The Picard Functor

Urs T. Hartl

Definition

Let S be a base scheme and let $f: X \longrightarrow S$ be a morphism of schemes. Consider the contravariant functor from the category of S-schemes to the category of abelian groups

$$
P_{X / S}:(\mathrm{Sch} / S) \longrightarrow(\mathrm{Ab}), \quad S^{\prime} \longmapsto \operatorname{Pic}\left(X \times_{S} S^{\prime}\right)=\mathrm{H}^{1}\left(X \times_{S} S^{\prime}, \mathcal{O}_{X \times{ }_{S} S^{\prime}}^{*}\right)
$$

The relative Picard functor is the (fppf)-sheaf associated to the functor $P_{X / S}$.

$$
\operatorname{Pic}_{X / S}=\mathrm{R}^{1} f_{*} \mathbb{G}_{m} \quad \text { as (fppf)-sheaves on } S
$$

This means $\operatorname{Pic}_{X / S}$ is a contravariant functor from (Sch / S) to (Ab) such that, for each S-scheme T and for each morphism $T^{\prime} \longrightarrow T$ which is either faithfully flat and of finite presentation, i.e. (fppf) or a Zariski-covering, the following sequence is exact:

$$
\operatorname{Pic}_{X / S}(T) \longrightarrow \operatorname{Pic}_{X / S}\left(T^{\prime}\right) \Longrightarrow \operatorname{Pic}_{X / S}\left(T^{\prime} \times_{T} T^{\prime}\right)
$$

Every Element of $\operatorname{Pic}_{X / S}(T)$ for a quasi-compact S-scheme T can be given by a line bundle \mathcal{L}^{\prime} on $X \times_{S} T^{\prime}$ for some scheme T^{\prime} which is (fppf) over T. Furthermore there exists an (fppf)-morphism $\widetilde{T} \longrightarrow T^{\prime} \times_{T} T^{\prime}$, such that the pullbacks with respect to the two projections $\widetilde{T} \longrightarrow T^{\prime}$ are isomorphic.

Now consider the case:
Let f be quasi-compact and quasi-separated with a section $x: S \longrightarrow X$ and let $f_{*} \mathcal{O}_{X}=\mathcal{O}_{S}$ universally, i.e. still valid after any base change. This holds for example if f is proper and flat with geometrically reduced and irreducible fibers.

Then $\operatorname{Pic}_{X / S}$ is the contravariant Functor from (Sch/S) to (Ab) given by

$$
\begin{aligned}
S^{\prime} \longmapsto & \left\{\begin{array}{l}
\text { Isomclasses of }(\mathcal{L}, \lambda): \mathcal{L} \text { line bundle on } X \times_{S} S^{\prime} \\
\\
\\
\left.\lambda: \mathcal{O}_{S^{\prime}} \xrightarrow{\sim}\left(x \times \operatorname{id}_{S^{\prime}}\right)^{*} \mathcal{L} \text { rigidification }\right\} \\
= \\
\operatorname{Pic}\left(X \times{ }_{S} S^{\prime}\right) / \operatorname{Pic}\left(S^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

The rigidification λ has two effects. It kills all line bundles coming from S^{\prime} and secondly it causes the automorphism group of (\mathcal{L}, λ) to be trivial.

Representability

The functor $\quad \operatorname{Pic}_{X / S}$ is called representable if there exists an S-scheme P such that there is an isomorphism of functors

$$
\operatorname{Pic}_{X / S} \cong \operatorname{Hom}_{(\mathrm{Sch} / S)}(., P)=: P(.)
$$

In the case $(*)$ this means, that there exists a rigidified line bundle $(\mathcal{P}, \rho) \in \operatorname{Pic}_{X / S}(P)$ called the Poincaré-bundle, with the universal property (Yoneda Lemma):
for every S-scheme S^{\prime} and for every line bundle $(\mathcal{L}, \lambda) \in \operatorname{Pic}_{X / S}\left(S^{\prime}\right)$ there exists a unique morphism $g: S^{\prime} \longrightarrow P$ with

$$
(\mathcal{L}, \lambda) \cong\left(\operatorname{id}_{X} \times g\right)^{*}(\mathcal{P}, \rho)
$$

Concerning the representability there is the following theorem.
Theorem 1. (Grothendieck)
Let $f: X \longrightarrow S$ be projective and finitely presented, flat with geometrically reduced and irreducible fibers. Then $\operatorname{Pic}_{X / S}$ is representable by a separated S-scheme which is locally of finite presentation over S.

Proof: cf. [FGA, n ${ }^{\circ} 232$, Thm. 3.1], [BLR, Thm. 8.2.1]

1. One introduces effective, relative Cartier divisors D on X over S, i.e. D is a closed subscheme of X, flat over S, which in each fibre is an effective Cartier divisor. One considers the contravariant functor

$$
\begin{aligned}
\operatorname{Div}_{X / S}:(\operatorname{Sch} / S) & \longrightarrow(\text { Sets }) \\
S^{\prime} & \longmapsto\left\{\text { effective relative Cartier divisors on } X \times_{S} S^{\prime} / S^{\prime}\right\}
\end{aligned}
$$

There is a morphism of functors $\operatorname{Div}_{X / S} \longrightarrow \operatorname{Pic}_{X / S}$ sending $D \mapsto \mathcal{O}_{X}(D)$, which is shown to be relatively representable, i.e. for each S-scheme S^{\prime} the morphism

$$
\operatorname{Div}_{X / S} \times_{\operatorname{Pic}_{X / S}} S^{\prime} \longrightarrow S^{\prime}
$$

is a morphism of schemes. So the divisors inducing a given line bundle in $\mathrm{Pic}_{X / S}\left(S^{\prime}\right)$ are parameterized by a scheme.
2. One shows the representability of the functor $\operatorname{Div}_{X / S}$ using the existence of the Hilbertscheme. This is the hardest part of the proof.
3. For a fixed $\Phi \in \mathbb{Q}[t]$ one considers the subfunctor $\operatorname{Pic}_{X / S}^{\Phi}$ of $\operatorname{Pic}_{X / S}$, which consists of all elements having Hilbert-polynomial Φ with respect to the given projective embedding of X.

For suitable Φ there exists a finite union $D(\Phi)$ of connected components of $\operatorname{Div}_{X / S}$ such that the functor $\operatorname{Pic}_{X / S}^{\Phi}$ is the quotient

$$
D(\Phi) \longrightarrow \mathrm{Pic}_{X / S}^{\Phi}
$$

by a proper and smooth equivalence relation. One now shows that therefore it is representable by a scheme.
For general Φ there exists an $n_{\Phi} \in \mathbb{Z}$ such that the translate $\operatorname{Pic}_{X / S}^{\Phi}+\mathcal{O}_{X}\left(n_{\Phi}\right)$ is of the special case above.
Since $\operatorname{Pic}_{X / S}^{\Phi}$ is an open and closed subfunctor of $\operatorname{Pic}_{X / S}$ one finds that

$$
\operatorname{Pic}_{X / S}=\coprod_{\Phi \in \mathbb{Q}[t]} \operatorname{Pic}_{X / S}^{\Phi}
$$

is representable by a scheme over S.

A further theorem on the representability is the following.
Theorem 2. (Murre and Oort)
Let X be a proper scheme over a field k. Then $\operatorname{Pic}_{X / k}$ is representable by a scheme which is locally of finite type over k.

Proof: cf. $[\mathrm{Mu}],[\mathrm{Oo}]$
One reduces to the projective case which was done by Grothendieck [FGA, n ${ }^{\circ}$ 232, Sect. 6].

If now X is proper over k, we define $\operatorname{Pic}_{X / k}^{0}$ as the connected component which contains the unit element. It is a group scheme of finite type over k.

If X is proper over S, we define the groupfunctor

$$
\operatorname{Pic}_{X / S}^{0}(T) \quad:=\left\{\xi \in \operatorname{Pic}_{X / S}(T):\left.\quad \xi\right|_{X_{t}} \in \operatorname{Pic}_{X_{s} / k(s)}^{0}(k(t)) \quad \forall t \in T\right\}
$$

The case of curves

In the case of curves more can be said.

Theorem 3.

Let $f: X \longrightarrow S$ be a proper, flat curve, locally of finite presentation. Then $\operatorname{Pic}_{X / S}$ is a formally smooth functor over S.

Proof: cf. [BLR, Prop. 8.4.2]
That $\operatorname{Pic}_{X / S}$ is formally smooth over S means that for each affine S-scheme Z and for each closed subscheme $Z_{0} \subseteq Z$ which is given by a sheaf of ideals \mathcal{N} with $\mathcal{N}^{2}=0$ the canonical map is surjective:

$$
\operatorname{Hom}\left(Z, \operatorname{Pic}_{X / S}\right) \longrightarrow \operatorname{Hom}\left(Z_{0}, \operatorname{Pic}_{X / S}\right)
$$

This follows from considering the exact sequence

$$
\begin{aligned}
0 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{X} & \longrightarrow \mathcal{O}_{X \times_{S} Z}^{*} \longrightarrow \mathcal{O}_{X \times_{S} Z_{0}}^{*} \longrightarrow 0 \\
n & \longmapsto 1+n
\end{aligned}
$$

In fact applying $\left(f \times \mathrm{id}_{Z}\right)_{*}$ yields

$$
\mathrm{R}^{1}\left(f \times \operatorname{id}_{Z}\right)_{*} \mathcal{O}_{X \times_{S} Z}^{*} \longrightarrow \mathrm{R}^{1}\left(f \times \operatorname{id}_{Z_{0}}\right)_{*} \mathcal{O}_{X \times_{S} Z_{0}}^{*} \longrightarrow \mathrm{R}^{2}\left(f \times \operatorname{id}_{Z}\right)_{*} \mathcal{N} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{X}
$$

Since X is a curve over S and \mathcal{N} is quasi-coherent, the last term is 0 . So applying $H^{0}(Z$, .) and observing Z affine, one gets

$$
\begin{array}{ccc}
\mathrm{H}^{0}\left(Z, \mathrm{R}^{1}\left(f \times \operatorname{id}_{Z}\right)_{*} \mathcal{O}_{X \times_{S} Z}^{*}\right) & \longrightarrow \quad \mathrm{H}^{0}\left(Z_{0}, \mathrm{R}^{1}\left(f \times \operatorname{id}_{Z_{0}}\right)_{*} \mathcal{O}_{X \times_{S} Z_{0}}^{*}\right) \\
=\operatorname{Pic}_{X / S}(Z) & =\operatorname{Pic}_{X / S}\left(Z_{0}\right)
\end{array}
$$

and thus the above morphism is surjective.

If X is a proper curve over a field k, then $\operatorname{Pic}_{X / k}$ is a scheme locally of finite type over k by Theorem 2. So $\mathrm{Pic}_{X / k}^{0}$ is a scheme of finite type over k. In this case smoothness and formal smoothness are the same. So we see that $\operatorname{Pic}_{X / k}^{0}$ is a smooth k-scheme.
Next we want to study $\operatorname{Pic}_{X / k}^{0}$ in terms of divisors. So let X be a proper curve over a field k and D an effective Cartier divisor on X. Locally at a point $x \in X$ the divisor D is given by a regular element l. We define the order of D in x as

$$
\operatorname{ord}_{x}(D):=\operatorname{length}_{k}\left(\mathcal{O}_{X, x} /(l)\right)
$$

If X is regular at x, then $\mathcal{O}_{X, x}$ is a discrete valuation ring and $\operatorname{ord}_{x}(D)$ is just the order of l in that ring. We now define the degree of D

$$
\operatorname{deg}(D):=\sum_{x \in X} \operatorname{ord}_{x}(D) \cdot[k(x): k]
$$

It has the following properties:

1. deg is additive, so we can also define it for non-effective divisors.
2. deg is not altered by field extensions.
3. If X is reduced, the degree of a divisor on X is the same as the degree of its pullback to the normalization of X.
4. The degree of the divisor of a meromorphic function is zero.

So we can define the degree for line bundles. Let \mathcal{L} be a line bundle on X, then there are two effective Cartier divisors D and D^{\prime} on X with $\mathcal{L} \cong \mathcal{O}\left(D-D^{\prime}\right)$. We define the degree of \mathcal{L}

$$
\operatorname{deg}(\mathcal{L}):=\operatorname{deg}(D)-\operatorname{deg}\left(D^{\prime}\right)
$$

If X is a flat, proper curve of finite presentation over an arbitrary base S and \mathcal{L} a line bundle on X, the function $s \mapsto \operatorname{deg}\left(\left.\mathcal{L}\right|_{X_{s}}\right) \quad$ is locally constant on S.

Next if $X=X_{1} \cup \ldots \cup X_{r}$ is the decomposition in irreducible components, we define the partial degree of \mathcal{L} on X_{i} :

$$
\operatorname{deg}_{X_{i}}(\mathcal{L}):=\operatorname{deg}\left(\left.\mathcal{L}\right|_{X_{i}}\right) .
$$

The partial degrees are related to the total degree by the formula

$$
\operatorname{deg}(\mathcal{L})=\sum_{i=1}^{n} d_{i} \cdot \operatorname{deg}_{X_{i}}(\mathcal{L})
$$

where d_{i} is the multiplicity of X_{i} in X, i.e. $d_{i}:=\operatorname{length}\left(\mathcal{O}_{X, \eta_{i}}\right)$ for the generic point η_{i} of X_{i}.

Now let X be a smooth proper geometrically irreducible curve of genus g over a field k. Assume that X has a rational point x_{0}. Then there is a morphism

$$
X^{g} \longrightarrow X^{(g)}=X^{g} / \mathfrak{S}_{g} \longrightarrow \operatorname{Pic}_{X / k}^{0}, \quad x_{1}+\ldots+x_{g} \mapsto \mathcal{O}_{X}\left(\Sigma\left(x_{i}-x_{0}\right)\right)
$$

where \mathfrak{S}_{g} is the symmetric group on g letters and $X^{(g)}$ is the symmetric product of X. The latter morphism is an epimorphism and birational. The whole Picard variety decomposes

$$
\operatorname{Pic}_{X / k}=\coprod_{d \in \mathbb{Z}} \operatorname{Pic}_{X / k}^{d}
$$

where $\operatorname{Pic}_{X / k}^{d}$ is the connected component of $\operatorname{Pic}_{X / k}$ representing the line bundles of degree d. It is a $\mathrm{Pic}_{X / k}^{0}$-torsor.
In the following we consider arbitrary proper curves over a field k.

Proposition 4.

Let X be a proper curve over a field k. Then $\operatorname{Pic}_{X / k}^{0}$ consists of all elements of $\operatorname{Pic}_{X / k}$ whose partial degree on each irreducible component of $X \otimes_{k} \bar{k}$ is zero.

Proof: cf. [BLR, Cor. 9.3.13]
Let k be algebraically closed, $X_{\text {red }}=\bigcup X_{i}$ be the irreducible components with normalizations \widetilde{X}_{i} and $g: \coprod \widetilde{X}_{i} \longrightarrow X$. Then $\operatorname{Pic}_{X / k}$ is an extension

$$
1 \longrightarrow L \longrightarrow \operatorname{Pic}_{X / k} \xrightarrow{g^{*}} \prod_{i} \operatorname{Pic}_{\tilde{X}_{i} / k} \longrightarrow 1
$$

by a connected linear group L. Therefore we have

$$
\operatorname{Pic}_{X / k}^{0}=\left(g^{*}\right)^{-1}\left(\prod_{i} \operatorname{Pic}_{\tilde{X}_{i / k}}^{0}\right)
$$

The proposition now follows from the fact, that $\operatorname{Pic}_{\tilde{X}_{i} / k}^{0}(k)$ are exactly the line bundles having degree zero on X_{i}.

Description of $\operatorname{Pic}_{X / k}^{0}$

Let X be a proper curve over a perfect field k and \widetilde{X} the normalization of $X_{\text {red }}$. We want to introduce an intermediate curve lying between $X_{\text {red }}$ and \widetilde{X}.

$$
X \longleftrightarrow X_{\text {red }} \longleftarrow X^{\prime} \longleftarrow \tilde{X}
$$

There are only finitely many non-smooth points of $X_{\text {red }}$. We define X^{\prime} by identifying all points of \widetilde{X} lying above such a non-smooth point of $X_{\text {red }}$. (This can be formalized with the amalgamated sum, cf. [BLR, p. 247].) So the singularities of X^{\prime} are just ordinary multiple points.
The above maps induce morphisms on the Picard-schemes.

$$
\operatorname{Pic}_{X / k}^{0} \longrightarrow \operatorname{Pic}_{X_{\text {red }} / k}^{0} \longrightarrow \operatorname{Pic}_{X^{\prime} / k}^{0} \longrightarrow \operatorname{Pic}_{\tilde{X} / k}^{0}
$$

The next theorem tells more about the structure of these morphisms.

Theorem 5.

a) the map $\operatorname{Pic}_{X / k}^{0} \longrightarrow \operatorname{Pic}_{X_{\mathrm{red}} / k}^{0}$ is an epimorphism with a smooth connected unipotent group as kernel.
b) the map $\mathrm{Pic}_{X_{\mathrm{red}} / k}^{0} \longrightarrow \mathrm{Pic}_{X^{\prime} / k}^{0}$ is an epimorphism with a smooth connected unipotent group as kernel, which is trivial if and only if $X^{\prime}=X_{\mathrm{red}}$.
c) the map $\operatorname{Pic}_{X^{\prime} / k}^{0} \longrightarrow \operatorname{Pic}_{\tilde{X} / k}^{0}$ is an epimorphism with a torus as kernel, which is trivial if and only if each irreducible component is homeomorphic to its normalization and the configuration of the irreducible components of $X \otimes_{k} \bar{k}$ is tree-like, i.e. if and only if $\mathrm{H}_{\mathrm{et}}^{1}\left(X \otimes_{k} \bar{k}, \mathbb{Z}\right)=0$.
d) $\operatorname{Pic}_{\tilde{X} / k}^{0}$ is an abelian variety.

Proof: cf. [BLR, Sect. 9.2]
$\underline{\operatorname{Adc} \mathrm{c}}$ Let $X^{\prime}=X=\bigcup_{i=1}^{n} X_{i}$ be the irreducible components and $g: \widetilde{X}=\coprod_{i=1}^{n} \widetilde{X}_{i} \longrightarrow X$ be the normalization. Let further x_{1}, \ldots, x_{N} be the singular points of X and $\widetilde{x}_{\nu 1}, \ldots, \widetilde{x}_{\nu m_{\nu}}$ the points of \widetilde{X} lying above x_{ν}. Then we have the exact sequence

$$
1 \longrightarrow \mathcal{O}_{X}^{*} \longrightarrow g_{*} \mathcal{O}_{\tilde{X}}^{*} \longrightarrow g_{*} \mathcal{O}_{\tilde{X}}^{*} / \mathcal{O}_{X}^{*} \longrightarrow 1
$$

The sheaf $\mathcal{F}:=g_{*} \mathcal{O}_{\tilde{X}}^{*} / \mathcal{O}_{X}^{*}$ is concentrated at the points x_{ν}, so we get

$$
\begin{array}{ccccc}
1 \longrightarrow f_{*} \mathcal{O}_{X}^{*} & \longrightarrow f_{*} g_{*} \mathcal{O}_{\widetilde{X}}^{*} \longrightarrow & f_{*} \mathcal{F} & \longrightarrow \mathrm{R}^{1} f_{*} \mathcal{O}_{X}^{*} \longrightarrow\left(\mathrm{R}^{1} f_{*}\right) g_{*} \mathcal{O}_{\widetilde{X}}^{*} \longrightarrow 1 \\
\mathrm{H}^{0}\left(X, \mathcal{O}_{X}\right)^{*} & \prod_{i=1}^{n} \mathrm{H}^{0}\left(\widetilde{X}_{i}, \mathcal{O}_{\widetilde{X}}\right)^{*} & & \prod_{\nu=1}^{N}\left(\prod_{\mu=1}^{m_{\nu}} k\left(\widetilde{x}_{\nu \mu}\right)^{*}\right) / k\left(x_{\nu}\right)^{*}
\end{array}
$$

So the kernel is a quotient of a torus, thus a torus. The remaining assertion follows by combinatorial arguments.

Remark: One can describe the extension c) explicitly (cf. [Zh]).

For the remaining part let us work with curves over a discrete valuation ring. Then in the following case the Picard functor is representable.

Theorem 6. (Raynaud)
Let S be the spectrum of a discrete valuation ring. Let $f: X \longrightarrow S$ be a proper, flat, normal curve with $f_{*} \mathcal{O}_{X}=\mathcal{O}_{S}$ and geometrically reduced special fiber. Then $\operatorname{Pic}_{X / S}^{0}$ is representable by a separated S-scheme.

For the proof see [Ra, Thm. 8.2.1] or [BLR, Thm. 9.4.2].

Let now R be a complete discrete valuation ring and X a semi-stable curve over R (i.e. a proper, flat scheme whose geometric fibers are reduced and connected curves with only ordinary double points as singularities). Let further the generic fiber X_{K} be smooth over K and the irreducible components of the special fiber X_{k} be smooth over k.

Then by Theorem 5 after a base ring extension $J_{k}:=\operatorname{Pic}_{X_{k} / k}^{0}$ is an extension

$$
1 \longrightarrow \mathbb{G}_{m, k}^{r} \xrightarrow{\alpha} \operatorname{Pic}_{X_{k} / k}^{0} \longrightarrow \operatorname{Pic}_{\widetilde{X_{k}} / k}^{0} \longrightarrow 1,
$$

of an abelian variety by a torus. The rank of the torus is $r=\operatorname{rk}_{\mathbb{Z}} \mathrm{H}^{1}\left(X_{k}, \mathbb{Z}\right)$ and the map α can be described as follows. Let t_{i} be the coordinates of the torus, then α is given by the line bundle $t_{1}^{a_{1}} \otimes \ldots \otimes t_{r}^{a_{r}}$ on $X_{k} \times_{k} \mathbb{G}_{m, k}^{r}$ for some basis a_{1}, \ldots, a_{r} of $\mathrm{H}^{1}\left(X_{k}, \mathbb{Z}\right)$.

We now want to investigate this situation with formal and rigid geometric methods and consider the formal completion $\bar{J}:=\left(\operatorname{Pic}_{X / R}^{0}\right)^{\wedge}=\operatorname{Pic}_{\hat{X} / R}^{0}$ of $\operatorname{Pic}_{X / R}^{0}$ along its special fiber. Then the torus lifts over R to a smooth formal torus

$$
1 \longrightarrow \overline{\mathbb{G}}_{m, R}^{r} \longrightarrow \bar{J} \longrightarrow B \longrightarrow 1
$$

There $\overline{\mathbb{G}}_{m, R}$ is the formal completion of $\mathbb{G}_{m, R}$ along its special fiber. The quotient B is a formal abelian scheme. Actually it is the formal completion of an abelian scheme over R. On the rigid fibers we obtain

$$
1 \longrightarrow \overline{\mathbb{G}}_{m, K}^{r} \longrightarrow \bar{J}_{\mathrm{rig}} \longrightarrow B_{\mathrm{rig}} \longrightarrow 1
$$

$\bar{J}_{\text {rig }}$ parameterizes the formally smooth deformations of the trivial line bundle on X_{K}. Or phrased differently it is given by the divisors on X_{K} whose reductions are divisors with all partial degrees equal to zero.
As push-forward of $\bar{J}_{\text {rig }}$ via the open immersion of the formal torus into the affine torus we get

On $X_{K}^{\text {an }} \times_{K} \widetilde{J}_{\text {rig }}$ there is a universal line bundle $(\widetilde{\mathcal{P}}, \widetilde{\rho})$, which induces a canonical morphism $\widetilde{J}_{\text {rig }} \longrightarrow \operatorname{Pic}_{X_{K}^{\text {an }} / K}^{0}=\left(\operatorname{Pic}_{X_{K} / K}^{0}\right)^{\text {an }}$. The kernel

$$
M=\left\{p \in \widetilde{J}_{\text {rig }}:\left.(\widetilde{\mathcal{P}}, \widetilde{\rho})\right|_{X_{K}^{\text {an }} \times\{p\}} \text { trivial }\right\}
$$

of this morphism is a lattice in $\widetilde{J}_{\text {rig }}$ of full rank. The intersection $M \cap \bar{J}_{\text {rig }}$ contains only the unit element of $\bar{J}_{\text {rig }}$. The quotient

$$
\widetilde{J}_{\text {rig }} / M=\left(\operatorname{Pic}_{X_{K} / K}^{0}\right)^{\text {an }}
$$

exists and makes $\widetilde{J}_{\text {rig }}$ into the universal covering of the rigid space $\left(\mathrm{Pic}_{X_{K} / K}^{0}\right)^{\text {an }}$. For more details see [BL].

References

[BL] Bosch, S., Lütkebohmert, W.: Stable Reduction and Uniformization of Abelian Varieties II, Invent. math. 78, 257-287 (1984).
[BLR] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models, Springer-Verlag, BerlinHeidelberg 1990.
[FGA] Grothendieck, A.: Fondements de la Géométrie Algébrique, Séminaire Bourbaki 195762, Secrétariat Math., Paris 1962.
[Mu] Murre, J.P.: On contravariant functors from the category of preschemes over a field into the category of abelian groups, Publ. Math. IHES 23, 5-43 (1964).
[Oo] Oort, F.: Sur le schéma de Picard, Bul. Soc. Math. Fr. 90, 1-14 (1962).
[Ra] Raynaud, M.: Spécialisation du foncteur de Picard, Publ. Math. IHES 38, 27-76 (1970).
[Zh] Zhang, B.: Sur les jacobiennes de courbes à singularités ordinaires, Manuscripta Math. 92, 1-12 (1997).

Urs T. Hartl
University of Ulm
Abt. Reine Mathematik
D - 89069 Ulm GERMANY
e-mail: hartl@mathematik.uni-ulm.de

