Übungen zur Differentialgeometrie II

Prof. Simon WS 2008/09
Abgabe: Freitag, 16.01.2009 Blatt 10

Aufgabe 1. Wir betrachten das *Scheibenmodell* des hyperbolischen Raums: Es sei $B^n := \{x \in \mathbb{R}^n \mid |x| < 2\}$ mit der Metrik der Metrik $h_{ij}(x) = \frac{\delta_{ij}}{(1 - \frac{1}{4}|x|^2)^2}$. Es sei H^n das obere Halbraummodell des hyperbolischen Raums. Definiere eine Abbildung $f: B^n \to H^n$ durch

$$f(x) = 4\frac{x - x_0}{|x - x_0|^2} - (0, \dots, 0, 1)$$

wobei $x_0 = (0, \dots, 0, -2)$. Zeigen Sie: f ist eine Isometrie.

Aufgabe 2. (Notation wie in Aufgabe 1) Es sei $S \subset H^n$ eine euklidische Sphäre. Zeigen Sie: S ist eine geodätische Sphäre in H^n . Hinweis: Betrachten Sie $f^{-1}(S) \subset B^n$. Dies ist ebenfalls eine euklidische Sphäre. Warum kann man annehmen, dass ihr Mittelpunkt der Nullpunkt ist?

Aufgabe 3. In einer Umgebung im $\mathbb{R}^n (n > 2)$ betrachte die folgende Metrik:

$$g_{ij} := \frac{\delta_{ij}}{F^2}$$

wobei δ_{ij} die Standardmetrik des \mathbb{R}^n sei und $F \neq 0$ eine reellwertige Funktion auf dieser Umgebung. Schreibe $F_i := \frac{\partial F}{\partial x_i}, F_{ij} := \frac{\partial^2 F}{\partial x_i \partial x_j}$.

a) Zeigen Sie: Die oben definierte Metrik hat genau dann konstante Schnittkrümmung K, wenn

$$\begin{cases} F_{ij} = 0 & i \neq j \\ F(F_{jj} + F_{ii}) = K + \sum_{i=1}^{n} (F_i)^2 \end{cases}$$

Hinweis: Benutzen sie folgende Aussage fuer $R_{ijkl} := g(R(e_i, e_j)e_k, e_l)$: Die Metrik g hat genau dann konstante Schnittkrümmung K, wenn $R_{ijij} = -R_{ijji} = K$ für alle $i \neq j$ und $R_{ijkl} = 0$ in allen sonstigen Fällen.

b) Benutzen sie Teil a) um zu zeigen, daß die Metrik g_{ij} genau dann konstante Schnittkrümmung K hat, wenn

$$F(x_1,...,x_n) = G_1(x_1) + ... + G_n(x_n)$$

wobei $G_i(x_i) = ax_i^2 + b_i x_i + c_i$ und $\sum_{i=1}^n (4c_i a - b_i^2) = K$.

c) Setzen Sie $a=K/4, b_i=0, c_i=1/n,$ um die Formel von Riemann für eine Metrik g_{ij} konstanter Schnittkrümmung K zu erhalten:

$$g_{ij} = \frac{\delta_{ij}}{(1 + \frac{K}{4} \sum x_i^2)^2}$$

Für K<0 ist diese Metrik auf einem Ball vom Radius $\sqrt{\frac{4}{-K}}$ definiert. Für K>0 ist diese Metrik auf \mathbb{R}^n definiert. Zeigen Sie, daß diese Metrik für K>0 nicht vollständig ist.