathcal{O}_X(n_{\Phi})$ is of the special case above.

Since $\operatorname{Pic}_{X/S}^{\Phi}$ is an open and closed subfunctor of $\operatorname{Pic}_{X/S}$ one finds that

$$\operatorname{Pic}_{X/S} = \prod_{\Phi \in \mathbb{Q}[t]} \operatorname{Pic}_{X/S}^{\Phi}$$

is representable by a scheme over S.

A further theorem on the representability is the following.

Theorem 2. (Murre and Oort)

Let X be a proper scheme over a field k. Then $\operatorname{Pic}_{X/k}$ is representable by a scheme which is locally of finite type over k.

Proof: cf. [Mu], [Oo]

One reduces to the projective case which was done by Grothendieck [FGA, n^o 232, Sect. 6].

If now X is proper over k, we define $\operatorname{Pic}_{X/k}^{0}$ as the connected component which contains the unit element. It is a group scheme of finite type over k.

If X is proper over S, we define the groupfunctor

$$\operatorname{Pic}_{X/S}^{0}(T) \quad := \quad \left\{ \xi \in \operatorname{Pic}_{X/S}(T) : \ \xi|_{X_{t}} \in \operatorname{Pic}_{X_{s}/k(s)}^{0}(k(t)) \quad \forall t \in T \right\}.$$

The case of curves

In the case of curves more can be said.

Theorem 3.

Let $f: X \longrightarrow S$ be a proper, flat curve, locally of finite presentation. Then $\operatorname{Pic}_{X/S}$ is a formally smooth functor over S.

<u>Proof:</u> cf. [BLR, Prop. 8.4.2]

That $\operatorname{Pic}_{X/S}$ is formally smooth over S means that for each affine S-scheme Z and for each closed subscheme $Z_0 \subseteq Z$ which is given by a sheaf of ideals \mathcal{N} with $\mathcal{N}^2 = 0$ the canonical map is surjective:

 $\operatorname{Hom}(Z, \operatorname{Pic}_{X/S}) \longrightarrow \operatorname{Hom}(Z_0, \operatorname{Pic}_{X/S}).$

This follows from considering the exact sequence

In fact applying $(f \times id_Z)_*$ yields

$$\mathrm{R}^{1}(f \times \mathrm{id}_{Z})_{*} \mathcal{O}_{X \times_{S} Z}^{*} \longrightarrow \mathrm{R}^{1}(f \times \mathrm{id}_{Z_{0}})_{*} \mathcal{O}_{X \times_{S} Z_{0}}^{*} \longrightarrow \mathrm{R}^{2}(f \times \mathrm{id}_{Z})_{*} \mathcal{N} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{X} \times_{\mathcal{O}_{S}} \times_{\mathcal{O}_{S}} \mathcal{O}_{X} \times_{\mathcal{O}} \times_{\mathcal{O}_{S}} \mathcal{O}_{X} \times_{\mathcal{O}} \times_{\mathcal{O}}$$

Since X is a curve over S and \mathcal{N} is quasi-coherent, the last term is 0. So applying $\operatorname{H}^{0}(Z, \, \cdot \,)$ and observing Z affine, one gets

$$H^{0}(Z, R^{1}(f \times \operatorname{id}_{Z})_{*} \mathcal{O}^{*}_{X \times_{S} Z}) \longrightarrow H^{0}(Z_{0}, R^{1}(f \times \operatorname{id}_{Z_{0}})_{*} \mathcal{O}^{*}_{X \times_{S} Z_{0}}).$$

$$= \operatorname{Pic}_{X/S}(Z) = \operatorname{Pic}_{X/S}(Z_{0})$$

and thus the above morphism is surjective.

If X is a proper curve over a field k, then $\operatorname{Pic}_{X/k}$ is a scheme locally of finite type over k by Theorem 2. So $\operatorname{Pic}_{X/k}^{0}$ is a scheme of finite type over k. In this case smoothness and formal smoothness are the same. So we see that $\operatorname{Pic}_{X/k}^{0}$ is a smooth k-scheme.

Next we want to study $\operatorname{Pic}_{X/k}^0$ in terms of divisors. So let X be a proper curve over a field k and D an effective Cartier divisor on X. Locally at a point $x \in X$ the divisor D is given by a regular element l. We define the order of D in x as

$$\operatorname{ord}_x(D) := \operatorname{length}_k(\mathcal{O}_{X,x}/(l))$$

If X is regular at x, then $\mathcal{O}_{X,x}$ is a discrete valuation ring and $\operatorname{ord}_x(D)$ is just the order of l in that ring. We now define the *degree* of D

$$\deg(D) := \sum_{x \in X} \operatorname{ord}_x(D) \cdot [k(x) : k].$$

It has the following properties:

- 1. deg is additive, so we can also define it for non-effective divisors.
- 2. deg is not altered by field extensions.
- 3. If X is reduced, the degree of a divisor on X is the same as the degree of its pullback to the normalization of X.
- 4. The degree of the divisor of a meromorphic function is zero.

So we can define the degree for line bundles. Let \mathcal{L} be a line bundle on X, then there are two effective Cartier divisors D and D' on X with $\mathcal{L} \cong \mathcal{O}(D - D')$. We define the *degree* of \mathcal{L}

$$\deg(\mathcal{L}) := \deg(D) - \deg(D').$$

If X is a flat, proper curve of finite presentation over an arbitrary base S and \mathcal{L} a line bundle on X, the function $s \mapsto \deg(\mathcal{L}|_{X_s})$ is locally constant on S.

Next if $X = X_1 \cup \ldots \cup X_r$ is the decomposition in irreducible components, we define the *partial degree* of \mathcal{L} on X_i :

$$\deg_{X_i}(\mathcal{L}) := \deg(\mathcal{L}|_{X_i}).$$

The partial degrees are related to the total degree by the formula

$$\deg(\mathcal{L}) = \sum_{i=1}^{n} d_i \cdot \deg_{X_i}(\mathcal{L}),$$

where d_i is the multiplicity of X_i in X, i.e. $d_i := \text{length}(\mathcal{O}_{X,\eta_i})$ for the generic point η_i of X_i .

Now let X be a smooth proper geometrically irreducible curve of genus g over a field k. Assume that X has a rational point x_0 . Then there is a morphism

$$X^g \longrightarrow X^{(g)} = X^g / \mathfrak{S}_g \longrightarrow \operatorname{Pic}^0_{X/k}, \quad x_1 + \ldots + x_g \mapsto \mathcal{O}_X (\Sigma(x_i - x_0)),$$

where \mathfrak{S}_g is the symmetric group on g letters and $X^{(g)}$ is the symmetric product of X. The latter morphism is an epimorphism and birational. The whole Picard variety decomposes

$$\operatorname{Pic}_{X/k} = \prod_{d \in \mathbb{Z}} \operatorname{Pic}_{X/k}^d$$
.

where $\operatorname{Pic}_{X/k}^d$ is the connected component of $\operatorname{Pic}_{X/k}$ representing the line bundles of degree d. It is a $\operatorname{Pic}_{X/k}^0$ -torsor.

In the following we consider arbitrary proper curves over a field k.

Proposition 4.

Let X be a proper curve over a field k. Then $\operatorname{Pic}_{X/k}^0$ consists of all elements of $\operatorname{Pic}_{X/k}$ whose partial degree on each irreducible component of $X \otimes_k \overline{k}$ is zero.

Proof: cf. [BLR, Cor. 9.3.13]

Let k be algebraically closed, $X_{\text{red}} = \bigcup X_i$ be the irreducible components with normalizations \widetilde{X}_i and $g: \coprod \widetilde{X}_i \longrightarrow X$. Then $\operatorname{Pic}_{X/k}$ is an extension

$$1 \longrightarrow L \longrightarrow \operatorname{Pic}_{X/k} \xrightarrow{g^*} \prod_i \operatorname{Pic}_{\widetilde{X}_i/k} \longrightarrow 1$$

by a connected linear group L. Therefore we have

$$\operatorname{Pic}^{0}_{X/k} = (g^*)^{-1} \left(\prod_i \operatorname{Pic}^{0}_{\widetilde{X}_i/k} \right).$$

The proposition now follows from the fact, that $\operatorname{Pic}^{0}_{\widetilde{X}_{i}/k}(k)$ are exactly the line bundles having degree zero on X_{i} .

Description of $\operatorname{Pic}^{0}_{X/k}$

Let X be a proper curve over a perfect field k and \widetilde{X} the normalization of X_{red} . We want to introduce an intermediate curve lying between X_{red} and \widetilde{X} .

$$X \longleftrightarrow X_{\text{red}} \leftarrow X' \leftarrow \widetilde{X}.$$

There are only finitely many non-smooth points of X_{red} . We define X' by identifying all points of \tilde{X} lying above such a non-smooth point of X_{red} . (This can be formalized with the amalgamated sum, cf. [BLR, p. 247].) So the singularities of X' are just ordinary multiple points.

The above maps induce morphisms on the Picard-schemes.

$$\operatorname{Pic}^0_{X/k} \longrightarrow \operatorname{Pic}^0_{X_{\operatorname{red}}/k} \longrightarrow \operatorname{Pic}^0_{X'/k} \longrightarrow \operatorname{Pic}^0_{\widetilde{X}/k}.$$

The next theorem tells more about the structure of these morphisms.

Theorem 5.

- a) the map $\operatorname{Pic}^{0}_{X/k} \longrightarrow \operatorname{Pic}^{0}_{X_{\operatorname{red}}/k}$ is an epimorphism with a smooth connected unipotent group as kernel.
- b) the map $\operatorname{Pic}^{0}_{X_{\operatorname{red}}/k} \longrightarrow \operatorname{Pic}^{0}_{X'/k}$ is an epimorphism with a smooth connected unipotent group as kernel, which is trivial if and only if $X' = X_{\operatorname{red}}$.
- c) the map $\operatorname{Pic}_{X'/k}^{0} \longrightarrow \operatorname{Pic}_{\overline{X}/k}^{0}$ is an epimorphism with a torus as kernel, which is trivial if and only if each irreducible component is homeomorphic to its normalization and the configuration of the irreducible components of $X \otimes_k \overline{k}$ is tree-like, i.e. if and only if $\operatorname{H}^{1}_{\operatorname{\acute{e}t}}(X \otimes_k \overline{k}, \mathbb{Z}) = 0$.
- d) $\operatorname{Pic}^{0}_{\widetilde{X}/k}$ is an abelian variety.

<u>Proof:</u> cf. [BLR, Sect. 9.2] <u>Ad c)</u> Let $X' = X = \bigcup_{i=1}^{n} X_i$ be the irreducible components and $g: \widetilde{X} = \coprod_{i=1}^{n} \widetilde{X}_i \longrightarrow X$ be the normalization. Let further x_1, \ldots, x_N be the singular points of X and $\widetilde{x}_{\nu 1}, \ldots, \widetilde{x}_{\nu m_{\nu}}$ the points of \widetilde{X} lying above x_{ν} . Then we have the exact sequence

$$1 \longrightarrow \mathcal{O}_X^* \longrightarrow g_* \mathcal{O}_{\widetilde{X}}^* \longrightarrow g_* \mathcal{O}_{\widetilde{X}}^* / \mathcal{O}_X^* \longrightarrow 1$$

The sheaf $\mathcal{F} := g_* \mathcal{O}^*_{\widetilde{X}} / \mathcal{O}^*_X$ is concentrated at the points x_{ν} , so we get

So the kernel is a quotient of a torus, thus a torus. The remaining assertion follows by combinatorial arguments. $\hfill \Box$

Remark: One can describe the extension c) explicitly (cf. [Zh]).

For the remaining part let us work with curves over a discrete valuation ring. Then in the following case the Picard functor is representable.

Theorem 6. (Raynaud)

Let S be the spectrum of a discrete valuation ring. Let $f : X \longrightarrow S$ be a proper, flat, normal curve with $f_*\mathcal{O}_X = \mathcal{O}_S$ and geometrically reduced special fiber. Then $\operatorname{Pic}^0_{X/S}$ is representable by a separated S-scheme.

For the proof see [Ra, Thm. 8.2.1] or [BLR, Thm. 9.4.2].

Let now R be a complete discrete valuation ring and X a semi-stable curve over R (i.e. a proper, flat scheme whose geometric fibers are reduced and connected curves with only ordinary double points as singularities). Let further the generic fiber X_{κ} be smooth over K and the irreducible components of the special fiber X_k be smooth over k.

Then by Theorem 5 after a base ring extension $J_k := \operatorname{Pic}^0_{X_k/k}$ is an extension

$$1 \longrightarrow \mathbb{G}_{m,k}^r \xrightarrow{\alpha} \operatorname{Pic}^0_{X_k/k} \longrightarrow \operatorname{Pic}^0_{\widetilde{X_k}/k} \longrightarrow 1,$$

of an abelian variety by a torus. The rank of the torus is $r = \operatorname{rk}_{\mathbb{Z}} \operatorname{H}^{1}(X_{k}, \mathbb{Z})$ and the map α can be described as follows. Let t_{i} be the coordinates of the torus, then α is given by the line bundle $t_{1}^{a_{1}} \otimes \ldots \otimes t_{r}^{a_{r}}$ on $X_{k} \times_{k} \mathbb{G}_{m,k}^{r}$ for some basis a_{1}, \ldots, a_{r} of $\operatorname{H}^{1}(X_{k}, \mathbb{Z})$.

We now want to investigate this situation with formal and rigid geometric methods and consider the formal completion $\overline{J} := (\operatorname{Pic}^{0}_{X/R})^{\wedge} = \operatorname{Pic}^{0}_{\widehat{X}/R}$ of $\operatorname{Pic}^{0}_{X/R}$ along its special fiber. Then the torus lifts over R to a smooth formal torus

$$1 \longrightarrow \overline{\mathbb{G}}_{m,R}^r \longrightarrow \overline{J} \longrightarrow B \longrightarrow 1.$$

There $\overline{\mathbb{G}}_{m,R}$ is the formal completion of $\mathbb{G}_{m,R}$ along its special fiber. The quotient B is a formal abelian scheme. Actually it is the formal completion of an abelian scheme over R. On the rigid fibers we obtain

$$1 \longrightarrow \overline{\mathbb{G}}_{m,K}^r \longrightarrow \overline{J}_{\mathrm{rig}} \longrightarrow B_{\mathrm{rig}} \longrightarrow 1.$$

 $\overline{J}_{\text{rig}}$ parameterizes the formally smooth deformations of the trivial line bundle on X_{κ} . Or phrased differently it is given by the divisors on X_{κ} whose reductions are divisors with all partial degrees equal to zero.

As push-forward of $\overline{J}_{\rm rig}$ via the open immersion of the formal torus into the affine torus we get

7

On $X_{K}^{^{\mathrm{an}}} \times_{K} \widetilde{J}_{_{\mathrm{rig}}}$ there is a universal line bundle $(\widetilde{\mathcal{P}}, \widetilde{\rho})$, which induces a canonical morphism $\widetilde{J}_{_{\mathrm{rig}}} \longrightarrow \operatorname{Pic}_{X_{K}^{^{\mathrm{an}}/K}}^{0} = \left(\operatorname{Pic}_{X_{K}^{^{\mathrm{an}}/K}}^{0}\right)^{^{\mathrm{an}}}$. The kernel

$$M = \left\{ p \in \widetilde{J}_{\mathrm{rig}} : \ (\widetilde{\mathcal{P}}, \widetilde{\rho})|_{X^{\mathrm{an}}_{K} \times \{p\}} \text{ trivial} \right\}$$

of this morphism is a lattice in $\widetilde{J}_{\text{rig}}$ of full rank. The intersection $M \cap \overline{J}_{\text{rig}}$ contains only the unit element of $\overline{J}_{\text{rig}}$. The quotient

$$\widetilde{J}_{\mathrm{rig}}/M = \left(\operatorname{Pic}^{0}_{X_{K}/K}\right)^{\mathrm{an}}$$

exists and makes \tilde{J}_{rig} into the universal covering of the rigid space $(\operatorname{Pic}^{0}_{X_{K}/K})^{\operatorname{an}}$. For more details see [BL].

References

- [BL] Bosch, S., Lütkebohmert, W.: Stable Reduction and Uniformization of Abelian Varieties II, Invent. math. 78, 257-287 (1984).
- [BLR] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models, Springer-Verlag, Berlin-Heidelberg 1990.
- [FGA] Grothendieck, A.: Fondements de la Géométrie Algébrique, Séminaire Bourbaki 1957-62, Secrétariat Math., Paris 1962.
- [Mu] Murre, J.P.: On contravariant functors from the category of preschemes over a field into the category of abelian groups, Publ. Math. IHES 23, 5-43 (1964).
- [Oo] Oort, F.: Sur le schéma de Picard, Bul. Soc. Math. Fr. 90, 1-14 (1962).
- [Ra] Raynaud, M.: Spécialisation du foncteur de Picard, Publ. Math. IHES 38, 27-76 (1970).
- [Zh] Zhang, B.: Sur les jacobiennes de courbes à singularités ordinaires, Manuscripta Math. 92, 1-12 (1997).

Urs T. Hartl University of Ulm Abt. Reine Mathematik D – 89069 Ulm GERMANY

e-mail: hartl@mathematik.uni-ulm.de