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On rigid-analytic Picard varieties

By Urs Hartl and Werner LuÈtkebohmert at Ulm1)

Let K be a ®eld of any characteristic which is assumed to be complete with respect to
a non-archimedean discrete valuation and let R be its valuation ring. Moreover let XK be
a smooth rigid space over K which is proper and connected and assume that there exists a
K-rational point x: Sp K ! XK of XK . We consider the Picard functor

PicXK=K : �Smooth Rigid Spaces� ! �Sets�; VK 7! PicXK=K�VK�

where

PicXK=K�VK� � Isoclass�L; l�:
L line bundle on XK �K VK ;

l: OVK
!@ �x; id��L isomorphism

( )
:

This is a contravariant functor. The main purpose of this paper is to show the represent-
ability of this functor under the additional assumption that XK admits a strict semi-stable

formal model X over the valuation ring R associated to K.

Theorem 0.1. Under the conditions stated above, there exists a unique (up to canonical

isomorphism) smooth rigid-analytic group variety PicXK=K and a natural transformation

Y: PicXK=K ! HomK�ÿ;PicXK=K�

which is universal in the following sense: For any smooth rigid space VK , the map

Y�VK�: PicXK=K�VK� !@ HomK�VK ;PicXK=K�

is bijective. In particular, there exists a line bundle P on XK � PicXK=K and an isomor-

phism lP: OPicXK =K
!@ �x� id��P such that, for any smooth rigid space VK and for any pair

�L; l� A PicXK=K�VK�, there is a unique morphism j: VK ! PicXK=K and a unique isomor-

phism �L; l� !@ �id� j���P; lP�.

1) The authors wish to thank the Deutsche Forschungsgemeinschaft for supporting this research.



The identity component Pic0
XK=K of PicXK=K is called the Picard variety of XK and P is

called the PoincareÂ bundle. After a ®nite base ®eld extension the Picard variety is an exten-
sion of an abeloid variety by an a½ne torus; an abeloid variety is a smooth rigid group variety

with proper underlying space.

The Galois module PicXK=K�K�=Pic0
XK=K�K� where K is the completion of the algebraic

closure of K is called the NeÂron-Severi group of XK . The NeÂron-Severi group of XK is ®nitely

generated.

Remark 0.1.1. The proof makes use of the assumption that XK admits a semi-stable
regular model X over Spf�R�. Presumably this hypothesis is not necessary. There is still the
conjecture that any quasi-compact smooth rigid space admits such a model after a suitable
base ring extension. If the residue characteristic is zero, one can apply the stable reduction
theorem of Mumford; cf. [TE], p. 198 which provides the good model. So the result is valid
without further conditions in this case.

Remark 0.1.2. In the complex analytic case, the Picard variety is obtained via the
exponential exact sequence

1! ZX ! OX ! O�X ! 1

as a quotient

Pic0
X=C � H1�X ;OX �=H1�X ;ZX �:

Due to a theorem of Blanchard [B] the group H1�X ;ZX � is a lattice in H1�X ;OX � which
may happen to be of rank less than 2 � dim H1�X ;OX �. So Pic0

X=C may happen not to be a
compact complex analytic torus. As reference we cite [TCGA], n016.

Remark 0.1.3. (1) If XK is the analyti®cation of a proper algebraic variety, the rigid-
analytic Picard variety is the analyti®cation of the classical algebraic Picard variety, due to
the GAGA-principle; cf. [L1], 2.8.

(2) In the case of (1) the connected components of the Picard variety are proper as
XK is assumed to be smooth; cf. [FGA], n0236, Theorem 2.1, or [BLR], 8.4/3.

(3) If XK is a smooth connected proper group variety, the representability of PicXK=K

is established in [L2] resp. [BL]. In particular, it is shown that Pic0
XK=K is smooth and proper

and that the NeÂron-Severi group of XK is ®nitely generated and torsion free.

(4) There are examples of (non-algebraic) proper smooth rigid varieties where the
Picard variety is not proper; cf. [Ms]. Let us brie¯y review the example. This is an analogue
of the Hopf surface. It can be de®ned in the following way:

XK � �A2
K ÿ f0g�=G

where G � hgi is generated by a single element g which acts on A2
K ÿ f0g by

g�x1; x2� � �a1x1 � bxm
2 ; a2x2�
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where a1; a2 A K � with 0 < ja1jY ja2j < 1 and b � 0 if a1 3 am
2 and otherwise b A K . One

can show that XK is smooth and proper and that it admits a strict semi-stable formal
model. One computes that PicXK=K � Gm;K .

Let us ®x the notation for this article:

R complete discrete valuation ring,

K its ®eld of fractions,

k its residue ®eld,

p its uniformizing parameter,

S � Spf�R�.

We are going to consider only rigid spaces XK over K which in general are assumed to be
smooth, quasi-compact and separated. Such a space has a ¯at model over S � Spf�R�,
usually denoted by X. As usual Xrig is the associated rigid space of X; cf. [FRG]. So, if X is
a model of XK we have an isomorphism XK GXrig. If XK is proper, then X is proper over
Spf�R� and vice versa; cf. [L1].

We would like to thank the referee for his helpful comments. Further we would like
to thank Michel Raynaud for valuable discussions on this topic.

1. Semi-stable formal schemes

In this section we will repeat the basic notions of semi-stable formal schemes and
show some elementary properties like smooth ®bration over polyannuli. Then we will
consider the group of rig-invertible functions on such a scheme and ®nally we will discuss
the desingularization of products of such schemes.

1.1. De®nitions. Analogous to A. J. de Jong [dJ], De®nition 2.16, we make the
following

De®nition 1.1. Let X be an admissible formal R-scheme and let X s
0 for s � 1; . . . ; s

be the irreducible components of the special ®ber X0 of X. For M LN :� f1; . . . ; sg we
de®ne

X M
0 :� T

s AM

X s
0

as the scheme-theoretic intersection. X is called strict semi-stable over R if

(a) Xrig is smooth over K,

(b) X0 is geometrically reduced,

(c) X s
0 is a Cartier divisor on X for all s A N and
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(d) X M
0 is smooth over k for all M LN and equidimensional of dimension

dim X ÿKM.

Remark 1.1.1. Condition (a) is in fact a consequence of the other three conditions;
cf. Proposition 1.3.

Lemma 1.2. Let X be a strict semi-stable admissible formal R-scheme and x A X0 a

point lying on the irreducible components X i1
0 ; . . . ;X

is 0
0 and not on the other components of

X0. Then there exists an open a½ne neighborhood Spf�A� of x such that the completion of A

with respect to the ideal I corresponding to X
fi1;...; is 0 g
0 is of the form

cAI GCwxi1 ; . . . ; xis 0 x=�xi1 � . . . � xis 0 ÿ p�

for a smooth admissible formal R-algebra C where xs are generators of the ideal associated to

the Cartier divisor X s
o for s A fi1; . . . ; is 0g.

Proof (cf. [dJ], 2.16). Let Spf�A� be an open neighborhood of x such that the Cart-
ier divisor X s

0 is principal on Spf�A� and generated by xs A A and such that C0 :� A=I is
integral where I :� �xi1 ; . . . ; xis 0 �. By (d) the subscheme C0 is smooth over k and can there-
fore be lifted to a smooth admissible formal R-scheme C. Due to the smoothness we can lift
the identity

Cwxi1 ; . . . ; xis 0 x=�xi1 ; . . . ; xis 0 ; p� � C0 � A=I

to a surjective morphism

Cwxi1 ; . . . ; xis 0 x! cAI :

There is an equation xi1 � . . . � xis 0 � u � p on A. After replacing xi1 by u � xi1 , we may assume
u � 1 and hence we obtain a morphism

Cwxi1 ; . . . ; xis 0 x=�x1 � . . . � xis 0 ÿ p� !@ cAI

which is an isomorphism by reasons of dimension; use condition (d). r

This description leads to

Proposition 1.3. Let X be an admissible formal R-scheme. The following are

equivalent:

(a) X is strict semi-stable.

(b) Every closed point x A X0 of the special ®ber admits an open neighborhood which

for some r A N is formally smooth over the formal scheme

Spf Rhxi1 ; . . . ; xiri=�xi1 � . . . � xir ÿ p�:

Proof. (a)) (b) follows from Lemma 1.2 and (b)) (a) is obvious. r
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De®nition 1.4. An a½ne strict semi-stable formal R-scheme V � Spf�A� is called
small if it is formally smooth over Spf Rhz1; . . . ; zti=�z1 � . . . � zt ÿ p�, if all strata V M

0 are
geometrically irreducible for all non-empty subsets M of irreducible components of V0 and
if there is a common point on all these V M

0 .

Remark 1.4.1. If the residue ®eld k of R is separably closed, then every point of a
strict semi-stable formal R-scheme admits an open neighborhood which is small.

1.2. rig-invertible functions on semi-stable formal schemes. Concerning the extension
of line bundles from Xrig to the formal model X we need to know the group of rig-in-
vertible functions on strict semi-stable models. Completely analogous to the one-
dimensional case [BGR], Lemma 9.7.1.1 one shows

Lemma 1.5. Let Sp�AK� be a connected a½noid variety over K and z1; . . . ; zr�1 be
variables. Let further be c A A�K with jcjY 1 and

f � P
m AZ r

am � zm1

1 � . . . � zmr

r A BK :� AKhz1; . . . ; zr�1i=�z1 � . . . � zr�1 ÿ c�:

f is a unit in BK if and only if there is a multi-index n A Zr such that the term anzn is dominant
on Sp BK , i.e. if an A A�K is a unit and

j�am � aÿ1
n � zmÿn��y�j < 1

for all m3 n and for all y A Sp�BK�.

Proposition 1.6. Assume that the residue ®eld k of R is separably closed. Let X be a

strict semi-stable admissible formal R-scheme such that the ideal associated to each compo-

nent X s
0 is principal with generator xs for s � 1; . . . ; s. Consider a ®nite extension R! ~R

of discrete valuation rings. Let ~V be a strict semi-stable admissible formal ~R-scheme such

that the ideal associated to each component ~V t
0 is principal with generator zt for t � 1; . . . ; t.

Let W � Spf�A� be an open a½ne subscheme of X �R
~V . Assume that there is a point

w A W0 lying on all irreducible components of the special ®ber W0 of W. Then the group of

rig-invertible functions on W can be described in the following way:

OX� ~V�Wrig�� � OX� ~V �W��l
ÿ�xZ

i1
l � � � l xZ

is 0
� � �zZ

j1
l � � � l zZ

jt 0
��

where X i1
0 ; . . . ;X

is 0
0 are the components of X0 meeting W resp. ~V j1

0 ; . . . ; ~V
jt 0

0 are the compo-

nents of ~V0 meeting W.

Remark 1.6.1. If there exists a point x A X0 resp. v A ~V0 lying on all irreducible
components of X0 resp. ~V0, then there exists also a point w A W :� �X �R

~V� satisfying the
analogous condition on W. Every point x A X0 resp. v A ~V0 has a neighborhood such that x
resp. v lies on all irreducible components of that neighborhood.

Proof of 1.6. Since the residue ®eld k of R is separably closed, all irreducible
schemes of ®nite type over k are geometrically irreducible. Let x A X0 resp. v A ~V0 be the
projection of the point w. We may assume that x and v satisfy the analogous condition on
X resp. on V as w on W. Let I :� �xi1 ; . . . ; xis 0 �HA resp. J :� �zj1 ; . . . ; zjt 0 �HA be the ideals
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generated by the functions de®ning the irreducible components meeting W. As in Lemma
1.2 one shows that the closed subscheme Spec�C0� :� V�I ; J� is smooth over ~k and it lifts to
a smooth formal ~R-algebra C. Furthermore we may assume that C is integral. There is an
isomorphism

Cwxi1 ; . . . ; xis 0 ; zj1 ; . . . ; zjt 0 x=�xi1 � . . . � xir ÿ p; zj1 � . . . � zjt 0 ÿ ~p� !@ Â�I ;J�

of the formal power series ring to the completion of A with respect to �I ; J�. Then we can
look at the tubular neighborhood

Wrig�I ; J�:� x A Wrig;
jxi1�x�j < 1; . . . ; jxis 0 �x�j < 1;

jzj1�x�j < 1; . . . ; jzjt 0 �x�j < 1

( )
:

Its ring of rigid-analytic functions is given byÿ
Cwxi1 ; . . . ; xis 0 ; zj1 ; . . . ; zjt 0 x=�xi1 � . . . � xis 0 ÿ p; zj1 � . . . � zjt 0 ÿ ~p��nR K

which is isomorphic toÿÿ
Cwzj1 ; . . . ; zjt 0 x=�zj1 � . . . � zjt 0 ÿ ~p��wxi1 ; . . . ; xis 0 x=�xi1 � . . . � xis 0 ÿ p��nR K :

Now consider a rig-invertible function f on W. Due to Lemma 1.5 there exists a rig-
invertible function g A

ÿ
Cwzj1 ; . . . ; zjt 0 x=�zj1 � . . . � zjt 0 ÿ ~p��nR K and a multi-index m A Zs 0

such that f � g � xm is invertible in the formal ring. Applying the same procedure to g
we obtain a further multi-index n A Zt 0 such that f � xm � zn is a unit in the formal ring

f � xm � zn A
ÿ
Cwxi1 ; . . . ; xis 0 ; zj1 ; . . . ; zjt 0 x=�xi1 � . . . � xis 0 ÿ p; zj1 � . . . � zjt 0 ÿ ~p���:

Namely, any invertible function a A CK is of type a � a � ~pn with a A C and n A Z as C is
irreducible; then use the relation ~pn � �zj1 � . . . � zjt 0 �n. Since w lies on all irreducible com-
ponents, one shows that the rig-analytic function f � xm � zn on Wrig takes the sup-norm 1
on each irreducible component of W0. Thus we see that f � xm � zn is a formal function on
W. The same argument applies to its inverse. Thus f � xm � zn is an invertible formal func-
tion on W. r

This proposition implies the following description of the group of Cartier divisors
with support in the special ®ber

Div0�X �R
~V� :� fD A Div�X �R

~V�; Supp�D�H �X �R
~V�0g:

Corollary 1.7. Assume that the residue ®eld k of R is separably closed. Let X be a

strict semi-stable admissible formal R-scheme. Consider a ®nite extension R! ~R of discrete
valuation rings of rami®cation index e. Let ~V be a strict semi-stable admissible formal ~R-
scheme, which is small. Then

Div0�X �R
~V� � p�1

ÿ
Div0�X�

�� p�2
ÿ
Div0� ~V��

where p1: X �R
~V ! X resp. p2: X �R

~V ! ~V are the projections. The sum is not direct; but
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there is only one relation

Ps

s�1

p�1 X s
0 � e

Pt

t�1

p�2 ~V t
0 � V�p�:

Proof. It follows from Proposition 1.6 that any Cartier divisor D with support in the
special ®ber is locally of type p�1 D1 � p�2 D2. Let now h be the generic point of the intersec-
tion of all the irreducible components ~V t

0 of ~V0; cf. De®nition 1.4. Consider the open sets
meeting X0 � h. Using the given relation on these open sets we can normalize the local
representation by requiring that the multiplicity of ~V 1

0 in D2 lies between 0 and eÿ 1. So
the representation becomes unique and therefore does not depend on the local situation.
Since the union of the open sets just considered is dense in X0 �k

~V0 we see that D is
globally of the form p�1 D1 � p�2 D2 as required. r

From this we obtain the following description of the isomorphisms between two line
bundles.

Corollary 1.8. Keep the situation of Proposition 1.6. Consider a line bundle L on W.
If lK A L�Wrig� is a rigid-analytic section without zeros on Wrig, there exist multi-indices

m A Zs 0 and n A Z t 0 such that xm � zn � lK extends to a generator of L. In particular, consider
line bundles L and M on W and an isomorphism jK : Lrig !@ Mrig over Wrig. Then there exist

multi-indices m A Zs 0 and n A Z t 0 such that xm � zn � jK extends to an isomorphism of L and

M.

Proof. Regarding lK as a rational section of L over W, it de®nes a Cartier divisor
on W. Since there are no zeros on the rigid part, this Cartier divisor belongs to Div0�W �.
Thus the claim follows from Corollary 1.7, since these divisors are principal. r

1.3. Desingularization of products of semi-stable formal schemes. For the extension
of rigid line bundles to formal ones we need certain desingularization procedures. So let XK

be a smooth rigid analytic variety over K with strict semi-stable formal model X. Let V be
an admissible formal R-scheme, smooth over

Spf Rhz1; . . . ; zni=�z1 � . . . � zn ÿ p�:

Assume that V is small (cf. De®nition 1.4); i.e., that the strata V M
0 (cf. De®nition 1.1) are

geometrically irreducible for all M and that the intersection of all these strata is non-empty.
Let further R! ~R be a rami®ed extension of discrete valuation rings of rami®cation index
e, i.e. the uniformizers satisfy p � ~u � ~pe for some unit ~u in ~R. We want to explain how to
obtain a desingularization of X �R V resp. of X �R

~R. This leads to the desingularization
of objects of the following type. We remind the reader that, in our sense, the center Z of a
blowing-up p: Y 0 ! Y is the closed subset where the ®ber of p is of dimension Z 1.

Proposition 1.9. For mZ 1 and nZ 1 let A and B be the admissible formal R-algebras

A :� Rhx1; . . . ; xmi=�x1 � . . . � xm ÿ p�;
B :� Rhz1; . . . ; zni=�z1 � . . . � zn ÿ p�:
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Then there exists a desingularization of A n̂R B which is obtained as a sequence

Spf�A n̂R B� � Y 0  Y 1  � � �  Y r

of blowing-ups in open ideals Ir HOY r for r � 0; . . . ; rÿ 1 which are locally generated by

two elements such that the following conditions hold:

(a) Y r is normal for r � 0; . . . ; r.

(b) Y r is strict semi-stable, so in particular regular.

(c) At each blowing-up the irreducible components of the center Zr are of the form

V�xi; i A M� �k V�zj; j A N� �k �P1
k�a; M H f1; . . . ;mg; N H f1; . . . ; ng:

They all have a point above �x1; . . . ; xm; z1; . . . ; zn; p� in common. In particular Zr is

connected.

(d) The inverse image ideal sheaf Ir � OY r�1 induces the line bundle OP1�1� on the ®bers

over all points of Zr.

Proof. For 1Y mYm and 1Y nY n let C be the formal R-algebra

Rhx
�r1�
1 ; . . . ; x�rm�

m ; z
�s1�
1 ; . . . ; z�sn�

n i

in variables x
�r1�
1 ; . . . ; x�rm�

m ; z
�s1�
1 ; . . . ; z�sn�

n modulo the relations

x�rm�
m � . . . � x�rm�

m ÿ z�sn�
n � . . . � z�sn�

n � 0

and

x
�r1�
1 � . . . � x�rm�

m � z�s1�
1 � . . . � z�snÿ1�

nÿ1 ÿ p � 0:

In order to control the centers of the blowing-ups which we use in the desingularization
process of A n̂R B we call the variables x

�ri�
i and z

�sj�
j . The original variables xi and zj are

multiples of the x
�ri�
i and z

�sj�
j . The new variables appearing in the blowing-ups are corre-

spondingly called x
�1�ri�
i and z

�1�sj�
j . Starting with m � n � 1 and ri � sj � 0 for all i and j we

construct step by step a desingularization of C.

For m � n � 1 the algebra C is isomorphic to �A n̂R B�. The algebra C is always
normal. Furthermore if m � m or n � n the algebra C is strict semi-stable.

We proceed by induction on maxfmÿ m; nÿ ng. For the beginning there is nothing to
show. Now consider m < m and n < n. We blow up the open ideal �x�rm�

m ; z�sn�
n �. The center Z

decomposes into irreducible components as follows:

Z � V�x�rm�
m ; x

�rm�1�
m�1 � . . . � x�rm�

m ; z�sn�
n ; z

�sn�1�
n�1 � . . . � z�sn�

n ; p�

� Sm
k�m�1

Sn
l�n�1

V�x�rm�
m ; x�rk�

k ; z�sn�
n ; z

�sl�
l ; p�:
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The projection Y r ! Y 0 maps the component V�x�rm�
m ; x�rk�

k ; z�sn�
n ; z

�sl�
l ; p� surjectively onto

V�p; xi; i A M� �k V�p; zj; j A N�HY 0:

Thereby M and N are the sets of all i resp. j for which xi � x
�0�
i resp. zj � z

�0�
j belongs to the

ideal �x�rm�
m ; x�rk�

k ; z�sn�
n ; z

�sl�
l �. After dividing out this ideal the remaining variables x

�ri�
i and z

�sj�
j

with exponent ri Z 1 resp. sj Z 1 are the free coordinates of projective lines. So the ®bers of
the projection are isomorphic to �P1

k�a and the irreducible component is isomorphic to

V�p; xi; i A M� �k V�p; zj; j A N� �k �P1
k�a:

All the irreducible components intersect in

V�x�rm�
m ; . . . ; x�rm�

m ; z�sn�
n ; . . . ; z�sn�

n ; p�

and therefore contain the point

V�x�r1�
1 ; . . . ; x�rm�

m ; z
�s1�
1 ; . . . ; z�sn�

n ; p�G Spec k

above the point V�x1; . . . ; xm; z1; . . . ; zn; p�. We obtain two charts of the blowing-up Y 0:

. x�rm�
m � z�sn�

n � x�1�rm�
m : The relations are equivalent to

x�1�rm�
m � . . . � x�rm�

m ÿ z
�sn�1�
n�1 � . . . � z�sn�

n � 0

and

x
�r1�
1 � . . . � x�1�rm�

m � . . . � x�rm�
m � z�s1�

1 � . . . � z�sn�
n ÿ p � 0:

Thus the number n was increased by 1 while m stayed constant. The number rm was also
increased by 1.

. z�sn�
n � x�rm�

m � z�1�sn�
n : The relations are equivalent to

x
�rm�1�
m�1 � . . . � x�rm�

m ÿ z�1�sn�
n � . . . � z�sn�

n � 0

and

x
�r1�
1 � . . . � x�rm�

m � z�s1�
1 � . . . � z�snÿ1�

nÿ1 ÿ p � 0:

Thus the number m was increased by 1 while n stayed constant. The number sn was also
increased by 1.

The inverse image ideal sheaf �x�rm�
m ; z�sn�

n � � OY 0 induces the line bundle OP1�1� on the
®ber over all points of the center. r

Proposition 1.10. For mZ 1 and eZ 1 let A be the admissible formal R-algebra

A :� Rhh1; . . . ; hmi=�h1 � . . . � hm ÿ pe�:

Hartl and LuÈ tkebohmert, On rigid-analytic Picard varieties 109



If e � 1 the algebra A is strict semi-stable, in particular regular.

If eZ 2 there exists a desingularization of A, which is obtained as a sequence

Spf�A� � Y 0  Y 1  � � �  Y r

of blowing-ups in open ideals Ir HOY r for r � 0; . . . ; rÿ 1 which are locally generated by

two elements such that the following conditions hold:

(a) Y r is normal for r � 0; . . . ; r.

(b) Y r is strict semi-stable, in particular regular.

(c) At each blowing-up the irreducible components of the center Zr are of the form

V�p; hi; i A M� �k �P1
k�a; M H f1; . . . ;mg:

They all have a point above �h1; . . . ; hm; p� in common. In particular Zr is connected.

(d) The inverse image ideal sheaf Ir � OY r�1 induces the line bundle OP1�1� on the ®bers

over all points of Zr.

Proof. We proceed by induction on e. Starting with n � 0 we stepwise desingularize
the R-algebra

C :� Rhh
�n�
1 ; h2; . . . ; hmi=�h�n�1 � h2 � . . . � hm ÿ peÿn�

with h1 � pnh
�n�
1 . This algebra C is always normal.

For eÿ n � 1 the algebra C is strict semi-stable. Let now eÿ nZ 2. We blow up the
open ideal �h�n�1 ; p�. The center Z decomposes into irreducible components as follows:

Z � V�h�n�1 ; h2 � . . . � hm; p� �
Sm
i�2

V�h�n�1 ; hi; p�:

Because of h1 � pnh
�n�
1 the projection Y r ! Y 0 maps the component V�h�n�1 ; hi; p� iso-

morphically onto V�h1; hi; p�H Spf�A�. All irreducible components intersect in the point

V�h1; h2; . . . ; hm; p�G Spec k:

We get two charts of the blowing-up Y 0:

. h
�n�
1 � p � h�n�1�

1 : The relation is equivalent to

h
�n�1�
1 � h2 � . . . � hm ÿ peÿ�n�1� � 0:

Thus the exponent of p was reduced by 1.
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. p � h
�n�
1 � p 0: In this case we need two equations to describe the relations:

h2 � . . . � hm ÿ peÿ�n�1�p 0 � p 0 � h�n�1 ÿ p � 0:

This case is treated in the following Lemma 1.11 for m � 2 and h
�s0�
0 � p 0.

The inverse image ideal sheaf �h�n�1 ; p� � OY 0 induces the line bundle OP1�1� on the
®bers over each point of the center. r

Lemma 1.11. Let 1Y mYm, eZ 1 and sj Z 0 for all j. For a subset

J H f0; . . . ; mÿ 1g

let A be the admissible formal R-algebra

Rhh
�s0�
0 ; . . . ; h�sm�

m ; hm�1; . . . ; hmi

modulo the relations

h�sm�
m � hm�1 � . . . � hm ÿ pe � Q

j A J

h
�sj�
j � h

�s0�
0 � . . . � h�smÿ1�

mÿ1 ÿ p � 0:

Then there exists a desingularization of A as claimed in Proposition 1.10.

Proof. The algebra A is normal and for m � m the algebra A is strict semi-stable.

We proceed by two inductions. The inner one is done on minfmÿ m;KJg and the
outer one on e. We ®rst describe how we reduce to the case m � m or J � j by induction
on minfmÿ m;KJg. So we may assume m < m and J 3j. We blow up the open ideal

�h�sm�
m ; h

�sj�
j � for some j A J. The center Z decomposes into irreducible components as fol-

lows:

Z � V�h�sj�
j ; h�sm�

m ; hm�1 � . . . � hm; p� �
Sm

n�m�1

V�h�sj�
j ; h

�sm�
m ; hn; p�:

We have to describe them in terms of Proposition 1.10. The projection Y r ! Y 0 maps the
component V�h�sj�

j ; h
�sm�
m ; hn; p� surjectively onto

V�p; hn; hi; i A M�HY 0

where M is the set of all i for which hi � h
�0�
i belongs to the ideal �h�sm�

m ; h
�sj�
j �. After dividing

out this ideal the remaining variables h
�si�
i with exponent si Z 1 are the free coordinates of

projective lines. So the ®bers of the projection are isomorphic to �P1
k�a and the irreducible

component is thus isomorphic to

V�p; hn; hi; i A M� �k �P1
k�a:

All the irreducible components intersect in
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V�h�sj�
j ; h�sm�

m ; hm�1; . . . ; hm; p�

and therefore contain the point

V�h�s0�
0 ; . . . ; h�sm�

m ; hm�1; . . . ; hm; p�G Spec k

above the point �h1; . . . ; hm; p�. We get two charts of the blowing-up Y 0:

. h
�sm�
m � h

�sj�
j � h�1�sm�

m : The relations are equivalent to

h�1�sm�
m � hm�1 � . . . � hm ÿ pe � Q

i A Jÿf jg
h
�si�
i � h

�s0�
0 � . . . � h�smÿ1�

mÿ1 ÿ p � 0:

Thus the set J was reduced by one element while m and e stayed the same. Also the number
sm was increased by 1.

. h
�sj�
j � h

�sm�
m � h�1�sj�

j : The relations are equivalent to

hm�1 � . . . � hm ÿ pe � h
�1�sj�
j � Q

i A Jÿf jg
h
�si�
i

 !
� 0

and

h
�s0�
0 � . . . � h�1�sj�

j � . . . � h�sm�
m ÿ p � 0:

Thus the number m was increased by 1 while e and J stayed the same. Also the number sj

was increased by 1.

The inverse image ideal sheaf �h�sm�
m ; h

�sj�
j � � OY 0 induces the line bundle OP1�1� on the

®bers over all points of the center. So we have reduced the situation for ®xed e to the case
J � j.

We now proceed by induction on e and start with e � 1. Using the above we reduce
to the case J � j. Then we can apply Proposition 1.9 where we use the systems of variables
�x1; . . . ; xm 0 � � �h�sm�

m ; hm�1; . . . ; hm� resp. �z1; . . . ; zn 0 � � �h�s0�
0 ; . . . ; h

�smÿ1�
mÿ1 �. For each of the

blowing-ups which appear in the process of Proposition 1.9, the irreducible components of
the center are of the form

V�p; h�sj�
j ; j A N� �k �P1

k�a; N H f0; . . . ;mg:

Again we have to describe them in terms of Proposition 1.10. The projection Y r ! Y 0

maps the component just mentioned surjectively onto

V�p; hi; i A M�HY 0; M H f1; . . . ;mg;

where M IN ÿ f0g is the set of all indices i for which hi � h
�0�
i belongs to the ideal

�h�sj�
j ; j A N�. After dividing out this ideal the remaining variables h

�si�
i with exponent si Z 1

are the free coordinates of additional projective lines. Together with the �P1
k�a coming from
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Proposition 1.9 they make the ®bers of the projection being isomorphic to �P1
k�b. Thus the

irreducible component is isomorphic to

V�p; hi; i A M� �k �P1
k�b:

The remaining assertions also follow from Proposition 1.9.

Now consider the induction step eZ 2. Again we reduce to the case J � j. The rela-
tions are then equivalent to

h�sm�
m � hm�1 � . . . � hm ÿ peÿ1 � h�s0�

0 � . . . � h�smÿ1�
mÿ1 � h

�s0�
0 � . . . � h�smÿ1�

mÿ1 ÿ p � 0:

Thus the exponent e was decreased by 1 and the situation is reduced to the induction
hypotheses. This settles the proof of the lemma and, moreover, its adaption to the proof
of Proposition 1.10. r

Remark 1.11.1. One can give a global desingularization procedure of the product
X �R V and of the base change X �R

~R by successively blowing up all irreducible compo-
nents of the special ®ber which are not yet Cartier divisors; cf. [Ha]. Propositions 1.9 & 1.10
and Lemma 1.11 are the corresponding local descriptions.

2. Extending rigid-analytic line bundles to formal models

The main purpose of this section is to study the extension of line bundles on Xrig to a
formal model X. If X is regular, any line bundle LK on Xrig extends to a formal line bundle
L on X. This assertion remains true for the base change X �R V for any smooth formal
scheme V over R because regularity is preserved under smooth base change, but already for
a rami®ed base ring extension R! ~R one will loose the regularity in general. For later use
let us formulate the well-known extension property in the regular case.

Lemma 2.1. Let X be a regular formal scheme and let V be a smooth formal scheme

over R. Then any line bundle LK on �X �R V�rig extends to a line bundle L on X �R V .

Proof. Due to [L1], Lemma 2.2 there exists a coherent formal OX -module F extend-
ing LK . Then the double dual L :�HomX

ÿ
HomX �F;OX �;OX

�
is a line bundle on X since

X is regular and L extends LK . r

The main topic in the following is to discuss the obstructions to such an extension
problem. We will start with a strict semi-stable formal scheme X over R which is regular by
de®nition. For technical reasons, we have to perform base ring extension ~X :� X �R

~R
where R! ~R can be rami®ed. Moreover we have to study the case where we perform a fur-
ther base change by another semi-stable formal scheme ~V over ~R. This will be the situation
we are mainly concerned with when proving the representability of the Picard functor.

2.1. Line bundles on the reduction. Let us start with the algebraic situation X0 where
X0 is the reduction of the strict semi-stable formal scheme X we started with. We will
explain the behavior of the Picard group under the base change by the 1-dimensional vector
group Ga;k resp. by the multiplicative group Gm;k. The result is known and mainly con-
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tained in the paper [BM] of Bass and Murthy. This result will later be used to show that the
Picard variety we construct has semi-abelian reduction.

Proposition 2.2. Let X be a strict semi-stable formal R-scheme and consider its special

®ber X0 :� X nR k.

(1) In the case of the additive vector group Ga;k, the morphisms

Pic�X0� !@ Pic�X0 �Ga;k�; L 7! p�L; s�E M E

are bijective and inverse to each other where s: X0 ! X0 �Ga;k is the zero section.

(2) Locally, in the case of the multiplicative group Gm;k, there exists for each closed

point x A X0 a neighborhood U0 of x in X0 such that the morphisms

Pic�U0� !@ Pic�U0 �Gm;k�; L 7! p�L; s�E M E

are isomorphisms where s: X0 ! X0 �Gm;k is the unit section.

(3) Globally, in the case of the multiplicative group Gm;k, the morphism

Pic�X0�lH1�X0;Z� !@ Pic�X0 �Gm;k�; �L; n� 7! p�Ln �xn�;

is an isomorphism where x is a coordinate on Gm;k.

(4) The assertions (1)±(3) remain valid if one replaces X0 by ~X0 :� X0 �k
~k for any

®nite ®eld extension k ! ~k.

(5) If the irreducible components of each intersection X i
0 XX

j
0 are geometrically irre-

ducible, the canonical map H1�X0;Z� !@ H1�X0 nk
~k;Z� is bijective for any ®eld extension

k ! ~k.

Proof. Since these statements are buried in a mass of a general situation in [BM], we
will give a short proof. First of all we mention that the statements are well-known in the
case where X0 is normal. So we are only concerned with the singular case which will be
reduced to the normal case. The map s� is a section of the map p�, so it su½ces to proof the
surjectivity of p�. Since the group of units A�x�� of a polynomial ring in one variable x over
a reduced ring A is equal to the group of units A� of A, the problem is local on X0 in the
®rst case. So we may assume that X0 � Spec�A� for an a½ne k-algebra A. Now consider
both cases (1) and (2).

In the case where A � k�x1; . . . ; xr�=�x1 � . . . � xr�, we have the following exact sequence

0! A! A=�x1� � � � � � A=�xr� !
Q
i<j

A=�xi; xj�;

f N � f ; . . . ; f �; � f1; . . . ; fr�N �. . . ; f i ÿ fj; . . .�:

In the general case, any point x A X0 has an open neighborhood which is smooth over such
a ring so that we have such an exact sequence in the general case as well; cf. Proposition
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1.3. The situation of line bundles can be translated into invertible modules. So we have to
start with an invertible module E over A�x� resp. over A�x; xÿ1� where x is a variable and
have to show the existence of an isomorphism s�E nA A�x� !@ E resp. s�E nA A�x; xÿ1� !@ E

over a suitable neighborhood of a given point x. Since E is ¯at over A, we have the exact
sequence

0! E ! E=�x1� � � � � � E=�xr� !
Q
i<j

E=�xi; xj�;

f N � f ; . . . ; f �; � f1; . . . ; fr�N �. . . ; f i ÿ f j; . . .�:

Thus E is the kernel of the last map. Now consider L :� s�E. Then we obtain the exact
sequence

0! L! L=�x1� � � � � � L=�xr� !
Q
i<j

L=�xi; xj�

and hence the exact sequence

0! LnA B! L=�x1�nA B� � � � � L=�xr�nA B! Q
i<j

L=�xi; xj�nA B

where B :� A�x� in case (1) resp. B :� A�x; xÿ1� in case (2). Then L�A B is the kernel of the
last map. Thus we have to show that there are isomorphisms from the exact sequence with
kernel LnA B to the exact sequence with kernel E. Since Ai :� A=�xi� is smooth over k and
hence normal, there exist isomorphisms

ji: LnA BnA Ai !@ E nA Ai

which are compatible with the section s�. For the last term of the exact sequence we obtain
two isomorphisms

ji nA Aj; jj nA Ai: LnA BnA Ai nA Aj !@ E nA Ai nA Aj:

Using the canonical isomorphism Aij :� Ai nA Aj GA=�xi; xj� as an identity, we can com-
pare the restrictions of the isomorphisms ji on the intersections.

(1) In the case of the vector group Ga;k, the isomorphism ji is uniquely determined
and, hence, ji nA Aj � jj nA Ai since they coincide after pull-back by the section s�. So the
diagram is commutative, and we obtain the desired isomorphism s�E nA A�x� !@ E.

(2) In the case of the multiplicative group Gm;k, the isomorphism ji is uniquely

determined only up to a power xn�i� of the variable because the group of units of the ring of
Laurent polynomials is A�x; xÿ1�� � A� � xZ for a reduced connected ring A. So we obtain
an equation

ji nAi
Aij � xn�ij� � jj nAj

Aij

where n�ij� A Z
ÿ
V�xi; xj�

�
. If we choose the neighborhood of the given point x A X0 so

small that all the subschemes de®ned by �xi; xj� are connected, the elements n�ij� A Z are
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true integers. These numbers satisfy a cocycle condition over the one-point space fxg.
Therefore they can be written as n�ij� � n�i� ÿ n� j�. Thus, after multiplying the isomor-
phisms ji by xÿn�i� we obtain a coherent system of morphisms and, hence, we obtain an
isomorphism between the kernels LnA B and E.

(3) Due to (2) there exists an open covering U :� fU 1
0 ; . . . ;U N

0 g of X0 such that for
each line bundle E on X0 �Gm;k there exist isomorphisms

ji: p�s�EjU i �Gm;k !@ EjU i �Gm;k

which are compatible with the unit section s. Using the canonical identi®cations on the
overlaps we can compare these isomorphisms. They can di¨er only by a power of the
coordinate, so we obtain

jij�U i XU j� �Gm;k � xn�ij� � jjj�U i XU j� �Gm;k

for a unique n�ij� A Z�U i XU j�. The numbers
ÿ
n�ij�� give rise to a cocycle in H1�U;Z�

and, hence to a line bundle M :� �xn�ij�� on X0 �Gm;k. Then we can write E �MnE
where E satis®es EG p�s�E. Thus we see that the map is surjective. Since we have the
section s, for the injectivity it su½ces to show that a line bundle �xn� for a cocycle
n A H1�X0;Z� is trivial if and only if n � 0. This follows from the unique decomposition of
the group of units A�x; xÿ1�� � A� � xZ in a ring of Laurent polynomials over a connected
reduced ring A.

(4) The exact sequences we used remain exact and also the base change of smooth
algebras are still smooth over ~k and, hence normal; the fact we really need.

(5) The open covering U :� fU 1
0 ; . . . ;U N

0 g of X0 used in the proof of (3) had only to
satisfy that U is a½ne and that all intersections U X �X i

0 XX
j

0 � are connected for all U A U.
If the irreducible components of the intersections X i

0 XX
j

0 are geometrically irreducible,
this condition remains valid after base change. So we can use the Cech cohomology group
H1�U;Z� to describe the isomorphism in (3) for X0 as well as for X0 nk

~k which are equal.
Thus we see that H1�X0;Z� is not altered by base change. r

2.2. Local models of line bundles. Coming back to our main task we want to show
here the existence of local extensions of rigid line bundles to semi-stable models. Let us
start with a well-known result on existence of global sections on ®bers. We need only the
following simple case which can easily be proved by looking at a suitable exact cohomol-
ogy sequence.

Lemma 2.3. Let S be a Noetherian scheme and let p: Y ! S be the blowing-up of an

ideal I which is locally generated by two elements. Assume p�OY � OS. Let s be a closed
point of the center Z of p and let Ys :� Y �S k�s� be the ®ber above s. Let F be a coherent

sheaf on Y with H1�Ys;FnOY
OYs
� � �0�. Then there exists an open neighborhood S 0 of s in

S such that H1�Y 0;FjY 0 � � �0� on Y 0 :� Y �S S 0 and the canonical map

H0�Y 0;FjY 0 � ! H0�Ys;FnOY
OYs
�

is surjective.
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Lemma 2.4. Let S be an admissible formal R-scheme and let p: Y ! S be the

formal blowing-up of an open ideal I which is locally generated by two elements. Assume
that p�OY � OS. Further assume that the center Z of p is connected and that the pull-back

J :� I � OY induces the line bundle OP1�1� on the ®bers above all points of Z. If L is a line

bundle on Y, there exists an integer n A Z such that p��LnOY
Jnn� is a line bundle on S and

the canonical map

p�p��LnOY
Jnn� !@ LnOY

Jnn

is an isomorphism.

Proof. Due to the GAGA-principle [EGA], III, Corollaire 5.1.3, we may assume
that we deal with a projective situation p: Y ! S. For any point s A Z HV�p� the ®ber
Ys ,! P1

k�s� is a closed subset since the ideal I is locally generated by two elements. Since

p�OY � OS, the ®bers of p are connected due to Zariski's main theorem so that p is an iso-
morphism outside the center Z. For s A Z, we have dim Ys � 1 due to the de®nition of the
center and, hence, Ys � P1

k�s�. Thus we have Ls :�LnOY
OYs

GOP1
k�s�

ÿ
n�s�� for a uniquely

determined n�s� A Z. For a ®xed point s A Z set n � n�s� and replace L by LnOY
Jnÿn.

So we may assume n�s� � 0 so that Ls GOYs
and H1�Ys;Ls� � �0�. Now let fs be a global

generator of H0�Ys;Ls�. Due to Lemma 2.3 there exists an open neighborhood S 0 of s in S

and a section f A H0�Y �S S 0;L� inducing fs. For any y A Ys the stalk Ly is generated by
f due to the lemma of Nakayama. Thus the closed subset A of Y where f does not generate
L is disjoint from Ys. Since Y ! S is proper, there exists an open neighborhood U of s

such that its inverse image in Y is disjoint from A. Thus we see that the canonical map

OY jY �S U !@ LjY �S U ; 1 7! f

is an isomorphism. In particular we see that the number n�s� is locally constant on S. Due
to the connectedness of Z the function n�s� � n is constant. Since p�OY � OS it is clear that
p��LnOY

Jnn� is a line bundle and that the canonical map

p�p��LnOY
Jnn� !@ LnOY

Jnn

is an isomorphism. r

Proposition 2.5. Let XK be a smooth rigid analytic variety over K which admits

a strict semi-stable formal model X over Spf�R�. Furthermore let R! ~R be a ®nite exten-
sion of discrete valuation rings and set ~X :� X nR

~R. Then there exists an open covering

fU 1; . . . ;U ng of X satisfying the following conditions:

(1) Let VK be a smooth rigid analytic variety over K which admits a strict semi-

stable formal model V ! Spf�R� over Spf�R�. Assume that V is small in the sense of 1.4.
Consider a rigid analytic line bundle LK on �X �R V�rig. Then there exist line bundles L i on

�U i �R V� extending the restriction LK j�U i �R V�rig for i � 1; . . . ; n.

(2) Consider a smooth formal scheme ~V ! Spf� ~R� over ~R which is geometrically con-

nected and a rigid analytic line bundle ~LK on � ~X � ~R
~V�rig. Then there exist line bundles ~L i

on �U i �R
~V� extending the restriction ~LK j�U i �R

~V�rig for i � 1; . . . ; n.
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Proof. For any point x A X0 we have to ®nd an open neighborhood U of x satisfying
the assertion. Due to Proposition 1.3 there exists an open neighborhood U of x which is
formally smooth over

Spf
ÿ
Rhx1; . . . ; xsi=�x1 � . . . � xt ÿ p��:

In case (1) the product Y :� U �R V is formally smooth over

S :� Spf
ÿ
Rhx1; . . . ; xs; z1; . . . ; zti=�x1 � . . . � xs ÿ p; z1 � . . . � zt ÿ p��:

In case (2) the base change Y :� U �R
~V is formally smooth over

S :� Spf
ÿ

~Rhx1; . . . ; xsi=�x1 � . . . � xs ÿ ~pe��
where e is the rami®cation index of ~R over R. Now we choose a desingularization S 0 of S as
constructed in Proposition 1.9 resp. Proposition 1.10. After base change with Y we obtain a
Cartesian diagram

Y  ��� Y 0 � S 0 �S Y???y ???y
S  ��� S 0:

Since Y 0 is formally smooth over the regular formal scheme S 0, the product Y 0 is regular.
Due to Lemma 2.1 the line bundle LK on Y 0rig � Yrig extends to a line bundle L 0 on Y 0. In
the following we want to show that this line bundle descends to a line bundle L on Y. In
Proposition 1.9 resp. Proposition 1.10, the desingularization S 0 ! S is constructed stepwise
p: S n�1 ! S n by blowing-up open ideals In HOS n which are locally generated by two ele-
ments. Now consider the diagram obtained by the base change Y ! S

Y n  ���q
Y n�1 � S n�1 �S Y???y ???y

S n  ���p
S n�1:

Since Y is ¯at over S, the map q: Y n�1 ! Y n is the blowing up of Y n in J :� In � OY n .
Proceeding by induction, we have an extension Ln�1 on Y n�1 of the line bundle LK . Then
we have to construct an extension Ln on Y n. This will be done by looking at the direct
image of a twist of Ln�1 by Jn�n�. Let W n be the center of the blowing-up p: S n�1 ! S n.
Due to Proposition 1.9 resp. Proposition 1.10, S n is normal and, hence, p�OS n�1 � OS n . Thus
we get

W n � fs A S n; pÿ1�s� � P1
k�s�g;

p: S n�1 ÿ pÿ1�W n� !@ S n ÿW n:

Since Y ! S is ¯at, the ®bers of the blowing-up are compatible with this base change. Set
Z n :�W n �S Y , so Z n is the center of the blowing-up q. In particular, we have
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Z n � fy A Y n; qÿ1�y� � P1
k�y�g;

q: Y n�1 ÿ qÿ1�Z n� !@ Y n ÿ Z n:

Due to Proposition 1.9 resp. Proposition 1.10 the set W n and, hence, Z n is the union of
subschemes of the following type in case (1)

V�p; xi; i A M� �k V�p; zj; j A N� �k �P1
k�a � X M

0 �k V N
0 �k �P1

k�a;

resp. in case (2)

V�~p; xi; i A M� �k �P1
k�a � X M

0 �k V0 �k �P1
k�a:

Each stratum X M
0 decomposes into irreducible components. Since they are smooth over

k there exists a unique component containing x. So we can replace the open subscheme
U by an open neighborhood of x such that it meets only the irreducible component of
X M

0 which contains x. The subschemes V N
0 resp. V0 are geometrically irreducible due to

the assumption, therefore the subscheme Z n decomposes into the irreducible components
X M

0 �k V N
0 �k �P1

k�a resp. into X M
0 �k V0 �k �P1

k�a which meet in a common point above
fxg; cf. Proposition 1.9 resp. Proposition 1.10. This means that Z n is connected. The pull-
back J � OY n�1 induces the line bundle OP1�1� on the ®bers of all points of the center Z n of q
as this is true for the blowing-up p: S n�1 ! S n. Due to Proposition 1.9 resp. Proposition
1.10, S n is normal so that p�OS n�1 � OS n and, hence, q�OY n�1 � OY n due to the ¯atness of Y

over S. Due to Lemma 2.4 the line bundle Ln�1 on Y n�1 can be twisted by a suitable
power of J so that the modi®ed line bundle Ln�1 descends to a line bundle Ln on Y n.
Since Jrig GOYrig

the modi®cation of Ln�1 does not change LK . So we end up with a line
bundle Ln on Y n which extends LK on Y n. By induction we ®nally obtain a line bundle L
on Y which extends LK . r

2.3. Global models of line bundles. In this section we study the obstructions of glu-
ing the local extensions of rigid line bundles obtained in Proposition 2.5. The following
proposition is a generalization of a result in [Ge].

Proposition 2.6. Assume that the residue ®eld k of R is separably closed. Let XK be
a smooth rigid analytic variety over K which admits a strict semi-stable formal model X

over Spf�R�. Let R! ~R be a ®nite extension of discrete valuation rings. Let ~V ! Spf� ~R�
be a strict semi-stable formal scheme. Assume that ~V is small in the sense of 1.4; so let
~V be smooth over ~Rhz1; . . . ; zt�1i=�z1 � . . . � zt�1 ÿ ~p�. Let ~v A ~V� ~R� be a point above

fz1 � � � � � zt � 1g: Consider a rigid analytic line bundle ~LK on �X �R
~V�rig which is triv-

ialized along ~v.

Then ~LK is a tensor product ~LK G ~MK n ~Nrig of two line bundles where

(1) ~MK G �zn1

1 n � � � n znt

t � is the line bundle on �X �R
~V�rig associated to suitable

elements n1; . . . ; nt A H1�X0;Z�. Such line bundles are called multiplicative.

(2) ~N is a formal line bundle on X �R
~V .
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The decomposition ~LK G ~MK n ~Nrig is unique. In particular, the Picard group of line

bundles which are trivial along ~v decomposes into

Pic0
ÿ�X �R

~V�rig

� � H1�X0;Z�t lPic0�X �R
~V�:

Remark 2.6.1. By applying the theory of ideals of coe½cients as used in [L1],
Proposition 2.9, one can show the following assertion in a more general situation.

If V � Spf�A� is small in the sense of 1.4 and su½ciently small in the topological
sense, the ring A has a topological basis over the valuation ring R; cf. [FRG], II, 2.9.
Namely, the ring Rhz1; . . . ; zti=�z1 � . . . � zt ÿ p� has such a basis over the valuation ring R

and A has one over the latter ring. Lowering the assumptions on X, assume only that X is
normal. Then for a given line bundle LK on �X �R V�rig there exists an admissible formal
blowing-up X 0 ! X such that LK extends to a formal line bundle L 0 on �U 0 �R V� where
U 0 is a Zariski open covering of X 0. Then one gets a similar global result for the given LK

as proposed in Proposition 2.6. However one thereby has to change the formal model X to
X 0. Whereas we are not allowed to do that here; cf. Proposition 3.3.

Proof of 2.6. The proof will be done in several steps:

(1) Let us ®rst assume R � ~R and let us ®rst prove the assertion in this case. In
the following we drop the tilde ~. Due to Proposition 2.5 there exists an open covering
fU 1; . . . ;U ng of X and a line bundle L 0 on the disjoint union

Y 0 :� X 0 �R V :�
ǹ

i�1

U i �R V

which extends the rigid analytic line bundle L 0
K :� p�LK given on

Y 0K :� Y 0rig � X 0rig �K Vrig �
ǹ

i�1

U i
rig �K Vrig

where p: Y 0 ! X �R V is the projection. Now consider the descent situations

Y 00 :� Y 0 �Y Y 0 x
p1

p2

Y 0 !p Y :� X �R V ;

Y 00rig � Y 0rig �Yrig
Y 0rig x

p1

p2

Y 0rig !
p

Yrig � Xrig �K Vrig

where pi is the projection onto the i-th factor and p is the canonical projection. Since LK is
trivialized along vK , we can choose the extension L 0 so that it is trivialized along v. The
line bundle L 0

rig is isomorphic to p�LK . So it gives rise to a descent datum on Y 00K :� Y 00rig

jK : �p�1L 0�rig !
@ �p�2L 0�rig:

Now we want to extend jK to a descent datum on the formal line bundle L 0. Therefore
consider the formal line bundle
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H :�HomY 00 �p�1L 0; p�2L
0�

on Y 00 as well as its associated rigid analytic line bundle on Y 00K

HK :�HnR K �HomY 00
K

ÿ�p�1L 0�rig; �p�2L 0�rig
�
:

jK is a global section of IsomY 00
K

ÿ�p�1L 0�rig; �p�2L 0�rig
�
HG�Y 00K ;HK�. Since L 0 is trivialized

along v, so is H, say by an isomorphism y: �idX 00 � v��H!@ OX 00 . Let U be a connected
component of X 00 :� X 0 �X X 0. So U is a union of open subschemes U n of X which satisfy
the assumptions of Corollary 1.8; cf. Remark 1.6.1. Due to Corollary 1.8 we can write

jK jU n
K �K VK � anc

nzn1

1 � . . . � znt

t

where the nt A Z�U n� are uniquely determined, the cn A IsomU n�RV �p�1L 0; p�2L
0� and the

an A OX 00
K
�U n

K��. Next we use the trivialization y�v�cn� A OX 00 �U n�� along v. After replac-

ing cn by y�v�cn�ÿ1cn and an by any�v�cn� A OX 00
K
�U n

K��, we have y�v�cn� � 1 and, hence,
an � v�an is uniquely determined. This shows that a � an does not depend on n and, hence,
that a A OX 00

K
�X 00K�� is a cocycle. Since L is trivialized along vK , the cocycle a is a boundary.

Thus we can transform the isomorphism between L 0
rig and p�LK so that the descent datum

of L 0
rig obtains the form

j 0K jU n
K �K VK :� aÿ1 � jK jU n

K �K VK � cnzn1

1 � . . . � znt

t :

The number nt is the order of jK on the irreducible component V t
0 of V0. So it is constant

on U. Thus they de®ne an element nt A H1�X0;Z�. Then we de®ne the multiplicative line
bundle MK :� �zn1

1 n � � � n znt

t � on XK �K VK via the cocycle

�zn1

1 n � � � n znt

t � A Z1
ÿ�X 00 � V�rig;O��X 00�V�rig

�
:

In particular p�MK is trivial. Now de®ne

NK :�LK nM4
K :

Then p�LK G p�NK on Y 0K and the descent datum on p�NK is given by

j 0K :� jK n zÿn1

1 n � � � n zÿnt

t � �cn�:

Therefore j 0K extends to a formal descent datum

j 0 :� �cn� : p�1L
0 !@ p�2L

0:

j 0 satis®es the cocycle condition since j 0K does. So �L 0; j 0� descends to a formal line bundle
N on X �R V . This yields the decomposition LK GMK nNrig we are looking for. The
decomposition is unique since the decomposition of the isomorphism was unique. This
settles the ®rst step.

Now we want to discuss the problem after base change by a ring extension R! ~R. So
consider the formal scheme ~X :� X �R

~R.
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(2) Let us ®rst consider the case where ~V ! Spf� ~R� is formally smooth over ~R with
geometrically irreducible special ®ber and let ~v A ~V� ~R� be a point. Then any line bundle ~LK

on ~X � ~V which is trivial on ~XK � ~v extends to a line bundle ~L on ~X � ~R
~V . Namely, we

can proceed similarly as in step (1). Due to Proposition 2.5 we have the local extension on
U i �R

~V . Then we can do the descent as explained in (1). All the z1; . . . ; zt disappear so
that no multiplicative line bundle is necessary to achieve the situation where we can apply
the formal descent.

Now we start with the general situation.

(3) Let U :�
ǹ

i�1

U i be the open covering of X constructed in Proposition 2.5. Assume

that all the U i are so small that H 1�U i
0;Z� � 0 for i � 1; . . . ; n and that each U i admits a

semi-stable desingularization ~U 0 ! ~U :� U nR
~R as constructed in Proposition 1.10. Due

to (1) there exists a line bundle ~M 0
K on � ~U 0 � ~R

~V�rig and a line bundle ~N� on ~U 0 � ~R
~V such

that

~LK j� ~U 0 � ~R
~V�rig G ~M 0

K n ~N�
rig

where ~M 0
K is given by a cocycle �zn1

1 n � � � n znt

t � for elements n1; . . . ; nt A H1� ~U 00;Z�. Due
to Lemma 2.7 below, the elements nt are de®ned over U0. Since H 1�U0;Z� � 0 they are

trivial. Thus we see that ~LK j� ~U 0 � ~R
~V�rig extends to a formal line bundle ~N� on ~U 0 � ~V .

Due to the general procedure in the proof of Proposition 2.5, in particular of its part in the
case (2), the line bundle ~N� descends to a line bundle ~N 0 on ~U � ~R

~V , after suitable mod-
i®cations which take place in the special ®ber only. Now we proceed as in step (1) by
looking at the descent datum. Namely, one shows that there is a multiplicative line bundle

~MK of the desired type such that ~LK n ~Mÿ1
K extends to a line bundle ~N on ~X � ~R

~V .

Thus we obtained the desired result. r

Lemma 2.7. Consider the situation of Proposition 2.6. Let R! ~R be a ®nite exten-

sion of discrete valuation rings. Let ~X :� X �R
~R and let ~X 0 ! ~X be the desingularization of

1.10.

(1) Let n A H1�Xrig;Z� be a cohomology class. Then the line bundle �zn� on Xrig �Gm;K

is trivial if and only if n � 0.

(2) H1�X0;Z� !@ H1�Xrig;Z� is bijective.

(3) H1�X0;Z� !@ H1� ~X0;Z� is bijective.

(4) H1�X0;Z� !@ H1� ~X 00;Z� is bijective.

Proof. (1) follows from the uniqueness of the decomposition of the group of inver-
tible rigid analytic functions on XK �K Gm;K ; cf. [BGR], Lemma 9.7.1/1.

(2) The map is bijective due to (1) and step (1) in the proof of Proposition 2.6.

(3) follows because k is separably closed.

Hartl and LuÈ tkebohmert, On rigid-analytic Picard varieties122



(4) Due to step (1) in the proof of Proposition 2.6 the canonical map

H1� ~X 00;Z� !
@

H1� ~X 0rig;Z�

is bijective. Since ~X 0rig !
@ ~Xrig is an isomorphism, the map H1� ~Xrig;Z� !@ H1� ~X 0rig;Z� is

bijective. For a cohomology class ~nK A H1� ~Xrig;Z� consider the associated line bundle
~MK � �z~nK � on ~XK � ~K Gm; ~K . Due to step (2) in the proof of Proposition 2.6 this line bundle

has a model ~M on ~X � ~R Gm; ~R since Gm; ~R :� Spf ~Rhz; zÿ1i is formally smooth over Spf� ~R�.
Due to Proposition 2.2/3, there exists an element ~n A H1� ~X0;Z� such that the reduction ~M0

on ~X0 �Gm;k is associated to the cocycle �z~n�. Then ~M is isomorphic to the line bundle on
~X �Gm;R associated to the cocycle �z~n�. Namely, by the Nakayama Lemma one shows

that ~M trivializes on an open covering f ~U i �R Gm;Rg where ~U i are open subschemes of ~X .
Then ~nK must be equivalent to ~n. Due to (3) we can replace ~n by some n A H1�X0;Z�. r

3. Proof of the main theorem

In this section we want to prove our main theorem announced in the introduction.
Let us ®x the notations for this section.

Let XK be a proper smooth connected rigid space over K with a rational point xK .
Let X be a formal model of XK over the formal spectrum Spf�R� of the complete discrete
valuation ring R of K. The given point xK extends to an R-point x of X in a unique way.
Assume that X is strict semi-stable; cf. De®nition 1.1. For technical reasons which will be
explained later, we consider also ~X :� X �R

~R after base change by a ®nite extension
R! ~R, so we may loose the regularity. We remind the reader that we do not make use of
the regularity of the given X; we can prove the main result also for schemes like ~X which
are obtained by base change from a semi-stable one. For a ®xed ®eld K, by abuse of nota-
tions it can already be an extension of the ®eld we started with, we consider the following
functor

PicXK=K : �smooth rigid K-spaces� ! �sets�; VK 7! PicXK=K�VK�

where

PicXK=K�VK� � Isoclass�L; l�:
L line bundle on XK �K VK ;

l: OVK
!@ �x� idVK

��L isomorphism

( )
:

This is a contravariant functor. The main purpose of this section is to show the represent-
ability of this functor. For technical reasons we are ®rst interested only in the represent-
ability of the neutral component of the representing space. Therefore we introduce the fol-
lowing categories:

CK the category of pointed rigid spaces �VK ; vK� where VK is smooth and connected
over K and where vK A VK�K� is a K-rational point. The morphisms in this cate-
gory are the rigid morphisms respecting the points.

CK the full subcategory of CK consisting of such VK which admit smooth formal
models V over Spf�R�.
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ĈK the full subcategory of CK consisting of such VK which satisfy

H1�VK n̂K K;Z� � 0

where K is the topological algebraic closure of K.

If K ! ~K is a rami®ed resp. an inseparable ®nite ®eld extension, then CK nK
~K resp.

CK nK
~K can be strictly smaller than C ~K resp. C ~K .

Instead of considering the general Picard functor, we look at the slightly di¨erent
functor

Pic0
XK=K : CK ! �sets�; �VK ; vK� 7! Pic0

XK=K�VK ; vK�

of rigidi®ed line bundles which are trivialized at the given point where

Pic0
XK=K�VK ; vK� � Isoclass�LK ; l�:

LK line bundle on XK �K VK ;

l: OVK
!@ �x� idVK

��LK isomorphism;

�idXK
� vK��LK GOXK

trivial

8>><>>:
9>>=>>;:

These are somehow the deformations of the trivial line bundle or algebraic correspondences
in old terminology. Later on it turns out that the representing space of this functor is
the 1-component of the usual Picard functor. We can restrict the Picard functor Pic0

XK=K

associated to �XK ; xK� to these categories. So we obtain the following functors:

Pic0
XK=K � Pic0

XK=K jCK ;

Pic
0

XK=K � Pic0
XK=K jCK ;cPic0

XK=K � Pic0
XK=K jĈK ;

and we will study their representability. Moreover we will see that the representing spaces
are compatible with ®nite base ®eld extensions K ! ~K ; i.e. solve the similar representation
problem also after such a base change.

The procedure is the following: First we will deduce from the fundamental theorem of
Artin the representability of Pic

0

XK=K by a space PK A CK . We will analyse the structure of

PK . It is an extension of a formal abelian scheme over Spf�R� by a formal torus T . We
interpret T via the multiplicative line bundles which are induced by H1�XK ;Z�. This leads
to the representability of cPic0

XK=K by a space P̂K A ĈK which is the pushforward of PK

via the open immersion TK ,! TK of the formal torus into the a½ne torus. Finally Pic0
XK=K

will be represented by a quotient P̂K=M of P̂K by a lattice M of P̂K . As usual the Yoneda
lemma gives rise to universal line bundles

P on XK � PK with rigidificator r;

P on XK � PK with rigidificator r;

P̂ on XK � P̂K with rigidificator r̂:

These line bundles satisfy the universal property and are called PoincareÂ bundles.
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3.1. The representability of Pic
0

XK=K . Set Rn :� R=�pn�1� and Sn :� Spec�Rn�, hence
Xn :� X �S Sn is a proper ¯at Sn-scheme with geometrically reduced special ®ber. The
point x A X�S� induces a point xn A Xn�Sn� for all n A N. So we can introduce the functor
Pic0

Xn=Sn
on the category of Sn-schemes locally of ®nite type. Due to the classical result of

M. Artin [Ar 1], Theorem 7.3, this functor is representable by an algebraic space

P 0n :� Pic0
Xn=Sn

locally of ®nite type over Sn. This is a group scheme over Sn since an algebraic group space
over an Artinian base is a scheme; cf. [Ar 2], Theorem 3.5. It is quasi-compact, since it is a
connected group scheme; cf. [SGA 3], I, ExposeÂ VIA, Proposition 2.4. So it is of ®nite type.
Furthermore we have the PoincareÂ bundle P 0n on Xn �Sn

P 0n. We set

P 0 � lim�! P 0n:

The limit is de®ned via the projections P 0n�1 ! P 0n; notice that P 0n�1 �Sn�1
Sn � P 0n as

Xn�1 �Sn�1
Sn � Xn. The formal scheme P 0=S is of topological ®nite type over S.

Lemma 3.1. (1) There is no Ga; ~k in P 00 for any ®nite ®eld extension ~k of k. In partic-

ular the maximal reduced subscheme of P 00 is smooth.

(2) If l is prime to char�k�, any l-torsion point of P 00 lifts to an l-torsion point of P 0

which is de®ned over ~R where R! ~R is unrami®ed.

(3) The set of torsion points of order prime to char�k� is a family of geometrically

reduced points in P 0rig which is dense in the formal topology of P 0.

Proof. (1) Any map Ga; ~k ! P 00 induces a line bundle L on X0 �k Ga; ~k via pulling
back the PoincareÂ bundle. This bundle is trivial over X0 � 0 where 0 is the zero section of
Ga; ~k. Due to Proposition 2.2/4 the bundle L is trivial. So the map Ga; ~k ! P 00 is constant 1.
Then it follows from [FGA], ExposeÂ 236, Proposition 3.1, that the maximal reduced sub-
scheme of P 00 is smooth.

(2) Every l-torsion point has values in a ®nite separable ®eld extension ~k of k. We
claim that it lifts to an ~R-valued point of P 0 where ~R is the ®nite unrami®ed extension
of R with residue ®eld ~k. Indeed, every such point corresponds to a unique element of
H1

�et�X0 �k
~k; ml� and therefore to a unique isomorphism class of eÂtale ml-Galois coverings

Y0 ! X0 �k
~k by [FK], Proposition I.2.11, where ml denotes the group of l-roots of unity.

The covering can compatibly be extended to a ml-Galois covering Yn ! Xn �Rn
~Rn by

[SGA 1], ExposeÂ I, Corollaire 8.4. This again gives a torsion point of order l in P 0n. In the
limit we obtain an ~R-valued point of P 0.

(3) P 00 is of ®nite type over k. Due to (1) the set of torsion points of order prime to
char�k� is Zariski-dense in the maximal reduced subscheme and thus also in P 00. Then the
assertion follows from (2). r

In general P 0 does not need to be ¯at over S. This is related to the fact that there may
exist line bundles on Xn which do not lift to line bundles on Xn�1. Furthermore we are not
interested in nilpotent structures. Thus, it is natural for our purpose to look at the closed
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subscheme

P 0 :� P 0=�N : p� ,! P 0;

de®ned by dividing out the nilpotent structure and the p-torsion. Thereby we have used the
notation

N�U� :� f f A OP 0 �U�; f nilpotentg;
�N : p��U� :� f f A OP 0 �U�; bn A N such that pn � f A N�U�g

for any open subset U of P 0. Then P 0 is reduced and ¯at over R, since it has no p-torsion.

Since any pointed map from a reduced connected ¯at formal R-scheme to P 0 factors
through P 0, the group structure of P 0 induces a group structure on P 0. The generic ®ber of
the formal scheme P 0 is a rigid analytic group variety P 0rig. In general a reduced group
variety is not geometrically reduced. But if the characteristic of K is zero, this group variety
is smooth as the usual argument of Cartier shows. For the general case there is the fol-
lowing example which remains reduced after any ®nite ®eld extension but not after the
extension by the topological algebraic closure.

Example 3.1.1. Let k :� Fp�tn; n A N� and R :� kwux and K :� k
ÿ�u��. This means

the variables tn have absolute value 1 and u is a variable having absolute value less than 1.
Set

AK :� KhS;Ti= S p ÿ Py
n�1

untnT pn

� �
then Sp�AK� is an analytic group subvariety of G

2

a;K . For the topological algebraic closure
K of K the extension AK n̂K K is not reduced since the p-th root of the sum exists in
AK n̂K K. On the other hand the p-th root does not exist in AK nK K 0 for any ®nite ®eld
extension K 0 of K. So AK nK K 0 remains reduced.

In our case however P 0rig is geometrically reduced due to the semi-stability of X.

Lemma 3.2. (1) The generic ®ber P 0rig is smooth.

(2) The canonical map P 00 ! P 00 is a surjective closed immersion.

Proof. (1) On the generic ®ber the set of torsion points of order prime to char�k�
forms a subset EK in the 1-component PK of the generic ®ber P 0rig which is dense in the
formal topology due to 3.1. This implies that for any formal open subset U LP 0 the map

OP 0 �Urig XPK�red ,!
Q0

x AEKXUK

K�x�; f 7! ÿ
f �x��

x AEKXUK

is an isometric embedding. Thereby
Q0

denotes the restricted product consisting of those
elements of the direct product which are uniformly bounded. It is equipped with the norm
kÿ f �x��k :� supfj f �x�j : x A EK XUKg. We have to extend this to the topological alge-
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braic closure K of K. Since K is a complete discretely valued ®eld, it is stable in the sense of
[BGR], De®nition 3.6.1/1. This implies that the map

OP 0 �Urig XPK�red nK Kalg ,! Q0
x AEKXUK

ÿ
K�x� n̂K K

�
also is an isometric embedding. Passing to the completion therefore the same is true for the
map

OP 0 �Urig XPK�red n̂K K ,! Q0
x AEKXUK

ÿ
K�x� n̂K K

�
:

Since K�x� is ®nite separable over K the algebra K�x� n̂K K � K�x�nK K is reduced. This
shows that P 0rig is geometrically reduced. Being a rigid group variety it is smooth; cf. [Ki],
De®nition 4.4.

(2) Since the torsion points of order prime to char�k� in P 00 lift to P 0 and factor
through P 0, the image of P 00 is dense in P 00. Then, as a closed immersion the map must be
surjective. r

Proposition 3.3. The pointed formal R-scheme �P 0; 1� represents the functor Pic0
X=R of

trivialized and rigidi®ed line bundles on the category of pointed formal R-schemes which are

admissible, reduced and connected.

The canonical map P 0 ! P 0 is ®nite and induces a homeomorphism on the special

®bers. On the generic ®bers it gives rise to an isomorphism P 0rig !@ �P 0rig�red.

The rigid space P 0rig is smooth. The 1-component PK :� �P 0�0rig has ®nite index in P 0rig.

Proof. Let P 0n ! P 0n be the induced in®nitesimal neighborhoods. Let further P 0

be the pullback of the line bundle P 0 :� lim � P 0n from X �R P 0 to X �R P 0. Now consider

a pointed formal R-scheme �V ; v� which is admissible, reduced and connected. Let �L; l�
be a rigidi®ed line bundle on X �R V which is trivial on X �R v. This gives rise to a rigid-
i®ed line bundle �Ln; ln� on Xn �Rn

Vn. Since Ln is trivial over vn and Vn is connected,
one obtains a unique morphism fn: Vn ! P 0n and furthermore a unique isomorphism
jn: LnR Rn !@ �idXn

� fn��P 0n. Due to the uniqueness one gets fn � fn�1 nRn�1
Rn. So they

give rise to a morphism f : V ! P 0. Since V is ¯at over S, reduced and connected, this
morphism factors through P 0. Due to the rigidi®cator there is a unique isomorphism
j: L!@ �idX � f ��P 0 where P 0 is the PoincareÂ bundle on X � P 0.

The smoothness follows from Lemma 3.2. The index is ®nite since P 0 is quasi-
compact. r

The candidate for representing Pic
0

XK=K is the 1-component of the rigid group P 0rig

PK :� �P 0�0rig � �P 0red�0rig:

It remains to show that PK admits a smooth formal model over R.
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Due to the theory of formal NeÂron models, the quasi-compact group PK admits a
smooth formal model P over R, cf. [L2], Theorem 2.2 or [BS], Theorem 1.2. It can be
obtained as the 1-component of the group smoothening of P 0; cf. [BLR], Theorem 7.1/5. It
has the properties:

1. (Group smoothening) There is a canonical map P! P 0 ! P 0.

2. (NeÂron mapping property) Any rigid morphism fK : Vrig ! PK of the generic ®ber
of a smooth formal scheme V factors through a unique morphism f : V ! P.

Therefore every torsion point of P 00 of order prime to char�k� lifts to a point of P.
Since these points are dense, the group homomorphism P! P 0 is surjective on special
®bers. It is ®nite, since it is a surjective homomorphism of group schemes of the same
dimension. In particular the rigid ®ber of P is Prig � PK . Furthermore, we obtain a uni-
versal line bundle P on X �S P via pull-back. Due to the NeÂron mapping property, this

1-component represents the functor Pic
0

XK=K on CK .

Proposition 3.4. The formal NeÂron model P of PK � �P 0red�0rig represents the functor

Pic
0

XK=K on the category CK . This NeÂron model P can be obtained as the group smoothening

P! P 0red. The latter morphism is ®nite and a rig-isomorphism on 1-components.

Proof. Let VK be a smooth rigid variety which is connected and admits a smooth
formal model V over Spf�R� and let vK be a rational point of VK . Then consider a rigidi®ed
line bundle LK on XK �K VK which is trivial over XK �K vK . The point vK extends to an R-
point v of V in a unique way. Due to Proposition 2.6 the line bundle LK extends to a line
bundle L on X �R V since V is smooth over R. By using the sections x and v one can
choose a rigidi®ed extension which is also trivial over v. Due to Proposition 3.3 there exists
a unique morphism f : V ! P 0 with LG �idX � f ��P 0. The uniqueness of f follows from
the separatedness of P 0; cf. Lemma 3.5. Due to the universal property of P, the morphism f

factors through P. In particular, we get an isomorphism LG �idX � f ��P respecting the
rigidi®cators. r

Remark 3.4.1. The proof of 3.4 shows that the pointed formal R-scheme �P; 1�
represents the functor Pic0

X=R of rigidi®ed line bundles on the category of pointed formal R-
schemes which are smooth and connected.

Lemma 3.5. A morphism f : V ! P 0 from a smooth connected formal R-scheme V is

uniquely determined by its generic ®ber.

In particular, if L is a formal line bundle on X such that L belongs to P 0; i.e., LnR k

belongs to Pic0
X0=k and if Lrig is trivial, then L is trivial.

Proof. This follows from the fact that P 0n is separated over Rn for all n A N as being
a connected group scheme over an Artinian base. r

3.2. The structure of PK . Next we want to study the structure of PK ; cf. Proposition
3.4. Due to the construction PK has a smooth formal model P over Spf�R�. We want to
show that the special ®ber P0 is semi-abelian; i.e., it is an extension of an abelian variety
over k by a torus. We know that over the algebraic closure k of k the base change P0 nk k
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is an extension of an abelian variety B
k

by a smooth linear group L
k

due to the theorem of
Chevalley; cf. [BLR], Theorem 9.2.1:

1! L
k
! P0 nk k ! B

k
! 1:

Due to [SGA 3], II, ExposeÂ XVII, TheÂoreÁme 7.2.1,

L
k
� T

k
�

k
U

k

is the direct product of a group of multiplicative type T
k

and a unipotent group U
k
. Since

L
k

is smooth over k, a½ne and connected, the same holds for T
k

and U
k
. Due to [SGA 3],

II, ExposeÂ X, Proposition 1.4, T
k

is diagonal; i.e.,

T
k
G Spec k�M� � ÿHom�Z;M��

Spec�k�

for an abelian group M. Since T
k

is of ®nite type over k, the group M is ®nitely generated;
cf. [SGA 3], II, ExposeÂ VIII, Proposition 2.1 and, hence, a direct sum of a free abelian
group and a ®nite group. Due to [SGA 3], II, ExposeÂ VIII, TheÂoreÁme 3.1, T

k
is the product

of a torus and a ®nite k-group. Since T
k

is connected and smooth, the torsion part of M is
trivial; cf. [SGA 3], II, ExposeÂ VIII, Proposition 2.1. Thus T

k
GGr

m;k
is a torus.

Now we want to show that the unipotent part U
k

is trivial. Due to [SGA 3], II,
ExposeÂ XVII, Proposition 4.1.1, this is equivalent to the fact that there is no additive group
of type G

a;k contained in P0 nk k. So assume that there is a closed immersion

G
a;k

,! P0 ! P 00:

By the ®niteness of the later map this however is a contradiction to Lemma 3.1. Since the
unipotent part of P0 is trivial the base change to the algebraic closure k was not necessary
in the previous discussion. Therefore we have shown the following result.

Proposition 3.6. The group PK has a smooth model P over R with semi-abelian reduc-

tion; i.e., the special ®ber of P0 is an extension

1! T0 ! P0 ! Bk ! 1

of an abelian variety Bk by a torus T0.

The torus T0 of P0 lifts to a torus Tn ,! Pn in a unique way for each n A N and ®nally
to a formal torus T of P; due to [SGA 3], II, ExposeÂ XV, Corollaire 2.3,

T :� lim�! Tn ,! P:

The factor group Bn :� Pn=Tn exists as group scheme of ®nite type over Rn and the mor-
phism Pn ! Bn is faithfully ¯at. In particular, one has

Bnÿ1 GBn �Rn
Rnÿ1:

So there exists the formal R-group scheme
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B :� lim�! Bn

which is smooth and proper over Spf�R�; it is a formal abelian scheme. For further details
see [BL], Section 3 and [Se], Theorem VII.3.6.

Proposition 3.7. The group PK has a smooth model P over R. The formal group

scheme P is an extension

1! T ! P! B! 1

of a formal abelian scheme B by a formal torus T .

P is a T-torsor over B. The extension is equivalent to a group homomorphism

w�T� ! B4 of the character group of T to the dual formal abelian scheme of B.

The next point is to understand the torus part in P. It can be described by the topol-
ogy of the formal scheme X; i.e. by the combinatorial con®guration of the smooth irre-
ducible components of X0.

Proposition 3.8. Assume that the residue ®eld k of R is separably closed. There exists
a commutative diagram of canonical group homomorphisms

H1�X0;Z� ���! H1�XK ;Z�???y ???y
Hom�Gm;k;P

0
0�  ��� Hom�Gm;R;P�:

The vertical maps are given by sending a cocycle n :� �nij� to the group homomorphism which

sends a point t of Gm to the line bundle given by the cocycle �tnij �. The upper horizontal map

is induced by the continuous reduction map XK ! X0. The lower horizontal one is given by
reducing morphisms.

All these homomorphisms are bijective. In particular

H1�X0;Z� !@ H1�XK ;Z� !@ Hom�Gm;R;T� !@ Hom�Gm;k;T0�

are free of ®nite rank r equal to the rank of the torus parts.

Proof. This follows from the following facts where z denotes a coordinate on Gm:

1.1. Any rigid line bundle on XK �Gm;K is locally trivial over XK . Namely, due to
Proposition 2.6 the line bundle extends to a formal line bundle on X �Gm;R. Then its
reduction is locally trivial over X0 due to Proposition 2.2. Then a Nakayama argument
yields the assertion.

1.2. Any invertible rigid function e on UK �Gm;K for an open a½noid subvariety UK

of XK decomposes uniquely into e � u � zn � �1� h� with function u on UK and a function of
absolute value jhj < 1. The integer n A Z is uniquely determined by e; cf. [BGR], Lemma
9.7.1/1.

Hartl and LuÈ tkebohmert, On rigid-analytic Picard varieties130



2.1. Any algebraic line bundle on X0 �Gm;k is locally trivial over X0; cf. Proposition
2.2(2).

2.2. Any invertible function e on U0 �Gm;k for an open a½ne subvariety of X0

decomposes uniquely into e � u � zn with a function u on U0. The integer n A N is uniquely
determined by e.

Using 1.1 and 1.2 one shows easily the injectivity of the vertical map on the right.
From 2.1 and 2.2 follows that the map on the left is bijective. Moreover the horizontal map
on the bottom is easily seen to be injective by looking at points of ®nite order. r

3.3. The universal covering P̂K . The formal torus T rig is embedded into the a½ne
torus TK ; namely by the map associated to the inclusion K �w�T�� ,! Khw�TK�i of their
coordinate rings after identifying the character groups

w�T� � Hom�T ;Gm;R� � Hom�TK ;Gm;K� � w�TK�:

Thus the morphism j: w�T� ! B4 of Proposition 3.7 induces a morphism w�TK� ! B4
rig

and, hence, an extension of Brig by the a½ne torus TK

1! TK ! P̂K ! Brig ! 1:

This is the push-forward of Prig associated to the open immersion T rig ,! TK . So we obtain
the following diagram:

1 ���! T rig ���! Prig ���!q Brig ���! 1???y ???y 
1 ���! TK ���! P̂K ���!q Brig ���! 1:

Both vertical arrows on the left are open immersions. If the torus is split, e.g. if k is sepa-
rably closed, the extension can be described in an easy way. Namely, locally over B, such
an extension splits; i.e., there exists an open covering fU 1; . . . ;U ng of B such that

P�B U n GT �R U n GG
r

m;R �R U n;

P̂K �Brig
U n

rig GTK �K U n
rig GGr

m;K �K U n
rig:

The pasting is given in both cases by j: w�T� ! B4. Recall that there is a rigidi®ed Poin-
careÂ bundle on �P; r� on X �R P.

Lemma 3.9. The rigidi®ed line bundle �P; r� on X �R P extends to a rigidi®ed line

bundle �P̂K ; r̂� on XK �K P̂K in a unique way as cubical line bundle.

Proof. From the formal R-group extension

1! T ! P! B! 1
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we obtain by the base change X ! Spf�R� a formal X-group extension

1! TX ! PX !q BX ! 1:

The PoincareÂ bundle P on PX has a canonical cubical structure; cf. [Mo]. Namely, the
cubical structure is induced by its universal property. To explain this, consider the line
bundle

D3P :� m�123Pn m�12P
4
n m�13P

4
n m�23P

4
n m�1Pn m�2Pn m�3P

on the threefold product P3
X where mI : P3

X ! PX is the morphism �p1; p2; p3� 7!
P
i A I

pi

induced by adding points. A cubical structure on P is a trivialization t of D3P which sat-
is®es certain symmetry and cocycle conditions; cf. [Mo], DeÂ®nition I.2.4.5. Due to the
universal property of P we know

m�I PG
N
i A I

m�i P;

cf. Remark 3.4.1. So there exists a trivialization t of D3P. Since D3P is rigidi®ed, t satis®es
the symmetry and cocycle condition; cf. [Mo], DeÂ®nition I.2.4.5. Thus there is a cubical
structure on P. If PjTX is trivial, the cubical line bundle P descends to a line bundle on
BX . This of course applies to any open subvariety U of X. Due to Proposition 2.6, there
exists an open formal covering fX 1; . . . ;X Ng of X and trivializations

dn: PjX n�RT !
@

OX n�RT

for n � 1; . . . ;N. Now consider the line bundle Pn with the cubical structure tn. Restricted
to X n

n �Rn
Pn there is the trivialization dn

n. Due to [Mo], Proposition I.7.2.2, there exists a
uniquely determined line bundle Bn

n on X n
n �Rn

Bn such that Pn G q�nB
n
n where this isomor-

phism is compatible with the chosen trivialization dn
n. It follows from the uniqueness that

there is a canonical isomorphism

Bn
n�1 nRn�1

Rn !@ Bn
n:

So the inverse limit

Bn :� lim � Bn
n

is a line bundle on X n �R B satisfying

PjX n�RP !
@

q�Bn:

Denote by q: XK �K P̂K ! XK �K Brig the map which is induced by the projection
P̂K ! Brig. Then we obtain the pull-back q�Bn

rig on X n
K �K P̂K for n � 1; . . . ;N. The restric-

tion of such a line bundle to X n
K �K Prig is q�Bn

rig. Due to [BL], Propositions 4.1 and 4.2,
the gluing of the line bundles q�Bm and q�Bn over �X m XX n� �R B is given by a character

wmn A Hom�T ;Gm;R� � Hom�TK ;Gm;K�:
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So it can be regarded as a gluing of q�Bm
rig and q�Bn

rig over �X m XX n�rig �K P̂K . Thus we

obtain a line bundle P̂K over XK � P̂K . This line bundle is trivial over XK � f1g. The rigid-
i®cator r: OP !

@ �x� idP��P is given by a character due to [BL], Propositions 4.1 and 4.2.
So it extends to a rigidi®cator r̂: OP̂K

!@ �xK � idP̂K
��P̂K . Thus we obtain a rigidi®ed line

bundle �P̂K ; r̂� on XK �K P̂K whose restriction to XK �K PK is isomorphic to �Prig; rrig� and
which is trivial over the unit element. r

Remark 3.9.1. Due to Proposition 3.4 there is a canonical isomorphism of the
groups

Pic
0

XK=K�P2
K� !

@
HomCK

�P2
K ;PK�:

The tensor product of line bundles on the left corresponds to the group law on PK on
the right. Applying this correspondence to the map mI : P2

K ! PK which sends a point
�p1; p2� 7!

P
i A I

pi, one gets an isomorphism of the line bundles

m�1PK n m�2PK G m�12PK

on XK �K PK �K PK . Since the maps m�I are compatible with the cubical structure, this
isomorphism extends to an isomorphism of the line bundles

m�1P̂K n m�2P̂K G m�12P̂K

on XK �K P̂K �K P̂K .

We now want to exhibit a suitable lattice M L P̂K such that the quotient P̂K=M

represents the functor Pic0
XK=K . As usual denote by K a topological algebraic closure of K.

Then we can consider

M :� fp A P̂K�K� : �idXK
� p��P̂ is trivialg:

Then M is a subgroup of P̂K�K� consisting of K-rational points. Namely, if p1; p2 A M it
follows from Remark 3.9.1, that

�idXK
� p1��P̂G

ÿ
idXK

� �p1 ÿ p2�
��
P̂n �idXK

� p2��P̂

and, hence that
ÿ
idXK

� �p1 ÿ p2�
��
P̂ is trivial. Thus we see that �p1 ÿ p2� A M and, hence,

that M is a subgroup of P̂K�K�. The intersection M XPK�K� consists only of the unit ele-
ment. Namely, any point pK with ®eld of de®nition K 0 of the intersection extends to an R 0-
valued point of P where R 0 is the ring of integers of K 0. So the line bundle associated to pK

extends to a formal line bundle on X �R R 0. Due to Lemma 3.5 this line bundle is trivial
and, hence, pK is the unit element.

In the following we will show that the points of M are K-rational and form a discrete
subgroup if the torus T is split. Therefore we have to introduce the following notions.

If E is a formal line bundle on the smooth formal variety B over R, there exists a
formal trivialization of E on an open covering of B such that the transition functions asso-
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ciated to E are formal units; i.e., these functions take absolute value 1 at each point of B.
Any character w of the torus TK of P̂K de®nes a morphism

1 ���! TK ���! P̂K ���!q Brig ���! 1???yw

???ywP


1 ���! Gm;K ���! ÊK ���!q Brig ���! 1

where ÊK just as P̂K is the extension of Brig associated to the image of w under the homo-
morphism w�TK� ! B4 from Proposition 3.7. Using the absolute value on ÊK we obtain a
well de®ned pairing between the group of characters w�TK� of the torus and the points
P̂K�K� of P̂K in a topological algebraic closure K of K

w�TK� � P̂K�K� ! R; �w; p� 7! ÿlogjpjjwP�p�j;

cf. [BL], Section 3. Thereby we have chosen the logarithm to the base jpj in order to send
the rational points of P̂K to Z. If we choose a basis z1; . . . ; zr of the character group w�TK�,
we obtain a group homomorphism

val: P̂K�K� ! Rr; p 7! ÿÿlogjpjjz1�p�j; . . . ;ÿlogjpjjzr�p�j
�
:

The kernel of val is PK�K�. Moreover we obtain a non-degenerate pairing

w�TK� � P̂K�K�=PK�K� ! R:

The pairing takes integer values on the K-rational points of P̂K . A subgroup M of P̂K�K� is
called a lattice if under the group homomorphism val it is mapped bijectively onto a lattice
in Rr.

Lemma 3.10. If the torus T is split, the subgroup

M :� fp A P̂K�K� : �idXK
� p��P̂ is trivialg

is a K-rational lattice in P̂K�K�.

Proof. Since M XPK � f1g the group M is eÂtale over K. We consider the action of
the Galois group G :� Gal�K sep=K� on P̂K . Since the torus is split, the Galois group sta-
bilizes the factors of a splitting. Since K is henselian, the Galois group G respects absolute
values. Thus we see that G stabilizes the subset PK and any translate of it. In particular G

stabilizes every point of M and so M consists only of K-rational points. Under the map val
the set of K-rational points is mapped to the lattice Zr, so M is mapped to a sub-lattice. r

Remark 3.10.1. The analog of the Hopf surface in the p-adic case is an example
where the rank of M is strictly smaller than the rank of the torus; cf. Remark 0.1.3(4).

The next topic is the universal property of P̂K . For its proof we need the following
descent lemma.
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Lemma 3.11. Let qK : V 0K ! VK be a faithfully ¯at quasi-compact morphism of rigid

analytic varieties over K and let LK be a rigidi®ed line bundle on XK �K VK . Consider a

morphism f 0K : V 0K ! P̂K such that �idXK
� f 0K��P̂K G �idXK

� qK��LK . Then, locally on VK

with respect to the Grothendieck topology, there exists a factorization fK : VK ! P̂K such that

f 0K � fK � qK and �idXK
� fK��P̂K GLK . The local maps fK are uniquely determined up to a

translation by a lattice point; i.e., a point of M.

Proof. The problem is local on P̂K and VK . So let 0 < e < 1=2 and

P̂K�e� :� fp A P̂K ; val�p� A �ÿe; e�rg

the relative polyannulus in P̂K over BK with radius p2e; recall the explanation before
Lemma 3.10. Let UK be a nonempty a½ne formal open subvariety of BK on which P̂K is
trivial. So one can cover P̂K by translates of P̂K�e� �BK

UK . Let HK be one of these trans-
lates. This is an a½noid subvariety of P̂K . It remains to ®nd a morphism fK making the
following diagram commutative:

W 0
K :� � f 0K�ÿ1�HK� ���!f 0K

HK LDn
K

qK

???y fK

WK :� qK

ÿ� f 0K�ÿ1�HK�
�
:
ÿÿ
ÿÿ
!

Since HK is a½noid, we can regard it as a closed subscheme of some n-dimensional polydisc
Dn

K . Thus we are reduced to prove a descent theorem for functions.

Since qK is ¯at, WK is open in VK due to [FRG], II, Corollary 5.11. It follows
from [FRG], I, Theorem 4.1 and [FRG], II, Theorem 5.2 that there exist formal models
W and W 0 of WK and W 0

K such that qK extends to a ¯at and quasi-compact morphism
q : W 0 !W and f 0K to a formal map f 0: W 0 ! Dn

R. Since qK is surjective, q is surjective
and, hence, faithfully ¯at. Now we can replace W by an open a½ne subvariety Spf�A�.
Since q is quasi-compact, qÿ1�W� is a ®nite union of a½ne open subvarieties. Replacing W 0

by the disjoint union of these subvarieties, we may assume that W 0 � Spf�A 0� is a½ne and
faithfully ¯at over W. Thus we are in the formal descent situation:

A! A 0 x A 0 n̂A A 0 �: A 00:

This sequence is exact. Namely, after tensoring with Rn over R, the sequence is exact for all
n A N, since qn is faithfully ¯at; cf. [BLR], Lemma 6.1.2. Tensoring with K we obtain the
exact sequence

AK ! A 0K x A 0K n̂AK
A 0K �: A 00K :

Via the projections

q1
K ; q2

K : Sp�A 00K� :� Sp�A 0K n̂AK
A 0K�x Sp�A 0K�
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the morphism f 0K induces the morphisms f 0K � q1
K and f 0K � q2

K from Sp A 00K to HK . They
satisfy the following condition:ÿ

idXK
� � f 0K � q1

K�
��
P̂K G

ÿ
idXK

� � f 0K � q2
K�
��
P̂K :

Thus the di¨erence

f 0K � q1
K ÿ f 0K � q2

K : Sp�A 00K� ! P̂K�2e�

factors through M due to our assumption. Since M X P̂K�2e� � f1g due to Lemma 3.10,
the maps f 0K � q1

K � f 0K � q2
K coincide. As a map from W 0

K to Dn
K the morphism f 0K is given

by an n-tuple of functions �a 01; . . . ; a 0n� A �A 0K�n. The coincidence of f 0K � q1
K � f 0K � q2

K im-
plies the cocycle condition for the descent of the functions �a 01; . . . ; a 0n� and, hence, they are
induced from functions �a1; . . . ; an� A An

K giving rise to a map fK : WK ! Dn
K . Now, as HK

is a closed subvariety of Dn
K , the functions �a 01; . . . ; a 0n� have to satisfy certain equations

which we will not specify. Then �a1; . . . ; an� will satisfy these equations also and, hence,
yield a factorization of fK through HK . So we obtain the morphism fK : WK ! P̂K such
that f 0K jWK � fK � qK jW 0

K .

It remains to show that there is an isomorphism LK !@ �idXK
� fK��P̂K . On XK �K V 0K

there is an isomorphism

j 0: �idXK
� qK��LK !@ �idXK

� qK���idXK
� fK��P̂K

respecting the rigidi®cators. So this isomorphism is uniquely determined. Thus it satis®es
the cocycle condition for descent. It remains to prove the descent for sections in a line
bundle. Denote by HK the line bundle of homomorphisms from LK to �idXK

� fK��P̂K .
In the a½ne situation we can replace the line bundles by their modules of global
sections which are invertible modules. So it su½ces to show the descent for sections in
HK :� G�Yrig �K WK ;HK� where Y � Spf�C� is an a½ne open formal part of X. Setting
B :� C n̂R A, we obtain a descent situation as above where A is replaced by B. Then
we obtain the exact sequence

HK ! HK nBK
B 0K x HK nBK

B 00K :

The map j 0 belongs to the kernel of the double arrows on the right. So it has a unique pre-
image from the left which is an isomorphism over Yrig �K WK . Due to the uniqueness of
descent they ®t together to build an isomorphism over Xrig �K WK . r

We will use this lemma to show the universal mapping property of P̂K .

Lemma 3.12. Assume that the residue ®eld k of R is separably closed. Let
�VK ; vK� A CK be a rigid analytic variety and let LK be a rigidi®ed line bundle on XK �K VK

which is trivial on XK �K vK . Then there exists an admissible covering V i
K of VK and

morphisms f i: V i
K ! P̂K such that �idXK

� f i��P̂K GLjXK�K V i
K
. The obstruction for gluing

the morphisms f i to build a morphism f : VK ! P̂K satisfying �idXK
� f ��P̂K GLK and

f �vK� � 1 is given by a cohomology class

� f i ÿ f j� A H1�VK ;M�GH1�VK ;Z�d :
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Proof. Let us ®rst consider the special case where VK admits a formal model V which
is formally smooth over Rhz1; . . . ; zt�1i=�z1 � . . . � zt�1 ÿ p� and is small in the sense of 1.4.
Moreover assume that the point vK A VK�K� lies above the open part fz1 � � � � � zt � 1g.
In this case the line bundle LK decomposes into a tensor product

LK GMK nNK

where N is a formal line bundle on X � V and where MK G �zn1

1 n � � � n znt

t � is a multi-
plicative line bundle; cf. Proposition 2.6. The cohomology classes n1; . . . ; nt A H1�XK ;Z�
give rise to group homomorphisms m1; . . . ; mt A Hom�Gm;K ; P̂K� due to Proposition 3.8.
First they are de®ned as map Gm;K ! PK and, hence, due to the construction of P̂K this
map extends to a map Gm;K ! P̂K . Thus we obtain a morphism

m :� m1 � z1 � . . . � mt � zt : VK ! P̂K

where `` � '' denotes the group law on P̂K . The pull-back of the PoincareÂ bundle satis®es

MK G �idXK
� m��P̂

and m�vK� � 1. Due to Proposition 3.3 the line bundle N on X �R V gives rise to a mor-
phism V ! P 0. This morphism factors through P 0, since V is ¯at over R and reduced. On
the generic ®ber it induces a morphism

n: VK ! PK ! P̂K

such that

NK G �idXK
� n��P̂K

satisfying n�vK� � 1. Altogether we obtain a morphism

l :� m � n : VK ! P̂K

satisfying l�vK� � 1 such that

�idXK
� l��P̂K G �idXK

� m��P̂K n �idXK
� n��P̂K GMK nNK GLK :

For the general case of a smooth rigid variety VK we need a desingularization argument
to reduce this case to the special case. We use a formal geometry analog of de Jong's altera-
tions result [dJ]. Namely, after a suitable ®nite separable ®eld extension ~K of K, there exists
an eÂtale surjective morphism ~VK ! VK such that ~VK admits a strict semi-stable model ~V
over Spf�R�. Indeed one can write VK locally as a smooth curve ®bration. In [L2], Theo-
rems 5.2 and 5.3 it was shown that eÂtale locally on VK this curve ®bration can be embedded
into a smooth projective curve ®bration which has a semi-stable formal model. Then we
apply the methods of de Jong to obtain the desired strict semi-stable model of VK .

Furthermore we may assume that each connected component ~V i of ~V is small as in
the special case, cf. Remark 1.4.1; and that it is punctured by a K-rational point ~vi lying in
a position as required in the special case. Then for the line bundle ~LK :�LK nOVK

O ~V i
K

we
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obtain by the case discussed above a morphism

l i: ~V i
K ! P̂K

satisfying

�idXK
� l i��P̂K G ~LK n p��idXK

� ~vi�� ~L4
K

where p: XK � ~V i
K ! XK is the projection. Due to Lemma 3.11, there exists an open cov-

ering V i
K of VK and maps

f i: V i
K ! P̂K

satisfying f i�vi
K� � ��idXK

� vi��LK � such that there exists a morphism of rigidi®ed line
bundles

j i: �idXK
� f i��P̂K !@ LK jXK �K V i

K :

Thereby vi is the image of the point ~vi and the brackets indicate the isomorphism class of
the line bundle. By a connectedness argument one shows that these isomorphism classes
belong to P̂K . On the overlaps V

ij
K associated to the covering fV i; i A Ig the morphisms

� f i ÿ f j�: V
ij
K ! P̂K factor through the lattice M. Therefore they de®ne a cohomology

class in

� f i ÿ f j� A H1�VK ;M�GH1�VK ;Z�d : r

If the cohomology H1�VK ;Z� � 0 vanishes, we have seen that there exist coboundaries
mi A C1�fV i

Kg;M� such that

� f i ÿmi�: V i
K ! P̂K

®t together to build a morphism f : VK ! P̂K satisfying f �vK� � 1. Since LK is rigidi®ed,
the local isomorphisms j i are uniquely determined and, hence, they can be glued together.
Therefore our last statement implies the representability of the functor cPic0

XK=K on the cat-
egory ĈK .

Proposition 3.13. �P̂K ; 1� represents the functor cPic0
XK=K on the category ĈK .

In the proof we have used the fact that the residue ®eld is separably closed. So we
have established the statement after base change to the maximal unrami®ed extension
K ! Kun. The Galois group G�Kun=K� acts on all objects in a compatible way. Since
Galois descent is e¨ective in our situation, the whole construction descends to the given
®eld.

3.4. The construction of PK . We divide out the lattice M in P̂K and obtain a rigid
group variety

p: P̂K ! PK � P̂K=M:
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The residue map P̂K ! PK is a local isomorphism and, hence, PK is smooth. Next we want
to construct a PoincareÂ bundle on XK � PK by dividing out the canonical M-action on P̂K .
Due to Remark 3.9.1 there is an isomorphism

l: m�12P̂K !@ m�1P̂K n m�2P̂K

of line bundles on XK �K P̂2
K . This isomorphism is compatible with the rigidi®cators of the

PoincareÂ bundles r̂K : OP̂K
!@ �xK � idP̂K

��P̂K ; i.e.,

�xK � idP̂2
K
��l � m�12 r̂K � m�1 r̂K n m�2 r̂K :

Via pull-back by the section �idP̂K
�m�: P̂K ! P̂2

K for m A M we obtain an isomorphism

jm :� �idXK
� idP̂K

�m��l: t�mP̂K !@ P̂K ;

namely �idXK
� idP̂K

�m��m�2P̂K is trivial due to the de®nition of M. Thereby tm denotes
the translation by the point m A P̂K . For the rigidi®cator we get

�xK � idP̂K
��jm�t�m r̂K� � r̂K

where t�mr̂K is the canonical rigidi®cator of the line bundle t�mP̂K . Since the following iso-
morphisms of line bundles

t�m�m 0P̂K !@ P̂K

are compatible with the rigidi®cators, they coincide

jm 0 � t�m 0jm � jm�m 0 :

This is the cocycle condition for the isomorphisms jm. Thus they de®ne an M-linearization
on P̂K . Now we can divide out the M-linearization on P̂K and, hence, we obtain a line
bundle

PK � P̂K=M on �XK � P̂K�=M � XK � PK

which is equipped with a canonical rigidi®cator induced from r̂K . Moreover PK is trivial
over XK � f1g.

To give a local description, each point of PK has an open neighborhood WK which is
isomorphic to a translate UK of P̂K�1=2� under the quotient map; cf. the proof of Proposi-
tion 3.11. For the restriction of the PoincareÂ bundles one has a canonical isomorphism

P̂K jXK �UK !@ PK jXK �WK :

Thus we can prove the ®rst statement of the main theorem.

Theorem 3.14. The smooth connected rigid group variety �PK ; 1� represents the

Picard functor Pic0
XK=K on the category CK . The universal line bundle on XK � PK is the

PoincareÂ bundle constructed above.
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Proof. Let us ®rst assume that the residue ®eld k is separably closed. Consider a
couple �VK ; vK� A CK and a rigidi®ed line bundle LK on XK � VK which is trivial on
XK � vK . Due to Lemma 3.12 there exists an admissible covering V i

K of VK and morphisms

f i: V i
K ! P̂K ! PK

associated to LK . The maps f i and f j di¨er on V i
K XV

j
K by an element of M. So they ®t

together to a morphism

f : VK ! PK

satisfying f �vK� � 1 such that there is an isomorphism

LK !@ �idXK
� f ��PK

of rigidi®ed line bundles. This morphism is unique due to the de®nition of the lattice. By
the usual Galois descent argument as mentioned at the end of Section 3.4 one descends the
result to the given base ®eld. r

Remark 3.14.1. The construction commutes with base change by a ®nite extension
of discrete valuation rings R! ~R. In particular, the following holds:

PK nK
~K represents the Picard functor Pic0

~X ~K=
~K

on the category C ~K .

PnR
~R represents the functor Pic

0
~X ~K=

~K on the category C ~K .

P̂K nK
~K represents the Picard functor cPic0

~X ~K=
~K on the category Ĉ ~K as well.

Namely, we can do the same construction starting with ~X :� X nR
~R. Since the

initial object Pic0
~X0= ~k
� Pic0

X0=k n
~k commutes with base change, the statement follows from

the construction. We did not make use of the fact that the initial X was regular as we said
just in the beginning.

The structure of PK is described in the following theorem.

Theorem 3.15. Assume that the residue ®eld k of R is separably closed. Then PK is an
extension

1! T 0K ! PK ! QK ! 1

of an abeloid rigid analytic group QK by an a½ne torus T 0K ; i.e., QK is smooth connected and

proper.

Proof. Due to Lemma 3.10 the lattice M can be regarded as a subgroup of
P̂K�K�=PK�K�. Then look at the non-degenerate pairing

w�TK� � P̂K�K�=PK�K� ! R;

cf. [BL], Section 3. The orthogonal complement of M with respect to this pairing is a sub-
group w�T 0K� of w�TK�. This subgroup has a direct complement w�T 00K� in the group of
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characters, since the Galois action is trivial as k is assumed to be separably closed,

w�TK� � w�T 0K�l w�T 00K�:

According to this splitting, the torus TK of P̂K splits into a product of subtori

TK � T 0K � T 00K :

Due to the structure of P̂K we obtain an extension via push-out with respect to the projec-
tion TK ! T 00K

1 ���! TK ���! P̂K ���! BK ���! 1???y ???y 
1 ���! T 00K ���! Q̂K ���! BK ���! 1:

The canonically induced map P̂K ! Q̂K gives rise to an isomorphism of lattices

P̂K ���! Q̂K

U U

M ���!@ N

where N is now a lattice of Q̂K of full rank r 00. In particular, the quotient

QK � Q̂K=N

is an abeloid variety. Thus we obtain the following commutative diagram:

M N???y ???y
1 ���! T 0K ���! P̂K ���! Q̂K ���! 1 ???y ???y
1 ���! T 0K ���! PK ���! QK ���! 1

making PK an extension of an abeloid variety QK by an a½ne torus T 0K . r

This settles the demonstration of the theorem as far as the identity component is
concerned.

3.5. The NeÂron-Severi group. Keep the notations of above. So let X ! Spf�R� be
the strict semi-stable formal model of XK we started with at the beginning. Let X s

0 for
s � 1; . . . ; s be the irreducible components of X0. We always assume that the residue ®eld
k of R is separably closed. Thus X0 nk

~k ! X0 is a homeomorphism for any ®nite ®eld
extension k ! ~k.
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Let K be the topological algebraic closure of K. We want to study the NeÂron-Severi
group of XK which is by de®nition the quotient

NSXK=K�K� � PicXK=K�K�=Pic0
XK=K�K�

where PicXK=K�K 0� denotes the group of isomorphism classes of line bundles on XK n̂K K 0

and where Pic0
XK=K�K 0� is the set of K 0-rational points of PK for any ®eld extension

K ! K 0. We want to relate this group to the NeÂron-Severi group of the special ®ber X0;
i.e., to the group

NSX0=k � PicX0=k�k�=Pic0
X0=k�k�

where k is the algebraic closure of the residue ®eld k of R. Let us ®rst study what happens
after a ®nite ®eld extension. So, for a ®nite ®eld extension K ! ~K , set

NSXK=K� ~K� � PicXK=K� ~K�=Pic0
XK=K� ~K�:

Furthermore let R! ~R be the associated extension of discrete valuation rings and set
~X � X �R

~R. If ~p is the uniformizer of ~R and e A N the rami®cation index then

p � ~u � ~pe

for a unit ~u of ~R. For the following, ®x a line bundle ~LK on XK �K
~K. We want to discuss

the obstructions for extending ~LK to a line bundle ~L on ~X .

It was shown in Proposition 2.5 that there exists an open covering

U :� fU 1; . . . ;U ng

of X and line bundles ~L i on ~U i :� U i �R
~R for i � 1; . . . ; n extending ~LK . After a

re®nement of U we may assume that the line bundles ~L i are isomorphic to O ~X j ~U i for
i � 1; . . . ; n. Therefore ~LK is given by a cocycle

~l ij
K A Z1�~U;O�~Xrig

�:

If W is an open a½ne part of X such that the irreducible components are principal Cartier
divisors on W, there exist functions xs on W satisfying

jxsjX s
0
� jpj;

jxtjX s
0
� 1 for s3 t

where jxtjX s
0

denotes the sup-norm of the function xt on a formal open part of Xrig which

specializes to a dense open part of X s
0 . Later on we will use this fact to glue local models

L i. We assume that the open a½ne parts U i are chosen in such a way that the irreducible
components X s

0 are principal Cartier divisors on any U i.

Lemma 3.16. Let W be an a½ne open subvariety of X such that the irreducible com-
ponents X s

0 induce principal Cartier divisors on W. Then the ring of invertible functions on
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~Wrig has a canonical ®ltration

O�~XK
� ~Wrig� �: G2�W�IG1�W�IG0�W � :� O�~X � ~W�

where

G1�W� :� O�~X � ~W �l x
G�W0;Z�
i1

l � � � l x
G�W0;Z�
ir

and

G�W0;Z�=G�W0;Z� � e!@ G2�W �=G1�W�; 1 7! ~p

if W0 meets r irreducible components X
ir

0 of X0. For the functions xir one can choose any
generator of the ideals de®ned by the irreducible component X

ir
0 of X0 meeting W0. The group

G1 is independent of the choice of these generators.

Proof. If f is an invertible function on Wrig, for any connected component of W, we
can ®nd an integer n such that f � ~pÿn has sup-norm 1 on each connected component of
Wrig. The irreducible components of Wrig correspond one-to-one to the connected compo-
nents of W0. So we can view the collection of these integers as an element of G�W0;Z�. Any
irreducible component of X0 can meet only a single connected component of W0. Thus we
may assume that Wrig is connected. The product of the functions satis®es

xi1 � . . . � xir � u � p � u � ~u � ~pe

where u A O�X �W � is a unit. The generic point of any irreducible component of the singular
locus of W0 lies on precisely two irreducible components of X0. Then it follows from
Lemma 1.5 that the di¨erence of the absolute values on the two components containing
that point is given by a power of jpj. Thus we see that there exist integers nr A Z such that

f � f � ~pn � xn1
i1
� . . . � xnr

ir

where f is an invertible function on ~Wrig taking absolute value 1 on each irreducible com-
ponent. Therefore f is an invertible formal function and belongs to O�~X � ~W�. The remaining
assertions are clear. r

Remark 3.16.1. Keep the situation of the last Lemma 3.16. If ~L is a line bundle on
~W , the set of generators of Lrig decomposes in a similar way.

Now go back to the line bundles ~L i GO ~X j ~U i for i � 1; . . . ; n assumed to be
trivial. So the line bundle is given by a cocycle ~l ij

K A Z1�U;O�~Xrig
�. Over the overlaps

U ij :� U i XU j, this cocycle induces elements

cyc� ~LK� ij :� �~l ij
K � A G2�U ij�=G1�U ij�G �Z=Ze� ~X �U ij�

giving rise to a cocycle

cyc� ~LK� :� ÿcyc� ~LK� ij
�
A Z1�U;Z=Ze�;
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and hence to a cohomology class

cyc� ~LK� A H1�X0;Z=Ze�:

Now consider the exact sequence of constant sheaves on X0 given by the exact sequence

0! Z!�e Z! Z=Ze! 0:

It induces the long exact cohomology sequence

0! H1�X0;Z� !�e H1�X0;Z� ! H1
ÿ
X0; �Z=Ze��

!d H2�X0;Z� !�e H2�X0;Z�

where d: H1
ÿ
X0; �Z=Ze��! H2�X0;Z� is the connecting homomorphism.

We want to investigate the vanishing of the class cyc� ~LK�. Therefore we need the
following de®nition.

De®nition 3.17. A line bundle MK which is associated to a cocycle cn A H1�XK ;O
�
XK
�

for some c A K� and n A H1�Xrig;Z� is called a multiplicative line bundle.

Such line bundles correspond to points of PK which are induced form the K-valued
points of the torus TK under the canonical morphism TK ! PK .

Lemma 3.18. Keep the situation of above.

(1) ~LK extends to a line bundle ~L on ~X if and only if cyc� ~LK� � 0 in

H1
ÿ
X0; �Z=Ze��.

(2) d
ÿ
cyc� ~LK�

� � 0 vanishes if and only if there exists a multiplicative line bundle ~MK

such that ~LK n ~MK extends to a line bundle on ~X .

Proof. (1) If ~LK extends to a line bundle ~L on ~X , then ~LK can be represented by
a cocycle �~l ij

K� A Z1�U;O�~X �. So the functions ~l ij
K belong to O�~X � ~U ij�HG1�U ij� and, hence,

cyc� ~LK� � ��~l ij
K�� � 0.

If cyc� ~LK� � 0, the line bundle ~LK can be represented by a cocycle

�~l ij
K� A Z1�U;O�~Xrig

�

for a suitable open covering U of X0 which takes values

j~l ij
K jX s

0
A jpjZ for s � 1; . . . ; s:

So these values can also be taken by powers of the generator xs of the ideal associated
to X s

0 . Therefore we can stepwise adjust the cocycle. Namely let ~L�mÿ 1� be an extension

of ~LK to U�mÿ 1� :� U 1 W � � � WU mÿ1. Then the pasting of ~L�mÿ 1�rig with ~Lm
rig over
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~U�mÿ 1�rig X ~U m
rig can be adjusted to have value 1 on each irreducible component by

replacing the model ~Lm by the model �xn1
i1
� . . . � xnr

ir
� � ~Lm where the exponents n1; . . . ; nr

have to be chosen in such a way that the value of the pasting over Xs is jpjns .

(2) If ~MK is a multiplicative line bundle on ~X , there exists an element c A ~K and a
cocycle n :� �nij� A Z1�U;Z� such that ~MK is associated to the cocycle cn A H1�U;O�~Xrig

�.
We can write c � ~ps � ~e for some ~e A ~R�. Then the cocycle of ~MK is given by the residue
class

cyc� ~MK� � s � n A H1�X ;Z=Z � e�

which is the image of s � n A H1�X0;Z� and, hence, d
ÿ
cyc� ~MK�

� � 0 vanishes in H2�X0;Z�.
Then it follows from (1) that d

ÿ
cyc� ~LK�

� � 0 vanishes if there exists a multiplicative line
bundle ~MK such that ~LK n ~MK extends to a line bundle on ~X .

Conversely, if d
ÿ
cyc� ~LK�

� � 0 vanishes, there exists a cocycle n :� �nij� A H1�X0;Z�
such that its residue class satis®es n � cyc� ~LK� in H1�X0;Z=Z � e�. Let MK be the multi-
plicative line bundle associated to the cocycle ~pÿn A H1�X ;O�~Xrig

�. Then the cycle

cyc� ~LK n ~MK� � 0

vanishes and, hence the claim follows from the ®rst statement. r

Remark 3.18.1. It is an open question whether d
ÿ
cyc� ~LK�

� � 0 vanishes for all line
bundles ~LK on X �R

~R and for all ®nite extensions R! ~R. It seems to us that line bundles
on X �R

~R with d
ÿ
cyc� ~LK�

�
3 0 are exotic.

Proposition 3.19. There exists a ®nite extension R! ~R and ®nitely many exotic

line bundles ~E1
K ; . . . ; ~Em

K on ~X such that d
ÿ
cyc� ~E1

K�
�
; . . . ; d

ÿ
cyc� ~Em

K �
�

give all elements in

H2�X0;Z� which are induced by line bundles on any extension X � X �R R for any ®nite

extension ~R! R.

Proof. For any topological space T of ®nite combinatorial dimension such as X0,
the groups Hn�T ;Z� are ®nitely generated for all n A N. A topological space is said to have
combinatorial dimension less or equal to N if any strictly increasing sequence of irreducible
closed subsets of Z consists of at most N � 1 elements. Therefore the group H2�X0;Z� is a
®nitely generated Z-module and, hence there are only ®nitely many torsion elements in
H2�X0;Z�. r

Theorem 3.20. The NeÂron-Severi group of Xrig is ®nitely generated.

Proof. For any ®nite separable ®eld extension K ! ~K with residue ®eld ~k, we have
an exact sequence

1 ���! NS1
XK=K� ~K� ���! NSXK=K� ~K� ���!d � cyc

H2�X0;Z�

where NS1
XK=K� ~K� is de®ned as the kernel of the cycle map. Due to Lemma 3.18 any rep-

resentative of an element in NS1
XK=K� ~K� extends to a line bundle on ~X after twisting by a
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multiplicative line bundle. Since the multiplicative line bundles belong to Pic0
XK
� ~K�, we get

a group homomorphism by taking the reduction of the formal extension

NS1
XK=K� ~K� ! NSX0=k�~k�=M� ~R�

where M� ~R� is the image of the set of formal line bundles on X �R
~R which induce multi-

plicative line bundles on the generic ®ber. Elements in the kernel of this map can be repre-
sented by formal line bundles ~L on ~X such that the reduction ~L0 :� ~Ln ~R

~k belongs to
Pic0

X0=k�~k�. Due to our construction, the class of ~L is therefore an ~R-rational point of P 0; cf.
Proposition 3.4. Thus we obtain an exact sequence

P 0� ~R�=P� ~R� ! NS1
XK=K� ~K� ! NSX0=k�~k�=M� ~R�:

So NS1
XK=K� ~K� is an extension of a subquotient of the NeÂron-Severi group of the special

®ber by a ®nite group; cf. Proposition 3.3. This description is compatible with ®eld exten-
sions, since the map d � cyc is compatible with ®eld extensions. Since the NeÂron-Severi
group NSX0=k is ®nitely generated; cf. [SGA 6], Exp. XIII, Thm. 5.1, the group NS1

XK=K�K�
is ®nitely generated where K is the algebraic closure of K. Due to Proposition 3.19 the
NeÂron-Severi group NSXK=K�K� is ®nitely generated.

Finally we have to show that any line bundle over the completion of the algebraic
closure K of K is represented by a point on a translate of PK by a point which is de®ned
over a ®nite extension of K. Consider a line bundle LK on X n̂K K. Then there exists an
admissible blowing up

Y! X n̂R RK

of a coherent open ideal J on X n̂R RK such that LK extends to a line bundle L on Y
where RK is the ring of integers of K; cf. [L1], Lemma 2.9. Since J is open and X is quasi-
compact, there exists a ®nite extension ~R of R such that J is induced by an open ideal I
on X �R

~R. Thus Y is obtained from a model Y of ~XK :� XK nK
~K and, hence, we may

assume that Y is a blowing-up of X nR
~R.

Thus we see that L is an RK-valued point of

Q � ÿ�lim�! Qn�=�p-torsion��
red

where Qn is the Picard scheme PicYn= ~Sn
of the model Y of ~Xrig over ~S � Spf� ~R�. We

may assume that there is a ~K-valued point on the connected component of Qrig which
contains the class of Lrig; this point can be represented by the class of a line bundle ~F on
Y. Then for our purpose, we can assume that F is trivial so that we have to consider the
1-component Q0

rig of Qrig. Thus we are concerned with a rigid-analytic group object over ~K.
The group QK :� Q0

rig is geometrically reduced and hence smooth over ~K. Indeed, the rig-

isomorphism Y ! ~X induces a map PK ! QK . This map does not factor through any
closed subgroup of lower dimension and thus we see that the points which are separable
over ~K are dense in QK . Thus we see that LK is a ®ber of the PoincareÂ bundle on Yrig �QK

over the smooth base QK . Since Yrig � Xrig, the point associated to LK belongs to PK�K�,
due to Theorem 3.14 resp. Remark 3.14.1. r
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3.6. The end of the proof. After these preparations it is easy to ®nish the proof of the
main theorem announced in the introduction. So start with the strict semi-stable formal R-
scheme X which is assumed to be proper and connected.

Furthermore let x A X �R� be a rational point. Then let R! ~R be a ®nite extension of
discrete valuation rings and let ~R be chosen so large that a generating system of the NeÂron-
Severi group is already given by the classes of line bundles on X ~K :� XK �K

~K. This is
possible since the NeÂron-Severi group is ®nitely generated due to Theorem 3.20. Moreover
we assume that the residue ®eld k of R is separably closed to avoid decompositions of
irreducible components of X0 under base change. Then all classes in the NeÂron-Severi
group can be represented by line bundles on X ~K . Let

NSXK=K�K� � fL i; i A Ig

be a set of representatives of all classes in the NeÂron-Severi group NSXK=K�K�. Then de®ne
the rigid analytic variety

PicX ~K=
~K :�

ì A I

L i nPK

equipped with the line bundle p�1L
i nPK over L i nPK where p1: XK � PK ! XK is the

®rst projection.

Consider a smooth rigid-analytic variety VK over K and a rigidi®ed line bundle �L; l�
on XK �K VK . We may assume that VK is connected. Let K ! ~K ! K 0 be a ®nite ®eld
extension such that VK admits a K 0-rational point v. Again we may assume that VK �K K 0

is connected. Then we twist the line bundle L by the inverse of the line bundle

Lv :� �idXK
� v��L

on the ®ber so that we may assume that L is trivial above v. It follows from Theorem
3.14 that there exists a unique morphism j: VK nK 0 ! PK and a unique isomorphism
�p�1Lÿ1

v nL; l� !@ �id� j���P; lP�. Moreover there exists a unique i A I such that Lv lies
in the class of L i mod PK�K 0�. Now one can compose j with the translation map given by
the element Lv n �L i�ÿ1 A PK�K 0�. Thus we obtain the desired morphism

F: VK !L i nPK ,! PicX ~K=
~K

satisfying the universal property.

Of course we may assume that K 0=K and also ~K=K are Galois, since any smooth
connected variety admits a closed point which is separable over K. The Galois group
G� ~K=K� acts on PicX ~K=

~K . Each orbit is ®nite since the group is ®nite. On PK the Galois

group acts in a formal way; i.e., it stabilizes the subgroup P and the formal torus part T .
Furthermore, since the reduction of P is quasi-projective, the Galois descent is e¨ective.
Thus we see that P̂K is de®ned over K. Then it is clear that PK is de®ned over K. From this
it follows that the group variety PicX ~K=

~K descends to a rigid analytic K-group variety

PicXK=K . This group variety represents the Picard functor over K since the mapping prop-
erty is compatible with Galois descent under the Galois group G�K 0=K� of the extension
K 0=K . r
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