Übungsaufgaben zur Klausurvorbereitung in der elementaren Differentialgeometrie

Aufgabe 1

Es sei eine ebene Kurve c wie folgt gegeben:

$$c: (0,3\pi) \to \mathbb{R}^2, t \mapsto \begin{pmatrix} \sin(4t) \\ \cos(3t) \end{pmatrix}$$

- (i) Zeigen Sie, dass c regulär ist und berechnen Sie die Bogenlänge von $c|_{(0,2\pi)}$.
- (ii) Bestimmen Sie die orientierte Krümmung $\kappa_o(t)$ der Kurve c.
- (iii) Skizzieren Sie die Kurve und bestimmen Sie für jede Zusammenhangskomponente von $\mathbb{R}^2 \setminus c((0,3\pi))$ die Umlaufzahl.
- (iv) Es sei eine weitere ebene Kurve \tilde{c} gegeben durch:

$$\tilde{c} \colon (0, 5\pi) \to \mathbb{R}^2, t \mapsto \begin{pmatrix} \sin(4t) \\ \cos(3t) \end{pmatrix}$$

Existiert eine Umparametrisierung, also ein C^{∞} -Diffeomorphismus $\psi \colon (0, 5\pi) \to (0, 3\pi)$, mit $\tilde{c} = c \circ \psi$? Begründen Sie Ihre Antwort.

Aufgabe 2

Es seien R > r > 0 gegeben. Auf der Peripherie eines Kreises vom Radius r sei ein Punkt p fest gewählt. Nun rolle dieser Kreis innen auf der Peripherie eines Kreises vom Radius R ab. Die entstehende Kurve heißt Hypozykloide, vergleiche Aufgabe 3.1.

Zeigen Sie, dass die Hypozykloide gegeben ist durch:

$$c \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto \left(\begin{array}{c} (R-r)\cos t + r\cos\left(\left(\frac{R}{r} - 1\right)t\right) \\ (R-r)\sin t - r\sin\left(\left(\frac{R}{r} - 1\right)t\right) \end{array} \right)$$

Auf welcher Teilmenge des Definitionsbereichs ist c regulär? Bestimmen Sie die orientierte Krümmung $\kappa_o(t)$. Zeigen Sie weiter, dass die Evolute der Hypozykloide wieder eine Hypozykloide ist.

Aufgabe 3

Geben Sie sowohl im Scheibenmodell \mathbb{E} als auch im Halbebenenmodell \mathbb{H}^2 der hyperbolischen Ebene explizit drei Punkte $A,B,C\in\mathbb{E}$ bzw. $A',B',C'\in\mathbb{H}^2$ an, so dass alle Winkel der Dreiecke $\triangle ABC$ und $\triangle A'B'C'$ den Wert $\frac{\pi}{4}$ haben. Finden Sie außerdem eine Isometrie $\varphi\colon\mathbb{E}\to\mathbb{H}^2$ mit $\varphi(\triangle ABC)=\triangle A'B'C'$.

Aufgabe 4

Es sei ein hyperbolisches Dreieck mit Seiten a,b,c gegeben. Die den Seiten a,b,c gegenüberliegenden Winkel seien mit α,β bzw. γ bezeichnet. Es gelte $\alpha=\frac{\pi}{2}$. Zeigen Sie, dass gilt:

$$\cos \beta = \frac{\tanh c}{\tanh a}$$
 und $\cos \gamma = \frac{\tanh b}{\tanh a}$

Hinweis: Es gilt per Definitionem:

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh x}{\cosh x}$$

Aufgabe 5

Wir definieren die sogenannte Wendelfläche (auch Helikoid genannt) durch folgende Parametrisierung:

$$F \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}^3, (x, y) \mapsto \begin{pmatrix} x \sin y \\ -x \cos y \\ y \end{pmatrix}$$

- (i) Zeigen Sie, dass F eine Einbettung ist.
- (ii) Bestimmen Sie die 1. Fundamentalform von F.
- (iii) Geben Sie ein Einheitsnormalenfeld N für F an und bestimmen Sie die 2. Fundamentalform von F bezüglich N.
- (iv) Bestimmen Sie die Hauptkrümmungen, die mittlere Krümmung und die Gaußkrümmung.

Aufgabe 6

Es sei I ein offenes Intervall und $r: I \to (0, \infty)$ eine C^{∞} -Funktion. Wir definieren eine Abbildung F wie folgt:

$$F: I \times \mathbb{R} \to \mathbb{R}^3, (t, \varphi) \mapsto \begin{pmatrix} r(t) \cos \varphi \\ r(t) \sin \varphi \\ t \end{pmatrix}$$

Das Bild von F nennt man auch eine Dreh- bzw. Rotationsfläche.

- 1. Zeigen Sie, dass das Bild von F eine Untermannigfaltigkeit des \mathbb{R}^3 ist.
- 2. Bestimmen Sie die 1. Fundamentalform von F.
- 3. Geben Sie eine Parametrisierung für das nach innen weisende Einheitsnormalenfeld N von F an.
- 4. Bestimmen Sie die 2. Fundamentalform von F bezüglich N.
- 5. Zeigen Sie, dass für die Hauptkrümmungen κ_1, κ_2 gilt

$$\kappa_1 = -\frac{\ddot{r}(t)}{(1 + (\dot{r}(t))^2)^{\frac{3}{2}}} , \qquad \kappa_2 = \frac{1}{r(t)\sqrt{1 + (\dot{r}(t))^2}}$$

und geben Sie die mittlere Krümmung und die Gaußkrümmung an.